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To prepare for philosophical aspects of quantum field theory, we begin with a review of mathe-
matical quantum theory, with some interspersed Philosophical Remarks. Apart from these Remarks,
the main themes here will be to build up to some intuition for the functional analysis ideas that
underpin the algebraic approach, which we will often see applied to quantum field theory. We will
also see some high points of quantum theory per se, such as Stone’s theorem, Gleason’s theorem and
superselection.

The main books ‘in the background’ of this review are:
T. Jordan. Linear Operators for Quantum Mechanics: Chapters 1 to 5. Wiley 1969; Dover 2006.
E. Prugovecki. Quantum Mechanics in Hilbert Space: Parts III, IV. Academic 1981; Dover 2006.

We especially recommend for this review, and for foundations of quantum theory, as a whole:
N. Landsman. Foundations of Quantum Theory. Springer 2017: especially Chapters 5, 6,7,9,10.
Open access: downloadable at: https://link.springer.com/book/10.1007/978-3- 319-51777-3

We also recommend for the early history of mathematical quantum theory, Landsman’s recent
survey: ‘Quantum theory and functional analysis’, arxiv: 1911.06630.
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1 Vector spaces and linear functionals

1: Vector spaces (over R, or over C). Inner products. For a vector space over C, we write
(z , w�) = z

⇤
w( ,�). The Cauchy-Schwarz inequality: |( ,�)|  || ||.||�||, with equality i↵ the

vectors are linearly dependent.

2: Hilbert space:—
The idea of a Cauchy sequence; and thus the idea of convergence of vectors:  n !  := || n� || ! 0
as n ! 1. So infinite linear combinations of vectors are defined on analogy with ⌃1

n=1!n with !n 2 C.
The vector space is complete i↵ every Cauchy sequence converges.
A Hilbert space is a complete inner product space: it is usually written as H.
It is separable i↵ it has a countable (finite or denumerable) basis.

By the way: One similarly says that a metric space (X, d) (i.e. X is a set; d : X2
! R+ := {r 2

R | r � 0} with d(x, x) = 0, d(x, y) = d(y.x) and triangle inequality) is complete i↵ every Cauchy
sequence converges.

In fact, any metric space has a ‘canonical completion’. We define an equivalence relation between
Cauchy sequences of X. Roughly speaking: {xn} ⇠ {x

0
n} i↵ {xn} and {x

0
n} are ‘trying to converge

to the same point that is trying to be in X’. The set of equivalence classes inherits the metric from
(X, d) (I.e. in a representative-independent way); and (X, d) can be isometrically embedded in the
set of equivalence classes.

Similarly: given an incomplete inner product space (sometimes called a ‘pre-Hilbert space’), we
can build its ‘canonical completion’ : which is a Hilbert space.

A subset of a vector space that is itself a vector space (so: closed under linear combination) is a
linear manifold. A linear manifold that is closed, i.e. that contains the limit vector of every Cauchy
sequence of vectors, is a subspace. For a finite-dimensional Hilbert space, every linear manifold is a
subspace. A subspace of a separable Hilbert space is itself a separable Hilbert space.

Example: l2 := {(x1, x2, ...) | xn 2 C,⌃|xn|2 < 1} has an orthonormal basis (1, 0, 0, ...), (0, 1, 0, 0, ...), ...
=: {�n}. So each vector is ⌃xn�n. The partial sums are (x1, x2, ..., xN , 0, 0, 0, ...), and these converge
to (x1, x2, ..., xN , xN+1, ...).

In general: each vector  has a unique expression in terms of an orthonormal basis {�n}:  =
⌃ (�n, )�n. One uses the Cauchy-Schwarz inequality, applied to partial sums, to show this.

NB: Any two Hilbert spaces (over R, or over C) of equal dimension are isomorphic: (“just map
one ortho-basis onto another”). So any infinite-dimensional separable Hilbert spaces can be identified
with l

2.
Agreed: one often hears remarks like ‘the two theories use di↵erent Hilbert spaces’, even when

the Hilbert spaces alluded to have equal dimension! That is because theories involve quantities, as
well as states (vectors in a Hilbert space). This fosters a more discriminating (logically strong) use of
the phrase ‘same Hilbert space’. Namely, that the isomorphism of Hilbert spaces, mapping vectors
to vectors, should also map one theory’s quantities in to the others. This will later be made precise
as unitary equivalence. And so often, remarks like ‘the theories use di↵erent Hilbert spaces’ mean
that the (equi-dimensional) Hilbert spaces are unitarily inequivalent. More, much more!, about this
later ....

Ortho-complements and projectors: if M is a subspace of a Hilbert space H, then M
? := { 2

H | ( ,�) = 0 8� 2 H} is a linear manifold, indeed a subspace of H. Every  2 H has a unique
expression as a sum of two components in M and in M

? respectively:  =  M +  M? .
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3: Spaces of functions:—
Treating spaces of functions needs care, for two main reasons. We want to say:

R
 
⇤(x)�(x) dx is an

inner product.
(1): But an inner product requires: ( , ) � 0 with equality only if  = 0. And there are many
non-zero functions on, say [0, 1],  : [0, 1] ! C, with

R 1
0 | |

2
dx = 0.

(2): Secondly, in Riemann (i.e. elementary) integration theory, there are Cauchy sequences that do
not converge. Define fn : [0, 1] ! {0, 1} ⇢ R by fn(x) := 1 i↵ x is of the form m

2n , with m an integer
between 0 and 2n; and otherwise fn(x) := 0. Then any two functions fn, fn0 di↵er at only finitely
many points; and for every n,

R
fn = 0. But the limit of the sequence {fn} is the function f that

takes the value 1 on every integer-multiple of a reciprocal of a power of 2, and is otherwise 0. f is
not Riemann-integrable.

Both problems are solved by adopting Lebesque integration. We will not give details of this and
the associated measure theory. But we note that the function f just defined (value 1 on every integer-
multiple of a reciprocal of a power of 2, and otherwise 0) is Lebesque-integrable and

R
[0,1] fdx = 0:

an intuitive result in that f takes value 1 on a ‘merely’ denumerable set of arguments.

For us, the benefits of adopting Lebesque integration can be summed up, in terms of our two
problems: as follows ...

As to (1): We define an equivalence relation between functions on, say [0, 1],  : [0, 1] ! C:
f ⇠ f

0 i↵ f and f
0 are equal almost everywhere (a.e.), meaning ‘equal everywhere except on a set of

(Lebesque) measure 0’. Then the equivalence classes [f ] themselves form a vector space, in a natural
way. For example, the equivalence class of the pointwise sum f + g of two representative elements,
f 2 [f ] and g 2 [g], is independent of the representatives chosen. Besides, the equivalence classes [f ]
of those functions f , whose square integral

R
|f |

2
dx is finite, form an inner product space in a natural

way. That is: the inner product we intuitively want to have, viz.
R

f
⇤(x)g(x) dx is well-defined on

the equivalence classes, since the integral is independent of the representatives f, g that are chosen.
Thus returning to the original problem (1): the equivalence class of the zero-function, [0] 3 0, is the
unique vector with norm zero.

As to (2): This inner product space whose elements are equivalence classes (under: almost
everywhere equality) of Lebesque-integrable functions f with finite square integral on, say [0, 1], i.e.R 1
0 |f |

2
dx < 1, is complete. That is: it is a Hilbert space. Similarly for square-integrable functions

on the whole real line.
These spaces are called L

2 spaces. Thus we write, understanding the equivalence relation to be:
almost everywhere equality:—

L
2([0, 1]) := {[ ] |  : [0, 1] ! C,

Z 1

0
| |

2
dx < 1} ; L

2(R) := {[ ] |  : R ! C,
Z

R
| |

2
dx < 1}

(1)

These two L
2 spaces are both separable: for they each have a denumerable basis. For example,

the functions {1,
p
2 cos 2⇡kx,

p
2 sin 2⇡kx, ...}, with k = 1, 2, 3, . . . , are orthonormal in L

2([0, 1]);
and the theory of Fourier series teaches us that they are an orthonormal basis: every Lebesgue-
square-integrable function on [0, 1] is a limit of linear combinations of these trigonometric functions.

We stress again that any two Hilbert spaces over C of equal dimension are isomorphic as Hilbert
spaces. We “just map one orthonormal basis onto another”; (Section 2 will develop the theory of
unitary operators). This applies equally to the infinite-dimensional cases. So any infinite-dimensional
separable Hilbert space, e.g. L

2([0, 1]), is isomorphic to l
2, i.e. our example in Paragraph 2 of a

Hilbert space whose elements are appropriate sequences of complex numbers. This is the formal
core of the often-cited equivalence between Schrödinger’s wave mechanics and Heisenberg’s matrix
mechanics. (But there are many conceptual and historical subtleties abut this; cf. e.g. F. Muller,
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‘The equivalence myth: Parts I and II’, Studies in History and Philosophy of Modern Physics, vol.
28 (1997), pp. 35-61 and 219-247.)

And again, the wider point here concerns how expositions in physics texts often say that two
pieces of formalism involve “di↵erent Hilbert spaces”. One should bear in mind that in most all
such expositions, the Hilbert spaces concerned are of the same dimension, and so isomorphic—and
so some more fine-grained (discriminating) criterion for when to say two Hilbert spaces are “the
same” must be meant. We will return to this later: the main such criterion will of course be unitary
equivalence, which requires a bijection of quantities, i.e. linear operators, on the Hilbert spaces—not
just their being isomorphic.

