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Abstract

A brief history of the Stone-von Neumann uniqueness theorem and its ramifications
is provided. The influence of this theorem on the development of quantum theory,
which was its initial source of motivation, is emphasized. In addition, its impact upon
mathematics itself is suggested by considering certain subsequent developments in orig-
inally unanticipated directions.

1. Introduction

In the mid to late 1920’s, the emerging theory of quantum mechanics had two
main competing (and, initially, mutually antagonistic) formalisms — the wave
mechanics of E. Schriodinger [60] and the matrix mechanics of W. Heisenberg, M.
Born and P. Jordan [27][2][3]." Though a connection between the two was quickly
pointed out by Schréodinger himself  see paper IIT in [60]  among others, the
folk-theoretic “equivalence” between wave and matrix mechanics continued to
generate more detailed study, even into our times. One outgrowth of this was
associated with the canonical commutation relations (CCR):

PQ-QP=-"t1. 1)

27

which had begun to play such an important role in quantum theory [9][27][2][3]
and were particularly central in the matrix mechanics approach.

*To be published in John von Neumann and the Foundations of Quantum Mechanics (ten-
tative title), edited by M. Redei and M. Stoelzner.
!Significant portions of [2] were obtained independently by P.A.M. Dirac [9].
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Schridinger found a representation of (1) in the context of his wave mechanics
in paper III of [60]. Given in modern language, his @ is the multiplication
operator

(QU)(z) =2¥(z), z € R,

on L?(IR) and P is the differential operator

on L*(IR). Born and Jordan [2] had found another with P and @ formal matrices
with infinitely many entries. Jordan [33] subsequently made a heuristic argument
to the effect that these two representations of (1) are, in fact, equivalent in the
sense described below. If that were indeed the case, it would be a very powerful
confirmation that the physical content of matrix mechanics and wave mechanics
coincided, since all physically relevant quantities can be expressed in terms of P
and ). And that, in turn, would enable physicists to employ with confidence
whichever approach was most convenient.

However, much work remained to be done before this assertion could be math-
ematically well-formulated and then proven rigorously. First, quantum theory
needed to be formulated in Hilbert space, a crucial step begun by D. Hilbert
himself [30],2 made explicit by von Neumann in [44], and reached culmination in
von Neumann’s book [46].

Then, because there is no realization of P and (@) satisfying (1) as bounded
operators on Hilbert space [70][73]?, one needed to address the fact that (1) could
not be understood as an operator equation on all of Hilbert space. This difficulty
was side-stepped by reformulating the problem [69]: formally, if P and @ satisfy
(1), then, with U(a) and V(a) defined by

—i2waP —i127a @

U@ =e & andV(a) =€ » |,

it follows that, for any a,b € IR,

i2wab

Ula)V(b) =e = V(b)U(a) . (2)
This is the Weyl form of the CCR for one degree of freedom. U(a) and V' (a) are,
formally, unitary operators and therefore bounded; hence, (2) may be understood

as an operator equation on all of the Hilbert space of states. In the Schrodinger
representation we have

—i27bx

(U(a))(2) = Uz — a) and (V(5)¥)(x) = e F= U (), (3)

2In the winter term of 1926-27, Hilbert gave lectures on the new quantum mechanics which
were prepared in collaboration with his assistants, .. Nordheim and J. von Neumann. The
notes of the lectures were written out by Nordheim, with von Neumann’s assistance, and were
published in [30].

30f course, the founders of quantum theory did not have these later results, but they had
realized that all of their examples were unbounded.
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for any U € L?(IR), and these are, indeed, unitary operators on L*(IR).

In 1930, M.H. Stone [65] stated® and, in 1931, von Neumann [45] proved the
following theorem. Note that a representation of the Weyl form of the CCR is
said to be irreducible if the only subspaces of the Hilbert space H of states left
invariant by the operators {U(a) | a € R}U{V (a) | a € IR} are {0} and H itself.

Theorem 1 If {U(a) | a € R} and {V(a) | a € R} are (weakly continuous®)
families of unitary operators acting irreducibly on a (separable®) Hilbert space H
such that

then there exists a Hilbert space isomorphism™ W : H — L?(IR) such that
WU (a)W ™' = U(a) and WV (a)W ' = V(a),

for all a € IR, where U(a) and V(a) are the Weyl unitaries in the Schrédinger
representation defined in (3).8 If {U,V,H} is not irreducible but H is separable,
then H decomposes into a direct sum of countably many closed subspaces, on
each of which the restriction of {(7, f/} 15 once again unitarily equivalent to the

Schradinger representation {U, V, L*(IR)}.

