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Our civilization is characterized by the word ‘progress’. Progress is its form rather 
than making progress one of its features. Typically it constructs. It is occupied with 
building an ever more complicated structure. And even clarity is only sought as a 
means to this end, not as an end in itself. For me on the contrary clarity, perspicuity 
are valuable in themselves. I am not interested in constructing a building, so much 
as in having a perspicuous view of the foundations of typical buildings 

Ludwig Wittgenstein 

1. Introduction 

Local quantum physics is understood as the synthesis of special relativity and 
quantum physics. According to A. S. Wightman, himself no mean contributor to 
this field, ‘Rudolf Haag has thought as long and as deeply about the foundations 
of relativistic quantum mechanics as anyone alive’, and the present book is in 
many ways his scientific autobiography. Its principal subject matter, algebraic 
quantum field theory, has a reputation of being rather esoteric, axiomatic and 
mathematical (and, some pagans would say, irrelevant to physics). To the extent 
that this is true, at least for Haag himself the mathematics is merely there to 
serve the objective of providing a conceptual analysis of quantum field theory 
and related matters, which is as precise and deductive as possible. Thus the book 
may be seen as a contribution to the foundations of modem physics; its appeal 
should be to mathematical physicists and philosophers of physics alike. In this 
review we shall concentrate on points of conceptual, rather than mathematical 
interest. 

* Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver 
Street, Cambridge CB3 9EW, U.K. 
’ Page numbers refer to this edition. 
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In order to appreciate the extent to which Haag’s approach to quantum field 
theory marks a departure from more conventional scenarios, it is useful to make 
a brief remark about the history of this subject (cf. Schweber, 1994). From 
its inception in 1927, quantum field theory has been subject to the question 
whether particles or fields should be primary. We find physicists of equal stature 
on both sides of the debate: Dirac, the middle Heisenberg, Feynman, and 
Wheeler thought particles should be the starting point in the formulation of the 
theory, whereas Pauli and the early as well as the later Heisenberg, Tomonaga, 
and Schwinger favoured fields. In linear field theories there is a complete 
duality between particles and fields, implemented by the well-known Fock space 
construction. Moreover, by rewriting the Tomonaga-Schwinger perturbation 
method as an S-matrix theory, Dyson to some extent blurred the distinction 
between the two pictures even in interacting theories. Thus it came to be believed 
that for every particle there should be a field, and vice versa. 

In two thaumaturgic papers, published in 1955 and 1958 respectively, Haag 
pointed out that the alleged one-to-one correspondence between particles and 
fields holds, if at all, only at the asymptotic level. That is, in certain theories 
one may take the ‘time goes to +oo’ limit (in a suitable mathematical sense) 
of a given field (in the Heisenberg picture); these limit fields pas obey a free 
field equation and canonical commutation relations, and describe freely moving 
particles in the usual way. However, the given field may either be among the 
so-called ‘fundamental’ or ‘elementary’ fields of the theory (usually understood 
to be the fields occurring in the classical Lagrangian), or a composite (sum 
of products) of such. In fact, from the point of view of scattering theory 
there is no distinction between elementary and composite particles. Even the 
distinction between elementary and composite fields is not intrinsic, affected 
as it is by arbitrary field redefinitions. It may well be possible that a quantum 
field theory does not describe any particles at all, but if it does, the associated 
free fields are asymptotically related to the Heisenberg fields, rather than being 
their lowest-order approximation; (the latter is the starting point of the usual 
interaction picture, which Haag in the first-mentioned paper proved not to exist 
in interacting field theories). 

Accordingly, for Haag quantum field theory is a quantum theory of fields, 
in which particles are at best derived objects. The tile of fields is to implement 
the principle of locality (in German, Nuhwirkungspri~ip). As will be explained 
shortly, quantum fields are to be seen as mere co-ordinatizations of the local 
field algebras or algebras of local observables. 

If even the fundamental fields fail to be fundamental, what is the intrinsic 
content of a quantum field theory? This question was answered by Haag and 
his disciples between 1957 and 1964. 2 The edifice they created is based on the 
following ideas. 

