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Entanglement and Open Systems in
Algebraic Quantum Field Theory

Rob Clifton and Hans Halvorson*

Entanglement has long been the subject of discussion by philosophers of
quantum theory, and has recently come to play an essential role for physi-
cists in their development of quantum information theory. In this paper we
show how the formalism of algebraic quantum "eld theory (AQFT) provides
a rigorous framework within which to analyse entanglement in the context
of a fully relativistic formulation of quantum theory. What emerges from the
analysis are new practical and theoretical limitations on an experimenter's
ability to perform operations on a "eld in one spacetime region that can
disentangle its state from the state of the "eld in other spacelike-separated
regions. These limitations show just how deeply entrenched entanglement is
in relativistic quantum "eld theory, and yield a fresh perspective on the ways
in which the theory di!ers conceptually from both standard non-relativistic
quantum theory and classical relativistic "eld theory. ( 2001 Elsevier
Science Ltd. All rights reserved.
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2 despite its conservative way of dealing with physical principles, algebraic QFT
leads to a radical change of paradigm. Instead of the Newtonian view of a space-
time "lled with a material content one enters the reality of Leibniz created by
relation (in particular inclusions) between &monads' (& the hyper"nite type III

1
local von Neumann factors A(O) which as single algebras are nearly void of
physical meaning).

Schroer (1998, p. 302)
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1. Introduction

In PCT, Spin and Statistics, and All That, Streater and Wightman claim that, as
a consequence of the axioms of algebraic quantum "eld theory (AQFT), &it is
di$cult to isolate a system described by "elds from outside e!ects' (Streater and
Wightman, 1989, p. 139). Haag makes a similar claim in Local Quantum Physics:
&From the previous chapters of this book it is evidently not obvious how to
achieve a division of the world into parts to which one can assign individuality
[2]. Instead we used a division according to regions in space-time. This leads
in general to open systems' (1992, p. 298). By a "eld system these authors mean
that portion of a quantum "eld within a speci"ed bounded open region O of
spacetime, with its associated algebra of observables A(O) (constructed in the
usual way, out of &"eld operators' smeared with test-functions having support in
O). The environment of a "eld system (so construed) is naturally taken to be the
"eld in the region O@, the spacelike complement of O. But then the claims above
appear, at "rst sight, puzzling. After all, it is an axiom of AQFT that the
observables in A(O@) commute with those in A(O). And this implies*indeed, is
equivalent to*the assertion that standard von Neumann measurements per-
formed in O@ cannot have &outside e!ects' on the expectations of observables in
O (LuK ders, 1951). What, then, could the above authors possibly mean by saying
that the "eld in O must be regarded as an open system?

A similar puzzle is raised by a famous passage in which Einstein (1948)
contrasts the picture of physical reality embodied in classical "eld theories with
that which emerges when we try to take quantum theory to be complete:

If one asks what is characteristic of the realm of physical ideas independently of the
quantum theory, then above all the following attracts our attention: the concepts
of physics refer to a real external world, i.e. ideas are posited of things that claim
a &real existence' independent of the perceiving subject (bodies, "elds, etc.) [2] it
appears to be essential for this arrangement of the things in physics that, at
a speci"c time, these things claim an existence independent of one another, insofar
as these things &lie in di!erent parts of space'. Without such an assumption of the
mutually independent existence (the &being-thus') of spatially distant things, an
assumption which originates in everyday thought, physical thought in the sense
familiar to us would not be possible. Nor does one see how physical laws could be
formulated and tested without such clean separation. [2]For the relative inde-
pendence of spatially distant things (A and B), this idea is characteristic: an external
in#uence on A has no immediate e!ect on B; this is known as the &principle of
local action', which is applied consistently in "eld theory. The complete
suspension of this basic principle would make impossible the idea of the existence
of (quasi-)closed systems and, thereby, the establishment of empirically testable
laws in the sense familiar to us (Einstein, 1948, pp. 321}322; Howard's 1989
translation).

There is a strong temptation to read Einstein's &assumption of the mutually
independent existence of spatially distant things' and his &principle of local
action' as anticipating, respectively, the distinction between separability

2 Studies in History and Philosophy of Modern Physics



and locality*or between non-local &outcome-outcome' correlation and
&measurement-outcome' correlation*that some philosophers argue is crucial to
unravelling the conceptual implications of Bell's theorem (see e.g. Howard,
1989). However, even in non-relativistic quantum theory, there is no question of
any non-local measurement-outcome correlation between distinct systems or
degrees of freedom, whose observables are always represented as commuting.
Making the reasonable assumption that Einstein knew this quite well, what is it
about taking quantum theory at face value that he saw as a threat to securing
the existence of physically closed systems?

What makes quantum systems open for Einstein, as well as for Streater and
Wightman, and Haag, is that quantum systems can occupy entangled states in
which they sustain non-classical EPR correlations with other quantum systems
outside their light cones. That is, while it is correct to read Einstein's discussion
of the mutually independent existence of distant systems as an implicit critique
of the way in which quantum theory typically represents their joint state as
entangled, we believe it must be the outcome-outcome EPR correlations asso-
ciated with entangled states that, in Einstein's view, pose a problem for the
legitimate testing of the predictions of quantum theory. One could certainly
doubt whether EPR correlations really pose any methodological problem, or
whether they truly require the existence of physical (or &causal') in#uences acting
on a quantum system from outside. But the analogy with open systems in
thermodynamics that Einstein and the others seem to be invoking is not entirely
misplaced.

Consider the simplest toy universe consisting of two non-relativistic quantum
systems, represented by a tensor product of two-dimensional Hilbert spaces
C2

A
?C2

B
, where system A is the &object' system, and B its &environment'. Let x be

any state vector for the composite system A#B, and D
A
(x) be the reduced

density operator x determines for system A. Then the von Neumann entropy of
A, E

A
(x)"!Tr(D

A
(x)lnD

A
(x)) ("E

B
(x)), varies with the degree to which

A and B are entangled. If x is a product vector with no entanglement, E
A
(x)"0,

whereas, at the opposite extreme, E
A
(x)"ln 2 when x is, say, a singlet or triplet

state. The more A and B are entangled, the more &disordered' A becomes,
because it will then have more than one state available to it, and A's probabil-
ities of occupying them will approach equality. In fact, exploiting an analogy to
Carnot's heat cycle and the second law of thermodynamics (that it is impossible
to construct a perpetuum mobile), Popescu and Rohrlich (1997) have shown that
the general principle that it is impossible to create entanglement between pairs
of systems by local operations on one member of each pair implies that the von
Neumann entropy of either member provides the uniquely correct measure of
their entanglement when they are in a pure state. Changes in their degree of
entanglement, and hence in the entropy of either system A or B, can only come
about in the presence of a non-trivial interaction Hamiltonian between them.
But the fact remains that there is an intimate connection between a system's
entanglement with its environment and the extent to which that system should
be thought of as physically closed.
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1The fact that disentanglement of a state can always be achieved in this way does not con#ict with
the recently established result there can be no &universal disentangling machine', i.e. no unitary
evolution that maps an arbitrary A#B state D to an unentangled state with the same reduced
density operators as D (Mor, 1998; Mor and Terno, 1999). Also bear in mind that we have not
required that a successful disentangling process leave the states of the entangled subsystems

Returning to AQFT, Streater and Wightman, as well as Haag, all intend to
make a far stronger claim about quantum "eld systems*a point that even
applies to spacelike-separated regions of a free "eld, and might well have
o!ended Einstein's physical sensibilities even more. The point is that quantum
"eld systems are unavoidably and intrinsically open to entanglement. Streater
and Wightman's comment is made in reference to the Reeh}Schlieder (Reeh and
Schlieder, 1961) theorem, a consequence of the general axioms of AQFT. We
shall show that this theorem entails severe practical obstacles to isolating "eld
systems from entanglement with other "eld systems. Haag's comment goes deeper,
and is related to the fact that the algebras associated with "eld systems localised in
spacetime regions are in all known models of the axioms type III von Neumann
algebras. We shall show that this feature of the local algebras imposes a funda-
mental limitation on isolating "eld systems from entanglement even in principle.

Think again of our toy non-relativistic universe A#B, with Alice in pos-
session of system A, and the state x entangled. Although there are no operations
Alice can perform on system A that will reduce its entropy, she can still try to
destroy its entanglement with B by performing a standard von Neumann
measurement on A. If P

B
are the eigenprojections of the observable Alice

measures, and the initial density operator of A#B is D"P
x

(where P
x

is the
projection onto the ray x generates), then the post-measurement joint state of
A#B will be given by the new density operator

DPD@"(P
`

?I)P
x
(P

`
?I)#(P

~
?I)P

x
(P

~
?I). (1)

Since the projections P
B

are one-dimensional, and x is entangled, there are
non-zero vectors aB

x
3C2

A
and bB

x
3C2

B
such that (P

B
?I)x"aB

x
?bB

x
, and

a straightforward calculation reveals that D@ may be re-expressed as

D@"Tr[(P
`

?I)P
x
]P

`
?P

b
`
x
#Tr[(P

~
?I)P

x
]P

~
?P

b
~
x
. (2)

Thus, regardless of the initial state x, or the degree to which it was entangled, D@
will always be a convex combination of product states, and there will no longer
be any entanglement between A and B. One might say that Alice's measurement
operation on A has the e!ect of isolating A from any further EPR in#uences
from B. Moreover, this result can be generalised. Given any "nite or in"nite
dimension for the Hilbert spaces H

A
and H

B
, there is always an operation Alice

can perform on system A that will destroy its entanglement with B no matter
what their initial state D was, pure or mixed. In fact, it su$ces for Alice to
measure any non-degenerate observable of A with a discrete spectrum. The "nal
state D@ will then be a convex combination of product states, each of which is
a product density operator obtained by &collapsing' D using some particular
eigenprojection of the measured observable.1
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( footnote 1 continued )

unchanged. Finally, though we have written of Alice's measurement &collapsing' the density matrix
D to D@, we have not presupposed the projection postulate nor begged the question against
no-collapse interpretations of quantum theory. What is at issue here is the destruction of entangling
correlations between A and B, not between the compound system M#A, including Alice's measur-
ing device M, and B.

