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1. Introduction

Spontaneous symmetry breaking occurs when a ground state is not preserved by

some symmetry of the system. For example, the so-called Mexican Hat Potential is a

toy model with multiple ground states are related by a rotation (Figure 1). Or, in the

Higgs mechanism, degenerate ground states in the electroweak interaction are related

by an SU(2)× U(1) symmetry.

Figure 1. Degenerate ground states in a Mexican hat potential.

A precise description of spontaneous symmetry breaking requires unitarily inequiv-

alent Hilbert space representations, because the vacuum state in a given irreducible

representation is generally unique. But that seems to give rise to an apparent para-

dox: by Wigner’s theorem, every symmetry can be implemented by a unitary operator.

Shouldn’t that all representations related by a symmetry be unitarily equivalent —

and hence, shouldn’t spontaneous symmetry breaking be impossible?

Baker and Halvorson propose to resolve this paradox by just thinking carefully

about the definitions involved. Let’s review them now.
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2. Unitary equivalence

When do two mathematical descriptions refer to the same physical situation? It’s

not always easy to answer this. For example, arch-relationist Leibniz argued that two

descriptions related by a spatial flip are physically equivalent; arch-substantivalists

Newton and Clarke disagreed. Or: Einstein initially failed to understand that the ap-

parent r = RS singularity at the black hole event horizon in Schwarzschild coordinates

(t, r, θ, φ) can be removed by switching to Kruskal coordinates, while still representing

the same physical spacetime.

Let’s try to understand when two representations of a quantum system refer to the

same statistical situation. Suppose we describe the kinematics of a quantum system

with a preferred vacuum state using the triple (H,A,Ω), where H is a Hilbert space

(like Fock space), A is an algebra of bounded operators onH, and Ω ∈ H is a preferred

vector on H, which we interpret as the vacuum. Usually, Ω is assumed to be such

that the set of vectors {AΩ | A ∈ A} is dense in H (in the Hilbert space norm), to

capture the fact that every state is accessible through some operation on the vacuum.

A vector in (H,A,Ω) is called cyclic.

When do two such quantum systems describe the same statistical possibilities?

The standard answer is: when they are related by a unitary1 intertwiner or unitarily

equivalent.

Definition 1 (Unitarily equivalence). Two quantum systems (H,A) and (H′,A′) are

unitarily equivalent iff there exists a bijection α : A → A′ and a unitary or antiunitary

operator U : H → H′ such that α(A) = UAU∗ for all A ∈ A.

Why is this the right standard of equivalence in quantum theory? It can be mo-

tivated in different ways, depending on how we construe the predictions of quantum

theory. Here are two (for more see Aniello, 2018). First, we can use the notion of a

transition probability |〈φ, ψ〉|2. If we view the self-adjoint operators as observables,

then the spectral theorem assigns each observable a set of basis vectors φ1, φ2, . . . ,,

1Recall that if A : H → H′ is a linear operator, then for all ψ′ ∈ H there exists a φ ∈ H such that
〈ψ′, Aχ〉H′ = 〈φ, χ〉H. This φ is denoted φ = A∗ψ′, which defines an operator A∗ : H′ → H called
the adjoint. A unitary operator is a linear operator U such that U∗U = IH and UU∗ = IH′ .
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which each vector φi in the basis set interpreted as a possible outcome in an exper-

iment. Given a system prepared in the state ψ, the transition probability |〈φi, ψ〉|2

then gives the probability that the prepared state ψ will be measured in the state φi.

Thinking of the predictions of quantum theory as transition probabilities of this kind,

we might adopt the following as a reasonable standard of equivalence:

Definition 2 (equal transition probabilities). Two quantum systems (H,A) and

(H′,A′) have equal transition probabilities iff there is a bijection α : P1(H)→ P ′1(H′)

between their one-dimensional projections that preserves transition probabilities, in

that if ψ ∈ H denotes a unit vector contained in the projection Eψ, and ψα ∈ H′

denotes a unit vector contained in α(Eψ), then,

|〈ψα, φα〉|2 = |〈ψ, φ〉|2 for all Eψ, Eφ ∈ P1(H).

A version of Wigner’s theorem says that this property holds if and only if unitary

equivalence does (Aniello, 2018):

Proposition 1. (H,A) and (H′,A′) are unitarily equivalent if and only if they have

equal transition probabilities.

