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1. Introduction

In relativistic quantum field theory, the CPT theorem is a collection of results

showing that the dynamics are invariant under a transformation interpreted as a

combination of parity, time reversal, and the exchange of matter and antimatter.

Invariance under CPT is connected to many other important results in the foundations

of quantum field theory, such as the spin-statistics connection.1 These notes thus

review some of the history and philosophy of the CPT theorem.

2. Prehistory of the CPT theorem

The development of CPT really tracks the historical development of quantum field

theory, going right back to the discovery of the Klein-Gordon and Dirac equations and

their puzzling negative energy solutions, as noted by Swanson (2014, 2019). Quantum

field theory arguably began with the observation that the Hamiltonian,

(1) H =
√
P 2 +m2

leads to a non-hyperbolic relativistic wave equation: wave packets spread faster than

the speed of light! And although these are avoided in the Dirac equation (and the

Klein-Gordon equation), both famously introduce states with unbounded negative

energy.

Modern quantum field theory solves the problem by reinterpreting these curious

‘negative energy matter’ states, as antimatter with positive energy. But what assures

that this is possible in general? It requires the dynamics to be invariant under an

exchange of matter and antimatter. But there is a famous history of events that

causes trouble for the strategy.

Parity violation. In the early theory of strong interactions, a particle state with

a given mass and lifetime was observed to decay into two different outgoing states:

sometimes two pions (positive and neutral), and sometimes three pions (two posi-

tive and one negative). One of these decay products was invariant under the parity

1Schwinger (1951) appears to have assumed CPT-invariance in his argument for the spin-statistics
connection, which motivated the first attempted proof by Lüders (1954) (see Lüders and Zumino;
1957, fn.8). A classic modern treatment is Streater and Wightman (1964); see Greaves (2008), Bain
(2016), and Swanson (2018, 2019) for recent philosophical appraisals.
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transformation and the other was not:

Pπ+π0 = π+π0

Pπ+π+π− = −π+π+π−.

So, it was assumed by parity invariance that they must have originated from different

in-going states, which were referred to as θ and τ .

Of course, we didn’t really know the dynamics of these interactions yet: the stan-

dard model was still decades from being invented. So, what does parity invariance

mean in this context? The ideas was to draw on the following.2

Fact 1. Let S be a scattering matrix, and R : H → H be a unitary bijection. If a

decay ψin → ψout with non-zero amplitude 〈ψout, Sψin〉 6= 0 satisfies either,

(1) (in but not out) Rψin = ψin but Rψout = −ψout, or

(2) (out but not in) Rψout = ψout but Rψin = −ψin,

then,

(3) (R-violation) RS 6= SR.

Thus, even without knowing the dynamics, we can identify symmetry violation

under R = parity with the presence of in-states and out-states that transform in

different ways. So, to preserve parity symmetry, decay products that transformed

differently under parity would have to come from different in-going states, referred to

as θ and τ . A famous puzzle then arose (the ‘θ − τ puzzle’) as to why these states

had the same mass and lifetime.

Lee and Yang (1956, p.254) controversially suggested that the problem could be

solved by accepting parity violation. This proposal was dramatically confirmed when

Chien-Shiung Wu et al. (1957) proved that the decay of the Cobalt-60 atom violates

parity. This solved the θ-τ puzzle: the two particles were in fact one and the same

particle, now known as a K meson. But it also introduced a further puzzle: this

same interaction failed to be invariant under the exchange of matter and antimatter,

ruining the interpretation of negative energy states proposed above!

The response of most physicists was to postulate that the combined transformation

by parity and charge conjugation (interpreted as matter-antimatter exchange), or CP ,

must remain a symmetry of the fundamental laws. A number of elegant CP invariant

models were developed, including by Weinberg (1958). James Cronin later described

the situation:

“It just seemed evident that CP symmetry should hold. People are

very thick-skulled. We all are. Even though parity had been over-

thrown a few years before, one was quite confident about CP symme-

try.” (Cronin and Greenwood; 1982, p.41)

2Exercise: Prove this; or see Roberts (2015).
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This of course led to the following dramatic turn of events.