Hence, every irreducible Weyl representation of the CCR for one degree of
freedom is unitarily equivalent to the Weyl form of the Schrodinger representa-
tion, and this is true, up to multiplicity, for reducible representations, as well.
It therefore follows that the physical content of the irreducible representation
{U,V,#} is identical to that of the Schrédinger representation {U,V, L*(IR)}.
This theorem is usually referred to in the literature as the Stone-von Neumann
uniqueness theorem.?

This discussion has been presented for one degree of freedom, but it may
be reformulated for any finite number of degrees of freedom, and, there again,
any irreducible representation of the Weyl form of the CCR for n degrees of
freedom is unitarily equivalent to the corresponding Schrodinger representation
(with analogous results in the reducible case) [45]. Hence, if one is considering
a quantum system with only finitely many degrees of freedom, then it matters
not which representation one chooses to work in, and the “equivalence” of matrix

4with an indication of the elements of a proof

®As shown by von Neumann [47], this continuity assumption may be replaced by mere weak
Lebesgue-measurability as long as the Hilbert space is separable.

6Note that if the weakly continuous Weyl representation {U,f/fH} is irreducible, then H
must be separable.

"For Hilbert spaces, an isomorphism is a one-to-one linear norm-preserving transformation
from one Hilbert space onto the other.

81f 7{ is not separable and U, V are not weakly continuous, then the conclusion of this portion
of the theorem is false [13].

9Many authors refer to it simply as the von Neumann uniqueness theorem.
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mechanics and wave mechanics is even more tightly knit. This seemed to satisfy
the founders of quantum mechanics, though, much later, mathematical physicists
found some clouds in this apparently brilliant sky when they refocussed their
attention on the dynamical variables P and (), as we shall see.

Returning to the unbounded operators P and @, it should be noted that F.
Rellich [52], followed by many authors (see [50][34] for references and recent re-
sults), provided sufficient conditions on the canonical conjugates P and @ in a
representation of the CCR (1) which ensured that they are unitarily equivalent
to the corresponding operators in the Schrodinger representation. The strategy
ordinarily adopted was to find conditions on P and () so that they may be ex-
ponentiated in such a way that (2) holds, and then to appeal to Theorem 1. As
a useful and representative result of this type, we mention J. Dixmier’s theorem,
once again stated here only for one degree of freedom.

Theorem 2 ([11]) Let P and Q be closed symmetric operators in a Hilbert space
H. Let D be a dense, linear subspace of H contained in the domains of both P
and Q such that PD C D and QD C D. If (1) holds on D and the restriction
of P?2 4+ Q? to D is essentially self-adjoint, then H decomposes into a direct sum
of closed subspaces, on each of which the restrictions of P and Q) are unitarily
equivalent to the corresponding operators in the Schrodinger representation.

On the other hand, there are many results (see [50] and [56] for references) to
the effect that even if P and () are essentially self-adjoint on a common invariant
dense domain D, on which they satisfy (1), they need not be unitarily equivalent
to the Schrodinger representation. In fact, K. Schmiidgen [56] has produced an
uncountable set of pairwise inequivalent representations of this type! Of course,
by Theorem 1, when these operators are exponentiated, the resulting unitaries
do not satisfy (2). Are all of these examples physically pathological? And even
if so, could there be others which are not? The answer to this latter question is
positive. H. Reeh [51] has provided such an example arising in the description of
a charged particle in the exterior of an infinitely long cylinder with a magnetic
flux running through it. This is therefore a physically meaningful representation
of the CCR with finitely many degrees of freedom (two, after the idealization of
letting the radius of the cylinder go to zero) which is not unitarily equivalent to
the corresponding Schrodinger representation. Seventy years ago, this example
would have been a bombshell; however, now that the developments described
in the next section have accustomed us to the nonequivalence of physically rel-
evant representations, Reeh’s example!” was hardly noticed. Nonetheless, even
physicists should be a bit more careful when they proclaim the equivalence of the
Heisenberg and Schrodinger representations in their quantum mechanics lectures.

We have been led to representations of the Weyl form of the CCR through
the physically motivated interest in representations of conjugate P’s and @Q’s.
However, physically interesting applications have been found for representations

10There may well be other such physically motivated examples in the literature; we apologize
in advance for not being aware of them.



{U,V,H} in nonseparable Hilbert spaces which have no connection with un-
bounded operators satisfying (1) at all — see the recent preprint [7] for refer-
ences. In such representations the functions a — U(a) and a — V(a) are not
weakly continuous; these representations are called nonregular. In [7] is given a
generalization of Theorem 1 to the case of weakly measurable nonregular repre-
sentations, which is sufficient to subsume the known physical models. We shall
say no more about this interesting line of development here.