The upshot is that if entanglement does pose a methodological threat, it can at
least be brought under control in non-relativistic quantum theory. Not so when
we consider the analogous set-up in quantum "eld theory, with Alice in the
vicinity of one region A, and B any other spacelike-separated "eld system. We
shall see that AQFT puts both practical and theoretical limits on Alice's ability
to destroy entanglement between her "eld system and B. Again, while one could
doubt whether this poses any real methodological problem for Alice*an issue
to which we shall return in earnest later*we think it is ironic, considering
Einstein's point of view, that such limits should be forced upon us once we make
the transition to a fully relativistic formulation of quantum theory.

We begin in Section 2 by reviewing the formalism of AQFT, the concept of
entanglement between spacelike-separated "eld systems, and the mathematical
representation of an operation performed within a local spacetime region on
a "eld system. In Section 3, we connect the Reeh}Schlieder theorem with the
practical di$culties involved in guaranteeing that a "eld system is disentangled
from other "eld systems. The language of operations also turns out to be
indispensible for clearing up some apparently paradoxical physical implications
of the Reeh}Schlieder theorem that have been raised in the literature without
being properly resolved. In Section 4, we discuss di!erences between type III
von Neumann algebras and the standard type I von Neumann algebras em-
ployed in non-relativistic quantum theory, emphasizing the radical implications
type III algebras have for the ignorance interpretation of mixtures and entangle-
ment. We end Section 4 by connecting the type III character of the algebra of
a local "eld system with the inability, in principle, to perform local operations on
the system that will destroy its entanglement with other spacelike-separated
systems. We o!er this result as one way to make precise the sense in which
AQFT requires a radical change in paradigm*a change that, regrettably, has
passed virtually unnoticed by philosophers of quantum theory.

2. AQFT, Entanglement, and Local Operations

We "rst give a quick review of some of the mathematics needed to understand
AQFT.

An abstract CH-algebra is a Banach H-algebra, where the involution and norm
are related by DAHAD"DAD2. Thus the algebra B(H) of all bounded operators on
a Hilbert space H is a CH-algebra, with H taken to be the adjoint operation, and
D ) D the standard operator norm. Moreover, any H-subalgebra of B(H) that is
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closed in the operator norm is a CH-algebra, and, conversely, one can show that
every abstract CH-algebra has a concrete (faithful) representation as a norm-
closed H-subalgebra ofB(H), for some appropriate Hilbert space H (Kadison and
Ringrose (henceforth KR) 1997, Remark 4.5.7).

On the other hand, a von Neumann algebra is always taken to be a concrete
collection of operators on some "xed Hilbert space H. For F any set of operators
on H, let F@ denote the commutant of F, i.e. the set of all operators on H that
commute with every operator in F. Observe that F-FA, that F-G implies
G@-F@, and (hence) that F@"FA@. R is called a von Neumann algebra exactly
when R is a H-subalgebra of B(H) that contains the identity and satis"es
R"RA. This is equivalent, via von Neumann's famous double commutant
theorem (KR, 1997, Theorem 5.3.1), to the assertion that R contains the identity
and is closed in the strong operator topology, where Z

n
PZ strongly just in case

D(Z
n
!Z)xDP0 for all x3H.

If a sequence MZ
n
N-R converges to Z3R in norm, then since

D(Z
n
!Z)xD)DZ

n
!ZDDxD, the convergence is also strong. Hence every von

Neumann algebra is also a CH-algebra. However, not every CH-algebra of
operators is a von Neumann algebra. For example, the CH-algebra C of all
compact operators on an in"nite-dimensional Hilbert space H*that is, the
norm closure of the H-subalgebra of all "nite rank operators on H*does not
contain the identity, nor does C satisfy C"CA. Indeed, CA"B(H), because only
multiples of the identity commute with all "nite-dimensional projections, and of
course every operator commutes with all multiples of the identity.

Finally, let S be any self-adjoint (i.e. H-closed) set of operators in B(H). Then S@
is a H-algebra containing the identity, and both S@ ("SA@"(S@)A) and SA
("(S@)@"(S@)A@"(SA)A) are von Neumann algebras. If we suppose there is some
other von Neumann algebra R such that S-R, then R@-S@, which in turn
entails SA-RA"R. Thus SA is actually the smallest von Neumann algebra
containing S, i.e. the von Neumann algebra that S generates. For example, the
von Neumann algebra generated by all "nite rank operators is the whole of
B(H).

The basic mathematical object of AQFT on Minkowski spacetime M is an
association OCA(O) between bounded open subsets O of M and CH-subalge-
bras A(O) of an abstract CH-algebra A (Horuzhy, 1988; Haag, 1992). The
motivation for this association is that the self-adjoint elements ofA(O) represent
the physical magnitudes, or observables, of the "eld intrinsic to the region O. We
shall see below how the elements of A(O) can also be used to represent
mathematically the physical operations that can be performed within O, and
often it is only this latter interpretation of A(O) that is emphasized (Haag, 1992,
p. 104). One naturally assumes

Isotony: If O
1
-O

2
, then A(O

1
)-A(O

2
).

As a consequence, the collection of all local algebras A(O) de"nes a net whose
limit points can be used to de"ne algebras associated with unbounded regions,
and in particular A(M), which is identi"ed with A itself.
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2 In particular, though smearing any given "eld &algebra' on M de"nes a unique net, the net
underdetermines the "eld; see Borchers (1960).
3See Arageorgis et al. (2001) and Halvorson and Clifton (2001) for somewhat di!erent criticisms of
the Haag}Kastler argument.

One of the leading ideas in the algebraic approach to "elds is that all of the
physics of a particular "eld theory is encoded in the structure of its net of local
algebras.2 But there are some general assumptions about the net
MA(O): O-MN that all physically reasonable "eld theories are held to satisfy.
First, one assumes

Microcausality: A(O@)-A(O)@.

One also assumes that there is a faithful representation xPax of the spacetime
translation group of M in the group of automorphisms of A, satisfying

¹ranslation Covariance: ax(A(O))"A(O#x).

=eak Additivity: For any O-M, A is the smallest CH-algebra containing

Z
x|M

A(O#x).

Finally, one assumes that there is some irreducible representation of the net
MA(O): O-MN in which these local algebras are identi"ed with von Neumann
algebras acting on a (non-trivial) Hilbert space H, A is identi"ed with a strongly
dense subset of B(H), and the following condition holds

Spectrum Condition: The generator of spacetime translations, the
energy-momentum of the "eld, has a spectrum con"ned to the forward light
cone.

These last three conditions, and their role in the proof of the Reeh}Schlieder
theorem (microcausality is not needed), are discussed at length in Halvorson
(2000a). We wish only to note here that while the spectrum condition itself only
makes sense relative to a representation (wherein one can speak, via Stone's
theorem, of generators of the spacetime translation group of M*now concrete-
ly represented as a strongly continuous group of unitary operators M;xN acting
on H), the requirement that the abstract net have a representation satisfying the
spectrum condition does not require that one actually pass to such a representa-
tion to compute expectation values, cross-sections, etc. Indeed, Haag and
Kastler (1964) have argued that there is a precise sense in which all concrete
representations of a net are physically equivalent, including representations with
and without a translationally invariant vacuum state vector ). Since we are not
concerned with that argument here,3 we shall henceforth take the &Haag}Araki'
approach of assuming that all the local algebras MA(O): O-MN are von
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4Since we do, after all, live in a heat bath at 3 degrees Kelvin, some might think it would be of more
immediate physical interest if we investigated entanglement in "nite temperature &KMS' representa-
tions of the net MA(O): O-MN that are &disjoint' from the vacuum representation. However, aside
from the fact that the vacuum representation is the simplest and most commonly discussed
representation, we are interested here only in the conceptual foundations of particle physics, not
quantum statistical mechanics. Moreover, much of value can be learned about the conceptual
infrastructure of a theory by examining particular classes of its models*whether or not they are
plausible candidates for describing our actual world. (In any case, we could hardly pretend to be
discussing physics on a cosmological scale by looking at "nite temperature representations, given
that we would still be presupposing a #at spacetime background!)
5There are also non-countably additive or &singular' states on R (KR, 1997, p. 723), but whenever we
use the term &state' we shall mean countably additive state.
6 It is important not to con#ate the terms &vector state' and &pure state', unless of course R"B(H)
itself.

Neumann algebras acting on some H, with AA"B(H), and there is a transla-
tionally invariant vacuum state )3H.4

We turn next to the concept of a state of the "eld. Generally, a physical state of
a quantum system, represented by some von Neumann algebra R-B(H),
is given by a normalised linear expectation functional q on R that is both
positive and countably additive. Positivity is the requirement that q map any
positive operator in R to a non-negative expectation (a must, given that positive
operators have non-negative spectra), while countable additivity is the require-
ment that q be additive over countable sums of mutually orthogonal projections
in R.5 Every state on R extends to a state o on B(H) which, in turn, can be
represented by a density operator Do on H via the standard formula
o( ) )"Tr(Do ) ) (KR, 1997, p. 462). A pure state on B(H), i.e. one that is not
a non-trivial convex combination or mixture of other states of B(H), is then
represented by a vector x3H. We shall always use the notation o

x
for the

normalised state functional (x, )x)/DxD2 ("Tr(P
x
) )). If, furthermore, we consider

the restriction o
x
DR , the induced state on some von Neumann subalgebra

R-B(H), we cannot in general expect it to be pure on R as well. For example,
with H"C2

A
?C2

B
, R"B(C2

A
)?I, and x entangled, we know that the induced

state o
x
DR , represented by D

A
(x)3B(C2

A
), is always mixed. Similarly, one cannot

expect that a pure state o
x

of the "eld algebra AA"B(H)*which supplies
a maximal speci"cation of the state of the "eld throughout spacetime*will have
a restriction to a local algebra o

x
DA(O)

that is itself pure. In fact, we shall see later
that the Reeh}Schlieder theorem entails that the vacuum state's restriction to
any local algebra is always highly mixed.