Proof. Assuming unitary equivalence, define α(ψ) = Uψ to immediately find that

|〈α(ψ), α(φ)〉|2 = |〈Uψ,Uφ〉|2 = |〈ψ, φ〉|2. Conversely, assume equal transition proba-

bilities. Then by Wigner’s theorem there exists a unitary or antiunitary operator U

such that α(ψ) = U . Associating each ψ with a one-dimensional projection E in A,

we find that the map E 7→ UEU∗ gives rise to bijection from the projections in A to

those in A′, which extends uniquely to a bijection A 7→ UAU∗ from A to A′. �

Another way to look at the predictions of quantum theory is in terms of the struc-

ture of the density matrices. Recall that a density operator ρ — a positive semidefinite

operator of trace 1 in general, or a ‘density matrix’ in finite dimensions — is asso-

ciated with a mixed state if and only if ρ = ερ1 + (1 − ε)ρ2 for some ε ∈ (0, 1) and

density matrices ρ1 6= ρ2. Otherwise, it is called a pure state. A mapping that pre-

serves the density operator structure is called a density operator automorphism or a
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Kadison automorphism. This is another general sense in which we might say that

two quantum systems can be equivalent: they can have the same density operator

structure. We formulate this as follows:

Definition 3 (equivalent density operators). Two quantum systems (H,A) and

(H′,A′) have equivalent density operators iff there is a bijection Φ from the density

matrices of one to the density matrices of the other that preserves convex structure,

Φ(ερ1 + (1− ε)ρ2) = εΦ(ρ1) + (1− ε)Φ(ρ2) for all ρ1, ρ2 and for all ε ∈ [0, 1].

We then have the following result due to Kadison (1965).

Proposition 2. Two quantum systems (H,A) and (H′,A′) have equivalent density

operators iff they are unitarily equivalent.

An even more general way to look at a quantum system is as an abstract unital

C∗ algebra A, together with its set of ‘states’, where a state ω : A → C is any linear

function that is positive (ρ(A∗A) ≥ 0 for all A ∈ A) and satisfies ω(I) = 1. The self-

adjoint elements of A are again interpreted as observables, while the states ω ∈ SA

have the general properties associated with the expectation value of an observable in

ordinary quantum mechanics; thus, we refer to ω(A) as the ‘expectation value’ of A

in the state ω.

Some have argued that this is the appropriate level of generality for describing

quantum theory:

“The proper sophistication, based on a mixture of operational and

mathematical considerations, gives however a unique and transparent

formulation within the framework of the phenomenology described; the

canonical variables are fundamentally elementsin an abstract algebra of

observables, and it is only relative to a particular state of this algebra

that they become operators in Hilbert space.” (Segal, 1959)

Moreover, this ‘sophisticated’ level of description comes with a natural notion of

‘statistical equivalence’, which is to say that their states make the same assignments

to observables in A:
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Definition 4 (equal abstract expectation values). Two C∗ algebras A and A′ have

equal expectation values iff there is a bijection between their states α : ω 7→ ω′ and

between their elements β : A 7→ A′ that preserves expectation values, ω′(A′) = ω(A)

for all A ∈ A and all states ω on A.

Remarkably, this abstract perspective on equivalence comes apart from the ones

formulated above in terms of representations. To see this, we first note that two C∗

algebras have equal expectation values iff they are related by a C∗-algebra isomor-

phism. This was proved by Roberts and Roepstorff (1969):

Proposition 3. Two C∗ algebras A and A′ have equal expectation values iff they are

related by a ∗-isomorphism.

However, when ∗-isomorphic algebras (with equal abstract expectation values) are

given concrete Hilbert space representations, it does not follow that the representa-

tions are unitarily equivalent. To see this, recall first:

Definition 5 (unitary implementability). If (H,A) is a Hilbert space representation

of A defined by π : A→ A, then a ∗-isomorphism α : A→ A is unitarily implementable

iff there exists a Hilbert space H′ and a unitary U : H → H′ such that π(α(A)) defines

a representation of A, which is unitarily equivalent to the first: π(α(A)) = Uπ(A)U∗

for all A ∈ A.

As it turns out, a ‘symmetry’ in the sense of a ∗-isomorphism may not be unitarily

implementable: this is indeed often taken to be the definition of spontaneous symme-

try breaking (cf. Sewell, 2002; Earman, 2003). So, the failure of a ∗-isomorphism to be

unitarily implementable implies that the representations are not unitarily equivalent.

This is our first insight about spontaneous symmetry breaking: two abstract C∗ alge-

bra descriptions of a quantum systems may have equal abstract expectation values,

and so be ∗-isomorphic — but when they are not unitarily implementable, then they

their representations are not unitarily equivalent, and so have different density matrix

structure, and different transition probabilities.
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However, this isomorphism does still allow a certain expression of Wigner’s theorem,

and so a puzzle remains. This is the subject of the next section.