In this introduction, the mathematical level of the discussion has been de-
liberately held low. This will not be possible in the balance of the paper. We
shall first consider the consequences of the fact that the analogue of Theorem 1
for infinitely many degrees of freedom is false; indeed, in that case, there is an
enormously infinite number of unitarily inequivalent representations of the CCR
in the Weyl form and, therefore, also of the original CCR. This fact was only
slowly and painfully realized, because physicists chose to ignore the restriction in
the hypothesis of the Stone-von Neumann uniqueness theorem. We shall indicate
how this obduracy was overcome and what mathematical physicists have discov-
ered in their exploration of this rich set of inequivalent representations in both
its mathematical and physical aspects. We shall also discuss the correct gener-
alization of Theorem 1 to infinitely many degrees of freedom. Finally, to trace
another line of influence of the Stone-von Neumann uniqueness theorem, we shall
briefly describe certain generalizations and their role in the harmonic analysis of
locally compact groups, which has found particular application in such diverse
fields as number theory, imaging science, communication theory and data/signal
analysis. However, given the limitations of space imposed upon us, we have here
no ambitions of completeness.

2. Infinitely Many Degrees of Freedom

Though the hypothesis of Theorem 1 clearly restricts its import to finitely
many degrees of freedom and close examination of von Neumann’s proof makes
it evident that the argument loses its mathematical validity when extended to
infinitely many degrees of freedom, physicists have always trusted their physical
“intuition” more than mathematical proof. Indeed, that which a physicist calls
a proof is often viewed by a mathematician as a plausibility argument, at best.
Physicists are, however, often justified in not waiting for the mathematicians,
whose concern for rigor they regard with impatience, to firmly bolster the physi-
cists’ ideas. If they were to do so, the natural sciences would not have advanced
as rapidly as they have. Significantly, physicists have a source of conviction
which mathematicians do not: mathematically unconstrained speculations can
be checked, to a certain extent, in the laboratory. Nonetheless, important as-
pects of physicists’ theories of nature — their attempts to formalize the physical
intuitions gleaned from the complex feedback loop between theory and experi-
ment  have often enough either remained vague or revealed themselves to be
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incorrect, if not nonsensical.

An example of this is the physicists’ long-lived belief, based upon their expe-
rience with systems having finitely many degrees of freedom and the Stone-von
Neumann uniqueness theorem, that the choice of representation of the CCR was
merely a matter of convenience — one only needed to keep track of the number of
degrees of freedom. It was realized quite early that quantum field theory neces-
sitated infinitely many degrees of freedom in its canonical variables (see already
[10]). When dealing with infinitely many degrees of freedom, they worked exclu-
sively in the representation of the CCR associated with a Hilbert space containing
a dense set of states describing only finitely many particles. This representation
emerged heuristically in the first papers on quantum field theory by Heisenberg
and W. Pauli [28] and was later formalized more completely by V. Fock [16] (see
[8] for the first mathematically rigorous and Poincaré covariant presentation of
this representation, now usually called the Fock!! representation). Since the Fock
representation, using annihilation and creation operators and a distinguished vac-
uum vector, is so well-known, and it is equally well-known that the Schrodinger
representation can be re-written as a Fock representation with only finitely many
annihilation and creation operators, we shall not interrupt the flow of our story
with the details (but see [4] or [12], if necessary).

The Fock representation was therefore viewed as the natural generalization of
the Schrodinger representation to infinitely many degrees of freedom and inherited
its royal mantle of distinction. Hence, quantum field models were written in
the Fock representation by theoretical physicists, insofar as a representation was
actually specified, with the firm belief that it was the only representation they
needed.

It is an interesting aside that von Neumann apparently did not appreciate
systems of infinitely many degrees of freedom. He wrote in his treatment of
radiation in [46]:

Nun ist es formal unbequem und bedenklich, Systeme mit unendlich
vielen Freiheitsgraden bzw. Wellenfunktionen mit unendlich vielen Ar-
gumenten zuzulassen.'?

In what is effectively the Fock representation, he therefore considered N degrees of
freedom, computed energy spectrum, and then let N — oo. In order to compute
this spectrum, von Neumann performed a canonical transformation'? to obtain
a second representation of the CCR in which the transformed Hamiltonian has
a simpler form. For finite N this transformation is, by Theorem 1, unitarily
implementable. However, in the limit N — oo the transformation is not unitarily
implementable and the representations are unitarily inequivalent. In other words,
without realizing it, von Neumann himself worked with unitarily inequivalent

Hor Fock-Cook, among mathematicians

I2Now it is inconvenient formally and of doubtful validity to admit systems with infinitely
many degrees of freedom, or wave functions with infinitely many arguments. See page 141,
resp. page 265, of [46].