There are two topologies on the state space of a von Neumann algebra R that
we shall need to invoke. One is the metric topology induced by the norm on
linear functionals. The norm of a state o on R is de"ned by
DDoDD,supMDo(Z)D: Z"ZH3R, DZD)1N. If two states, o

1
and o

2
, are close to

each other in norm, then they dictate close expectation values uniformly for all
observables. In particular, if both o

1
and o

2
are vector states, i.e. they are

induced by vectors x
1
,x

2
3H such that o

1
"o

x1
DR and o

2
"o

x2
DR , then

Dx
1
!x

2
DP0 implies DDo

1
!o

2
DDP0.6 More generally, whenever the trace norm
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distance between two density operators goes to zero, the norm distance between
the states they induce onR goes to zero. Note also that since every state on B(H)
is given by a density operator, which in turn can be decomposed as an in"nite
convex combination of one-dimensional projections (with the in"nite sum
understood as trace norm convergence), it follows that every state on R-B(H)
is the norm limit of convex combinations of vectors states of R (cf. KR, 1997,
Theorem 7.1.12).

The other topology we shall invoke is the weak-H topology: a sequence or net
of states Mo

n
N on R weak-H converges to a state o just in case o

n
(Z)Po(Z) for all

Z3R. This convergence need not be uniform on all elements of R, and is
therefore weaker than the notion of approximation embodied by norm conver-
gence. As it happens, any state on the whole of B(H) that is the weak-H limit of
a set of states is also their norm limit. However, this is only true for type I von
Neumann algebras (Connes and St+rmer, 1978, Cor. 9).

Next, we turn to de"ning entanglement in a "eld. Fix a state o on B(H), and
two mutually commuting subalgebras R

A
,R

B
-B(H). To de"ne what it means

for o to be entangled across the algebras, we need only consider the restriction
oDR

AB
to the von Neumann algebra they generate, i.e. R

AB
"[R

A
XR

B
]A, and of

course we need a de"nition that also applies when oDR
AB

is mixed. A state u on
R

AB
is called a product state just in case there are states u

A
of R

A
and u

B
of

R
B

such that u(X>)"u
A
(X)u

B
(>) for all X3R

A
, >3R

B
. Clearly, product

states, or convex combinations of product states, possess only classical correla-
tions. Moreover, if one can even just approximate a state with convex combina-
tions of product states, its correlations do not signi"cantly depart from those
characteristic of a classical statistical theory. Therefore, we de"ne o to be
entangled across (R

A
,R

B
) just in case oDR

AB
is not a weak-H limit of convex

combinations of product states of R
AB

(Halvorson and Clifton, 2000). Notice
that we chose weak-H convergence rather than convergence in norm, hence we
obtain a strong notion of entanglement. In the case H"H

A
?H

B
,

R
A
"B(H

A
)?I, and R

B
"I?B(H

B
), the de"nition obviously coincides with

the usual notion of entanglement for a pure state (convex combinations and
approximations being irrelevant in that case), and also coincides with the
de"nition of entanglement (usually called &non-separability') for a mixed density
operator that is standard in quantum information theory (Werner, 1989; Clifton
and Halvorson, 2000; Clifton et al., 2000). Further evidence that the de"nition
captures an essentially non-classical feature of correlations is given by the fact
that R

AB
will possess an entangled state in the sense de"ned above if and only if

both R
A

and R
B

are non-abelian (Bacciagaluppi, 1993, Theorem 7; Summers
and Werner, 1995, Lemma 2.1). Returning to AQFT, it is therefore reasonable to
say that a global state of the "eld o on AA"B(H) is entangled across a pair of
spacelike-separated regions (O

A
, O

B
) just in case oDA

AB
, o's restriction to

A
AB

"[A(O
A
)XA(O

B
)]A, falls outside the weak-H closure of the convex hull of

A
AB
's product states.

Our next task is to review the mathematical representation of operations,
highlight some subtleties in their physical interpretation, and then discuss what
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is meant by local operations on a system. We then end this section by giving the
general argument that local operations performed in either of two spacelike-
separated regions (O

A
, O

B
) cannot create entanglement in a state across the

regions.
The most general transformation of the state of a quantum system with

Hilbert space H is described by an operation on B(H), de"ned to be a positive,
weak-H continuous, linear map ¹ :B(H)PB(H) satisfying 0)¹(I))I (Haag
and Kastler, 1964; Davies, 1976; Kraus, 1983; Busch et al., 1995; Werner, 1987).
(The weak-H topology on a von Neumann algebra R is de"ned in complete
analogy to the weak-H topology on its state space, viz. MZ

n
N-R weak-H

converges to Z3R just in case o(Z
n
)Po(Z) for all states o of R.) Any such

¹ induces a map oPoT from the state space of B(H) into itself or 0, where, for
all Z3B(H),

oT(Z),o(¹(Z))/o(¹(I)) if o(¹(I))O0;

,0 otherwise. (3)

The number o(¹(I)) is the probability that an ensemble in state o will respond
&Yes' to the question represented by the positive operator ¹(I). An operation
¹ is called selective if ¹(I)(I, and non-selective if ¹(I)"I. The "nal state after
a selective operation on an ensemble of identically prepared systems is obtained
by ignoring those members of the ensemble that fail to respond &Yes' to ¹(I).
Thus a selective operation involves performing a physical operation on an
ensemble followed by a purely conceptual operation in which one makes a selec-
tion of a subensemble based on the outcome of the physical operation (assigning
&state' 0 to the remainder). Non-selective operations, by contrast, always elicit
a &Yes' response from any state, hence the "nal state is not obtained by selection
but purely as a result of the physical interaction between object system and the
device that e!ects the operation. (We shall shortly discuss some actual physical
examples to make this general description of operations concrete.)

An operation ¹, which quantum information theorists call a superoperator
(acting, as it does, on operators to produce operators), &can describe any
combination of unitary operations, interactions with an ancillary quantum
system or with the environment, quantum measurement, classical communica-
tion, and subsequent quantum operations conditioned on measurement results'
(Bennett et al., 1999). Interestingly, a superoperator itself can always be repre-
sented in terms of operators, as a consequence of the Kraus representation
theorem (Kraus, 1983, p. 42): for any operation ¹ :B(H)PB(H), there exists
a (not necessarily unique) countable collection of Kraus operators MK

i
N-B(H)

such that

¹( ) )"+
i

KH
i
( ) )K

i
, with 0)+

i

KH
i
K

i
)I, (4)

where both sums, if in"nite, are to be understood as weak-H convergence. It is
not di$cult to show that the sum +

i
K

i
KH

i
must also weak-H converge, hence we
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can let ¹H denote the operation conjugate to ¹ whose Kraus operators are
MKH

i
N. It then follows (using the linearity and cyclicity of the trace) that if a state

o is represented by a density operator D on H, oT will be represented by the
density operator ¹H(D). If the mapping oPoT, or equivalently, DP¹H(D),
maps pure states to pure states, then the operation ¹ is called a pure operation,
and this corresponds to it being representable by a single Kraus operator.

More generally, the Kraus representation shows that a general operation is
always equivalent to mixing the results of separating an initial ensemble into
subensembles to which one applies pure (possibly selective) operations, repre-
sented by the individual Kraus operators. To see this, let ¹ be an arbitrary
operation performed on a state o, where oTO0, and suppose ¹ is represented
by Kraus operators MK

i
N. Let oKi denote the result of applying to o the pure

operation given by the mapping ¹
i
( ) )"KH

i
( ) )K

i
, and (for convenience) de"ne

j
i
"o(¹

i
(I))/o(¹(I)). Then, at least when there are "nitely many Kraus oper-

ators, it is easy to see that ¹ itself maps o to the convex combination
oT"+

i
j
i
oKi . In the in"nite case, this sum converges not just weak-H but in

norm, and it is a useful exercise in the topologies we have introduced to see why.
Letting oT

n
denote the partial sum +n

i/1
j
i
oKi , we need to establish that

lim
n?=

[supMDoT(Z)!oT
n
(Z)D: Z"ZH3B(H), DZD)1N]"0. (5)

For any Z3B(H), we have

DoT(Z)!oT
n
(Z)D"o(¹(I))~1D

=
+

i/n`1

o(KH
i
ZK

i
)D. (6)

However, o(KH
i
( ) )K

i
), being a positive linear functional, has a norm that may be

computed by its action on the identity (KR, 1997, Theorem 4.3.2). Therefore,
Do(KH

i
ZK

i
)D)DZDo(KH

i
K

i
), and we obtain

DoT(Z)!oT
n
(Z)D)o(¹(I))~1DZD

=
+

i/n`1

o(KH
i
K

i
). (7)

However, since +
i
KH

i
K

i
weak-H converges, this last summation is just the tail set

of a convergent series. Therefore, when DZD)1, the right-hand side of (7) goes to
zero independently of Z.

To get a concrete idea of how operations work physically, and to highlight
two important interpretational pitfalls, let us again consider our toy universe,
with H"C2

A
?C2

B
and x an entangled state. Recall that Alice disentangled x by

measuring an observable of A with eigenprojections P
B

. Her measurement
corresponds to applying the non-selective operation ¹ with Kraus operators
K

1
"P

`
?I and K

2
"P

~
?I, resulting in the "nal state ¹H(P

x
)"¹(P

x
)"D@,

as given in (1). If Alice were to further &apply' the pure selective operation ¹@
represented by the single Kraus operator P

`
?I, the "nal state of her ensemble,

as is apparent from (2), would be the product state DA"P
`

?P
b
`
x
. But, as we

have emphasised, this corresponds to a conceptual operation in which Alice just
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7 In particular, keep in mind that you are taking the "rst step on the road to conceding the
incompleteness of quantum theory if you attribute the change in the state of B brought about by ¹@
in this case to a mere change in Alice's knowledge about B's state.

throws away all members of the original ensemble that yielded measurement
outcome !1.