4: Philosophical Remarks:—
(A): We of course recognise L

2(R) as the (rigorous version of) the quantum state-space of a spinless
non-relativistic particle confined to the real line: the state-space with which we all first learnt wave
mechanics. Since the classical configuration space of such a particle is R, we see here the basic
idea that the state-space of a quantum system consists of assignments of complex amplitudes to the
possible configurations of the corresponding classical system. This will later lead to quantization
theory. A general slogan, and notation, would be: “we replace a classical configuration space Q by
its L2 space: L2(Q)”.

(B): We already see here, in embryo, the measurement problem: “how can we extract—how does
Nature deliver to us—a single classical fact, e.g. a particle being in a position X 2 R, from a function
 : R ! C?” ... about which this document (this course?!) will—sorry!—not say much ...

(C): Even if one sets aside the physical and philosophical measurement problem, the question
arises: ‘Why Hilbert space?’ That is: what motivations can be given for assuming the state space of
a physical system is a Hilbert space?
Various research traditions make this precise, and o↵er an answer. Here is a glimpse of three:

(1): Quantum logic. This was initiated by Birkho↵ and von Neumann in their ‘Logic of
Quantum Mechanics’ (1936), and flourished especially in the 1960s (the Geneva school of J. Jauch)
and later. Experimental ‘Yes-No’ propositions about a physical system are partially ordered by a
sort of logical strength, endowed with logical operations of conjunction (and), disjunction (or) and
negation (not), subject to certain (judiciously chosen!) conditions, to make them a lattice, (usually:
an orthomodular lattice). This lattice is then shown in a representation theorem to be represented
by the lattice of subspaces/projectors of a Hilbert space, partially ordered by inclusion.

(2): ‘Algebras of quantities’: C*-algebras. We have not yet discussed quantities. (In Section
2 below, we will review the usual treatment of them as self-adjoint operators on Hilbert space.)
So we have not yet seen the quantum-classical contrast as a matter of quantum theory allowing
non-commutation of quantities. But a good case can be made for thinking of a system as given
primarily by an algebra of quantities: an algebra that is commutative for classical systems, but
non-commutative for quantum systems. States are then introduced as mathematical superstructure
on top of the algebra of quantities: namely, as linear expectation functionals—details below. The
most developed version of this approach uses C*-algebras. More details later: here, we just note that
in such an algebra, you can multiply any two elements even if they do not commute—an allowance
about which you might well raise a philosophical eyebrow ... Then states on C*-algebras are shown
to be representable in the traditional i.e. familiar ways—phase space for classical systems, Hilbert
space for quantum systems. The buzzword is: the GNS construction, applying to commutative,
respectively non-commutative, algebras.

(3): Information-theoretic and operational approaches. Inspired by studies of quantum non
locality and Bell’s theorem, and the rise of quantum information theory, with its protocols for eg.
teleportation: various approaches take as primitive a set of probability distributions, for various
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quantities (normally with a finite discrete set of outcomes), on various individual and joint systems
(normally finite-dimensional). Thus conditions like no signalling/parameter independence are promi-
nent. Again, the Hilbert space formalism (normally finite-dimensional) is recovered with appropriate
representation theorems. Example: D’Ariano, Chiribella and Perinotti, Quantum Theory from First
Principles, CUP.

(D): The question ‘Why should quantities be represented by self-adjoint operators?’ also has a
very di↵erent aspect or meaning, that is not touched on in the literature under (C). After all, there
is nothing to prevent one associated experimental outcomes with complex, e.g. imaginary, numbers:
‘I can paint ‘5i metres’ on the dial of an apparatus measuring position!’ In Section 2, we will report
a helpful classification (due to Roberts) of the possibilities for a quantum physical quantity to be
represented by an operator that is not self-adjoint.

(E): The pilot-wave theory is a noble tradition for solving the measurement problem. But it has
been developed entirely using intuitive wave mechanics, not L2 spaces.

5: Linear functionals:—
Given a vector space V over the field R or C, the dual space V

⇤ consists of the linear functionals
F : V ! R (or C). We recall that for a finite dimensional V , dim(V ) = dim (V ⇤); but there is
no natural (canonical, i.e. basis-independent) isomorphism between them. But between V and its
second dual V ⇤⇤, there is a natural isomorphism.

With the extra structure of an inner product space, there is a natural isomorphism between V

and its dual V ⇤. (This underlies how in relativity theory, the metric raises and lowers indices.) Thus
each  in an inner product space defines a linear functional F by:

F (�) := ( ,�). (2)

And if V is finite-dimensional, with {�i} an orthonormal basis: we assign to each F 2 V
⇤, the vector

 F := ⌃i F (�i)⇤�i 2 V . Applying the definition in eq. 2 to this  F yields F again. That is: for any
vector � = ⌃i (�i,�)�i, we have:

F (�) = ⌃i (�i,�)F (�i) = ( F ,�). (3)

To get a corresponding basis-independent correspondence for an infinite-dimensional inner prod-
uct space, we must require the linear functionals to be continuous, defined in the obvious way.
Namely: that F is continuous i↵:  n !  implies that F ( n) ! F ( ). Then we have the Riesz
representation theorem:—
For every continuous linear functional F on a separable Hilbert space, there is a unique  F 2 H,
such that F (�) = ( F ,�).

Of course, in Dirac notation the correspondence between linear functionals and vectors induced
by the inner product is built in to the notation. The linear functional F is denoted by h |, and the
two sides of eq. 2 are written as h |�i.

2 Linear operators on a Hilbert space

1: Linear operators and matrices: the elements recalled ... On a suitable space of functions, a linear
operator might be defined by

(A )(x) :=
d (x)

dx
; (A )(x) :=

Z
a(x, y) (y)dy (4)
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We shall generally assume that all Hilbert spaces are separable.

2: Bounded operators:—
A linear operator A is continuous i↵:  n !  implies that A( n) ! A( ). A linear operator A is
bounded i↵ there is a positive number b such that for all  , ||A || < b|| ||. The infimum of such
numbers is the norm of A, written ||A||.

Theorem: A linear operator A is continuous i↵ it is bounded. (If H is finite-dimensional, then
every linear operator is continuous, and so bounded.)

The norms of bounded linear operators obey:

||A+B||  ||A||+ ||B|| ; ||aA|| = |a|||A|| ; ||A|| = 0 i↵ A = 0 ; ||AB||  ||A||.||B|| . (5)

The first three assertions follow straightforwardly from the same properties of the norm for vectors
in H. So we have a normed vector space of linear operators.

The first three assertions follow straightforwardly from the same properties of the norm for vectors
in H. So we have a normed vector space of all the bounded linear operators on H, written B(H).
Thanks to the last inequality of eq. 5 (called the ‘sub-multiplicative’ property), this vector space
B(H) is closed under taking polynomials. It is also complete in the norm, i.e. closed under taking
limits. We shall shortly discuss adjoints and see that B(H) is also closed under taking adjoints:
which will lead us to algebras of operators.

A bounded linear operator on a separable Hilbert spaces can be represented by a matrix.

3: Inverses:—
A linear operator A has an inverse if there is linear operator B with AB = 1 = BA. Theorem: A

has an inverse i↵: 8 , 9!� with  = A�.

For a finite-dimensional H, dim(H)= n, with {�i} any basis:— Each of the following is necessary
and su�cient for A to have an inverse:

(i): there is no non-zero vector � such that A� = 0;
(ii): the set {A�1, ..., A�n} is linearly independent;
(iii): there is a linear operator B such that BA = 1;
(iv): the matrix corresponding to A has a non-zero determinant.

But for an infinite-dimensional H, (i)-(iii) are not su�cient—even together. For consider the
“right-shift” on l

2: A : l2 ! l
2, with A(x1, x2, x3, ...) := (0, x1, x2, x3, ...). Then (i) and (ii) hold.

Also: define B as “delete the first component and left-shift”: B(x1, x2, x3, ...) := (x2, x3, ...); then
(iii) holds. But A has no inverse. For if  = (x1, x2, x3, ...) with x1 6= 0 then there is no � such that
 = A�.

4: Unitaries:—
A linear operator U is unitary i↵: both (a) U has an inverse and (b) ||U || = || || for all  .
(Incidentally: the example of the “right-shift” on l

2, just above, shows that for an infinite-dimensional
H, condition (a) is needed.)

Every unitary operator is bounded, with ||U || = 1.

Theorem: If U is unitary, then (U , U�) = ( ,�) for all  ,�. Corollary: It follows that the
unitary image of an ortho-basis is an ortho-basis.

A “partial converse to the Corollary”: If U is bounded, and the U -image of some ortho-basis is
an ortho-basis, then U is unitary.
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5: Adjoints and Hermitian operators:—
Let A be bounded, and so continuous. Then for each  2 H, the linear functional F [ ] defined by

F
[ ](�) := ( , A�) (6)

is continuous. And so, by the Riesz theorem (Section 1: 5), there is a unique vector, call it A
†( )

such that F [ ](�) := (A†( ),�).

A
† is trivially linear. Using the Schwarz inequality (applied to ||A

†( )||2 = ( , AA
†
 ), one has:

Theorem: If A is bounded, then A
† is bounded, and ||A

†
|| = ||A||.

One checks that: A†† = A ; (AB)† = B
†
A

† ; (aA)† = a
⇤
A

† ; (A+B)† = A
† +B

†
.

A bounded linear operator A is self-adjoint or Hermitian i↵ A
† = A. This means: (�, A ) =

(A�, ). That is: (�, A ) = ( , A�)⇤. So for all  , we have: ( , A ) 2 R.

NB: for an infinite-dimensional H, it is impossible to define an unbounded Hermitian operator
on all vectors. See later, especially the start of paragraph 7, just below.