13in mathematical terms, a symplectic transformation
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representations of the CCR. His argument about the energy spectrum is therefore
suspect.14

From the very beginning of the subject, quantum field theory was plagued
by divergences; when one source of infinity was heuristically taken care of, yet
another was stumbled upon. This became such an apparently insurmountable
problem, that some of the founders became quite pessimistic (particularly Bohr
and Dirac) and decided that yet another conceptual revolution would be required
to transcend quantum field theory and avoid its apparently inherent problems.
However, some researchers had not yet given up on the possibility of getting
sensible answers from quantum field theory and were trying to discern and then
engage the various sources of these infinities from increasingly profound starting
points.

Of direct relevance to our story, L. van Hove examined a simple model and
argued that the origin of the divergences of perturbation theory (which is always
carried out in Fock space) could be located in the fact that the state vectors of
the interacting model were “orthogonal” to the state vectors in Fock space. In
modern terms, what he argued was that the folium of states'® of the interacting
model was disjoint from the folium of states of the Fock representation. An
immediate consequence of this observation would have been that the interacting
representation for his model was unitarily inequivalent to the Fock representation.
He did not quite get to this point.'¢

Also in the early 1950’s, K.O. Friedrichs [17] undertook an influential attempt
to reduce the hand-waving typical of quantum field theory up to that time. For
our purposes here, the result of greatest interest was his construction of some
representations of the CCR for infinitely many degrees of freedom which were not
unitarily equivalent to the Fock representation. As he wrote:

Accordingly, there are different — non-equivalent — realizations of the
basic field operators, and consequently different non-equivalent
kinds of fields, a fact which seems worth noticing.'”

In point of fact, he constructed representations in which the number operator
does not exist (cf. the discussion further below).'®

Though it would appear that not many theoretical physicists did take notice
of Friedrichs’ results, at least a handful of mathematical physicists and mathe-
maticians were paying attention. In particular, in the following year L. Garding
and A.S. Wightman [22], taking their cue from Friedrichs and trying to clas-

1We return to this point below.

154.e. the set of states determined by the density matrices on the Hilbert space of the given
representation

16Tt is of interest to note that van Hove perceived a connection between his model and von
Neumann'’s infinite product spaces [48]. With the benefit of hindsight, we see that he was
anticipating the theory of infinite product representations of the CCR [35].

17See p. 3 of [17].

18]t would seem that Friedrichs was not aware of either van Hove’s example nor von Neu-
mann’s paper [48] when he did this work; they were mentioned only in the Comments and
Corrections at the very end of the book [17], added after the work had been completed.
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sify representations of the CCR using properties of a number operator,'® proved
that there exists a large class of inequivalent representations of the CCR for in-
finitely many degrees of freedom.?? Indeed, it slowly emerged that there exists
an unimaginably infinite number of inequivalent representations  the space of
unitary equivalence classes of such representations cannot even admit a separable
Borel structure [40][19]. The task of classifying these representations would thus
appear to be hopeless.

Another researcher who reacted to the examples of van Hove and Friedrichs
was R. Haag. Aware of these preceding works, he presented an argument to the
effect that the interaction representation, widely in use in quantum field theory
on the basis of its prior success in quantum mechanical scattering theory, did not
exist unless there was no interaction at alll This important assertion found a
number of mathematically rigorous formulations and proofs, which can, perhaps,
be summarized into two types, represented in [66] and [12]. We state Haag’s
theorem in a somewhat restricted form along the lines of [66].

Theorem 3 (Haag’s Theorem) Let ¢(z) be a free hermitian scalar field' of
mass m > 0, and let ¥ (x) be an irreducible local Poincaré-covariant field. If ¢(x)
and Y(z), resp. the canonical conjugates ¢(x) and w(:r), are unitarily equivalent
at some time t, then ¢(z) is also a free field of mass m.

Of course, the indicated hypothesis holds for the “free” field and the “inter-
acting” field in the interacting representation. This was extremely inconvenient
for the then-standard scattering theory for quantum fields. But it is clear that
Haag’s theorem also implies that the representations which are of physical in-
terest, precisely because they involve interaction, are to be found among those
inequivalent to the Fock representation. Therefore, by 1955, both the existence
and the necessity of using representations inequivalent to the Fock representation
had been firmly established though not established in all theorists’ minds:
as late as 1961, a standard text on quantum field theory [61] could present the
old scattering theory in the interaction representation with no mention of Haag’s
theorem??.

