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Textbook presentations include: Robert Wald QFT in curved spacetime and black hole ther-
modynamics (1984), Chapter 5. Cf. also:

(i) Wald General Relativity 1984: Sec 6.4, pp. 149-152, for a discussion of Rindler coordi-
nates on Minkowski spacetime, used for motivating the Kruskal extension;

(ii) R. Clifton and H. Halvorson, ‘Are Rindler Quanta real? Inequivalent particle concepts
in QFT’, British Journal Philosophy of Science 52, 2001;

(iii) Crispino et al, ‘The Unruh effect and its applications’, Rev. Modern Physics 2008,
volume 80).

NB: this handout covers only Sections 1 to 5 of Earman’s eight Sections.

1 Introduction

The effect is that an observer with constant linear acceleration a through the Minkowski
vacuum, for say a non-interacting scalar field, will find herself immersed in a thermal bath at
temperature Ty proportional to a. In fact:
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So an acceleration of 10?4 cm/sec? (!) is required to achieve a temperature of 300 C. But from
now on, weset h=k=c=1.

Earman’s overall themes are:

(i) There are at least three different approaches to consider.

(ii) Discussion centres around the operationalization, and maybe demotion!, of the particle
concept in QFT; cf. also Sec 1.1 of Wald (1994);

(iii) Earman favours the approach of algebraic quantum theory, especially modular theory—
which is rigorous (Sections 2 to 5); rather than (a) the use of Fulling quanta (Section 6: crit-
icised p. 89-90); or (b) the detector approach, i.e. toy-models of the firing of an accelerating
detector (Section 7: espoused by Unruh himself).

The overall idea of the algebraic approach is as follows. Here: (a) (b) and (d) correspond to
Earman’s Section 2; (c) (i-iii) corresponds to his Appendix A; (c)(iv) and (e) corresponds to
his Section 3, and Appendix B.

(a) Consider. KMS states as the generalization for infinite quantum systems (thermo-
dynamic limit in quantum statistical mechanics; and quantum fields) of the Gibbs equilibrium
states; a KMS state on a von Neumann algebra is defined relative to a one-parameter group
of automorphisms of the algebra (i.e. a dynamics in Heisenberg picture)... But...

(b) The Tomita-Takesaki theorem ‘reverses’ this. Namely: for any faithful, normal
state ¢ on a von Neumann algebra, there is a unique one-parameter group of automorphisms,
05,8 € IR, such that ¢ is a KMS state for that group.

(¢) The standard practice in AQFT is to consider the GNS representations of an ap-
propriately defined vacuum state. More specifically:

(i) for the Klein-Gordon field with mass m > 0 on Minkowski spacetime, the Weyl

algebra is explicitly constructed; and this construction yields a preferred vacuum state ¢y,



(M for ‘Minkowski’), which corresponds to the usual vacuum of heuristic theory;

(ii) In fact: more generally: for any algebraic state on this algebra that is quasi-free
(i.e. all n-point functions are sums of products of 2-point functions), the GNS representation
is (unitarily equivalent) to a Fock space representation with the GNS vector being the Fock
vacuum;

(iii) Also, (i) can be generalized to curved spacetimes: in particular, there is a rig-
orous quantization of the Klein-Gordon field on any stationary globally hyperbolic spacetime,
cf. Wald (1994, Sections 4.3 to 4.5) and Earman Appendix A ;

(iv) To apply (b)’s Tomita-Takesaki theorem to (c) (i), we argue that ¢y, restricted
to A(O), the C*-algebra for some spacetime region O, induces a faithful, normal state, ¢y,0
say, on the von Neumann algebra, N'(O), affiliated to A(O) using the GNS representation of
¢ on A(O). (So N(O) is defined as the double commutant of 7y, ,», (A(O)).)

(d) One would not expect the one-parameter group of automorphisms, oy, s € IR, with
respect to which ¢r0 is a KMS state to have any physical significance. In particular: one
would not expect it to correspond to a time-evolution along a congruence of timelike lines
(i.e. to dynamics as seen by ‘observers’ travelling those worldlines). Or that the inverse
temperature 3 mathematically associated with the state should correspond to a measured
temperature ..But...

(e) Bisognano and Wichmann (1975) show that: if we choose O to be the right Rindler
wedge R of Minkowski spacetime, i.e. given by z > |t| with (z,y, 2,t) an inertial coordinate
system, then the one-parameter group of automorphisms for ¢u.0 = ¢u,r does correspond to
the Rindler coordinates (&, y, 2, p) related to (z,y, z,t) by

x=E&Ecoshp ; t=¢Esinhp (2)

i.e. coordinates such that the timelike lines £ = constant are hyperbolae of linear acceleration
a = 1/€ (so: acceleration constant along each line, but varying between lines), that are
orthogonal to the spacelike hypersurfaces (indeed: Cauchy surfaces) p constant. (We check
that at t = p = 0, = &; so that small z gives small ¢ and large a.)