’ There is a short historical note on p. 111 of the book. Fbr more information, cf. Araki (1992). 
Kastler (1992) and Schroer (1995). 
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For physical as well as mathematical reasons (analyzed in the classical 
work of Bohr and Rosenfeld, and Wightman, respectively), quantum fields 
P(X) at a point x in space-time make no good sense. One has to smear 
the fields as q(f) = 1 d4xq,(x)f(x), where f is a smooth ‘test’ function 
on space-time. The collection of all smeared fields whose test functions 
vanish outside some bounded region 0 generates an algebra 3t (0 ) , which 
evidently does not change under polynomial redefinitions of the smeared 
fields. Thus the naive correspondence x - V(X) should be replaced by the 
map 0 - d (0) ; elements of JI (0) are said to be localized in 0. 
In ordinary quantum mechanics, the passage from an operator A to any 
function f(A) merely corresponds to a r&belling of its eigenvalues, and 
does not really change the observable represented by A. In particular, it 
suffices to look at functions for which f(A) is bounded. This justifies the 
claim that in quantum mechanics it is in principle sufficient to deal with 
bounded operators. 3 
The theory ought to be defined by its collection of observables, which are 
localized in space-time. In particular, fermionic fields (such as the Dirac 
spinor field) should only enter through bilinear combinations (observable 
currents). More generally, fields that are not invariant under transforma- 
tions without observable effects (such as gauge transformations or global 
internal symmetry transformations) should not directly occur in the basic 
formulation of the theory; only their invariant combinations should. 4 
The particular way the local observables act on a specific Hilbert space of 
states (as in ordinary quantum field theory) turns out to be determined by 
the global behaviour of these states. Since all physical measurements are 
localized in space-time, the specification of the theory should not include 
this action (but only the algebraic relations between the observables, and 
their localization). 
The causal structure of space-time in special relativity is reflected by 
the property that two observables which are localized in regions that are 
spacelike separated must commute (which Haag calls ‘Einstein causality’). ’ 

Combining these notions, Haag concludes that a quantum field theory is defined 
by a map (often referred to as a ‘net’) 0 - !Z(O), where 0 runs through 
the regions of finite extension in space-time, and each g(O) is an algebra of 
abstract bounded operators. The Hermitian (self-adjoint) elements of ‘NO) 
are interpreted as the observables localized in 0. The total algebra of local 

3 Haag attributes this insight to Segal. The advantage of working with bounded operators is that 

they can be freely ad&d and multiplied. 
4 This principle is reminiscent of Heisenberg’s insistence in 1925 that quantum mechanics ought 
to be formulated in terms of observables alone. 
’ As reviewed by Summers (1990) and Butterfield (1994). Einstein causality indeed rules out the 
possibility of superluminal causation. The basic step in showing this is a theorem of Schlieder: 
if a pure state I& collapses to a mixture r&,.$ in the process of measuring an observable A in the 
usual way (Liiders’ rule), then the expectation value of any observable B which commutes with 
A is the same in U, as in WM. 



514 Studies in History and Philosophy of Modem Physics 

observables is the union 81, = u&#(O), where the union is over all bounded 
regions. 6 The physical interpretation of the theory is supposed to follow from 
the net. 7 In particular, the physical meaning of an operator is determined by 
its localization. The causality requirement, the single most important ingredient 
of Haag’s approach to quantum field theory, is that the commutator [A, Bl 
vanishes for all pairs such that A E !2l( Oi) and B E Q( Oj) with Oi and Oj 
spacelike separated (as defined in special relativity). 

This is a long way from conventional quantum field theory. s The most 
extraordinary claim of algebraic quantum field theory is that notions like isospin, 
colour, flavour, gauge transformations and everything else that is in the front of 
the mind of any quantum field theorist, but is not directly related to observations 
in space-time, can be reconstructed from the net 0 - r#(O). In Haag’s own 
words, ‘ultimately all physical processes are analyzed in terms of geometrical 
relations of (unresolved) phenomena’. Mathematically, everything is determined 
by the way the various algebras !Z( 0) sit inside Izli,, in specific positions relative 
to each other. 