Before we turn to a recounting of the progress made in constructing represen-
tations inequivalent to the Fock representation, we answer the natural question:
which representations are equivalent to the Fock representation? It was evident
to Friedrichs that a necessary condition for this equivalence is the existence of a
number operator in the representation. A series of papers followed Friedrichs’ lead
and gave successively more general, rigorously proven content to the assertion “a
representation of the CCR is unitarily equivalent to the Fock representation if
and only if the number operator exists as a densely-defined self-adjoint positive

Y They also made use of von Neumann’s paper on infinite products.

20 As straightforward an operation as multiplying all the P’s by 2 and all the @’s by 1 produces
a representation of the CCR which is unitarily inequivalent to the initial representation.

2land therefore irreducible, local and Poincaré-covariant

22and yet still cite [24] for other purposes!



operator in the representation.” However, as was emphasized by J.M. Chaiken [5],

this result is very sensitive to the definition of “number operator”.?3

The work of Garding and Wightman did not provide an explicit construction
of inequivalent representations. Wightman and S.S. Schweber [72] later con-
structed some classes of inequivalent representations of the CCR, as did LE.
Segal (see a later account [62] and the references given there). Many further
classes of inequivalent representations have been constructed and brought under
mathematical control since then. We mention the infinite product representa-
tions [35], coherent representations [36], quasi-free representations [54], quadratic
representations [49] and higher-order representations [15]. These various classes
of representations have found physical application and will surely prove to be of
further use in the future.

But the most ambitious and difficult constructions of representations of the
CCR have been carried out under the rubric “constructive quantum field theory.”
This work was motivated by the desire to mathematically construct the sort of
representations the quantum field theorists were tacitly referring to; in other
words, to give some mathematical meaning to the quantum field models at the
center of the theorists’ discourse. This latter goal has been approached from two
different directions  on the one hand, various axiom systems have been erected
which hope to subsume basic principles common to large classes of quantum
fields: then theorems are proven to establish physically interesting properties of
all quantum fields satisfying the given axioms; and on the other hand, concrete
models have been constructed to show that the axiom systems are not vacuous:
of course, in this connection, valiant efforts have been made to construct the
standard models of the quantum field theorists. The axiomatic approach will
not be further discussed here.?? Instead, we shall briefly indicate those results of
constructive quantum field theory which are of direct relevance to the topic at
hand.

We first discuss J. Glimm and A. Jaffe’s construction of the (¢*),-model [20].
Let H, be the Fock space for a scalar hermitian Bose field ¢(z,t) of mass m > 0.
Let m(x,t) = 0¢(x,t)/0t and D C H, be the dense set of finite-particle vectors
in Hy. Then, for every f in a dense subspace S(IR) of L?(IR), the operator
o(f) = o(f,0) = [¢(z,0)f(x)dr is essentially self-adjoint on D and ¢(f)D C D
(similarly for 7(f)). Then one has on D the CCR*

o(f)m(g) —m(9)o(f) = i< fg>T, (4)
o(f)olg) — o(9)o(f) = 0 =n(f)n(g) —n(g)n(f), (5)

for all f,g € S(IR). When exponentiated, these operators provide a Weyl repre-
sentation of the CCR. For each bounded open subset O C IR, denote by A4(O)

23Gee [4] for further references and [55] for a recent paper on those representations which have
a “generalized number operator”.

2"We refer the interested reader to [66][25] and also, for a historical overview, [71].

25 As is customary in quantum field theory, we adopt physical units in which ¢ = h/27 = 1.
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the von Neumann algebra?® generated by the Weyl unitaries
{0, "D ] f e S(R) , supp(f) C O}.

Note that, though there are many C*-algebras associated with the CCR in the
Fock representation,?” they all have the same weak closure.
The total energy

Hy = %/ L (m(w,0)2 + Vo(x,0)? + m?¢(x,0)?) : do

of this field is a positive quadratic form on D x D and therefore determines
uniquely a self-adjoint operator, which we also denote by Hy. With g € L?(IR)
nonnegative of compact support, Glimm and Jaffe showed that, for each A > 0,
the cut-off interacting Hamilton operator

H(g) = Hy + )\/ L ¢(x,0)" : g(x)dw

is essentially self-adjoint on D,?® and its self-adjoint closure, also denoted by
H(g), is bounded from below. By adding a suitable multiple of the identity we
may take 0 to be the minimum of its spectrum. Then, 0 is a simple eigenvalue of
H (g) with normalized eigenvector Q(g) € H,.