Example: On L
2([0, 1]), we define (A )(x) := x (x). This A is bounded with ||A ||

2
 || ||

2;
and so ||A|| = 1. And A is Hermitian, since

R 1
0 �

⇤(x).x (x) dx =
R 1
0 [x�(x)]⇤. (x) dx.

But a “corresponding definition” on L
2(R) is of course not bounded. But multiplying by a suitable

“damping factor” gives a bounded and Hermitian operator on L
2(R), e.g. we define (V  )(x) :=

(exp |x|) (x).

Theorem: If A is bounded, and has a bounded inverse A
�1, then (A†)�1 exists and (A†)�1 =

(A�1)†.
Corollary: If A is bounded and Hermitian, and has a bounded inverse A

�1, then A
�1 is Hermitian.

Hermitian operators are analogues of real numbers. As in: if A is bounded, then its real and
imaginary parts defined by

ReA :=
1

2
(A+A

†) ; ImA :=
�i

2
(A�A

†) (7)

are bounded and Hermitian; and A = ReA+ ImA.

In the same way, unitary operators are analogues of complex numbers of absolute value one. We
have:–
Theorem: A linear operator U is unitary i↵ U

†
U = 1 = UU

†.

For bounded operators A,B, one readily checks using the adjoints that for any ortho-basis {�n},
the representing matrix (cjk) of the product C := AB is the product of the representing matrices,
that is: cjk = ⌃iajibik.

6: Projection operators:—
Recall from Section 1:2 that if M is a subspace of H, then M

? := { 2 H | ( ,�) = 0, 8� 2 H}

is also a subspace; and every  2 H has a unique expression as a sum of the two components:
 =  M +  M? . So we define the projection/projector EM : H ! H, by EM( ) :=  M.

Theorem: A bounded linear operator E is a projector i↵ E
2 = E = E

†. (To prove the leftward
implication, one defines the set M to be the range of E, shows it to be a subspace, and shows that
for any vector  , (1� E)( ) 2 M

? etc.)

7

Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield




7: Unbounded operators:—
Turning to unbounded operators, our paradigm example is the quantity position in wave mechanics:
more formally, in the Schrödinger representation of the canonical commutation relations on L

2(R).
Thus we want to define (Q )(x) := x (x). This implies that ||Q ||

2
⌘

R
R |x (x)|2 dx can be

arbitrarily larger than || ||
2
⌘

R
R | (x)|2 dx, so that Q is unbounded.

But beware: unbounded operators introduce complexities about the domain of definition of the
operator. For quantum theory needs unbounded operators A with the algebraic property of being
Hermitian, i.e. (�, A ) = (A�, ) for all �, in the domain of A. And there is a ...

Theorem: If a linear operator A is defined for all vectors, and if (�, A ) = (A�, ) for all �, ,
then: A is bounded.

So in order for quantum theory to have the unbounded operators A with the algebraic Hermitian
property, i.e. (�, A ) = (A�, ) for all �, in the domain of A, that it needs: we must consider
operators A with domains of definition less than all of H. Hence the jargon of: dense domain, and
extension, of an operator.

If A has a dense domain, we can define A
†. Namely:

dom(A†) := { 2 H | there is a vector  ̃ such that 8� 2 dom(A) : (�,  ̃) = (A�, ) .}
Then we define A

† by A
† :  2 dom(A†) 7!  ̃. This defines A

†( ) uniquely (because dom(A) is
dense); and A

† is linear, and dom(A†) is a linear manifold.

We say that a linear operator A is symmetric i↵: A has a dense domain, and (�, A ) = (A�, )
for all �, in the domain of A. Then by the discussion just above, we conclude that: for all  in the
domain of A, A†( ) is defined, and A

†( ) = A( ). That is: A† is an extension of A.
If in fact A† = A, then we say A is self-adjoint or Hermitian.

We now apply this discussion to our paradigm example, position. We define Q on L
2(R) by

specifying that dom(Q): =. { |
R

R |x (x)|2 dx < 1}. This domain is dense. (For we can approxi-
mate an arbitrary  2 L

2(R) by the “truncated” functions  n (n 2 Z) that are defined to be equal
to  on the interval [�n, n], and to take the value 0 outside that interval. Clearly  n !  ; and
x n(x) is square-integrable.) Then on this domain, we define: (Q )(x) := x (x). Then Q is clearly
symmetric, since

R
R �

⇤(x).x (x) dx =
R

R [x�(x)]⇤. (x) dx. So Q
† is defined and extends Q. But is

the domain of Q† in fact larger than the domain of Q? In fact it is not larger: (cf. Jordan, Linear
Operators for Quantum Mechanics, Section 11, p.31). So Q

† = Q, and so Q is self-adjoint: also
known as: Hermitian.

A symmetric operator that cannot be extended to a larger domain is called maximal symmetric.
Theorem: Every self-adjoint operator is maximal symmetric; (but not conversely)

An unbounded operator cannot be continuous. The “next best thing to continuity” is being
closed, as follows.

We say an operator A is closed i↵: if (i) a sequence of vectors  n in dom(A) converges to a vector
 and (ii) the sequence of vectors A( n) converges to a vector �, then  2 dom(A) and A = �.

Theorem: If dom(A) is dense, then A
† is closed. So every self-adjoint operator is closed.

It is natural to ask: ‘What are the conditions for a symmetric operator to be self-adjoint?’
As just noted, being maximally symmetric is not su�cient. What about being symmetric and closed?
This also turns out to be not su�cient. But in item (A) of paragraph 4 (Philosophical Remarks) of
Section 3, we will get an answer. This answer relates to Philosophical Remark (D) in paragraph 4 of
Section 1. That is: the answer relates to the idea that a quantity can be represented by an operator
that is not self-adjoint.
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3 Diagonalizing operators

We assume a complex separable Hilbert space.

1: Eigenvalues and eigenvectors:—
The definition of eigenvalue and of eigenvector is exactly the same for an infinite-dimensional Hilbert
space, as for the finite-dimensional case. The following elementary but important results are derived
exactly as for the finite-dimensional case:

1: If T is a linear operator with an inverse T
�1, then A and TAT

�1 have the same eigenvalues.
2: The eigenvalue of a Hermitian, respectively unitary, operator is real, respectively of absolute

value 1.
3: Two eigenvectors of a Hermitian, or of a unitary, operator, corresponding to di↵erent eigen-

values are orthogonal.

LetA be Hermitian or unitary. Let a1, a2, ..., ak, ... be its eigenvalues, with eigenspacesM1,M2, ...,Mk, ....
Then the orthogonal sum Eig(A) := �kMk is the subspace of H spanned by eigenvectors of A. Of
course, for a finite-dimensional complex Hilbert space, Eig(A) = H. This is the spectral decomposi-
tion or eigen-decomposition of the operator A.

We say that a subspace M < H reduces the linear operator A i↵ both M and M
? are invariant

under A. This turns out to be equivalent to A commuting with the projector onto M:
Theorem: Let EM be the projector ontoM. ThenM reduces A i↵ EMA = AEM i↵ (1�EM)A =

A(1� EM).

Theorem: Let A be Hermitian or unitary: then Eig(A) reduces A. So a Hermitian or unitary
operator splits in to two separate parts: one part acting on Eig(A), and represented there, with
respect to an eigenbasis, as a diagonal matrix; the other part acting on Eig(A)?.

2: Eigenvalue decomposition:—
We will generalise the spectral decomposition of a Hermitian or unitary operator A to the infinite-
dimensional case, i.e. address the question of how A acts on Eig(A)?. We begin by rewriting in a
suggestive way the spectral decomposition of a Hermitian operator A for the finite-dimensional case.

So let A’s real eigenvalues be, in ascending order: a1 < a2 < ... < ak < ... < am, with corre-
sponding eigenspaces Mk. Let Ik be the projector on to Mk. Then the spectral decomposition of A
is just

A = ⌃m

k=1 akIk ⌘ �
m

k=1 akIk (8)

Now we define for each real number x, Ex := �ak<x Ik. So: Ex = 0 for x < a1, and Ex = 1 for
x > am. And if x < y, then ExEy = Ex = EyEx, i.e. Ex  Ey.

For each x 2 R, we also define dEx := Ex �Ex�" with " chosen so small that there is no aj such
that x� " < aj , x.

So dEx is not zero only when x is an eigenvalue ak; and in that case dEx = Ik.

So for ⌃m

k=1 Ik = 1, we can write:
R

R dEx = 1. And for A = ⌃m

k=1 akIk, we can write: A =R
R x dEx.

Besides: (�, Ex ) is a complex function of x 2 R that is continuous from the right, but which
jumps in value by (�, Ik ) at x = ak. So we have (a sordinary Riemann integrals):

(�, ) =

Z

R
d(�, Ex ) ; (�, A ) =

Z

R
x d(�, Ex ) . (9)

Similarly, for a unitary operator U in the finite-dimensional case. Its eigenvalues are uk ⌘ e
i✓k ,

where in ascending order: 0 < ✓1 < ✓2 < ... < ✓k < ... < ✓m  2⇡. Then we define for each real
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number x, Ex := �✓k<x Ik. So we can write:

U =

Z 2⇡

0
e
ix
dEx ; (�, U ) =

Z 2⇡

0
e
ix
d(�, Ex ) . (10)

3: Spectral decomposition:—
A family of projectors {Ex}x2R is called a spectral family i↵:

(i) if x  y then Ex  Ey, i.e. ExEy = Ex = EyEx ;
(ii) continuity from the right: for all  and for all x: if " > 0, then Ex+" ! Ex , as "! 0;
(iii) for all  : Ex ! 0 as x ! �1, and Ex !  as x ! +1. The main theorem is then...