CP violation. Neutral kaons are characterised by their decay into three pions, one

neutral and two of opposite charges. (The neutral pion would not ionise in a spark

chamber and so was invisible, but its trajectory could be calculated from the trajec-

tories of the other two by conservation of momentum.) This decay is compatible with

CP -invariance: the neutral kaon KL and the three-pion state both change sign under

CP . In contrast, a two-pion state is left unchanged by CP , and so a decay into just

two pions would imply CP -violation. So, Cronin and Fitch set out to check whether

they could show that, to a high degree of accuracy, no CP -violating two-pion decay

events could be found.

After a long analysis of all the photographs, they found that to the contrary a

small but unmistakable number of long-lived neutral kaons decayed into two pions,

violating CP and time reversal symmetry. The event only occured in about one out

of every 500 decays, but was still a clear signature. They immediately began checking

their result, and discussing them with colleagues at Brookhaven. After explaining it

to their colleague Abraham Pais over coffee, Pais reported that, “[a]fter they left I

had another coffee. I was shaken by the news” (Pais; 1990).

Thus, we again lost the argument of a correspondence between matter and anti-

matter! Happily, it is restored by the presence of CPT symmetry. One might be

concerned here about our success rate: we were wrong about parity, and then about

CP. Can we really trust CPT symmetry? This is not clear. However, unlike the earlier

arguments, there are arguments for CPT symmetry that draw only on very general

assumptions about the structure of relativistic quantum field theory. So, perhaps it

stands a better chance.

3. Interlude: The representation view

What does it mean to be a time translation or spatial translation in quantum

theory? A Hilbert space theory by itself is just an abstract states space: so, we need

a way to ‘tie it down’ to spacetime to make sense of these concepts. One way to do

this is through a representation of a spacetime symmetry group. For local physics,

that’s given by the Poincaré group, the group of isometries of Minkowski spacetime.

will use the following nomenclature:

• Lorentz group L↑+: Lie group of boosts and rigid rotations about a point in

R4. Isomorphic to SO(1, 3).

• Poincaré group P↑+: Lorentz group together with rigid spacetime translations

(it is sometimes called the inhomogeneous Lorentz group). Defined by P↑+ :=

R4 o SO(1, 3) with (a1,Λ1)(a2,Λ2) := (a1 + Λ(a2),Λ1Λ2).
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• Complete Poincaré group P : Also includes the group of discrete transforma-

tions D = {I, τ, p, pτ} as a subgroup, which is isomorphic to the Klein four-

group. Defined by P := P↑+ oD with (P1, d1)(P2, d2) := (P1 · d1(P2), d1d2).

Note that it is implicit in the use of a semidirect product for these definitions is that

the Lorentz group acts as automorphisms on R4, and that the discrete transformations

D act as automorphisms on the Poincaré group.3

Now, a philosophical question: what makes a curve s 7→ Usψ through Hilbert space

a spatial translation? What distinguishes it from a curve t 7→ Utψ that we might wish

to call a time translation? It is hard to say at the level of an abstract state space alone.

But, following Wigner (1939), we can tie these curves down to spacetime through a

representation of a group of space and time translations, viewed as a ‘homomorphic

copy’ of these transformations inside the Hilbert space.

More generally, viewing the Poincaré group as capturing the essential local structure

of spacetime, we say can say: what it means to be a dynamical theory is that we have

a representation of time translations; and, what it means to be a theory with spatial

translations is that we have a representation of spatial translations. In other words,

to have quantum theory ‘on spacetime’ is to have a representation, which is to say a

strongly continuous homomorphism,

(2) ϕ : g 7→ Ug

from the Poincaré group P to the unitaries and antiunitaries on a Hilbert space.

The fact that it is a continuous homomorphism means that we have captured all the

‘essential structure’ of spacetime. We can therefore understand the correspondence as

identifying which Hilbert space transformations correspond to the various spacetime

transformations.