On the other hand, it is essential not to lose sight of the issue that troubled
Einstein. Whatever outcome Alice selects for, she will then be in a position to
assert that certain B observables*those that have either b`

x
or b~

x
as an

eigenvector, depending on the outcome she favours*have a sharp value in the
ensemble she is left with. But prior to Alice performing the "rst operation ¹,
such an assertion would have contradicted the orthodox interpretation of the
entangled superposition x. If, contra Bohr, one were to view this change in B's
state as a real physical change brought about by one of the operations Alice
performs, surely the innocuous conceptual operation ¹@ could not be the
culprit*it must have been ¹ which forced B to &choose' between the alternatives
bB
x
. Unfortunately, this clear distinction between the physical operation ¹ and

conceptual operation ¹@ is not re#ected well in the formalism of operations. For
we could equally well have represented Alice's "nal product state
DA"P

`
?P

b
`
x
, not as the result of successively applying the operations ¹ and

¹@, but as the outcome of applying the single composite operation ¹@"¹, which is
just the mapping ¹@. And this ¹@ now needs to be understood, not purely as
a conceptual operation, but as also involving a physical operation, with possibly
real non-local e!ects on B, depending on one's view of the EPR paradox.7

There is a second pitfall that concerns interpreting the result of mixing
subensembles, as opposed to singling out a particular subensemble. Consider an
alternative method available to Alice for disentangling a state x. For concrete-

ness, let us suppose that x is the singlet state 1/J2(a`?b~!a~?b`). Alice
applies the non-selective operation with Kraus representation

¹( ) )"
1

2
(r

a
?I)( ) )(r

a
?I)#

1

2
(I?I)( ) )(I?I), (8)

where p
a

is the spin observable with eigenstates aB. Since p
a
?I maps x to the

triplet state 1/J2(a`?b~#a~?b`), ¹H ("¹) will map P
x

to an equal
mixture of the singlet and triplet, which admits the following convex decomposi-
tion into product states:

D@"
1

2
P
a
`
cb

~#
1

2
P
a
~
cb

` . (9)

Has Alice truly disentangled A from B? Technically, Yes. Yet all. Alice has done,
physically, is to separate the initial A ensemble into two subensembles in equal
proportion, left the second subensemble alone while performing a (pure, non-
selective) unitary operation p

a
?I on the "rst that maps all its A#B pairs to the
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8 It is exactly this insensitivity that is at the heart of the recent dispute over whether NMR quantum
computing is correctly understood as implementing genuine quantum computing that cannot be
simulated classically (Braunstein et al., 1999; La#amme, 1998).

triplet state, and then remixed the ensembles. Thus, notwithstanding the above
decomposition of the "nal density matrix D@, Alice knows quite well that she is in
possession of an ensemble of A systems each of which is entangled either via the
singlet or triplet state with the corresponding B systems. This will of course be
recognised as one aspect of the problem with the ignorance interpretation of
mixtures. We have two di!erent ways to decompose D@*as an equal mixture of
the singlet and triplet or of two product states*but which is the correct way to
understand how the ensemble is actually constituted? The de"nition of entangle-
ment is just not sensitive to the answer.8 Nevertheless, we are inclined to think
the destruction of the singlet's entanglement that Alice achieves by applying the
operation in (8) is an artifact of her mixing process, in which she is represented as
simply forgetting about the history of the A systems. And this is the view we shall
take when we consider similar possibilities for destroying entanglement between
"eld systems in AQFT.

In the two examples considered above, Alice applies operations whose Kraus
operators lie in the subalgebraB(H

A
)?I associated with system A. In the case of

a non-selective operation, this is clearly su$cient for her operation not to have
any e!ect on the expectations of the observables of system B. However, it is also
necessary. The point is quite general.

Let us de"ne a non-selective operation ¹ to be (pace Einstein!) local to the
subsystem represented by a von Neumann subalgebra R-B(H) just in case
oTDR{

"oDR{
for all states o. Thus, we require that ¹ leave the expectations of

observables outside of R, as well as those in its center RWR@, unchanged. Since
distinct states of R@ cannot agree on all expectation values, this means ¹ must
act like the identity operation on R@. Now "x an arbitrary element >3R@, and
suppose ¹ is represented by Kraus operators MK

i
N. A straightforward calcu-

lation reveals that

+
i

[>,K
i
]H[>, K

i
]"¹(>2)!¹(>)>!>¹(>)#>¹(I)>. (10)

Since ¹(I)"I, and ¹ leaves the elements of R@ "xed, the right-hand side of (10)
reduces to zero. Thus each of the terms in the sum on the left-hand side, which
are positive operators, must individually be zero. Since > was an arbitrary
element of R@, it follows that MK

i
N-(R@)@"R. So we see that non-selective

operations local to R must be represented by Kraus operators taken from the
subalgebra R.

As for selective operations, we have already seen that they can &change' the
global statistics of a state o outside the subalgebra R, particularly when o is
entangled. However, a natural extension of the de"nition of local operation on
R to cover the case when ¹ is selective is to require that ¹(>)"¹(I)> for all
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>3R@. This implies oT(>)"o(¹(I)>)/o(¹(I)), and so guarantees that ¹ will
leave the statistics of any observable in R@ the same, modulo whatever correla-
tions that observable might have had in the initial state with the Yes/No
question represented by the positive operator ¹(I). Further motivation is pro-
vided by the fact that this de"nition is equivalent to requiring that ¹ factors
across the algebras (R,R@), in the sense that ¹(X>)"¹(X)> for all X3R,
>3R@ (Werner, 1987, Lemma). If there exist product states across (R,R@) (an
assumption we shall later see does not usually hold when R is a local algebra in
AQFT), this guarantees that any local selective operation on R, when the global
state is an entirely uncorrelated product state, will leave the statistics of that
state on R@ unchanged. Finally, observe that ¹(>)"¹(I)> for all>3R@ implies
that the right-hand side of (10) again reduces to zero. Thus it follows (as before)
that selective local operations on R must also be represented by Kraus oper-
ators taken from the subalgebra R.

Applying these considerations to "eld theory, any local operation on the "eld
system within a region O, whether or not the operation is selective, is represented
by a family of Kraus operators taken from A(O). In particular, each individual
element of A(O) represents a pure operation that can be performed within O (cf.
Haag and Kastler, 1964, p. 850). We now need to argue that local operations
performed by two experimenters in spacelike-separated regions cannot create
entanglement in a state across the regions where it had none before. This point,
well-known by quantum information theorists working in non-relativistic quan-
tum theory, in fact applies quite generally to any two commuting von Neumann
algebras R

A
and R

B
.

Suppose that a state o is not entangled across (R
A
,R

B
), local operations

¹
A

and ¹
B

are applied to o, and the result is non-zero (i.e. some members of the
initial ensemble are not discarded). Since the Kraus operators of these opera-
tions commute, it is easy to check that (oTA )TB"(oTB)TA , so it does not matter in
which order we take the operations. It is su$cient to show that oTA will again be
unentangled, for then we can just repeat the same argument to obtain that
neither can (oTA)TB be entangled. Next, recall that a general operation ¹

A
will

just produce a mixture over the results of applying a countable collection of pure
operations to o; more precisely, the result will be the norm, and hence weak-H,
limit of "nite convex combinations of the results of applying pure operations to
o. If the states that result from o under those pure operations are themselves not
entangled, oTA itself could not be either, because the set of unentangled states is
by de"nition convex and weak-H closed. Without loss of generality, then, we may
assume that the local operation ¹

A
is pure and, hence, given by

¹
A
( ) )"KH( ) )K, for some single Kraus operator K3R

A
. As before, we shall

denote the resulting state oTA by oK (,o(KH )K)/o(KHK)).
Next, suppose that u is any product state on R

AB
with restrictions to R

A
and

R
B

given by u
A

and u
B
, and such that uKO0. Then, for any X3R

A
, >3R

B
,

uK(X>)"
u(KH(X>)K)

u(KHK)
(11)
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9More generally, the connection is between cyclicity and "eld states that are &analytic' in the energy.
This, together with the physical and mathematical origins of the RS theorem, are analysed in depth
in Halvorson (2001a).

"

u(KHXK>)

u(KHK)
(12)

"

u
A
(KHXK)

u
A
(KHK)

u
B
(>)"uK

A
(X)u

B
(>). (13)

It follows that K maps product states of R
AB

to product states (or to zero).
Suppose, instead, that u is a convex combination of states on R

AB
, i.e.

u"+n
i/1

j
i
u

i
. Then, setting jK

i
"u

i
(KHK)/u(KHK), it is easy to see that

uK"+n
i/1

jK
i
uK

i
, hence K preserves convex combinations of states on R

AB
as

well. It is also not di$cult to see that the mapping uCuK is weak-H continuous
at any point where uKO0 (cf. Halvorson and Clifton, 2000, Sec. 3).

Returning to our original state o, our hypothesis is that it is not entangled.
Thus, there is a net of states Mu

n
N onR

AB
, each of which is a convex combination

of product states, such that u
n
PoDR

AB
in the weak-H topology. It follows from

the above considerations that uK
n
PoKDR

AB
, where each of the states MuK

n
N is again

a convex combination of product states. Hence, by de"nition, oKDR
AB

is not
entangled either.

In summary, we have shown:

If R
A

and R
B

are any two commuting von Neumann algebras, and o is any
unentangled state across (R

A
,R

B
), then operations on o, local to either or both of

A and B, cannot turn o into an entangled state.

3. The Operational Implications of the Reeh}Schlieder Theorem

Again, let R-B(H) be any von Neumann algebra. A vector x3H is called
cyclic for R if the norm closure of the set MAx: A3RN is the whole of H. In
AQFT, the Reeh}Schlieder (RS) theorem connects this formal property of
cyclicity to the physical property of a "eld state having bounded energy.9 A pure
global state x of the "eld has bounded energy just in case E([0, r])x"x for some
r(R, where E is the spectral measure for the global Hamiltonian of the "eld.
In other words, the probability in state x that the "eld's energy is con"ned to the
bounded interval [0, r] is unity. In particular, the vacuum ) is an eigenstate of
the Hamiltonian with eigenvalue 0, and hence trivially has bounded energy. The
RS theorem implies that

If x has bounded energy, then x is cyclic for any local algebra A(O).