The Spectral Theorem: For each self-adjoint operator, there is a unique spectral family {Ex}x2R

such that for all  ,� 2 H:

(�, A ) =

Z

R
x d(�, Ex ) ; so we write A =

Z

R
x dEx . (11)

This obviously generalizes the finite-dimensional spectral theorem for self-adjoint operators, eq. 8.
Similarly for unitary operators U , with Ex = 0 for x  0, and Ex = 1 for x > 2⇡:

(�, U ) =

Z 2⇡

0
e
ix
d(�, Ex ) ; so we write U =

Z 2⇡

0
e
ix
dEx ; (12)

which generalizes the finite-dimensional spectral theorem for unitary operators.

Let us illustrate this Theorem: first of all, with a bounded self-adjoint operator. We again take
our paradigm example, “position”; but as a quantity on the real interval [0, 1], i.e. as a linear
operator on L

2([0, 1]). We define Ex on L
2([0, 1]) as “chopping the function o↵ above x”. That is:

(Ex )(y) :=  (y) for y  x, and (Ex )(y) := 0 for y > x. Then

||Ex+" � Ex )||
2 =

Z
x+"

x

| (y)|2 dy ! 0, as "! 0 . (13)

and {Ex}x2R is a spectral family. Now define A on L
2([0, 1]) by (A )(x) := x (x). Then A is

bounded and self-adjoint. For all  ,� 2 H, we have

Z

R
x d(�, Ex ) =

Z

R
x d

Z 1

0
�(y)⇤(Ex )(y) dy = (14)

Z

R
x d

Z
x

0
�(y)⇤ (y) dy =

Z 1

0
�(x)⇤x (x) dx = ( , A�) .

So {Ex}x2R gives the spectral decomposition of A.

This {Ex}x2R is continuous from the left, as well as from the right. We have

( , Ex�)� ( , Ex�"�) ⌘

Z
x

x�"
 
⇤(y)�(y)dy ! 0, as "! 0 . (15)

We say that {Ex}x2R jumps in value at x if for some vector  , (Ex � Ex�") does not converge
to 0, as "! 0. Otherwise, we say that {Ex}x2R is continuous at x.

So in the above example, {Ex}x2R is continuous at all x, since A has no eigenvalues/eigenvectors.
Similarly of course for position, similarly defined, on L

2(R).
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And similarly for the Schrödinger representation of position in R3. We postpone the details until
Paragraph 7’s discussion of functions of commuting operators. But the idea will of course be to
define each of the three components of position as operators on L

2(R3) 3  (x) ⌘  (x1, x2, x3); with
inner product (�, ) =

R
R3 �

⇤(x) (x) dx.

Returning to the general case of a self-adjoint operator A, we have the ...

Theorem: Let A be a self-adjoint operator with spectral decomposition A =
R

R x dEx. Then
{Ex}x2R jumps in value at a i↵ a is an eigenvalue of A. And with Ia the projector onto the eigenspace
fo a, we have: ExIa = 0 for x < a; and ExIa = Ia for x � a; and for any  , Ea �Ea�" ! Ia , as
"! 0.

Accordingly, we define:—-
(1): the spectrum ofA := sp(A) := {x 2 R |Ex increases} ⌘ {x 2 R |x /2 interval (a, b) on which Ex is constant};
(2): the point spectrum of A := {x 2 R |Ex jumps} ⌘ {x 2 R |x is an eigenvalue of A};
(3): the continuous spectrum of A := {x 2 R |Ex increases continuously}.

Theorem:: A self-adjoint operator is bounded i↵ its spectrum is bounded.

We say that self-adjoint operator A is positive i↵ for all  , ( , A ) � 0.

Theorem::A self-adjoint operator is positive i↵ its spectrum is non-negative.

4: Philosophical remarks:—
(A): We return to the Philosophical Remark (D) in paragraph 4 of Section 1: the idea that a quantum
physical quantity can be represented by an operator that is not self-adjoint. Cf. B. Roberts (2018):
‘Observables, disassembled’, Studies in History and Philosophy of Modern Physics 63, 150– 162.
(Preprint: http://philsci-archive.pitt.edu/14449/). On p. 153, Roberts reports that being self-
adjoint is a “two out of three” property. That is:
A closed, densely-defined linear operator A is self-adjoint if it satisfies any two of the following three
properties:

(1): A is normal. That is: AA† = A
†
A;

(2): A is symmetric: (�, A ) = (A�, ) for all �, in the (dense) domain of A.
(3): A has real Spectrum, where we define ‘Spectrum’ in a more general way than we did

‘spectrum’ above: namely as the set Spec(A) := {z 2 C | (A� z.I) has no inverse}. So the condition
is: Spec(A) ⇢ R.

This yields four ways that a closed, densely-defined linear operator A can fail to be self-adjoint:
having just one of the above three properties, or having none of them.

Roberts then explores each of these four ways, finding for each of them: conceptual issues and
circumstances in which it is a reasonable notion of physical quantity.

(B): It would be hard to over-emphasise the importance of the spectral theorem, summed up in
the second equation of eq. 11: A =

R
R x dEx. As we said: this obviously generalizes eq. 8: which is

central to the quantum theory using finite dimensional Hilbert spaces. But there are two ways, (B1)
and (B2) below, in which thinking of the integrand x as position can be misleading. Hence our use
of scare quotes around “Position” in Paragraph 3’s example on L

2([0, 1]).

(B1): The first point returns us to (A). Namely: because we think of the eigenvalues in the
spectral theorem as the possible values of the quantity, as the system’s “score” for the quantity,
we tend to think that the mathematical fact that x in the spectral theorem, i.e. in eq. 11 for any
operator, must be real, forces on us the conclusion that “scores” for physical quantities must be real.
(This thought is no doubt reinforced by the facts that (i) the quantum particle on the line is so
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entrenched as the basic example in wave mechanics, and (ii) a classical particle’s position is a real
number.)

But that is a petitio principii, i.e. it is begging the question. It is only because of choosing
a self-adjoint operator that the integrand in the spectral theorem is real. After all: consider the e

ix

integrand in the spectral theorem for unitaries, i.e. in eq. 12.

(B2): The second point is longer and more important. It is about the way that space and time
apparently get di↵erent treatments in quantum theory. Thus it is often said that in non-relativistic
quantum theory: position is a dynamical variable, namely represented by the self-adjoint operator
Q :  (x) 7! x (x) as we have discussed; but that time is not such a variable—indeed, there is no self-
adjoint operator representing time. (Indeed, there is a line of argument, originating from Pauli, that
there cannot be such an operator.) And people often go on to say that in a relativistic theory, space
and time should get similar treatments: which indeed they do, in quantum field theory—namely, by
both space and time being parameters/indices of the fields, as in b (x, t), i.e. neither space nor time
being operators.

All this folklore is . . . true enough as far as it goes. But there are many subtleties hereabouts!
Here we just pick out three main topics. The first is about time as a physical quantity; and we give
some details, following J. Hilgevoord (2002), ‘Time in quantum mechanics’, American Journal of
Physics 70, 301-306. The second and third are about time-energy uncertainty, and localisation.

(B2a): Time as a physical quantity:— Hilgevoord emphasizes that we must of course distinguish:
(a) space and time coordinates, i.e. labels (x, y, z) of spatial points, or (x, y, z, t) of spacetime

point-events: which labels can then function as coordinates of point-sized systems or physical events;
from:

(b) position as a dynamical variable of a system, especially of a point-particle (subject to
equations of motion, whose values determine those of other quantities e.g. energy).
Then Hilgevoord’s point is that the (a) vs. (b) contrast is valid in both classical and quantum theory,
and in both relativistic and non-relativistic theories. And thus the folklore’s emphasis on quantum
theory having a position operator matches classical physics’ having position as a dynamical variable
of a point-particle. Since the latter is written as q (especially in Hamiltonian mechanics), and is thus
notationally well-distinguished from the spatial coordinate x (or (x, y, z)), Hilgevoord points out (p.
303) that in wave mechanics, a much less confusing notation for the wave function would be  (q),
rather than the usual (universal! . . . and followed herein!)  (x) or  (x).

We agree completely! For recall our first Philosophical Remark (A) in Paragraph 4 of Section 1.
Namely: the arguments of the complex-valued wave function are to be classical configurations, i.e.
values of the dynamical variables q, not “mere” spatial positions in the (Lucretian!) “void”.

Besides, it follows that, contrary to the suggestion of the folklore, some good sense can be made
of a “time observable”, i.e. time as a physical quantity—just like position is a physical quantity, in
its guise as a dynamical variable. Thus Hilgevoord says (p. 302):

But do physical systems exist that have a dynamical variable that resembles the time
coordinate t in the same way as the position variable q of a point particle resembles
the space coordinate x? The answer is yes! Such systems are clocks. A clock stands,
ideally, in the same simple relation to the universal time coordinate t as a point particle
stands to the universal space coordinate x. We may generally define an ideal clock as
a physical system describable by a dynamical variable that, under time translations,
behaves similarly to the time coordinate t.

For more on time observables, cf. B. Roberts (2014), ‘A general perspective on time observables’,
Studies in History and Philosophy of Physics 47, 50-54, http://philsci-archive.pitt.edu/10600/. (A
large collection of research articles is Muga, G., Sala Mayato, R. and Egusquiza I., ed.s (2008) Time
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in Quantum Mechanics, Springer: two volumes.)