For any t € IR, let O; denote the subset of IR consisting of all points with
distance less than [¢t| to O. By choosing the cutoff function g to be equal to 1 on
Oy, then for any A € A(O) the operator

O't(A) = ez'tH(g)AAefsz(g)

is independent of g and is contained in A(O,). For any bounded open O C IR?
and t € R, let O(t) = {x € R | (z,t) € O} be the time ¢ slice of O. We define
A(O) to be the von Neumann algebra generated by U, o,(A(O(s))).? Finally,
we let A denote the closure in the operator norm of the union J.4(O) over all
open bounded @ C IR?. Hence, o, is an automorphism on A and implements the
time evolution associated with the interacting field. Similarly, “locally correct”
generators for the Lorentz boosts and the spatial translations can be defined,

2650-called because they were introduced in [43]

27 As opposed to the case of the canonical anticommutation relations, the C*-algebra obtained
here depends upon the choice of the dense subspace S(R) of test functions — see [4] for a detailed
discussion of this point. However, once the dense subspace of test functions has been fixed, the
closure Ag in the operator norm of the algebra generated by the set {e??(/) ¢"(5) | f € S(R)}
has the property that to each, not necessarily continuous representation of the CCR, (4)-
(5), there corresponds a representation of Ay [64]. Moreover, Ay is simple [42][64], so it is
representation-independent — see the discussion further below.

28Without the cutoff g, the interacting Hamilton operator is not densely defined in Fock
space.

290ne can then show that the algebra A(O) coincides with the von Neumann algebra gen-
erated by bounded functions of the self-adjoint field operators [ ¢(z,t)f(z,t)dzdt, with test
functions f(z,t) having support in O.
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resulting in an automorphic action on A of the entire Poincaré group in two
spacetime dimensions.

For each A € A, we set w,(A) =< Q(g), AQ(g) > to define the locally correct
vacuum state w, of the interacting field. Taking a limit as the cutoff function g
approaches the constant function 1, Glimm and Jaffe showed that w,(A) = w(A),
for each A € A, defines a new (locally normal) state w on A which is Poincaré
invariant. By the GNS construction one then obtains a new Hilbert space H, a
representation p of A as a C*-algebra acting on #H, and a vector €2 € H such that
p(A)Q is dense in H and

w(A) =<, pA)Q2>, forallAe A.

In addition, one obtains a strongly continuous unitary representation of the
Poincaré group in two spacetime dimensions under which the algebras p(A(O))
transform covariantly. The axioms of both the algebraic [25] and the field ap-
proach [66] have been verified for this model.

It is in this representation (p, H) that the field equations for this model find a
mathematically satisfactory interpretation [59]. And it is to the physically signif-
icant quantities in this representation that perturbation theory in A is asymptotic

see the discussion in [21]. For this and other reasons, w is interpreted as the
exact vacuum state in the interacting theory, and its folium of states contains the
physically admissible states of the interacting theory.

The generators of the strongly continuous Abelian unitary groups
{p(e®)) | t € R} and {p(e)) | t € IR} satisfy the CCR (4). However,
this representation of the CCR in H is not unitarily equivalent to the initial
representation in Fock space. Indeed, by taking different values of the coupling
constant A in the above construction, one obtains an uncountably infinite family
of mutually inequivalent representations of the CCR (4) (see [18])!*

Similar constructions with similar results have been carried out for general
polynomial interactions P(¢) and for the Yukawa model, both in two spacetime
dimensions. For the sake of technical convenience, these constructions were re-
done in the Euclidean approach, and many additional models were constructed
in that manner.?! Although the program of constructing the standard models of
quantum field theory in four spacetime dimensions is not completed, the lessons
taught by the constructions of interacting field models in lower dimensions cannot
be overlooked. In particular, quantum fields with different interactions are asso-
ciated with mutually inequivalent representations of the CCR, which are in turn
inequivalent to the Fock representation. The choice of representation would thus
appear to be quite significant. Tersely summarized, one could say that the kine-
matics of the physical system fixes the CCR-algebra and the dynamics determines
the representation.3?

300f relevance to quantum field theory, but particularly to quantum statistical mechanics,
which also must face systems with infinitely many degrees of freedom [4], is the observation
that also equilibrium states at different temperatures are associated with mutually inequivalent
representations [67]. The Fock representation is associated with temperature zero.

31For an introduction to this work, as well as further references, see [21].

32In fact, in a certain sense, the representation also determines the dynamics — see [1].
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Though the original problem was stated in terms of unitary equivalence, there
are, in fact, weaker notions of equivalence which are also of physical relevance.
A notion of physical equivalence introduced by Haag and D. Kastler [26] will be
discussed next.