Our "rst order of business is to explain Streater and Wightman's comment that
the RS theorem entails &it is di$cult to isolate a system described by "elds from
outside e!ects' (Streater and Wightman, 1989, p. 139).
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10That this should be so is not as surprising as it sounds. Again, if H"H
A
?H

B
, and

dim H
A
5dim H

B
, then as we have seen, the B subalgebra possesses a separating vector. But it is also

easy to see, in this case, that every state on I?B(H
B
) is the reduced density operator obtained from

a pure state on B(H) determined by a vector in H.

A vector x is called separating for a von Neumann algebraR if Ax"0 implies
A"0 whenever A3R. It is an elementary result of von Neumann algebra
theory that x will be cyclic for R if and only if x is separating for R@ (KR, 1997,
Cor. 5.5.12). To illustrate this with a simple example, take H"H

A
?H

B
. If

dim H
A
5dim H

B
, then it is possible for there to be vectors x3H that have

a Schmidt decomposition +
i
c
i
a
i
?b

i
, where Dc

i
D2O0 for all i"1 to dim H

B
. If

we act on such an x by an operator in the subalgebra I?B(H
B
), of form I?B,

then the only way (I?B)x can be the zero vector is if B itself maps all the basis
vectors Mb

i
N to zero, i.e. I?B"0. Thus such vectors are separating for

I?B(H
B
), and therefore cyclic for B(H

A
)?I. Conversely, it is easy to convince

oneself that B(H
A
)?I possesses a cyclic vector*equivalently, I?B(H

B
) has

a separating vector*only if dimH
A
5dim H

B
. So, to take another example, each

of the A and B subalgebras will possess a cyclic and a separating vector just in
case H

A
and H

B
have the same dimension (cf. the proof of Clifton et al., 1998,

Theorem 4).
Consider, now, a local algebra A(O) with O@O0, and a "eld state x with

bounded energy. The RS theorem tells us that x is cyclic for A(O@), and therefore
separating for A(O@)@. But by microcausality, A(O)-A(O@)@, hence x must be
separating for the subalgebra A(O) as well. Thus it is an immediate corollary to
the RS theorem that

If x has bounded energy, then x is separating for any local algebra A(O) with
O@O0.

It is this corollary that prompted Streater and Wightman's remark. But what
has it got to do with thinking of the "eld systemA(O) as isolated? For a start, we
can now show that the local restriction o

x
DA(O)

of a state with bounded energy is
always a highly &noisy' mixed state. Recall that a state u on a von Neumann
algebra R is a component of another state o if there is a third state q such that
o"ju#(1!j)q with j3(0,1) (Van Fraassen, 1991, p. 161). We are going to
show that o

x
DA(O)

has a norm dense set of components in the state space of A(O).
Once again, the point is quite general. Let R be any von Neumann algebra,

x be separating for R, and let u be an arbitrary state of R. We must "nd
a sequence Mu

n
N of states of R such that each u

n
is a component of o

x
DR and

DDu
n
!uDDP0. Since R has a separating vector, it follows that every state of R is

a vector state (KR, 1997, Theorem 7.2.3).10 In particular, there is a non-zero
vector y3H such that u"u

y
. Since x is separating for R, x is cyclic for R@,

therefore we may choose a sequence of operators MA
n
N-R@ so that A

n
xPy.

Since DA
n
x!yDP0, DDu

Anx
!u

y
DDP0. We claim now that each u

Anx
is a
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11This result also holds more generally for states o of R that are faithful, i.e. o(Z)"0 entails Z"0
for any positive Z3R; see the "rst part of the proof of Summers and Werner (1988, Theorem 2.1).
12For example, Segal and Goodman (1965) have called this &bizarre' and &physically quite surpris-
ing', sentiments echoed recently by Fleming who calls it &amazing!' (1999) and Fleming and
Butter"eld who think it is &hard to square with namKve, or even educated, intuitions about localiza-
tion!' (1999, p. 161).

component of o
x
DR . Indeed, for any positive element BHB3R, we have:

SA
n
x,BHBA

n
xT"Sx,AH

n
A

n
BHBxT"SBx,AH

n
A

n
BxT (14)

)DAH
n
A

n
DSBx,BxT"DA

n
D2Sx,BHBxT. (15)

Thus,

u
Anx

(BHB)"
SA

n
x,BHBA

n
xT

DA
n
xD2

)

DA
n
D2

DA
n
xD2

o
x
(BHB). (16)

If we now take j"DA
n
xD2/DA

n
D23(0,1), and consider the linear functional q on

R given by q"(1!j)~1(o
x
DR!ju

Anx
), then (16) implies that q is a state (in

particular, positive), and we see that o
x
DR"ju

Anx
#(1!j)q as required.11

So bounded energy states are, locally, highly mixed. And such states are far
from special*they lie norm dense in the pure state space of B(H). To see this,
just recall that it is part of the spectral theorem for the global Hamiltonian that
E([0,n]) converges strongly to the identity as nPR. Thus we may approxi-
mate any vector y3H by the sequence of bounded energy states ME([0, n])y/
DE([0,n])yDN=

n/0
. Since there are so many bounded energy states of the "eld, that

are locally so &noisy', Streater and Wightman's comment is entirely warranted.
But somewhat more can be said. As we saw with our toy example in Section 1,
when a local subsystem of a global system in a pure state is itself in a mixed state,
this is a sign of that subsystem's entanglement with its environment. And there is
entanglement lurking in bounded energy states too. But, "rst, we want to take
a closer look at the operational implications of local cyclicity.

If a vector x is cyclic for R, then for any y3H, there is a sequence A
n
3R such

that A
n
xPy. Thus for any e'0 there is an A3R such that DDo

Ax
!o

y
DD(e.

However, o
Ax

is just the state one gets by applying the pure operation given by
the Kraus operator K"A/DAD3R to o

x
. It follows that if x is cyclic for R, one

can get arbitrarily close in norm to any other pure state of B(H) by applying an
appropriate pure local operation in R to o

x
. In particular, pure operations on

the vacuum ) within a local region O, no matter how small, can prepare
essentially any global state of the "eld. As Haag emphasizes, to do this the
operation must &judiciously exploit the small but nonvanishing long distance
correlations which exist in the vacuum' (1992, p. 102). This, as Redhead (1995)
has argued by analogy to the singlet state, is made possible by the fact that the
vacuum is highly entangled (cf. Clifton et al., 1998). But the "rst puzzle we need
to sort out is that it looks as though entirely physical operations in O can change
the global state, in particular the vacuum ), to any desired state!12
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13Note that in this simple 2]2-dimensional case, Redhead could equally well have chosen any
entangled state, since they are all separating for I?B(C2

B
).

Redhead's analysis of the cyclicity of the singlet state 1/J2(a`?b~!a~?b`)
for the subalgebra B(C2

A
)?I is designed to remove this puzzle (ibid., p. 128).13

Redhead writes:

[2] we want to distinguish clearly two senses of the term &operation'. Firstly there
are physical operations such as making measurements, selecting subensembles
according to the outcome of measurements, and mixing ensembles with probabilis-
tic weights, and secondly there are the mathematical operations of producing
superpositions of states by taking linear combinations of pure states produced by
appropriate selective measurement procedures. These superpositions are of course
quite di!erent from the mixed states whose preparation we have listed as a physical
operation (1995, pp. 128}129).

Note that, in stark contrast to our discussion in the previous section, Redhead
counts selecting subensembles and mixing as physical operations; it is only the
operation of superposition that warrants the adjective &mathematical'. When he
explains why it is possible that x can be cyclic, Redhead "rst notes (ibid., p. 129)
that the four basis states

a`?b~, a~?b~, a~?b`, a`?b~ (17)

are easily obtained by the physical operations of applying projections and
unitary transformations to the singlet state, and exploiting the fact that the
singlet strictly correlates p

a
with p

b
. He goes on:

But any state for the joint system is some linear combination of these four states,
so by the mathematical operation of linear combination, we can see how to generate
an arbitrary state in H

1
?H

2
from physical operations performed on particle one.

But all the operations we have described can be represented in the algebra of
operators on H

1
(extended to H

1
?H

2
) (ibid., p. 129).

Now, while Redhead's explanation of why it is mathematically possible for
x to be cyclic is perfectly correct, he actually misses the mark when it comes to
the physical interpretation of cyclicity. The point is that superposition of states is
a red herring. Certainly a superposition of the states in (17) could not be
prepared by physical operations con"ned to the A system. But, as Redhead
himself notes in the "nal sentence above, one can get the same ewect as
superposing those states by acting on x with an operator of form A?I in the
subalgebra B(C2

A
)?I*an operator that is itself a &superposition' of other

operators in that algebra. What Redhead fails to point out is that the action of
this operator on x does have a local physical interpretation: as we have seen, it is
a Kraus operator that represents the outcome of a generalised positive oper-
ator-valued measurement on the A system. The key to the puzzle is, rather, that
this positive operator-valued measurement will generally have to be selective.
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14 In fairness to Redhead, we would like to add that in his "rst book (Redhead, 1989, p. 58) he
includes an exceptionally clear discussion of the di!erence between non-selective and selective
measurements. In particular, while we have dubbed the latter &conceptual' operations, he uses the
term &mental', without implying anything mystical is involved. As he puts it, while a non-selective
operation can have a physical component*like the physical action of throwing some subensemble
of particles into a box for further examination*it is the decision to focus on a particular suben-
semble to the exclusion of the rest that is not dictated by the physics.
15Haag does make the interesting point that only a proper subset of the state space of a "eld can be
approximated if we restrict ourselves to local operations that involve a physically reasonable
expenditure of energy. But we do not share the view of Schroer (1999) that this point by itself
reconciles the RS theorem with &common sense'.

For one certainly could never, with non-selective operations on A alone, get as
close as one likes to any state vector in C2

A
?C2

B
(otherwise all state vectors

would induce the same state on I?B(C2
B
)!).