We just make a broad philosophical remark:— Physics—science!—aims to describe, indeed pre-
dict, how the values of variables vary as a function of . . . the values of other variables! Thus it is
perfectly legitimate, even useful, to ask, for a body that is e.g. accelerating: ‘what is the position q

as a function of the momentum p?’, That is: one can ask for q not as a function of time.
But agreed; it is a deep fact about physics (the world?!) that in classical and quantum physics,

and relativistic and non-relativistic physics, and in an Hamiltonian or Lagrangian framework: it is
vastly useful and tractable to describe the values of (most, if not all) dynamical variables as a func-
tion of . . . a single external time. (Here, external means, at least: not interacting with the system
under investigation.) But as the Hilgevoord quote (and other papers, e.g. by Paul Busch) brings
out: this external time need not be some unphysical idealization: it can be a dynamical variable of
an appropriate clock system.

(B2b): Time-energy uncertainty:— For the time-energy uncertainty principle, we just note that:
(i) a philosopher’s introduction is at: J. Butterfield, ‘Time in quantum physics’, http: //philsci-

archive.pitt.edu/9287/;
(ii) a critique of widespread folklore that the principle explains particle creation by temporary

violations (and briefer, the larger the violation) of energy conservation (!), is at: B. Roberts and J.
Butterfield (2020), ‘Time-energy uncertainty does not create particles’, http://philsci-archive.pitt.edu/17443/

(B2c): Localisation:— There is another deep aspect of how space and time are treated in quantum
theory. Namely: the contrast between particle and field, and especially:

(i) the subtleties of localisation of particles in relativistic quantum theories: e.g. Newton-
Wigner localization, and

(ii) in quantum field theories. particles being excitations of a quantum field, and so ‘particle’
being a derived—and even an emergent or approximate—concept.
We discuss (i) and (ii) later, when we turn to quantum field theory.

5: Functions of an Operator:—
Let A be a self-adjoint operator, with spectral decomposition A =

R
R x dEx. Let f be a complex-

valued function on the real line: f : R ! C. We define the operator f(A), by

(�, f(A) ) :=

Z

R
f(x) d(�, Ex ) ; (16)

which for f continuous can be taken as an ordinary Riemann integral. Then we have:
(1): for f(x) = x, f(A) = A;
(2): for f(x) = 1, f(A) = 1, since

R
R d(�, Ex ) = (�, );

(3): (f + g)(A) = f(A) + g(A) and (cf)(A) = c(f(A));
(4): we define (fg)(x) := f(x)g(x), so that (�, (fg)(A) ) :=

R
R (fg)(x) d(�, Ex ) =

R
R f(x)g(x) d(�, Ex ),

and then we compute that
Z

R
f(x)g(x) d(�, Ex ) =

Z

R
f(x) d

Z
x

�1
g(y) d(�, Ey ) =

Z

R
f(x) dx

Z +1

�1
g(y) dy(Ex�, Ey ) = (17)

Z +1

�1
f(x) d(�, Exg(A) ) = (�, f(A)g(A) ) . (18)

So we conclude that (fg)(A) = f(A)g(A), and thus that functions of the operator A commute with
each other.

So (5): polynomial functions are defined in the natural way. If f(x) = c0+ c1x+ c2x
2+ ...+ cnx

n,
then f(A) = c0 + c1A+ c2A

2 + ...+ cnA
n.
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(6) If we define (f⇤)(x) := (f(x))⇤, then we compute that

(�, [f(A)]† ) = ( , f(A)�)⇤ =

Z +1

�1
f(x)⇤d( , Ex�)

⇤ =

Z +1

�1
(f⇤)(x)d(�, Ex ) ; (19)

so that [f(A)]† = (f⇤)(A). So if f is a real-valued function, f ;R ! R, f(A) is also self-adjoint. And
if f⇤

f = 1, then f(A) is a unitary operator since [f(A)]†f(A) = 1 = f(A)[f(A)]† .

(7): f(A) is positive if f(x) � 0 on the spectrum of A. For just consider: (�, f(A)�) =R +1
�1 f(x)d||Ex�||

2. Similarly, we deduce:
(8): f(A) is bounded if |f(x)| is bounded on the spectrum of A.

6: Stone’s Theorem :—
Given a self-adjoint operator H =

R +1
�1 xdEx, we define for all t 2 R: (�, Ut ) :=

R +1
�1 e

itx
d(�, Ex ).

Then Ut is an operators, viz. Ut = e
itH and Ut is unitary since (eitx)⇤.eitx = 1 (cf. the end of (6)

above). Evidently, U0 = 1; and since e
itx

e
it
0
x = e

i(t+t
0)x, we have UtUt0 = Ut+t0 . The converse of this

is...

Stone’s Theorem: Suppose that for all t 2 R, Ut is a unitary operator, such that:
(i): for all vectors �, : (�, Ut ) is a continuous function of t
(ii): U0 = 1 and UtUt0 = Ut+t0 : so the family {Ut}t2R is a unitary representation of the group

(R,+).
Then: there is a unique a self-adjoint operator H such that Ut = e

itH for all t 2 R, and
(1): the domain of H is { 2 H |

1
it
(Ut � 1) converges as t ! 0}; and then the limit vector

is H ;
(2): if a bounded operator commutes with all of the Ut, then it commutes with H.

Using (1), we infer: If Ut 2 dom(H), then: 1
i�t

(U�t � 1)Ut ) ! HUt , as �t ! 0. That is:

1

i�t
(Ut+�t � Ut) ! HUt , as �t ! 0 (20)

which we write as the “Schrödinger equation”:

� i
d

dt
(Ut ) = HUt . (21)

7: Functions of commuting operators:—
With the Spectral Theorem in hand, we can rigorously discuss taking functions of commuting oper-
ators. This will lead us, in Section 4, to algebras of operators: at first, abelian algebras and then to
non-abelian algebras.

The idea of functions of commuting operators is of course that if two self-adjoint operators
commute then their spectral projectors commute. Indeed, there is a ...

Theorem: Let A be self-adjoint with spectral decomposition A =
R

xdEx; and let B be bounded,
self-adjoint and AB = BA. Then BEx = ExB.

Proof: If A has pure point spectrum, A = ⌃k akIk, the proof is elementary. If A is unbounded,
one needs a more careful statement to deal with issues about domains.

Indeed: if two self-adjoint operators A1, A2 are both unbounded, then we take E
1
xE

2
y = E

2
yE

1
x for

all x, y 2 R to be the definition of [A1, A2] = 0.
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Given f : R2
! C, (x, y) 7! f(x, y), we define f(A1, A2) for two commuting self-adjoint operators

A1, A2 by

(�, f(A1, A2) ) =

Z

R

Z

R
f(x, y) dxdy(�, E

1
xE

2
y ) , for all �, 2 H . (22)

Sums, scalar multiples, and products of such functions are defined in the obvious way. One shows
that:

[f(A1, A2)]† = (f⇤)fA1, A2); so that real functions f define self-adjoint operators f(A1, A2)
and functions f for which f

⇤
f = 1 define unitary operators f(A1, A2);

f(A1, A2) is positive if f(x, y) > 0 on the cartesian product of the spectra of A1 and A2 ;
f(A1, A2) is bounded if f(x, y) is bounded on the cartesian product of the spectra of A1 and

A2.
Compare items (5) to (8) at the end of Paragraph 5 above.

Similarly of course for functions of three commuting operators, as in the paradigm example:
the Schrödinger representation of position in R3. Consider L

2(R3) 3  (x) ⌘  (x1, x2, x3); with
inner product (�, ) =

R
R3 �

⇤(x) (x) dx. For r = 1, 2, 3, we define the self-adjoint operator Qr by
Qr (x) = xr (x). Then in the spectral decomposition

Qr =

Z

R
x dE

r

x (23)

the projectors Er
x are defined by :(Er

x )(y) =  (y) for y with yr  x, and (Er
x )(y) = 0 for y with

yr > x. Then one has
(f(Q1, Q2, Q3) )(x) = f(x1, x2, x3) (x) . (24)

8: Complete sets of commuting operators :—
Let A1, A2, ..., AN be mutually commuting self-adjoint operators with pure point spectra; each with
their spectral decomposition, r = 1, 2, ..., N

Ar = ⌃k a
(r)
k

I
(r)
k

. (25)

Then for all r, s and j.k, we have: I(r)
k

I
(s)
j

= I
(s)
j

I
(r)
k

. And for any j, k, ...l, the product I(1)
j

I
(2)
k

...I
(N)
l

is a projector. Namely, the projector onto the subspace of simultaneous eigenvectors with corre-

sponding eigenvalues, i.e. the space of vectors  with A1 = a
(1)
j
 , A2 = a

(2)
k
 , ..., AN = a

(N)
l

 .
Some of these projectors may be zero: corresponding to combinations of eigenvalues that are not, in
philosophical jargon!, co-possible or compossible.

These subspaces are orthogonal, i.e.

I
(1)
j

I
(2)
k

...I
(N)
l

I
(1)
j0 I

(2)
k0 ...I

(N)
l0 = �jj0�kk0 ...�ll0 I

(1)
j

I
(2)
k

...I
(N)
l

(26)

and complete, i.e.

