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It is shown that the same arguments which lead to black-hole evaporation also predict
that a thermal spectrum of sound waves should be given out from the sonic horizon in

transsonic fluid flow.
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Black-hole evaporation®? is one of the most
surprising discoveries of the past ten years.
Black holes emit thermal radiation with a tem-
perature given by ~c®/8mkGM, and thus seem to
combine quantum mechanics and gravitation to
produce thermodynamics. This theoretical re-
sult suffers, however, from certain difficulties.
In particular, the result is derived under the
assumptions that the quantum fields in question
do not affect the gravitational field in which they
propagate, that the gravitational field itself is
unquantized, and that the wave equation for the
quantum field is valid on all scales. Any break-
down of these assumptions would seem to imply
the breakdown of the evaporation process. A
further difficulty is that the experimental investi-
gation of the phenomenon would seem to be vir-
tually impossible, and would depend on the highly
unlikely discovery of a small black hole (a relic
of the initial stages in the life of the universe
perhaps)® near the Earth.

However, a physical system exists which has
all of the properties of a black hole as far as the
quantum thermal radiation is concerned, but in
which all of the basic physics is completely under-
stood. In this system one can investigate the ef-
fect of the reaction of the quantum field on its
own mode of propagation, one can see what the
implications are of the breakdown of the wave
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equation at small scales on the evaporation proc-
ess, and one might even contemplate the experi-

mental investigation of the thermal emission

process.

The model of the behavior of quantum field in a
classical gravitational field is the motion of sound
waves in a convergent fluid flow. The equations
of motion for an irrotational fluid are given by*

vxv=0
plov/ ot +(V - 9)V]=— Vp — pV®,
8p/8t+v +(pv) =0,

where p is the pressure which is assumed to be
a function of p, and ® is an external force poten-
tial. Defining

&8 = feg(p’)’l[dp(p')/dp' ldp’,
£=lnp,
v=vy,
we have
g/t +5V - V+g(&) +@=0
9L/t +V-VE+V V=0,

Linearizing these equations about some solution
Yor Vo=V, and &, with

E=b+E, ¢=U+7,
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we obtain, after some manipulation,
80 /8t +V, - Vi +g' (£)E=0,
which result in an equation for ¢,

Py 89

1 F)
Z[é?g'(eo)¥ o g’ (&) g (&) ot

po~ 18(poE)/ 0L + 9 - (pg¥E) [+, 71V (V) =0,

9 pyv, - Voo - e Py e -
+ — L% -V¢+V~<—p§v— —Z’D)-V-pOV<p+V-<VE,£(%7v-V¢>]=O.
0

These are precisely the equations for a massless scalar field in a geometry with metric

ds® 7(%7 Lc¥(py) = ¥, - ¥,) di® +2dt ¥V, - d% — d% - d%}
0

where c*(p,) =g'(In p,) is the local velocity of sound. For simplicity, I will assume this to be a constant.
If we assume that the background flow is a spherically symmetric, stationary, and convergent flow,5

we can define a new time®
;e “‘f vy (v)dr
¢ =v,"3(7)
in which case the metric becomes

2

ds?= Bﬂ((cz - v,"2)dT? - ——2-(’17:———

c c? =0,

If we assume that at some value of =R we have

the background fluid smoothly exceeding the ve-
locity of sound,”

v,"=~c +a(r —=R) +O((r = R)?),

the above metric assumes just the form it has for
a Schwarzschild metric near the horizon. Drop-
ping the angular part of the metric we have

2 PR (o 2 ar®
ds ~JC—(20a(V—R)dT ———————2‘1(1,_1%)), |

Yo <

A expliw(T —¥*)], near =,

where we define

/K o
cdrv sc » T
7’*=fcz 2.2 Y 1
-v, 1 _ ~

82a In(r -R), r-R.
The operator J can be expanded in terms of
these modes in the region outside the horizon.

I=23(a,d,+a,Th,*) +ingoing parts of J.
w

To determine what an observer at large » will
see, we must decide on the state of the field J.

I will assume that an observer traveling with the
fluid as it flows through the sonic horizon will see
the state of the field J as being essentially the
vacuum state. The appropriate physical time for
this observer is {, and positive frequency with
respect to ¢ will define the quantum state for the
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- — 7*(d6® +sin?0 d<p2)> .

which compares with
ds =[(# - 2M)/2M)dt? - 2M d#* /(7 — 2M)

near the horizon of a black hole. We can now
ask what happens when we quantize the sound

field §. Outside the sonic horizon the normal

modes of the § field which are purely outgoing
as ¥ —© go as

- {exp[iw(T —»*)]+B,expliw(T +7*)], near horizon

|f1uid near the horizon. Defining the co-moving
radial coordinate

7= (V—R)—C(lf—-to),

we find that the modes ¥, have a time dependence
to the co-moving observer near the sonic horizon
of

Vo= (=t +7/¢)**/%x (a smooth function of t£,7).

This corresponds exactly to the behavior of the
normal modes of a scalar field in Schwarzschild
t,r coordinates as seen by a freely falling observ-
er where the relation is

expliw( —#*)]

=(I'=1T,)¢"“/®x(a smooth function),
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where T is the time as measured by a freely fall-
ing observer.

In the sonic case, this behaivor of the normal
modes near the sonic horizon implies that this
sonic black hole will emit sound waves with a
thermal spectrum (multiplied by a albedo function
| A |? just as for the black-hole case) where the
temperature is given by®

_r w”
2k o7 horizon

This compares with
T =hc®/8nkGM

for a black hole where ¢ in this case is the veloci-
ty of light rather than that of sound. In both cases
the derivation uses the behavior of external modes
near the horizon, which go as (¢t —£,)"“/*" in the
relevant physical time, for arbitrarily small
t —t,, to conclude that thermal emission takes
place.

This system forms an excellent theoretical
laboratory where many of the unknown effects
that quantum gravity could exert on black-hole
evaporation can be modelled. The low-energy
fluid equations which have led to quantum thermal
sonic emission by a transonic background flow
break down at high frequencies because of the
atomic nature of the fluid. At distances of 1078
cm, the assumptions which I use of a smooth
background flow are no longer valid just as in
gravity one expects the concept of a smooth space-
time on which the various relativistic fields prop-
agate to breakdown at scales of 10"3% cm. Fur-
thermore, the phonons emitted are quantum fluc-
tuations of the fluid flow and thus affect their own
propagation in exactly the same way that graviton
emission affects the space-time on which the vari-
ous relativistic fields propagate.

This model also admits the possibility of ex-
perimental testing, although this is an extremely

slim possibility. Assuming 8v"/87 = ¢/R, where
R is the horizon radius, we obtain a temperature
of

T =(3x10""K)lc/ (300 m/sec) (1 mm/R).

This is a rather low temperature, and is proba-
bly undetectable in the presence of turbulent in-
stabilities, etc., which would arise in trying to
drive the fluid transsonically through a small
nozzle. It is, however, a much simpler experi-
mental task than creating a 10”8-cm black hole.
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