Existence and non-existence of discrete symmetries. The discrete transfor-

mations of the Poincaré group are by definition automorphisms of P↑+. That is, at

the level of the Poincaré group, transformations like time reversal τ , parity p and

parity-time reversal pτ are all symmetries. In particular, in an appropriate reference

frame, they transform each time translation t ∈ P as τtτ−1 = (pτ)t(pτ)−1 = −t and

ptp−1 = t. As a result, a unitary-antiunitary representation of these transformations

(being a homomorphism) will always satisfy,

PUtP−1 = Ut, (PT )Ut(PT )−1 = TUtT−1 = U−t,(3)

where P := Up, PT := Upτ , and T := Uτ . Writing Ut = e−itH , one can check that

these properties are equivalent to preserving the Hamiltonian H, which is to say they

3For an introduction to semidirect products, see Robinson (1996, §1.5); for a related group theoretic
analysis of the Poincaré group see Varadarajan (2007, §IX.2), and for applications to quantization
theory see Landsman (1998, esp. §2.2 and Part IV).
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are symmetries of the dynamics. So, the very existence of a representation of these

group elements guarantees that they are symmetries. How then could it be that an

element of the Poincaré group like parity or time reversal can fail to be a symmetry?

The answer is: a representation of these transformations may not exist. Given a

quantum theory ‘tied down’ to spacetime by a representation of P↑+, it remains a

question whether it is possible to extend that representation to all of P . What the

symmetry violating experiments of the mid-twentieth century show is that for some

physical interactions, such an extension does not exist. This is a subtle but interesting

conceptual point: strictly speaking, parity violation is not the failure of invariance

under the parity operator P , and time reversal is not the failure of invariance under

the time reversal operator — rather, symmetry violation occurs if and only if a rep-

resentation of these operators fails to exist at all. This has interesting philosophical

consequences: viewing a representation as what characterises the meaning of a sym-

metry transformation on Hilbert space, it follows that in symmetry-violating physical

systems, the corresponding transformation not only fails to be a symmetry: it fails to

have any meaning on Hilbert space at all.

Understanding this subtlety will help us to see a curiosity in early proofs of the

CPT theorem, which seem to have assumed the separate existence of transformations

interpreted as C, P and T.

3.1. Charge conjugation and covering groups. If we view the meaning of a

transformation on Hilbert space as given by a representation, where does ‘charge

conjugation’, or the exchange of matter and antimatter, get its meaning? There is

a similar story here, which makes use of the universal covering group of the Lorentz

group L↑+, which is SL(2,C), and of the Poincaré group P↑+, which I will denote

ISL(2,C) (with ‘I’ for ‘Inhomogeneous’).

A covering group G for a Lie group H is just a one that can be mapped onto H

by a continuous homomorphism. So, if we are interested in the representations of a

group H, then we can always represent the same Lie group structure using a covering

group, although it may have some degeneracy: multiple covering group elements in G

may get mapped to the same group element in H. As a result, on the representation

view, a covering group for the Poincaré group is at least as suitable.

Given this, we can replace the Poincaré group with its universal covering group:

for a Lie group, this is the unique simply connected group with the same Lie algebra,

and subsumes all other the other covering groups. In the case of P↑+, this can be

shown to be isomorphic to ISL(2,C), the group of linear transformations of C2 with

unit determinant. This covering group is doubly degenerate, in that a continuous

homomorphism φ : ISL(2,C) → P↑+ is a maps a pair of elements P,−P to the same

element of the Poincaré group, and is thus sometimes called the ‘double covering

group’ of P↑+.
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The vector space V = C2 on which ISL(2,C) acts in this context is called a (2-

component) spinor space, and an element of it is called a (2-component) spinor or

spinorial vector. (NB: the familiar 4-component spinors associated with the Dirac γ

matrices can be constructed as pairs of 2-component spinors; see Wald (1984, Chapter

13).) It’s worth a very brief digression on this, to introduce the notion of charge

conjugation, although I will omit many interesting details in the theory of spinors:

see Wald (1984) for a detailed treatment.

Spinors can be written in Penrose’s abstract index notation as ξA, using a capital

letter to distinguish it from real vectors. The dual covector is written ξA ∈ V dual.

Spinor space admits an operation of complex conjugation, which can be viewed as a

map from c : V → V conj the (isomorphic) complex conjugate vector space. We use a

‘dotted’ index A′ to represent the complex conjugate index, in that,

(4) ξA = ξ̄A
′

The dual dotted covectors are similarly written ξA′ . We can proceed in the usual way

to construct arbitrary ‘spinorial tensors’ of arbitrary undotted and dotted indices.

And, conjugation on general spinorial tensors is then defined in a similar way.