⌃j ⌃k ...⌃l I
(1)
j

I
(2)
k

...I
(N)
l

= 1 . (27)

If none of these projects onto a subspace of dimension larger than one, we say that {A1, A2, ..., AN}

is a complete set of commuting operators. Then choosing eigenvectors of length one, and labelling
them with their eigenvalues, i.e. choosing an orthonormal eigenbasis, we can write in Dirac notation:

I
(1)
j

I
(2)
k

...I
(N)
l

= |a
(1)
j

a
(2)
k

...a
(N)
l

iha
(1)
j

a
(2)
k

...a
(N)
l

| (28)
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Theorem: Let A1, A2, ..., AN be mutually commuting self-adjoint operators with pure point spec-
tra. This is a complete set i↵: every bounded operator B that commutes with all the A1, A2, ..., AN

is a function of them: B = f(A1, A2, ..., AN ).

The orthonormal eigenbasis {|a(1)
j

a
(2)
k

...a
(N)
l

i} gives a spectral representation of A1, A2, ..., AN and
of the functions f(A1, A2, ..., AN ) as diagonal matrices:

h a
(1)
j

a
(2)
k

...a
(N)
l

| f(A1, A2, ..., AN ) i = f(a(1)
j

a
(2)
k

...a
(N)
l

) h a(1)
j

a
(2)
k

...a
(N)
l

| i . (29)

9: Philosophical Remarks:—
The selection of a self-adjoint operator with pure point spectrum, and so of a complete family of
orthogonal eigenspaces, is at the heart of not just

(i) the mathematics; but also:
(ii) the physics; and
(iii) the interpretation/philosophy

of quantum theory. Besides, the main issues are already clear in the case of finite dimensional Hilbert
spaces. (Indeed, they are clear for real Hilbert spaces: for which, of course, ‘self-adjoint’ is replaced
by ‘symmetric’ in the sense of elementary matrix theory, i.e. the matrix elements aij obey: aij = aji.
Of course, this is not the sense we defined above!)

As to (i), the mathematics: we here confine ourselves to some main ideas about the lattice-
theoretic (‘quantum logic’) approach:—

Recall Philosophical Remark (C) (1), about quantum logic, in Paragraph 4 of Section 1. It
concerned the lattice L of projectors (equivalently: subspaces) of Hilbert space. Selecting a com-
plete family of orthogonal eigenspaces, {Ei} say, amounts to picking a sublattice of L: one that is
Boolean. More precisely: a complete family of orthogonal eigenspaces (equivalently: projectors) is
the set of atoms (smallest, logically strongest, least-in-the-partial-order—but non-zero—elements) of
a Boolean sublattice of L. The other elements of the sublattice are given by all the possible sums
(orthogonal sums, �) of these atoms. Roughly speaking: ‘Boolean’ means that the distributive laws,
of intersection \ over addition +, and vice versa (of addition over intersection), hold for subspaces.

That is: with E,F,G being three subspaces, E,F,G < H, the distributive laws are:

E \ (F +G) = (E \ F ) + (E \G) ; and E + (F \G) = (E + F ) \ (E +G) (30)

These equations are easily proved for E,F,G mutually orthogonal (as are the atoms); cf. elementary
projector algebra. But they also hold for the various possible sums of atoms. -

And they are very easily disproved for E,F,G ‘skew’. Just take three mutually skew rays in the
Euclidean plane H = R2. Then the first equation of eq. 30 would read: E = 0, and the second
equation of eq. 30 would read: E = H. Both of which are false.

We say that roughly speaking ‘Boolean’ means that the distributive laws hold: because we are here
neglecting conditions about the behaviour of the complement, i.e. the unary operation on subspaces,
E 7! E

?, or equivalently for projectors, E 7! 1� E.

Three final remarks about this lattice-theoretic perspective:
(1): Since a function f is in general many-one, i.e. two arguments can map to the same value,

a self-adjoint operator B being a function of another A, i.e. B = f(A), means that the sublattice of
L that is defined, as sketched above, by B (with B’s eigenspaces as its atoms) will be a sublattice of
the sublattice defined by A. In short: coarse-graining.

Note also that B can be a function of two operators A,C that do not commute: i.e. .
B = f(A) = g(C) with [A,C] 6= 0. This point will be crucial in the discussion of FUNC and of ‘no go’
theorems against ‘hidden variable’ supplementations of orthodox quantum theory, that we discuss
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under interpretation/philosophy below. For it means that imposing conditions on the assignment
of values to the operator B (and perhaps some other operator with which B commutes) can have
consequences for the values of operators A and C that do not commute.

(2): Later, when we discuss states i.e. probability distributions for the values of quantities
(and so for the values 1 and 0 for projectors), this Booleanness of the sub-lattice will secure there
being a classical (Kolmogorov) probability space for the distribution to be defined on.

(3): When we consider the algebraic approach to quantum theory, Booleanness of a lattice
will correspond to the abelianness of the algebra of quantities. The rough picture, here stated only
for bounded operators, is:

(3A): Although the elements of an algebra ‘go beyond’ projectors, by including also self-
adjoint operators (indeed, arbitrary real linear combinations of projectors: which can then be spec-
trally resolved), and then also skew-adjoint operators, the projectors are the building blocks of the
algebra; and so the abelianness of the algebra is caught by the mutual commutation of the projectors.

(3B): The commutation of projectors [E,F ] = 0 is equivalent to a neat lattice-theoretic
expression of their ranges (1-eigenspaces). If we now write E,F for the ranges, it is (using � to
signal that the summands are orthogonal):

E = (E \ F )� (E \ F
?) ; and F = (E \ F )� (E?

\ F ) . (31)

As to (ii), the physics: we note:
The selection of such an operator can be interpreted as choosing to measure the quantity it represents,
i.e. choosing an experimental context. And the non-commutation of two operators represents it being
impossible to measure them both simultaneously with arbitrary accuracy. Recall Bohr on mutually
exclusive experimental contexts! Cf. e.g. his essay in P.A. Schilpp ed. Albert Einstein: Philosopher-
Scientist

Later, after we introduce states, we will make simultaneous measurability more rigorous. As we
will see: this can be done without committing us to a version of the Projection Postulate or a similar
“collapse of the wave-packet”. For the moment, we just note that for a finite dimensional (indeed
real or complex) Hilbert space, it is natural to define:

(the quantities represented by) two self-adjoint operators A and B are co-measurable
along the following lines:

‘a measurement of one quantity does not disturb a pre-existing value of the other quantity’.
And it is natural to make ‘pre-existing value’ more precise in terms of an outcome/result (“pointer-
reading”) from an immediately preceding measurement process. That is: we imagine a measurement
of A yields some outcome/eigenvalue a; then an immediately succeeding measurement B yields some
outcome/eigenvalue b; and then an immediately succeeding second measurement A is done and yields
some outcome/eigenvalue a

0.
So in this scenario with its three successive acts of measurement, it is natural to define:

‘measuring B does not disturb the measurement of A’
as follows:

‘Whatever are the outcomes/eigenvalues a, b of the first two measurements (and whatever
probabilities our theory may ascribe to them), the third measurement (i.e. the final = second
measurement of A) is bound/certain to give the same outcome/eigenvalue as the first one did:
a
0 = a’.

So let us say that A and B are co-measurable i↵: measuring B does not disturb the measurement
of A in this operational sense, and vice versa. Here, ‘vice versa’ means that also, measuring A does
not disturb the measurement of B. That is. we must have, in an obvious notation: b0 = b.

Then it is easy to connect this definition of co-measurability to commutation of operators for

17

Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield


Jeremy Butterfield




finite dimensional Hilbert space, if we also say that measurement processes are described by the
elementary Projection Postulate, i.e. the postulate that a measurement of the system, in any state
(vector)  , for the quantity represented by A:

(i) projects the system’s state instantaneously into the eigenspace of the eigenvalue obtained
as the measurement’s outcome; and then of course

(ii) re-normalizes the state by dividing it by its own length.
Thus, the Projection Postulate says there is an instantaneous state transition, which is, in a notation
adapted from the above discussion:

 7!
E

A
a  

||EA
a  ||

. (32)

The connection, for finite dimensional Hilbert space, of the above definition of co-measurability,
understood with this Projection Postulate, to commutation of operators is the readily proved equiv-
alence:

Theorem: Two self-adjoint operators, with pure point spectra A = ⌃ ajE
A

j
and B = ⌃ bkE

B

k

are co-measurable in this sense i↵ they commute, i.e. [A,B] = 0. (Of course, this latter condition is
equivalent to all pairs of spectral projectors commuting: i.e. [EA

j
, E

B

k
] = 0, for all j, k.)

As to (iii), the interpretation/philosophy: we note:
The orthodox view in the quantum textbooks (a kind of ‘precipitate’ of Bohr, Dirac, Heisenberg,
von Neumann; ‘Copenhagen’) is of course that a quantum system in state  only has values for
those physical quantities of which  is an eigenstate/eigenvector: with the value being of course the
corresponding eigenvalue. This is often called the eigenvalue-eigenstate link. And for a given state
 , the quantities of which it is an eigenstate are sometimes called  ’s eigenquantities.

In particular, the lack of common eigenstates for non-commuting quantities like position and
momentum (suppressing here their having continuous spectra. . . ) means that no system has a value
for both position and momentum.

Thus we are faced with the measurement problem, i.e. the appalling possibility that this lack
of values, though it seems acceptable in the atomic realm which is after all unvisualizable etc etc,
could propagate to the macro-realm—and so conflict with the supreme success of classical physics’
ascription to systems of values for both position and momentum. (Cf. Schrödinger’s amazing ‘cat’
paper of 1935) . . .

So it is natural to propose that we should supplement the orthodox quantum state. That is: we
should ascribe values additional to those that are ascribed by the orthodox eigenvalue-eigenstate link.
The natural hope is that there are states that ascribe to every self-adjoint operator an element of
its spectrum, subject to natural conditions. What natural conditions? The obvious one (sometimes
called ‘FUNC’) is that if A is ascribed a value a, then f(A) is ascribed the value f(a). (After all,
we often envisage measuring f(A) by measuring A and applying f to the outcome.) But even if we
consider only operators with pure point spectrum on a finite dimensional Hilbert space, there are
problems.