Since one can carry out only finitely many experiments which themselves have
only a finite accuracy, the experimental situation strictly limits our ability to test
the many idealizations which are implicit in any physical theory and which are
particularly strongly present in quantum mechanics and quantum field theory.
These limitations on measurement and the statistical interpretation of the basic
objects in the theory induce a natural topology on the set of states on the algebra
of observables A. Let {A4;}7 , C A be a set of observables of a system which has
been prepared in the state w. Let {a;}?_, be their measured average values to
within the (respective) errors {¢;}7 ;. Hence one has the n inequalities

lw(Ai) —ai] <€, i=1,...,n.

On the other hand, recall that the o(A*, A)-topology on the set A* of all con-
tinuous, linear complex-valued functions on A is generated by the seminorms
Ni(w) = |w(A)], for each A € A. In other words, the o(A*, A)-topology is the
locally convex topology with basis of neighborhoods at the origin given by

Nuagr qeyn In € N {A L, C A {e}i, C (0,00},

where
N{Ai}yzl,{ei};;l ={we A" | |wA) <e,i=1,...,n}.

Thus we see that any experiment (or set of experiments, necessarily finite) deter-
mines the state of the system only up to a neighborhood in the o(A*, A)-topology.

For purely mathematical reasons, J.M.G. Fell introduced the following notion
of equivalence of representations. If (p, H) is a representation of A, then its kernel
is given by Ker(p) = {4 € A | p(A) = 0}.

Definition([14]) Two representations (p1, Hi1) and (pa, Ha) of A are said to be
weakly equivalent if Ker(p;) = Ker(ps).

Unitary equivalence implies weak equivalence, but the converse is false. Fell
showed that two representations (p;, H1) and (pa, Hs) of A are weakly equivalent
if and only if given every state w; on A determined by a density matrix on #; and
given any o(A*, A)-neighborhood N of wy, there exists a state wy € N determined
by a density matrix on Hs. In other words, the o(A*, A)-closure of the folium of
states associated with (p;, H;) coincides with the o(A*, A)-closure of the folium
associated with (po, Hs).

Therefore, if the kernels of two representations of A coincide, then it is phys-
ically impossible to determine which representation one is in (and conversely)!
But if (p, ) is a representation of A, then Ker(p) is a norm-closed two-sided
ideal of A. Thus it follows that whenever A is simple, every representation of A
must be faithful, and hence all representations of a simple algebra A are physi-
cally equivalent. What is more, in quantum field theory the quasilocal algebras
A are typically simple!
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So, have we returned to the physicists’ original point of view - the choice of
representation is just a matter of convenience, even in systems with infinitely
many degrees of freedom? Not exactly! Let us posit, once again, that we have
chosen observables {4;}" , C A and made measurements with results {a;}" ,
to within errors {¢;}"_,, thereby determining a o(A*, A)-neighborhood N of the
actual state w, normal in the true physical representation (p, ). If A is simple,
then Fell’s theorem entails that we can find a state p,r, normal in any other fixed
representation of A, which is contained in A and therefore yields predictions
conforming with the results of this experiment. But the moment we improve the
experiment, ¢.e. reduce the errors, or we change the experiment to include another
set of observables (but still preparing the system in the same original state), then
the neighborhood N changes (though w does not change), and we must find
another approximate state in the given “wrong” representation to reproduce the
results of the new experiment. In other words, in order to have (correct) predictive
power beyond the particular experiments to which one fitted the approximate
state, one needs the correct state in the correct representation. This, surely, is
not merely a matter of convenience!®3

J. Manuceau’s [42] and J. Slawny’s [64] observation that the minimal C*-
algebra A, associated with the CCR is simple and hence all representations of
Ay are isomorphic can be seen as the correct generalization of Theorem 1 to in-
finitely many degrees of freedom. The existence of this algebraic isomorphism
implies unitary equivalence in the finite case but not in the infinite case. This
independence of representation enables the rigorous study of the canonical trans-
formations commonly employed in theoretical physics (by von Neumann himself
— see further above) as automorphisms on the C*-algebra Ay. In a given rep-
resentation of A, the given automorphism may or may not be unitarily imple-
mentable. If it is, then the original Hamiltonian operator will have the same
spectrum as the transformed (diagonalized) one; if not, then there need be no
relation between the spectra of these operators.

To close this section, we remark that the significance of the Stone-von Neu-
mann uniqueness theorem is further emphasized by the fact that for the other
important types of algebraic relations  such as the canonical anticommutation
relations and, more recently, supersymmetric commutation relations, p-adic com-
mutation relations, and the deformed commutation relations of quantum groups
— one of the first questions addressed is the validity of the counterpart of Theorem
1 in the given setting. For further reading, we mention the papers [57][37][23][32].