The new operation of complex conjugation provides an abstract, group-theoretic

way to describe the operation of charge conjugation, as an involution that is an au-

tomorphism of ISL(2,C), but which leaves the Poincaré group itself fixed. In sketch,

this is available because the elements of ISL(2,C) can be written in the form LAB. A

representation of the Poincaré group turns out to be given by writing these elements

in the form LABL̄
A′

B′ . Seeing this requires a detailed argument that I will omit; see Wald

(1984) which is of course preserved by complex conjugation. Since these elements are

obviously invariant under complex conjugation, this operation provides a natural way

to understand the meaning of charge conjugation at the group theoretic level.

Thus: to understand charge conjugation, we move from a representation of the

Poincaré group P to a representation of its universal covering group ISL(2,C). A

representation of charge conjugation is then a representation of the charge conjuga-

tion automorphism on ISL(2,C), similar to the way parity and time reversal are

representations of automorphisms on P .

4. Early arguments for CPT symmetry

The first attempted proof of a CPT theorem was given by Lüders, who referred to

the transformation as “time reversal of the second kind”. Sharpened arguments were

soon given by Pauli (1955) and Lüders (1957).

This approach to quantum field theory, common in many textbooks, deserves a brief

interlude. It begins with a classical Lagrangian field theory on Minkowski spacetime,

defined using some sequence of classical fields φ1
a, φ

2
b , φ

3
c , . . . , where each lower index
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denotes a set of tensor or spinor indices. We define arbitrary spinorial tensor in terms

of some number m of undotted indices and n of dotted indices, and view ‘charge

conjuation’ as the application of the conjugation map on those fields.

Philosophers have sometimes puzzled about how it is that charge conjugation in

the CPT theorem could be connected to Lorentz invariance.4 The connection between

spinors and the Lorentz group helps to make the connection a little more plausible.

To begin, with a classical field theory in hand, the hope is generally that for each

spacetime point x, one can define a collection of (typically unbounded) quantum field

operators on a Hilbert space associated with the classical fields:

(5) Φ1
a(x),Φ2

b(x),Φ3
c(x), . . . .

This project is again facilitated by the fact that the symmetry group of spinor space

is ISL(2,C), the doubly-degenerate covering group of the ‘restricted’ Poincaré group

of boosts, rotations and spacetime translations, whose unitary Hilbert space repre-

sentations have been classified following the work of Wigner (1939). If all goes well,

then the dynamics is given by the classical Lagrangian can be associated with such

a unitary representation, although this is a big ‘if’, corresponding to one of the great

mathematical challenges of Lagrangian quantum field theory. But ‘if’ all goes well,

then a representation of the subgroup of spacetime translations (R4,+) will be well-

defined, and the subgroup of translations along timelike or null curves will determine

the unitary dynamics.

The Lüders-Pauli approach (and many texbooks) describe the CPT theorem in

this context by defining three separate operators: a unitary conjugation operator

C, a unitary parity operator P , and an antiunitary time reversal operator T . On

the representation view, these all get their meaning from their role in a unitary-

antiunitary representation by the corresponding transformations on ISL(2,C). The

particular form of each operator on a Hilbert space thus depends on the representation

that one chooses.5 However, the composition Θ of all three, an antiunitary operator

called the ‘CPT operator’, turns out to take a particularly simple form:

(6) ΘΦ(x)Θ−1 = (−1)m(−i)(n+m)mod 2Φ(−x)∗,

where m and n represent the number of dotted and undotted spinor indices, respec-

tively. The proof of the CPT Theorem then establishes that, given the way these

fields appear in the unitary dynamics, that,

(7) ΘUtΘ−1 = U−t,

4Cf. Greaves (2010), Arntzenius (2011) and Bain (2016, Chapter 3).
5Streater and Wightman (1964, §1-3) give examples in a number of different representations of
ISL(2,C). Since ISL(2,C) is the covering group of the Poincaré group, its irreducible representations
are the same as those of the Poincaré group (which shares the same Lie algebra), labelled by the
Casimir operators m2 for 4-momentum and S2 for squared angular momentum (Wigner; 1939).
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which is to say that the CPT operator Θ is a dynamical symmetry, and in particular

a time reversing one.