That is: there are ‘no-go’ theorems that such an assignment, for all the self-adjoint operators, sat-
isfying FUNC for them all, is impossible. Indeed, it is provably impossible even for some judiciously—
the aspiring solver of the measurement problem might say: ‘unfortunately!’—chosen finite sets of
projectors on all Hilbert spaces of (complex) dimension 3 or more (i.e. C3

,C4
, . . . ).

These theorems are mostly associated with the names of Gleason (a theorem of 1957), and Kochen
and Specker (a joint paper of 1967). But beware: what is usually called ‘Gleason’s theorem’ is a
positive result. It is a representation theorem for probability distributions on the set of all subspaces
(projectors) of a Hilbert space. We will state it later (in Section 5), when we discuss states rigorously.
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The no-go theorem is a corollary to this positive result.

The history has several ironies: one might even say, sadnesses (i.e. misunderstandings blocking
progress). For:

First: One can prove this corollary directly. And J S Bell did so in his paper, ‘The problem
of hidden variables in quantum mechanics’, published in Reviews of Modern Physics, in 1966. This
paper was written in 1963: before Bell proved the Bell inequalities—which he did, and published,
in 1965. (The delay in the publication of the 1966 paper was due to the typescript being lost for
about two years in the back of a filing cabinet at the o�ces of Reviews of Modern Physics!) And
the 1966 paper was written as a defence of the programme of supplementing the orthodox quantum
state, not as an argument against it. For Bell proved the corollary, i.e. the no-go theorem, as part
of an analysis urging that the assumptions of it were eminently deniable.

Second: Indeed, he pointed out in his 1966 paper that the assumptions are denied by the
pilot-wave theory: which he considered tenable, indeed eminently reasonable, despite having a man-
ifest non-locality in its guidance equation for a bipartite system. That is, in the traditional and
best-developed non-relativistic version of the theory: the deterministic spatial trajectory of one part
of such a system (one point-particle, according to the pilot-wave theory) is sensitive to where in
space the other point-particle is. That is: the first particle’s spatial trajectory is instantaneously
sensitive, in the manner of action-at-a-distance (though without any fall-o↵ with distance as one has
in Newtonian gravitation) to where the second particle is located.

Third: In fact, Bell’s 1966 paper ends by making precisely this point: that the pilot-wave
theory is manifestly non-local. He also there stresses that, of course, Bohm in 1952 was well aware
of this non-locality; and he ends by raising the question whether any supplementation of quantum
theory must be in some way non-local. (A footnote added in proof then mentions his previously
published 1965 paper as having answered this question, for one notion of non-locality. Not so much
a case of backwards causation a la science fiction, but merely a disordered filing cabinet . . . )

Fourth: Gleason’s positive theorem—the representation theorem for probability distributions
on the set of all subspaces (projectors) of a Hilbert space—generalizes a theorem of von Neumann,
in his monumental 1932 book. Historically, this latter theorem was very influential in persuading
physicists between ca. 1932 and ca. 1966 that this sort of supplementation of quantum theory could
not work. It is standardly called von Neumann’s no hidden variables theorem.

Here again, Bell’s 1966 paper is gold. For it articulates the Achilles heel of von Neumann’s
theorem. Namely: von Neumann assumes that, whatever the advocate of hidden variables envisages
as a state, they should accept that states ascribe expectations to self-adjoint operators, subject to
the following linearity condition. Namely: a state ascribes as the expectation Exp(A+B) of the sum
of self-adjoint operators A,B, the sum of their individual expectations. So Exp(A + B) = Exp(A)
+ Exp(B).

Bell points out that any advocate of hidden variables, i.e. of postulated dispersion-free
states (i.e. states ascribing values to all quantities) can—indeed should!—deny this condition: just
as the pilot-wave theory does. In a judo-like manoeuvre (‘use your opponent’s momentum to defeat
them!’), Bell invokes the Bohrian idea that if A and B do not commute, and so cannot be measured
together, one cannot measure A + B by measuring both A and B and adding the outcomes. So
although A + B is self-adjoint, and can in general be measured, doing so will require some other
experimental arrangement, di↵erent from both that for A and that for B. Agreed: quantum states—
whether vector states as discussed so far, or density matrices, to be discussed later—do obey this
linearity condition, even if A and B do not commute. But, says Bell, that is a peculiarity of the
quantum formalism, and by no means a compulsory feature of states as ascriptions of expectation
values. (Cf 1966, Section III, p. 449, column 1. Incidentally, Einstein pointed out the same Achilles
heel to Bargmann in conversation in the 1940s ... )

Beware: the entire algebraic approach to quantum theory will blithely endorse von Neu-
mann’s assumption. As we say in England: ‘swallow it, hook line and sinker’ . . . We will return to
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this irony . . .
Fifth: Finally, there is a further irony in relation to the first one above, about Bell’s 1966

paper proving the relevant corollary of Gleason’s positive theorem. This final irony is that the main
drift of the Kochen-Specker paper of the following year (1967) is also to prove this corollary. This
paper is rightly lauded. Its merits include: . . .

(a) It connects the corollary to the quantum logic, lattice-theory, approach sketched above.
The non-Boolean lattice of projectors with its delicately interlaced Boolean sub-lattices, is treated
in a kindred manner to di↵erential geometry’s treatment of a manifold with its delicately interlaced
charts. In particular, the operations, like taking the sum of two projectors, are partial. They are
restricted to the summands being both in some Boolean sub-lattice. Thus the buzzword: partial
Boolean algebra. . . .

(b) It exhibits a specific finite set of projectors to which the values 1 and 0 cannot be
assigned without violating the (apparently natural) assumptions like FUNC, above. It even relates
these projectors to a specific quantum system (orthohelium). . . .

(c) It is mathematically elegant and has engendered an enormous literature, pursuing e.g.
the physical idea of ‘contextuality’, and invoking advanced mathematical fields like topos theory ...
But the irony (and even sadness) is that the Kochen-Specker paper falls squarely within—and has
had its great influence within—the quantum logic tradition. It does not discuss, as Bell 1966 does,
the fact that the apparently natural assumptions are eminently deniable . . .

10: Complete (sets of commuting) operators, with continuous spectra :—
For operators A1, A2, ..., AN with continuous spectra, the definition of a complete set is given by the
condition in the Theorem at the end of Paragraph 8, above: viz. that every bounded operator B

that commutes with all the A1, A2, ..., AN is a function of them: B = f(A1, A2, ..., AN ). In fact, the
Schrödinger representation of position is, by itself, a complete set. That is: if on L

2(R), we define
the self-adjoint operator Q by (Q )(x) = x (x), then:

Theorem: every bounded operator B that commutes with Q is a function of Q.

We briefly connect with the Dirac notation which brings out the analogy with a complete set of
commuting operators, with pure point spectra. Thus we write:

hx | i =  (x) and hx |Q i = xhx | i and hx | f(Q) i = f(x)hx | i . (33)

Of course, Q has no eigenvectors. (For if x (x) = a (x), then  (x) = 0 for x 6= a, and so: || ||2 = 0.)
But we use delta functions, so that writing

a�(x–a) = x�(x–a) (34)

“justifies” our writing

Q| a i = a| a i and h a | i =  (a) =

Z

R
�(x–a) (x) dx . (35)

And similarly

 (x) =

Z

R
 (a)�(x–a) da “justifies” | i =

Z

R
h a | i| a i da ; (36)

so that any vector  can be “thought of” as a linear combination of delta-functions Thus delta-
functions are like an orthonormal basis of eigenfunctions.

We similarly use delta-functions to express operators, especially their spectral resolutions. Thus
for each a 2 R, let us define the ‘dyad’ | a ih a | by its action

( | a ih a | )(x) :=  (a)�(x–a) i.e. (| a ih a |) := h a | i| a i . (37)
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Then with Ex in the spectral family for Q, we can write for all  : (Ex )(y) ⌘
R
x

�1  (a)�(y–a) da =R
x

�1 (| a ih a | )(y) da. So we can write

Ex =

Z
x

�1
| a ih a | da ; and similarly Q ⌘

Z

R
x dEx =

Z

R
x |x ihx | dx . (38)

In the same way, the three operators Qr on L
2(R3) 3  (x) ⌘  (x1, x2, x3), defined at the end of

Paragraph 7 by (Qr )(x) = xr (x) are a complete set of commuting operators, with pure continuous
spectra. On analogy with eq. 33 to 38, writing Q := (Q1, Q2, Q3), we write:

hx | i =  (x) and hx |Q i = xhx | i and hx | f(Q) i = f(x)hx | i . (39)

The operators Q have no eigenvectors. But we again use delta functions, and write |a i for �(x–a);
so that writing

a�(x–a) = x�(x–a) (40)

“justifies” our writing

Q|a i = a|a i and ha | i =  (a) =

Z

R
�(x–a) (x)dx . (41)

And similarly

 (x) =

Z

R
 (a)�(x–a)da “justifies” | i =

Z

R
ha | i|a ida ; (42)

so that any vector  can be “thought of” as a linear combination of delta-functions Thus delta-
functions are like an orthonormal basis of eigenfunctions.