Here, the phrase ‘does correspond’ means that (with suitable rescaling): p can be taken
as the parameter ¢ in o,,s € IR. In short: the restriction of the Minkowski vacuum state to
N(R) is a (0,,27) KMS state.
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2 KMS states and modular theory

1): Recall that in quantum statistical mechanics: a Hamiltonian H and inverse tempera-
ture 8 = 1/T = 1/kT define a Gibbs equilibrium state pg := exp(—BH)/(Tr(exp(—BH)));
which defines an algebraic state ¢z := Tr(pgA) for all A € B(H). Also H defines a dynam-
ics as a one-parameter group of automorphisms of the algebra of quantities, i.e. o0:(A) =
exp(itH)Aexp(—itH).

2) Now assume that the extension of o; to complex values of ¢ makes z — ¢p(Ao.(B))
analytic in the strip {0 < Im(z) < 8} of the complex plane. It follows that for all A, B € B(H):

¢s(Aoig(B)) = ¢s(BA) (3)

3) A state ¢ on a von Neumann algebra M such that: for any A,B € M, there is a
function f4 p(2) analytic on the strip {0 < Im(z) < 8} of the complex plane, such that for all
seR

fap(s) = ¢(0s(A)B) and fap(s+if) = ¢(Bos(A)) (4)

is called a (o4, 3) KMS-state. Such a state is o,-invariant, and also obeys other stability
properties that make it the best generalization to infinite quantum systems of the notion of
a Gibbs equilibrium state. (It also can be shown to satisfy the algebraic corollary, in 2), of a
Gibbs equilibrium state, i.e. eq (3), for all A, B in a weakly dense, o -invariant subalgebra of

M.)

4) ¢ is a (05, B) KMS-state iff it is a (0, —1) KMS-state, where u = —fs. So without loss
of generality, we set 8 = —1, and call the resulting form of the KMS condition, the modular
condition.

5) The Tomita-Takesaki theorem now states: for any faithful, normal state ¢ on a von
Neumann algebra M acting on a Hilbert space H, there is a unique one-parameter group of
automorphisms, oy, s € IR, such that ¢ satisfies the modular condition with respect to oy, i.e.
¢ is a (05, —1) KMS-state.

3 Modular automorphism groups with geometric actions on Minkowski
spacetime;

1) See Appendix A for details of:

(i) *-algebras, C*-algebras;

(ii) their representations, especially the GNS representation induced by an (algebraic)
state; properties of states such being mixed, pure, faithful and normal; properties of represen-
tations such as cylic and irreducible;

(iii) von Neumann algebras as having the merit of being generated by their projections;
the double commutant theorem; cyclic and separating vectors; factors and types;

(iv) unitary equivalence, quasi-equivalence and disjointness of representations;

(v): (adding some physics!): Weyl algebra, quasi-free states; there is a rigorous quan-
tization of the Klein-Gordon field on any stationary globally hyperbolic spacetime (but this
fails for the Rindler wedge—which needs Fulling quantization) .

2) Given the Minkowski vacuum state, ¢/, for the Weyl CCR algebra A(IR") for the quan-
tized Klein-Gordon field on Minkowski spacetime. Restrict it to some A(O), to get: ¢arj4.0)-
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Take the von Neumann algebra N (O) affiliated with the GNS representation of A(O) that is
defined by ¢M|A(O)-

It is straightforward to argue (p. 83, bottom right: based on (a) the Reeh-Schlieder
theorem and (b) a vector is cyclic for an algebra A iff it is separating for A’) that:—
the (unique) canonical extension of ¢u4¢0) to N(O)—written X0, —is a faithful normal
state on NV(O).

The Tomita-Takesaki theorem now implies: X|o,,y is a (05, —1) KMS-state for a unique
automorphism group oy .

3) The surprise is that ... Now we repeat items (d) and (e) from the end of Section 1!

4) Hence (Sewell 1982) what Earman calls the modular temperature hypothesis (MTH). It
says: if

(i) the modular flow (i.e. the natural action on the spacetime of the automorphism
group o, for a (og, ) KMS-state) is everywhere timelike in direction, and

(ii) the derivative, d7/ds, of the proper time 7 of an observer following a line of the
flow, with respect to s, is constant along the flow (along the observer’s world-line):

then
such an observer measures a temperature 3, given by 3, := 8 x dr/ds.
Note:

(a): this implies for the Rindler wedge case, that an observer with acceleration a mea-
sures the Unruh temperature in eq. (1);

(b): An extended MTH, which drops the assumption (ii), has been advocated in the
literature (albeit not named as such): cf. Earman p. 84 right and 85 left for a review of e.g.
Martinetti and Rovelli (2003) on the extended MTH, for algebras associated with a causal
diamond, and with a future light cone. (One again secures a faithful normal state on the
desired algebra, by using (a) the Reeh-Schlieder theorem and (b) a vector is cyclic for an
algebra A iff it is separating for A’.)