Unfortunately, the conceptual clarity of these early approaches to the CPT Theo-

rem, like the old formalism for quantum field theory, stumbled. In the first place, as is

now well-known, the field operators Φ(x) at a spacetime point were not well-defined:

it does not correspond to any well-defined Hilbert space operator, sometimes glossed

by the concern that its measurement would require infinite energy. It must rather be

‘smeared’, in a sense I will describe shortly. In the second place, the approach gives

no reason to think that a representation of the group elements corresponding to C,

P and T exist. When such a representation does exist, the properties of ISL(2,C)

require it to be the case that P is a dynamical symmetry because parity commutes

with time translations. The same goes for conjugation C and time reversal T . So, by

assuming that a representation of these operators exist, the Lüders-Pauli approach

implicitly assumes that all three are individually dynamical symmetries! This as-

sumption trivialises the fact that their composition is a symmetry.

Worse: the assumption was dramatically proven to be false by the discovery of

C-violation by Wu et al. (1957). As a result, no representation of parity or matter-

antimatter conjugation exists. And of course the situation became worse with the

discovery of CP violation as well. Some authors have noted this problem, such as

Sachs (1987, §11.2):

Before the discovery of parity violation in 1956, the definitions of the

transformations P , T , and C appeared much more straightforward

because the invariance of all interactions was taken as a basic assump-

tion. P violation by the weak interactions showed that this assumptino

is untenable.... In such a situation there is a question whether it is

meaningful to assert the existence of a kinematic (i.e., independent of

the interaction) transformation associated with the violated symmetry.

(Sachs; 1987, p.267)

Although Sachs suggests a strategy for getting around this problem, by ‘carrying

over’ the representation of each of these operators from a context in which it is a

symmetry to one in which it is not, a conceptually clear application of this strategy

is not forthcoming. His ultimate conclusion is that problems with the Lüders-Pauli

approach to the CPT theorem remain. Happily, there is an easier way, which we will

discuss next.

5. Jost’s proof and The Great Misnomer

A first solution to the problems with the Lüders-Pauli approach to the CPT theorem

— both the problematic field operators defined at a point and the existence problem
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for C, P and T — was floating around Princeton in these same years, in a widely-

circulated manuscript by Arthur Wightman written6 in 1951. Streater of his road to

finding this paper:

“I had asked [Abdus] Salam ‘what is a quantised field’, and received

the answer ‘Good; I was afraid you would ask me something I did not

know. A quantised field, Φ(x) at the point x of space-time, is that

operator assigned by the physicist using the correspondence principle,

to the classical field φ at the point x’. I went away thinking about this;

then I realised that what I needed was a statement of which operator

is assigned by the physicist. I complained to P. K. Roy, who said that

I should read Wightman’s paper.” (Streater; 2000)

There is room for debate as to whether Salam or Roy gave Streater better advice

as to what a quantum field ‘really is’.7 However, Wightman’s paper, published much

later as a collaboration between Wightman and G̊arding (1965), resolved the problem

of how to define quantum field by associating each with a smooth Schwartz (1950,

1951) function f of on spacetime that falls of quickly at infinity, instead of with

spacetime points directly. We can thus safely take Φ(x) to be a shorthand for this

operator-valued distribution. Wightman’s paper also proposed an axiomatic basis for

quantum field theory now called the Wightman axioms, which led to the first rigorous

approach to the CPT Theorem due to Jost (1957, 1965), who was at Princeton at the

time.

By adopting the Wightman axioms, Jost’s proof does make a concession, though

different from that of Lüders and Pauli. There are no realistic models of the Wightman

axioms that include interactions, and, Wightman fields that are invariant under local

gauge symmetries is impossible in many senses.8 However, although its scope is still

narrow, it does offer a remarkable advantage over the approaches above, in deriving

the CPT operator for quantum theories satisfying the Wightman axioms directly

without needing to first pass through the individual operators. Jost’s approach was

generalised and adopted in most classic presentations (Streater and Wightman; 1964;