We conclude that the correct way to view the physical content of cyclicity is
that changes in the global state are partly due to an experimenter's ability to
perform a generalised measurement on A, and partly due (pace Redhead) to the
purely conceptual operation of selecting a subensemble based on the outcome of
the experimenter's measurement together with the consequent &change' in the
state of B via the EPR correlations between A and B.14

One encounters the same interpretational pitfall concerning the cyclicity of
the vacuum in relation to localised states in AQFT. A global state of the "eld is
said to be localised in O if its expectations on the algebra A(O@) agree with
vacuum expectation values (Haag, 1992, p. 102). Thus localised states are
&excitations' of the vacuum con"ned to O. In particular, ;) will be a localised
state whenever ; is a unitary operator taken from A(O) (since unitary oper-
ations are non-selective). But every element of a CH-algebra is a "nite linear
combination of unitary operators (KR, 1997, Theorem 4.1.7). Since ) is cyclic
for A(O), this means we must be able to approximate any global state by linear
superpositions of vectors describing states localised in O*even approximate
states that are localised in regions spacelike separated with O! Haag, rightly
cautious, calls this a &(super"cial) paradox' (1992, p. 254; parenthesis his), but he
fails to put his "nger on its resolution: while unitary operations are non-
selective, a local operation in A(O) given by a Kraus operator that is a linear
combination of local unitary operators will generally be selective.15

The (common) point of the previous two paragraphs is perhaps best sum-
marised as follows. Both Redhead and Haag would agree that unitary Kraus
operators in A(O) give rise to purely physical operations in the local region O.
But there are many Kraus operators in A(O) that do not represent purely
physical operations in O insofar as they are selective. Since every Kraus operator
is a linear superposition of unitary operators, it follows that &superposition of
local operations' does not preserve (pure) physicality (so to speak). Redhead is
right that the key to di!using the paradox is in noting that superpositions are
involved*but it is essential to understand these superpositions as occurring
locally in A(O), not in the Hilbert space.
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16Note that the fact that A(O
A
) and A(O

B
) are non-abelian is itself a consequence of the RS

theorem. For if, say, A(O
A
) were abelian, then since by the RS theorem that algebra possesses

a cyclic vector, it must be a maximal abelian subalgebra of B(H) (KR, 1997, Cor. 7.2.16). The same
conclusion would have to follow for any subregion OI

A
LO

A
whose closure is a proper subset of O

A
.

And this, by isotony, would lead to the absurd conclusion that A(OI
A
)"A(O

A
), which is readily

shown to be inconsistent with the axioms of AQFT (Horuzhy, 1988, Lemma 1.3.10).
17Nor will the state be &analytic' in the energy (see footnote 9).

Our next order of business is to supply the rigorous argument behind
Redhead's intuition about the connection between cyclicity and entanglement.
The point, again, is quite general (cf. Halvorson and Clifton, 2000, Prop. 2):

For any two commuting non-abelian von Neumann algebras R
A

and R
B
, and any

state vector x cyclic for R
A

(or R
B
), o

x
will be entangled across the algebras.

For suppose, in order to extract a contradiction, that o
x

is not entangled. Then
as we have seen, operations on o

x
that are local to R

A
cannot turn that state into

an entangled state across (R
A
,R

B
). Yet, by the cyclicity of x, we know that we

can apply pure operations to o
x
, that are local to R

A
(or R

B
), and approximate

in norm (and hence weak-H approximate) any other vector state of R
AB

. It
follows that no vector state of R

AB
could be entangled across (R

A
,R

B
), and the

same goes for all its mixed states (which lie in the norm closed convex hull of the
vector states). But this means that R

AB
would possess no entangled states at

all*in #at contradiction with the fact that neither R
A

nor R
B

is abelian.
Returning to the context of AQFT, if we now consider any two spacelike

separated "eld systems, A(O
A
) and A(O

B
), then the argument we just gave

establishes that the dense set of "eld states bounded in the energy will all be
entangled across the regions (O

A
,O

B
).16 However, by itself this result does not

imply that Alice cannot destroy a bounded energy state x's entanglement across
(O

A
,O

B
) by performing local operations in O

A
. In fact, Borchers (1965, Cor. 7)

has shown that any state of the "eld induced by a vector of form Ax, for any
non-trivial A3A(O

A
), never has bounded energy.17 So it seems that all Alice

needs to do is perform any pure operation within O
A

and the resulting state,
because it is no longer subject to the RS theorem, need no longer be entangled
across (O

A
, O

B
).

However, the RS theorem gives only a su$cient, not a necessary, condition for
a state x of the "eld to be cyclic for A(O

A
). And notwithstanding that no pure

operation Alice performs can preserve boundedness in the energy, almost all the
pure operations she could perform will preserve the state's cyclicity! The reason
is, once again, quite general.

Again let R
A

and R
B

be two commuting non-abelian von Neumann algebras,
suppose x is cyclic for R

A
, and consider the state induced by the vector Ax

where A3R
A
. Now every element in a von Neumann algebra is the strong limit

of invertible elements in the algebra (Dixmier and MareH chal, 1971, Prop. 1).
Therefore, there is a sequence of invertible operators MAI

n
N-R

A
such that

AI
n
xPAx, i.e. DDo

AI nx
!o

Ax
DDP0. Notice, however, that since each AI

n
is invert-
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ible, each vector AI
n
x is again cyclic for R

A
, because we can &cycle back' to x by

applying to AI
n
x the inverse operator AI ~1

n
3R

A
, and from there we know, by

hypothesis, that we can cycle with elements of R
A

arbitrarily close to any other
vector in H. It follows that, even though Alice may think she has applied the pure
operation given by some Kraus operator A/DAD to x, she could well have actually
applied an invertible Kraus operation given by one of the operators AI

n
/DAI

n
D in

a strong neighbourhood of A/DAD. And if she actually did this, then she certainly
would not disentangle x, because she would not have succeeded in destroying the
cyclicity of the "eld state for her local algebra. We could, of course, give Alice the
freedom to employ more general mixing operations in O

A
. But as we saw in

the last section, it is far from clear whether a mixing operation should count as
a successful disentanglement when all the states that are mixed by her operation
are themselves entangled*or at least not known by Alice to be disentangled
(given her practical inability to specify exactly which Kraus operations go into
the pure operations of her mixing process).

Besides this, there is a more fundamental practical limitation facing Alice,
even if we allow her any local operation she chooses. If, as we have seen, we can
approximate the result of acting on x with any given operator in von Neumann
algebra R by acting on x with an invertible operator that preserves x's cyclicity,
then the set of all such &invertible actions' on x must itself produce a dense set of
vector states, given that MAx: A3RN is dense. It follows that if a von Neumann
algebra possesses even just one cyclic vector, it must possess a dense set of them
(Dixmier and MareH chal, 1971, Lemma 4; cf. Clifton et al., 1998).

Now consider, again, the general situation of two commuting non-abelian
algebras R

A
and R

B
, where either algebra possesses a cyclic vector, and hence

a dense set of such. If, in addition, the algebraR
AB

possesses a separating vector,
then all states of that algebra will be vector states, a norm dense set of which
must therefore be entangled across (R

A
,R

B
). And since the entangled states of

R
AB

are open in the weak-H topology, they must be open in the (stronger) norm
topology too*so we are dealing with a truly generic set of states. It follows,
quite independently of the RS theorem, that

Generic Result: If R
A

and R
B

are commuting non-abelian von Neumann alge-
bras either of which possesses a cyclic vector, and R

AB
possesses a separating

vector, then the generic state of R
AB

will be entangled across (R
A
,R

B
).

The role that the RS theorem plays is to guarantee that the antecedent
conditions of this Generic Result are satis"ed whenever we consider spacelike-
separated regions (and corresponding algebras) satisfying (O

A
XO

B
)@O0. This is

a very weak requirement, which is satis"ed, for example, when we assume both
regions are bounded in spacetime. In that case, in order to be certain that her
local operation in O

A
(pure or mixed) produced a disentangled state, Alice

would need the extraordinary ability to distinguish the state of A
AB

which
results from her operation from the generic set states of A

AB
that are entangled!

Finally, while we noted in our introduction the irony that limitations on
disentanglement arise precisely when one considers relativistic quantum theory,

21Entanglement and Open Systems in Algebraic Quantum Field ¹heory



18For further critical discussion of the Segal}Fleming approach to quantum "elds, see Halvorson
(2001b).

the practical limitations we have just identi"ed*as opposed to the intrinsic
limits on disentanglement which are the subject of the next section*are not
characteristic of AQFT alone. In particular, the existence of locally cyclic states
does not depend on "eld theory. As we have seen, both the A and B subalgebras
of B(H

A
?H

B
) possess a cyclic vector just in case dim H

A
"dim H

B
. Indeed,

operator algebraists so often "nd themselves dealing with von Neumann alge-
bras that, together with their commutants, possess a cyclic vector, that such
algebras are said by them to be in &standard form'. So we should not think that
local cyclicity is somehow peculiar to the states of local quantum "elds.

Neither is it the case that our Generic Result above "nds its only application
in quantum xeld theory. For example, consider the in"nite-by-in"nite state
space H

A
?H

B
of any two non-relativistic particles, ignoring their spin degrees of

freedom. Take the tensor product with a third auxiliary in"nite-dimensional
Hilbert space H

A
?H

B
?H

C
. Then obviously R"dimH

C
5dim (H

A
?H

B
)"R,

whence the C subalgebra possesses a cyclic vector, which is therefore separating
for the A#B algebra. On the same dimensional grounds, both the A and
B subalgebras possess cyclic vectors of their own. So our Generic Result applies
immediately yielding the conclusion that a typical state of A#B will be
entangled (cf. Clifton and Halvorson, 2000).