4 The Unruh effect in curved spacetimes, and its relation to the
Hawking effect

The null hyperplanes (shown as lines in the 2-d Figure) intersecting in a spacelike 2-surface
through the origin of Minkowski spacetime (shown as the origin in the 2-d Figure) are an
example of a bifurcate Killing horizon. For a four-dimensional spacetime, the general definition
of a bifurcate Killing horizon is: a pair of null surfaces N4 and Np intersecting in a spacelike
2-surface S such that N4 and Np are Killing horizons with respect to the same Killing field

€a-

In these terms, a partial summary of Sections 1 to 3 would then be:—Among the quasi-free
states on the Weyl CCR algebra for the Klein-Gordon field on Minkowski spacetime, there is a
unique non-singular (i.e. Hadamard: a regularity condition on the stress-energy tensor: Wald
1994, Section 4.6, especially p. 85-95) state invariant under the automorphisms corresponding
to the isometries generated by the wedges’ horizon Killing field &,.

Kay and Wald (1991) generalize this summary to (certain) curved spacetiems, as follows.
They show that:



for a minimally coupled free scalar field propagating on a curved globally hyperbolic
spacetime with bifurcate Killing horizon(s) whose surface S contains a Cauchy surface:

(i) on a ‘large’ subalgebra of the wedge algebra of observables, there is at most one
quasi-free Hadamard state that is invariant under the automorphisms of the algebra generated
by the Killing horizon isometries;

(ii) the restriction to the wedge algebra of this state—if it exists—is a KMS state at a
Hawking temperature Ty := k/2m (with respect to the automorphism group); where « is the
surface gravity on the horizon. (Here, k := Z1(V,&)(V®). But more physically: & is the
limit, as the horizon is approached, of the product of the norm V of the horizon Killing field
and the norm a of the acceleration.)

(iii) Using the modular temperature hypothesis (MTH: cf. Part 4) of the previous
Section), this yields an “observed” temperature, T' = 5-7+ Lhis is a generalized Unruh effect,
at least in the sense that....

(iv) For Minkowski spacetime it recovers the temperature Ty in eq. 1.

(v) For various other spacetimes, the relevant wedges and (vacuum) states exist, and
the temperature 7' = 57 can be computed. For example: for the Kruskal maximal extension
of Schwarzschild, one uses the Hartle-Hawking vacuum.

But warning! (p. 86, left: and p. 87 left, quoting Wald 1999 CQG vol. 16, A177-190, at
p. A182):—

In the Hawking effect, the asymptotic final state of the quantum field is a state in
which the modes of the quantum field that appear to a distant observer to have
propagated from the black hole region of the spacetime are thermally populated at
temperature [T], but the modes which appear to have propagated in from infinity
are unpopulated. This state (usually referred to as the ‘Unruh vacuum’) would be
singular [non-Hadamard] on the white hole horizon in the analytically continued
spacetime containing a bifurcate Killing horizon. On the other hand, in the Unruh
effect and its generalization to curved spacetimes, the state in question (usually
referred to as the ‘Hartle-Hawking vacuum’) is globally non-singular and all modes
in the quantum field in the ‘left and right wedges’ are thermally populated. (Wald,
1999, pp.A182-A183)

That is:— The vacuum states involved in this generalized Unruh effect (e.g. the Hartle-
Hawking vacuum for Kruskal spacetime) are very different from the vacuum involved in the
Hawking effect (which is confusingly! called the ‘Unruh vacuum’) ... as shown by the modes
that appear to have propagated in from infinity: in the former vacua, these are populated, in
the latter vacua, they are unpopulated ...

Cf. also Unruh in C. Callender and N. Huggett ed. Physics Meets Philosophy at the
Planck Scale (2001: CUP): especially at p. 158, start of Section 2.

More generally: the Unruh and Hawking effects are distinguished by their, respectively,
lacking/possessing links to: the finite temperature of, and evaporation of, a black hole.

5 Some qualms about the modular theory approach

There are doubts about the connection between
(i) the mathematical temperature given by modular theory and
(ii) the “reading of a thermometer subject to the acceleration”, i.e. the firing statistics



of a particle detector subject to the acceleration;
simply because:

(i’): the definition of (i) involves the whole right wedge, and its large algebra A(R) (or
its affiliated von Neumann algebra N (R)); while

(ii’): the behaviour of the detector in some finite segment, S say, of its worldline surely
depends (should depend!) only on its history in some such finite open region, O say, containing
S where, agreed: O can and indeed should! contain parts of the detector’s worldline before
(and maybe also after?) S, so as to allow for influence from the recent past (‘transients’ etc.).
But an algebra A(O) is a subalgebra of A(R), (and similarly for the affiliated von Neumann
algebras). And this means that A(O) can perhaps admit states that do not extend to A(R)
(and similarly for the affiliated von Neumann algebras).

JNB: Two final comments:
(1): Recall that the restriction of an entangled pure composite state to a component is mixed.
Obviously, there is much more to the Unruh effect than this: and not just because the reduced
state is thermal with a temperature with a simple dependence on the acceleration a.... But it
is worth bearing in mind, even in connection with the black hole information paradox: cf the
end of Section II of Unruh and Wald ‘Information Loss’ arxiv: 1703.02140.

(2): In the algebraic approach, the inertial/Minkowski, and Rindler-wedge, vacua lead
to disjoint representations of their algebras, and so ‘incommensurability’ (cf. Clifton and
Halvorson BJPS 2001); pace one’s initial surmise (and pace e.g. Teller 1995 ca. p. 110).