3. Baker and Halvorson’s resolution

An apparent paradox threatens: spontaneous symmetry breaking is associated with

two quantum systems (H,A,Ω) and (H′,A′,Ω) that are related by a symmetry, but

still manage to be unitarily inequivalent, in order for there to be some sense in which

two systems have an inequivalent vacuum. Baker and Halvorson make this precise in

the form of the following fact.

Proposition 4 (‘Representation Wigner Theorem’). Let (A, ω) be a C∗ algebra and

state, with an automorphism α : A→ A. Let (H, π,Ω) be a GNS representation for ω,

and let (H′, π′,Ω′) be a GNS representation for ω◦α−1. Then there is a unique unitary

operator W = Wπ,π′ : H → H′ such that WΩ = Ω′, and Wπ(α−1(A)) = π′(A)W for

all A ∈ A.

The proof of this is an easy corollary of Wigner’s theorem: found in Baker and

Halvorson’s appendix. Note the subtle difference between the conclusion of this the-

orem and unitary equivalence. Given two representations (H, π(A)) and (H′, π′(A)),

unitarily equivalence means that there exists a bijection β : π(A)→ π′(A) given by a

unitary intertwiner W : H → H′, i.e.

(1) β(π(A)) = π′(A) = Wπ(A)W ∗

for all A ∈ A. In contrast, this theorem only concludes that there is an intertwiner

‘up to an automorphism’ of the original algebra, in that,

(2) β(π(A)) = π′ ◦ α(A) = Wπ(α(A))W ∗.

So, although we can conclude from this that, since α(A) = A, a ∗-automorphism

allows one to construct a unitary W with the property that π′(A) = Wπ(A)W ∗, this

does not entail that π′(A) = Wπ(A)W ∗ for all A, as would be required by unitary

equivalence.
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This leads Baker and Halvorson to the following path forward: the automorphism

α : A→ A on a C∗-algebra gives rise to a sister-automorphism α′ : ω → ω′ that acts

on states, defined by, α′(A) := α(A). They then propose the following solution to the

paradox:

It is possible for an automorphism α : A→ A to be be unitarily imple-

mented as it acts on states, but not as it acts on operators.

They propose that the former is the result of Wigner’s theorem, while the latter

occurs in the context of spontaneous symmetry breaking. So, given two quantum sys-

tems (H, π(A),Ω) and (H′, π′(A),Ω′) that are representations of the same C∗-algebra

A, Baker and Halvorson point out that, for each symmetry α (a ∗-automorphism) of

A, there is a unitary operator U such that α′ acting on states is implemented by a

unitary operator W : H → H. This W may still have the effect of mapping the two

representations to each other, in that for any fixed ψ ∈ H, the following two sets of

vectors in H are the same:

(3) {W ∗π′(A)Wψ | A ∈ A} = {π(A)ψ | A ∈ A},

and W is unitary. However, W still may not relate the operators in the two algebras

element-by-element, as we have seen above.

References

Aniello, P. (2018). A notion of symmetry witness related to Wigner’s theorem on

symmetry transformations, Journal of Physics: Conference Series, Vol. 965, IOP

Publishing, p. 012004.

Baker, D. J. and Halvorson, H. (2013). How is spontaneous symmetry breaking

possible? Understanding Wigner’s theorem in light of unitary inequivalence, Studies

in History and Philosophy of Modern Physics 44(4): 464–469. https://arxiv.org/

abs/1103.3227.

https://arxiv.org/abs/1103.3227
https://arxiv.org/abs/1103.3227


8 BRYAN ROBERTS

Earman, J. (2003). Rough guide to spontaneous symmetry breaking, in K. Brading

and E. Castellani (eds), Symmetries in Physics: Philosophical Reflections, Cam-

bridge: Cambridge University Press, chapter 20, pp. 335–346.

Kadison, R. V. (1965). Transformations of states in operator theory and dynamics,

Topology 3: 177–198.

Roberts, J. E. and Roepstorff, G. (1969). Some basic concepts of algebraic quantum

theory, Communications in Mathematical Physics 11(4): 321–338.

Segal, I. (1959). The mathematical meaning of operationalism in quantum mechanics,

in P. S. L. Henkin and A. Tarski (eds), Studies in Logic and the Foundations of

Mathematics, Vol. 27, Amsterdam: North-Holland, pp. 341–352.

Sewell, G. L. (2002). Quantum Mechanics and Its Emergent Macrophysics, Princeton:

Princeton University Press.


	1. Introduction
	2. Unitary equivalence
	3. Baker and Halvorson's resolution
	References