We similarly use delta-functions to express operators. So we write

E
(r)
x =

Z

arx

|a iha | da ; and similarly Q =

Z

R3
x |x ihx | dx . (43)

11: Fourier transforms, and the spectral representation of i~r :—
11.A: Basics:— We again consider L

2(R3) 3  (x) ⌘  (x1, x2, x3); with inner product (�, ) =R
R3 �

⇤(x) (x) dx. For r = 1, 2, 3, we define the operator Pr by

(Pr )(x) := �i
@

@xr
 (x) ; or, writing P := (P1, P2, P3) : (P )(x) := �ir )(x) . (44)

(We set ~ equal to 1: the Fourier transformations will give us enough 2⇡s to worry about!) These
operators Pr are self-adjoint. For they have the symmetric property (�, Pr ) = (Pr�, ) (integration

by parts), and they have dense domain, so that P
†
r is defined; and one can show that P

†
r = Pr; cf.

Paragraphs 3 and 7 of Section 2.

We will not linger on the interpretation of these operators Pr as representing momentum. We
just note that one is led to it by deep analogies with Hamilton-Jacobi theory and with Hamiltonian
mechanics’ treatment of Poisson brackets: analogies which were of course in the minds of the theory’s
inventors, especially Schrödinger and Dirac. And we will later discuss in detail the commutation
relations between position and momentum.

The spectral representation of these operators is given by Fourier transforms of the spectral
representation of the operators Qr, (Qr )(x) = xr (x), discussed at the end of Paragraph 10. The
main theorem is:
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Theorem: For any  (x) 2 L
2(R3), the sequence of vectors �n, n 2 Z, defined by

�n(k) := (2⇡)�
3
2

Z
n

�n

dx1

Z
n

�n

dx2

Z
n

�n

dx3 exp(�ik · x) (x) (45)

converges to a limit vector F such that ||F ||2 = || ||
2. F is the Fourier transform of  . Besides,

the sequence of vectors

 n(x) := (2⇡)�
3
2

Z
n

�n

dk1

Z
n

�n

dk2

Z
n

�n

dk3 exp(ik · x) (F )(k) (46)

converges to  .

A vector  is in the domain of Pr i↵ kr(F )(k) is square-integrable: in which case (cf. integration
by parts with boundary term vanishing)

(FPr )(k) = kr(F )(k) (47)

Accordingly, we write

(F )(k) = (2⇡)�
3
2

Z
exp(�ik · x) (x) dx (48)

and

 (x) = (2⇡)�
3
2

Z
exp(ik · x) (F )(k) dk . (49)

Since F preserves norm and has an inverse, it is unitary, and so preserves inner products; cf.
Paragraph 4 of Section 2. So we have

Z
(F�)(k)⇤(F )(k) dk =

Z
�(x)⇤ (x) dx . (50)

We write the inverse of F as

(F�1
�)(x) = (2⇡)�

3
2

Z
exp(ik · x)�(k) dk ; i.e. as: (F�1

�)(x) = (F�)(�x) . (51)

Eq. 61 implies that

(Pr )(x) = (2⇡)�
3
2

Z
kr exp(ik · x) (F )(k) dk ; (52)

and that in three dimensions

� ir(x) = (2⇡)�
3
2

Z
k exp(ik · x) (F )(k) dk . (53)

Writing (Qr )(x) = xr (x), eq. 47 then implies

FPr = QrF ; i.e.: P = F
�1QF . (54)

This now implies how to express the spectral decomposition of Pr in terms of that of Qr =
R

x dE
(r)
x ;

as follows. One checks that {F
�1

E
(r)
x F} is a spectral family, because F is unitary and {E

(r)
x } is a

spectral family, Then using F
�1 = F

†, we compute:

(�, Pr ) = (�, F †
QrF ) = (F�, QrF ) =

Z
x d(F�, E(r)

x F ) =

Z
x d(�, F�1

E
(r)
x F ) . (55)
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So the spectral decomposition of Pr is:

Pr =

Z
x dF

�1
E

(r)
x F . (56)

11.B: Completeness:— We can now repeat for momentum, P := (P1, P2, P3), the discussion of
complete commuting operators and their functions, that we had for position Q := (Q1, Q2, Q3). Cf.
the end of Paragraph 7 (especially eq. 22 to 24), and the end of Paragraph 10 (especially eq. 39 to
43).

Thus we recall eq. 22’s definition of a function f(A1, A2) of two commuting operators A1, A2

in terms of inner products (�, E(1)
x E

(2)
y  ). Thus functions of the three two commuting operators

P1, P2, P3 are defined by integrals with respect to inner products

(�, (F�1
E

(1)
x F.F

�1
E

(2)
y F.F

�1
E

(3)
z F ) ) = (F�, E(1)

x E
(2)
y E

(3)
z F ) . (57)

So for any function f ;R3
! C, the operator f(P) = f(P1, P2, P3) is determined by inner products:

(�, (f(P)) ) =

Z Z Z
f(x, y, z)dxdydz(F�, E

(1)
x E

(2)
y E

(3)
z F ) ⌘ (58)

(F�, f(Q1, Q2, Q3)F ) = (�, F�1
f(Q)F  )

So
f(P) = F

�1
f(Q)F . (59)

Comparing this with eq.s 47 and 61 respectively, we deduce:

(Ff(P) )(k) = f(k)(F )(k) (60)

and

(f(P) )(x) = (2⇡)�
3
2

Z
f(k) exp(ik · x) (F )(k) dk . (61)

We can also repeat for momentum, P, the discussion in Paragraph 10 (especially the beginning)
that position illustrates the result that a bounded operator that commutes with a complete set of
operators is a function of them. Thus since Q1, Q2, Q3 is a complete set of operators, so is P1, P2, P3.
For if B is a bounded operator that commutes with the three operators P, then FBF

�1 is a bounded
operator that commutes with the three operators FPF

�1 = Q. So there is a function f of three
variables such that FBF

�1 = f(Q). And so, eq. 59 implies:

B = F
�1

f(Q)F = f(P) . (62)

We can similarly now connect with Dirac notation for momentum-space: i.e with the variable k,
or in three dimensions k, replacing the variables x or x respectively in eq. 33 to 43. We do not need
to exhibit the details; (for which, cf. e.g. Jordan Linear Operators for Quantum Mechanics, the end
of Section 18, pp. 64-66). Thus for example, the analogue of eq. 43 is, as one would expect:

F
�1

E
(r)
x F =

Z

krx

|k ihk | dk ; and similarly (63)

P = F
�1QF =

Z

R3
k |k ihk | dk .
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Philosophical Remark:— These last two paragraphs are a template for the later discussions (es-
pecially in the algebraic approach) of unitary equivalence: i.e. the idea that a single unitary operator
U “carries” each operator A in an algebra of operators A 3 A to an element of another algebra:
UAU 2 A

0 := UAU . Thus recall from paragraph 2, in Section 1 that any two Hilbert spaces of equal
dimension are isomorphic; and that this is reconciled with people’s often talking about ‘two theories
using di↵erent Hilbert spaces’ by the fact that the theories also involve quantities i.e. operators.

Indeed: Later, it will be important that for a quantum system with infinitely many degrees of
freedom, i.e. a quantum field or a quantum statistical mechanical system in the limit of infinitely
many components (e.g. an infinite lattice), one can need—in order to describe the various possible
physical behaviours of the system—unitarily inequivalent algebras. Note that here ‘infinitely many
degrees of freedom’ does not mean (it means ‘more than’ !) ‘needing an infinite-dimensional Hilbert
space’. For even a non-relativistic quantum point-particle on a line needs the latter, i.e. L

2(R). So
one says: a quantum field is an ‘infinite (or: infinite-dimensional) quantum system’ ,and a quantum
point-particle is a ‘finite (or: finite-dimensional) quantum system’.

But in a sense that can be made precise in various ways, especially in the famous Stone-von
Neumann theorem (which we will discuss later): a finite-dimensional quantum system does not need
unitarily inequivalent algebras.

4 Operator algebras

We first give a glimpse of this field, introducing some jargon; then expound Schur’s lemma for sets
of operators; then discuss von Neumann algebras in more detail; and finally, give more detail about
operator topologies.

1: Glimpsing operator algebras: von Neumann’s theorem:—
Given a self-adjoint operator A, the polynomials in A thus form a complex algebra, closed under
taking adjoints (called a ⇤ � algebra). If A is bounded, this algebra has a norm. We can take the
completion of the algebra in this norm: since a normed vector space that is complete in its norm is
called a Banach space, this algebra is then called a Banach *-algebra. This is an abelian algebra, i.e.
for any elements X,Y , we have XY = Y X.

It is also an example of the abstract concept of a C
⇤-algebra: which is defined as any Banach *-

algebra whose norm (i) is sub-multiplicative (cf the last inequality in eq. 5), and (ii) obeys ||A⇤
A|| =

||A||
2.

In quantum theory on Hilbert space, C⇤-algebras of operators are important. But they have the
disadvantage that they do not in general contain projectors, not even the spectral projectors of their
self-adjoint elements. Fortunately, there is an alternative “cousin” notion of algebra, von Neumann
algebra, such that any von Neumann algebra is generated by the projections it contains.

Von Neumann algebras are characterised in a concrete way, i.e. as sub-algebras of B(H) for a
given H; in terms of a di↵erent topology on operators than the norm (also called ‘uniform’) topology
we have been implicitly using hitherto.

Thus we say that a sequence {An} converges to A in H’s weak topology i↵, for all | i, |�i 2 H:
|h |(An �A)|�i| ! 0.1 Then we define a von Neumann, or W

⇤ algebra to be a ⇤-algebra that is a

1This definition simplifies slightly by defining convergence in terms of sequences not nets. For details of the emen-
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