3. Generalizations to the Harmonic Analysis of
Locally Compact Groups

331t is evident from this discussion that it is impossible to prove experimentally that a putative
exact state is the correct one (and, thus, that the correct representation has been chosen). But
at least it is logically possible to establish experimentally that it is not the correct one (if, in
fact, it is not).
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In 1949, G.W. Mackey [39] provided a generalization of the Stone-von Neu-
mann uniqueness theorem to the setting of locally compact groups, which itself
found many applications in mathematics and elsewhere and which may justifiably
be seen as yet another impact of von Neumann’s work. For simplicity, we shall re-
strict our attention to Abelian groups, though Mackey formulated and proved an
analogous result for arbitrary locally compact groups. With G a locally compact
Abelian group and g a Haar measure on GG, one can naturally define the Hilbert
space L?(G,dp). If G* is the topological character group of G, i.e. each 7 € G*
is a continuous homomorphism from G into the multiplicative group of complex
numbers of modulus 1, and G* is endowed with the natural induced topology (so
that it, too, becomes a locally compact Abelian group), then the analogue of the
Weyl form of the Schrodinger representation is described by the following unitary
operators on L*(G,dpu):

(Us(9)W) () = (g ) and (Vs(r)W)(x) = 7()0 () ()
for any ¥ € L*(G,dp). (Compare with (3).)

Theorem 4 ([39]) Let G be an arbitrary separable’® locally compact Abelian
group, and let G* be its topological character group. Let U be a weakly continuous
representation of G in the (separable) Hilbert space H. If V is a weakly continuous
representation of G* on H such that U(g)V (1) = 7(9)V(7)U(g), for all g € G
and 7 € G*, then H decomposes into a direct sum of at most countably many
closed subspaces H,,, each invariant under {U(g) | g € GYU{V (1) | T € G*}.
Moreover, letting U, resp. V,, denote the restriction of U, resp. V', to H,, there
exists a Hilbert space isomorphism W, : H, — L*(G,du) with

W,Un(9)W, ! = Us(g) and W,V (1)W, " = V(1) ,

forall g € G and 7 € G*.

Subsequently, arguments which were more elementary than Mackey’s original
proof were found, as well as some additional reformulations - see, e.g. [63][53].
Theorem 4 is often called the Stone-von Neumann-Mackey theorem.?> It has been
placed by Mackey into the context of his theory of induced representations and
there was seen to be a consequence of his imprimitivity theorem. The interested
reader is referred to [41] for an introduction to this circle of ideas.

Theorem 1 is obtained as a special case of Theorem 4 by choosing G to be
the additive group of reals (for more than one degree of freedom, G is chosen to
be the additive group of vectors IR"). Note that, in that case, G* is isomorphic
to G itself.

31 Loomis [38] later showed that the assumption of separability of G could be dropped.

351t may be of interest to note that Theorem 4 was evoked in J. Slawny’s proof [64] of
the existence and properties of the minimal C*-algebra associated with the CCR, which was
mentioned in the previous section.
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From Theorem 4 follows one of the most useful theorems in Abelian harmonic
analysis, which is in turn a generalization of the crucial Plancherel theorem in
Fourier analysis (a special instance of Abelian harmonic analysis). (See [63] for
a proof.)

Theorem 5 Let G be a locally compact Abelian group. Given any element f €
LY G, du) N L*(G,du), its Fourier transform f, defined by

fr) = [rl9) 1 (9)dutg)

is in L*(G*,du*), and the mapping f f extends uniquely to a Hilbert space
isomorphism from L*(G, dp) onto L*(G*, du*) (with suitable normalization of the
Haar measure j1*).

From this then follows the generalized Riemann-Lebesgue lemma: the Fourier
transform of an integrable function on a locally compact Abelian group G vanishes
at infinity on G*. It is surely evident by now how central a result the Stone-von
Neumann-Mackey theorem is in Abelian harmonic analysis.

To take yet another perspective on this topic, consider the m-dimensional
Heisenberg group, which is the universal covering group of the non-Abelian group
of unitary operators on L?(IR") generated by the translations

T,f(z) = f(x+p), pe R",

and the multiplications
My f(z) = €7 (z) , g € R" .

It is evident from the discussion in the introduction that the Stone-von Neumann
uniqueness theorem may be used to classify the irreducible representations of the
Heisenberg group. This again permits the proof of a corresponding Plancherel
theorem, etc.. We refer the reader to [68] for a development of this theory, as
well as indications of the many sorts of applications which have arisen. Here we
only mention one buzzword: wavelets.

Finally, just to hint at further realms, we mention that Theorem 1 has also
found applications to number theory (see, for example, [6]), function theory (see
[58]) and invariant subspace theory(see [29]).

Acknowledgements: We have found [12] and [71] particularly useful during the
preparation of this paper and further recommend them to the reader’s attention.
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