Nor should we think of local cyclicity or the applicability of our Generic
Result as peculiar to standard local quantum "eld theory. After noting that the
local cyclicity of the vacuum in AQFT was a &great, counterintuitive, surprise' (p.
4) when it was "rst proved, Fleming (1999) proposes, instead, to build up local
algebras associated with bounded open spatial sets within hyperplanes from
raising and lowering operators associated with non-local Newton}Wigner posi-
tion eigenstates*a proposal that goes back at least as far as Segal (1964).
Fleming then observes, as did Segal (1964, p. 143), that the resulting vacuum
state will not be entangled nor cyclic for any such local algebra. Nevertheless, as
Segal points out, each Segal}Fleming local algebra will be isomorphic to the
algebra B(H) of all bounded operators on an inxnite-dimensional Hilbert space
H, and algebras associated with spacelike-separated regions in the same hyper-
plane commute. It follows that if we take any two spacelike-separated bounded
open regions O

A
and O

B
lying in the same hyperplane, [A(O

A
)XA(O

B
)]A will be

naturally isomorphic to B(H
A
)?B(H

B
) (Horuzhy, 1988, Lemma 1.3.28), and the

result of the previous paragraph applies. So Fleming's &victory' over the RS
theorem of standard local quantum "eld theory rings hollow. Even though the
Newton}Wigner vacuum is not itself entangled or locally cyclic across
the regions (O

A
,O

B
), it will be indistinguishable from globally pure states of the

Newton}Wigner "eld that are!18
On the other hand, generic entanglement is certainly not to be expected in

every quantum-theoretic context. For example, if we ignore external degrees of
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19 In fact, it can be shown that the spins of any pair of particles are not generically entangled, unless
of course we ignore their mixed spin states; see Clifton and Halvorson (2000) for further discussion.
20 It is important to notice that this de"nition of equivalence is relative to the particular von
Neumann algebra R that the projections are considered to be members of.

freedom, and just consider the spins of two particles with joint state space
H

A
?H

B
, where both spaces are non-trivial and xnite-dimensional, then the

Generic Result no longer applies. Taking the product with a third auxiliary
Hilbert space H

C
does not work, because in order for the A#B subalgebra

to have a separating vector we would need dimH
C
5dimH

A
dimH

B
, but

for either the A or B subalgebras to possess a cyclic vector we would also need
that either dimH

A
5dimH

B
dimH

C
or dimH

B
5dimH

A
dimH

C
*both of

which contradict the fact that H
A

and H
B

are non-trivial and "nite-dimen-
sional.19

The point is that while the conditions for generic entanglement may or may
not obtain in any quantum-theoretical context*depending on the observables
and dimensions of the state spaces involved*the beauty of the RS theorem is
that it allows us to deduce that generic entanglement between bounded open
spacetime regions must obtain just by making some very general and natural
assumptions about what should count as a physically reasonable relativistic
quantum "eld theory.

4. Type III von Neumann Algebras and Intrinsic Entanglement

Though it is not known to follow from the general axioms of AQFT (cf.
Kadison, 1963), all known concrete models of the axioms are such that the local
algebras associated with bounded open regions in M are type III factors
(Horuzy, 1988, pp. 29, 35; Haag, 1992, Sec. V.6). We start by reviewing what
precisely is meant by the designation &type III factor'.

A von Neumann algebra R is a factor just in case its center RWR@ consists
only of multiples of the identity. It is easy to verify that this is equivalent to
(RXR@)A"B(H). Thus, R induces a &factorisation' of the total Hilbert space
algebra B(H) into two subalgebras which together generate that algebra.

To understand what &type III' means, a few further de"nitions need to be
absorbed. A partial isometry < is an operator on a Hilbert space H that maps
some particular closed subspace C-H isometrically onto another closed sub-
space C@-H, and maps CM to zero. (Think of < as a &hybrid' unitary/projection
operator.) Given the set of projections in a von Neumann algebra R, we can
de"ne the following equivalence relation on this set: P&Q just in case there is
a partial isometry <3R that maps the range of P onto the range of Q.20 For
example, any two in"nite-dimensional projections in B(H) are equivalent (when
H is separable), including projections one of whose range is properly contained
in the other (cf. KR, 1997, Cor. 6.3.5). A non-zero projection P3R is called
abelian if the von Neumann algebra PRP acting on the subspace PH (with
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identity P) is abelian. One can show that the abelian projections in a factorR are
exactly the atoms in its projection lattice (KR, 1997, Prop. 6.4.2). For example,
the atoms of the projection lattice of B(H) are all its one-dimensional projec-
tions, and they are all (trivially) abelian, whereas it is clear that higher-dimen-
sional projections are not. Finally, a projection P3R is called in"nite (relative to
R!) when it is equivalent to another projection Q3R such that Q(P, i.e.
Q projects onto a proper subspace of the range of P. One can also show that any
abelian projection in a von Neumann algebra must be xnite, i.e. not in"nite (KR,
1997, Prop. 6.4.2).

A type I von Neumann factor is now de"ned as one that possesses an abelian
projection. For example, B(H) for any Hilbert space H is always type I, and,
indeed, every type I factor arises as the algebra of all bounded operators on
some Hilbert space (KR, 1997, Theorem 6.6.1). On the other hand, a factor is
type III if all its non-zero projections are in"nite and equivalent. In particular,
this entails that the algebra itself is not abelian, nor could it even possess an
abelian projection*which would have to be "nite. And since a type III factor
contains no abelian projections, its projection lattice cannot have any atoms.
Another fact about type III algebras (acting on a separable Hilbert space) is that
they always possess a vector that is both cyclic and separating (Sakai, 1971, Cor.
2.9.28). Therefore we know that type III algebras will always possess a dense set
of cyclic vectors, and that all their states will be vector states. Notwithstanding
this, type III algebras possess no pure states, as a consequence of the fact that
they lack atoms.

To get some feeling for why this is the case*and for the general connection
between the failure of the projection lattice of an algebra to possess atoms and
its failure to possess pure states*let R be any non-atomic von Neumann
algebra possessing a separating vector (so all of its states are vector states), and
let o

x
be any state of R. We shall need two further de"nitions. The support

projection, S
x
, of o

x
in R is de"ned to be the meet of all projections P3R such

that o
x
(P)"1. (So S

x
is the smallest projection in R that o

x
&makes true'.) The

left-ideal, I
x
, of o

x
inR is de"ned to be the set of all A3R such that o

x
(AHA)"0.

Now since S
x

is not an atom, there is some non-zero P3R such that P(S
x
.

Choose any vector y in the range of P (noting it follows that S
y
)P). We shall

"rst show that I
x

is a proper subset of I
y
. So let A3I

x
. Clearly this is equivalent

to saying that Ax"0, or that x lies in the range of N(A), the projection onto the
null-space of A. N(A) itself lies in R (KR, 1997, Lemma 5.1.5 and Prop. 2.5.13),
thus o

x
(N(A))"1, and accordingly S

x
)N(A). But since S

y
)P(S

x
, we also

have o
y
(N(A))"1. Thus, y too lies in the range of N(A), i.e. Ay"0, and

therefore A3I
y
. To see that the inclusion I

x
LI

y
is proper, note that since

(y,S
y
y)"1, (y,[I!S

y
]2y)"0, and thus I!S

y
3I

y
. However, certainly

I!S
y
NI

x
, for the contrary would entail that (x,S

y
x)"1, in other words,

S
x
)S

y
)P(S

x
*a contradiction. We can now see, "nally, that o

x
cannot be

pure. For, quite generally, the pure states of a von Neumann algebra R deter-
mine maximal left-ideals in R (KR, 1997, Theorem 10.2.10), yet we have just
shown, under the assumption that R is non-atomic, that I

x
LI

y
.
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21To our knowledge, Van Aken (1985) is the only philosopher of quantum theory to have noticed
this.

The fact that every state of a type III algebra R is mixed throws an entirely
new wrench into the works of the ignorance interpretation of mixtures.21 Not
only is there no preferred way to pick out components of a mixture, but the
components of states of R will always themselves be mixtures. Thus, it is
impossible to understand the physical preparation of such a mixture in terms of
mixing pure states*the states of R are always irreducibly or intrinsically mixed.
Note, however, that while the states of type III factors "t this description, so do
the states of certain abelian von Neumann algebras. For example, the &multipli-
cation' algebra M-B(¸

2
(R)) of all bounded functions of the position operator

for a single particle lacks atomic projections because position has no eigenvec-
tors. Moreover, all the states of M are vector states, because any state vector
that corresponds to a wavefunction whose support is the whole of R is separat-
ing for M. Thus the previous paragraph's argument applies equally well to M.

Of course no properly quantum system has an abelian algebra of observables,
and, as we have already noted, systems with abelian algebras are never en-
tangled with other systems. This makes the failure of a type III factor R to have
pure states importantly di!erent from that failure in the case of an abelian
algebra. Because R is non-abelian, and taking the commutant preserves type
(KR, 1997, Theorem 9.1.3) so that R@ will also be non-abelian, one suspects that
any pure state of (RXR@)A"B(H)*which must restrict to an intrinsically mixed
state on both subalgebras R and R@*has to be intrinsically entangled across
(R,R@). And that intuition is exactly right. Indeed, one can show that there are
not even any product states across (R,R@) (Summers, 1990, p. 213). And, of
course, if there are no unentangled states across (R,R@), then the infamous
distinction, some have argued is important to preserve, between so-called
&improper' mixtures that arise by restricting an entangled state to a subsystem,
and &proper' mixtures that do not, becomes irrelevant.

Even more interesting is the fact that in all known models of AQFT, the local
algebras are &type III

1
'. It would take us too far a"eld to explain the standard

sub-classi"cation of factors presupposed by the subscript &1'. We wish only to
draw attention to an equivalent characterisation of type III

1
algebras estab-

lished by Connes and St+rmer (1978, Cor. 6): a factor R acting standardly on
a (separable) Hilbert space is type III

1
just in case for any two states o,u of B(H),

and any e'0, there are unitary operators ;3R, ;@3R@ such that
DDo!uUU{DD(e. Notice that this result immediately implies that there can be no
unentangled states across (R,R@); for, if some u were not entangled, it would be
impossible to act on this state with local unitary operations in R and R@ and get
arbitrarily close to the states that are entangled across (R,R@). Further-
more*and this is the interesting fact*the Connes}St+rmer characterisation
immediately implies the impossibility of distinguishing in any reasonable way
between the di!erent degrees of entanglement that states might have across
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22Of course, the standard von Neumann entropy measure we discussed in Section 1 is norm
continuous, and, because of the unitary invariance of the trace, this measure is invariant under
unitary operations on the component systems. But in the case of a type III factor R, that measure, as
we should expect, is not available. Indeed, the state of a system described byR cannot be represented
by any density operator in R because R cannot contain compact operators, like density operators,
whose spectral projections are all "nite!