Bogolubov et al.; 1990; Haag; 1996). He referred to his operator as ‘Θ’, only describing

it as the composition of the other three operators only in theories for which they are

a symmetry, which is the only scenario in which they exist.9 This highlights what is

really the Great Misnomer of CPT theorem discussions: the common but confusing

6As reported by Wightman (1996, p.174). See Rédei (2014, 2020) for a philosophical appraisal.
7Cf. the debate between Wallace (2006, 2011) and Fraser (2009, 2011); for conciliatory replies see
Swanson (2017) and Rédei (2020).
8See Strocchi (2013, §7.3) for a summary, and Swanson (2017) for a philosophical appraisal of the
give-and-take on various approaches to QFT.
9For example, he writes: “This involution is in theories which are invariant under time inversion T ,
space reflection P and matter-antimatter conjugation C represented by the product TCP” (Jost;
1965, p.100).
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practice of referring to the transformation as ‘the CPT operator.’ In fact, it is no

such thing: the operator Θ is independently constructed, and is only the composition

of three separate operators in representations in which C, P and T each individually

exist as symmetries. Since the language is so pervasive I will sometimes continue to

refer to Θ as CPT. But the reader should be wary that it is a convenient misnomer.

Jost’s proof of the CPT theorem culminates with the statement that for local quan-

tum field theories associated with representations of ISL(2,C) among the Wightman

fields Φ(x), the covering group of the restricted Lorentz group associated with spinors,

an operator Θ exists with the properties associated with CPT (Equation (6)). The

fact that Θ is a dynamical symmetry immediately follows: the Wightman field repre-

sentation of ISL(2,C) of course includes a subgroup of spacetime translations Ua such

that UaΦ(x)U∗a = Φ(x + a) for each spacetime translation a. The Θ transformation

properties for fields therefore imply that ΘUaΦ(x) = U−aΘΦ(x), from which it follows

that ΘUaΘ
−1 = U−a. This relation holds in particular for each one-parameter sub-

group Ut of translations that are timelike, as well as for the subgroup of all timelike

translations. Therefore, Θ is a time reversing dynamical symmetry.

It is worth mentioning that there are other rigorous approaches to the CPT theorem

using different techniques. The field operators Φ(x) are not themselves observables,

but rather the generators of an algebra of observables in each bounded spacetime

region. So, an alternative ‘algebraic’ approach to quantum field theory due to Haag

and Kastler (1964) skips directly to formulating observables in bounded spacetime

regions on an axiomatic basis. A proof of the CPT theorem in this formalism was

first given by Guido and Longo (1995). This approach has the particular advantage of

allowing a definition of charge conjugation in a way that is more closely connected to

gauge group structure, by drawing on the profound ‘DHR/BF’ superselection theory

developed by Doplicher et al. (1971, 1974) and by Buchholz and Fredenhagen (1982).

6. Time reversing symmetries and time’s arrow

If one is looking for a general symmetry that ‘turns around time’, then this is in

general always possible in a quantum system with an ordinary unitary dynamics. This

can be seen in the following.

Fact 2. Every representation t 7→ Ut of time translations (R,+) amongst the auto-

morphisms of a Hilbert space H (a strongly continuous unitary representation) admits

a representation of time reversal t 7→ −t as a dynamical symmetry, given by an an-

tiunitary operator T satisfying TUtT−1 = U−t.

Proof. Let H be the self-adjoint operator such that Ut = e−itH , assured to exist by

Stone’s theorem, with spectrum Λ ⊆ R. Let Hs be its spectral representation on

L2(Λ), in that Hsψ(x) = x for all ψ in its domain, and V HV −1 = Hs for some
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unitary V : H → L2(Λ) (cf. Blank et al.; 2008, §5.8). If K is the conjugation operator

on L2(Λ), in that Kψ = ψ∗ for all ψ ∈ L2(Λ), then [K,Hs] = 0, since for all ψ in the

domain of Hs we have KHsK
−1ψ(x) = xψ(x) = Hsψ(x). Thus, T := V −1KV is the

desired antiunitary operator, since our definitions imply that [T,H] = 0, and hence

TUtT−1 = eT (−itH)T−1
= eitTHT

−1
= eitH = U−t. �

What are the implications of this fact, and of the CPT theorem, for the arrow

of time? In one sense, if we just focus on the time translations Ut, it means that a

symmetry of the time translations Ut 7→ U−t can always be found. In this sense, time

in quantum theory is quite generally symmetric: there is no strong arrow of time here.

On the other hand, one might also wish to view time symmetry as associated with

a particular group element, such as the time reversal group element τ ∈ P , or the

corresponding transformation in ISL(2,C). As the history we saw at the outset shows,

we have no guarantee of that.
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