(R,R@). For it is a standard assumption in quantum information theory that all
reasonable measures of entanglement must be invariant under unitary oper-
ations on the separate entangled systems (cf. Vedral et al., 1997), and presumably
such a measure should assign close degrees of entanglement to states that are
close to each other in norm. In light of the Connes}St+rmer characterisation,
imposition of both these requirements forces triviality on any proposed measure
of entanglement across (R,R@).22

The above considerations have particularly strong physical implications
when we consider local algebras associated with diamond regions in M, i.e.
regions given by the intersection of the timelike future of a given spacetime point
p with the timelike past of another point in p's future. When e-M is
a diamond, it can be shown in many models of AQFT, including for non-
interacting "elds, that A(e@)"A(e)@ (Haag, 1992, Sec. III.4.2). Thus every
global state of the "eld will be intrinsically entangled across (A(e),A(e@)), and it
is never possible to think of the "eld system in a diamond region e as
disentangled from that of its spacelike complement. Though he does not use the
language of entanglement, this is precisely the reason for Haag's remark that
"eld systems are always open. In particular, Alice would have no hope whatso-
ever of using local operations in e to disentangle that region's state from that of
the rest of the world.

Suppose, however, that Alice has only the more limited goal of disentangling
a state of the "eld across some isolated pair of strictly spacelike-separated
regions (O

A
, O

B
), i.e. regions which remain spacelike separated when either is

displaced by an arbitrarily small amount. It is also known that in many models
of AQFT the local algebras possess the split property: for any bounded open
O-M, and any larger region OI whose interior contains the closure of O, there is
a type I factor N such that A(O)LNLA(OI ) (Buchholz, 1974; Werner, 1987).
This implies that the von Neumann algebra generated by a pair of algebras for
strictly spacelike-separated regions is isomorphic to their tensor product and, as
a consequence, that there are product states across (A(O

A
),A(O

B
)) (cf. Summers,

1990, pp. 239}240). Since, therefore, not every state of A
AB

is entangled, we
might hope that whatever the global "eld state is, Alice could at least in principle
perform an operation in O

A
on that state that disentangles it across (O

A
,O

B
).

However, we are now going to use the fact that A(O
A
) lacks abelian projections

to show that a norm dense set of entangled states ofA
AB

cannot be disentangled
by any pure local operation performed in A(O

A
).

Let o
x

be any one of the norm dense set of entangled states ofA
AB

induced by
a vector x3H cyclic for A(O

B
), and let K3A(O

A
) be an arbitrary Kraus
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operator. (Observe that oK
x
O0 because x is separating for A(O

B
)@*which

includes A(O
A
)*and KHK3A(O

A
) is positive.) Suppose, for the purposes of

extracting a contradiction, that oK
x

is not also entangled. Let Ky, with y3H, be
any non-zero vector in the range of K. Then, since x is cyclic for A(O

B
), we have,

for some sequence MB
i
N-A(O

B
), Ky"K(limB

i
x)"lim(B

i
Kx), which entails

DD(oK
x
)Bi @@Bi @!u

Ky
DDP0. Since oK

x
is not entangled across (A(O

A
),A(O

B
)), and the

local pure operations on A(O
B
) given by the Kraus operators B

i
/DB

i
D cannot

create entanglement, we see that u
Ky

is the norm (hence weak-H) limit of
a sequence of unentangled states and, as such, is not itself entangled either. Since
y was arbitrary, it follows that every non-zero vector in the range of K induces
an unentangled state across (A(O

A
),A(O

B
)). Obviously, the same conclusion

follows for any non-zero vector in the range of R(K)*the range projection of
K*since the range of the latter lies dense in that of the former.

Next, consider the von Neumann algebra

C
AB

,[R(K)A(O
A
)R(K)XR(K)A(O

B
)R(K)]A (18)

acting on the Hilbert space R(K)H. Since K3A(O
A
), R(K)3A(O

A
) (KR, 1997, p.

309), and thus the subalgebra R(K)A(O
A
)R(K) cannot be abelian*on pain of

contradicting the fact that A(O
A
) has no abelian projections. And neither is

R(K)A(O
B
)R(K) abelian. For since A(O

B
) itself is non-abelian, there are

>
1
,>

2
3A(O

B
) such that [>

1
,>

2
]O0. And because our regions (O

A
, O

B
) are

strictly spacelike-separated, they have the Schlieder property: 0OA3A
(O

A
),0OB3A(O

B
) implies ABO0 (Summers, 1990, Theorem 6.7). Therefore,

[R(K)>
1
R(K),R(K)>

2
R(K)]"[>

1
,>

2
]R(K)O0. (19)

So we see that neither algebra occurring in C
AB

is abelian; yet they commute,
and so there must be at least one entangled state across those algebras. But this
con#icts with the conclusion of the preceding paragraph! For the vector states of
C

AB
are precisely those induced by the vectors in the range of R(K), and we

concluded above that these all induce unentangled states across (A(O
A
),A(O

B
)).

Therefore, by restriction, they all induce unentangled states across the algebra
C

AB
. But if none of C

AB
's vector states are entangled, it can possess no entangled

states at all.
The above argument still goes through under the weaker assumption that

Alice applies any mixed projective operation, i.e. any operation ¹ corresponding
to a standard von Neumann measurement associated with a mutually ortho-
gonal set MP

i
N3A(O

A
) of projection operators. For suppose, again for reductio,

that oT
x
"+

i
j
i
oPi

x
is not entangled across the regions. Then, since entanglement

cannot be created by a further application to oT
x

of the local projective operation
given by (say) ¹

1
( ) )"P

1
( ) )P

1
, it follows that (oT

x
)T1"(oT1

"T
x

)"oP1
x

must again
be unentangled, and the above reasoning to a contradiction goes through
mutatis mutandis with K"P

1
. This is to be contrasted to the non-relativistic

case we considered in Section 1, where Alice was able to disentangle an arbitrary
state of B(H

A
?H

B
) by a non-selective projective operation on A. And a
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23The following arguments are essentially just an ampli"cation of the reasoning in Werner (1987)
and Summers (1990, Theorem 3.13).

moment's re#ection will reveal that that was possible precisely because of the
availability of abelian projections in the algebra of her subsystem A.

We have not, of course, shown that the above argument covers arbitrary
mixing operations Alice might perform in O

A
; in particular, positive operator-

valued mixings, where the Kraus operators MK
i
N of a local operation ¹ in O

A
do

not have mutually orthogonal ranges. However, although it would be interest-
ing to know how far the result could be pushed, we have already expressed our
reservations about whether arbitrary mixing operations should count as disen-
tangling when none of the pure operations of which they are composed could
possibly produce disentanglement on their own.

In summary:

There are many regions of spacetime within which no local operations can be
performed that will disentangle that region@s state from that of its spacelike
complement, and within which no pure or projective operation on any one of
a norm dense set of states can yield disentanglement from the state of any other
strictly spacelike-separated region.

Clearly the advantage of the formalism of AQFT is that it allows us to see clearly
just how much more deeply entrenched entanglement is in relativistic quantum
theory. At the very least, this should serve as a strong note of caution to those
who would quickly assert that quantum non-locality cannot peacefully exist
with relativity!

But what becomes of Einsteinian worries about the possibility of doing
science in such a deeply entangled world? As we shall now explain, for all
practical purposes the split property of local algebras neutralises Einstein's main
methodological worry.23

Let us suppose Alice knows nothing more than that she wants to prepare
some state o on A(O

A
) for subsequent testing. By the split property, there is

a type I factor N satisfying A(O
A
)LNLA(OI

A
) for any super-region OI

A
.

Since o is a vector state (when we assume (O
A
)@O0), its vector representative

de"nes a state on N that extends o and is, therefore, represented by some
density operator Do in the type I algebra N. Now Do is an in"nite convex
combination +

i
j
i
P
i
of mutually orthogonal atomic projections in N satisfying

+
i
P
i
"I with +

i
j
i
"1. But each such projection is equivalent, in the type III

algebra A(OI
A
), to the identity operator. Thus, for each i, there is a partial

isometry <
i
3A(OI

A
) satisfying <

i
<H

i
"P

i
and <H

i
<

i
"I.

Next, consider the non-selective operation ¹ on A(OI
A
) given by Kraus

operators K
i
"Jj

i
<

i
, and "x an arbitrary X3A(O

A
). We claim that

¹(X)"o(X)I. Indeed, because each P
i
is abelian in N.A(O

A
), the operator

P
i
XP

i
acting on P

i
H can only be some multiple, c

i
, of the identity operator
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P
i
on P

i
H, and taking the trace of both sides of the equation

P
i
XP

i
"c

i
P
i

(20)

immediately reveals that c
i
"Tr(P

i
X). Moreover, acting on the left of (20) with

<H
i

and on the right with <
i
, we obtain <H

i
X<

i
"Tr(P

i
X)I, which yields the

desired conclusion when multiplied by j
i
and summed over i.

Finally, since ¹(X)"o(X)I for all X3A(O
A
), obviously uT"o for all initial

states u ofA(O
A
). Thus, once we allow Alice to perform an operation like ¹ that

is approximately local to A(O
A
) (choosing OI

A
to approximate O

A
as close as we

like), she has the freedom to prepare any state of A(O
A
) that she pleases!

Notice that, ironically, testing the theory is actually easier here than in
non-relativistic quantum theory. For we were able to exploit above the type III
character of A(OI

A
) to show that Alice can always prepare her desired state on

A(O
A
) non-selectively, i.e. without ever having to sacri"ce any members of her

ensemble! Also observe that the result of her preparing operation ¹, because it is
local to A(OI

A
), will always produce a product state across (O

A
,O

B
) when

O
B
-(OI

A
)@. That is, for any initial state u across the regions, and all X3A(O

A
)

and >3A(O
B
), we have

uT(X>)"u(¹(X)>)"u(o(X)>)"o(X)u(>). (21)

So as soon as we allow Alice to perform approximately local operations on her
"eld system, she can isolate it from entanglement with other strictly spacelike-
separated "eld systems, while simultaneously preparing its state as she likes and
with relative ease. God is subtle, but not malicious.
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