It should be emphasized that algebraic quantum field theory is by no means 
the only subject of Haag’s work, in addition, one finds important work on 
quantum statistical mechanics. Together these have led to an active and ongoing 
interplay between quantum physics and the mathematical theory of operator 
algebras. Much of this is reflected in the book. 

2. A Tour Through the Book 

Chapter I is a brief overview of basic quantum field theory, which will be a 
useful reminder for those who have already done a first course in this subject (it 
seems difhcult to read the book without any previous exposure to quantum field 
theory; in addition, one should have a good working knowledge of elementary 
Hilbert space and operator theory). The choice of topics is not completely 
standard from the point of view of modem textbooks: Wigner’s analysis of 
the irreducible unitary representations of the Poincan? group9 and the Peierls 
bracket are reviewed, the path integral is not. More or less the same topics (as 
well as many others) are covered in the recent introductory book by Weinberg 
(1995). who adopts a similar point of view, but gives much more detail, as well 
as a rich supply of applications. (Serious students of quantum field theory will 
want to read both books cover to cover.) 

Chapter II reviews axiomatic quantum field theory d la Wightman: the 
axioms are introduced, and some of their consequences (analyticity properties, 

6 Here one has to identify !2l(&) with a subalgebra of 2UCIz) if 01 c 02. 
7 The analogue of this net in non-relativistic quantum mechanics would be the specification of 
the position operators and the Hamiltonian. 
s We are mainly thinking of PbincarCinvariant field theory in flat space-time, but much of the 
framework applies to curved space-times as well. 
’ There is a typo in the table on p. 30, where p” L 0 and $ I 0 should be replaced by p” > 0 
and p” < 0, respectively. 
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CPT theorem, Reeh-Schlieder theorem etc.) pointed out. Hardly any proofs 
are given, and the material has presumably been included to bridge the gap 
between conventional quantum field theory and Haag’s own approach, in line 
with the historical development of the subject. A far more detailed treatment 
of axiomatic field theory may be found in the classical textbooks: Stteater and 
Wightman (1964), Jost (1965) and Bogolubov er al. (1990) (the latter containing 
an extensive discussion of algebraic quantum field theory as well). Although 
most of the theorems derived from these axioms appear to hold in conventional 
(Lagrangian) quantum field theory as well, the axioms themselves are now 
thought to be somewhat irrelevant to physics, for they are not satisfied by gauge 
field theories, which are currently believed to provide the correct description of 
physics up to the highest energies available in laboratories or astrophysics. 

In any case, the emphasis in this chapter is on scattering theory from first 
principles, and we find, in particular, a detailed discussion of what is generally 
called the Haag-Ruelle collision theory. lo Here one assumes that the key 
Wightman axioms hold, i1 and that there exists a mass gap. l2 It is then possible 
to construct asymptotic particle states, which are assembled into a Fock space 
sitting inside 3f (perhaps coinciding with it). These states are obtained by acting 
on the vacuum state with certain smeared polynomials in the fields, and taking a 
t - +co limit in a judicious way. This theory is quite beautiful, and historically 
provided some backing for the belief in Wightman’s axioms. 

Algebraic quantum field theory proper is introduced in Chapter III. The math- 
ematical framework consists of the theory of algebras of bounded operators, 
specifically C* -algebras and W *-algebras (also called von Neumann algebras), 
to which Haag gives a brief introduction. l3 This theory is very elegant, yet 
somewhat intimidating. Haag provides most of the essential definitions, but 
the reader who would like to proceed at a more leisurely pace, and learn the 
theory in connection with its applications to quantum physics, might want to 
consult Sewell(l986) and Thirring (1981; 1983). For a full meal, cf. Bratteli and 
Robinson (1987). 

Like groups, operator algebras may be abstractly defined by algebraic rela- 
tions; one may subsequently study representations on Hilbert spaces. A state on 
an operator algebra assigns a real number to each observable (i.e. self-adjoint 

lo In quantum mechanics one constructs scattering states from the so-called Moller operators (see, 
e.g. Thirring, 1981). Since, as shown by Haag in 1955, these do not exist in interacting quantum 

field theories, one of the goals of the Haag-Ruelle theory is to develop scattering theory without 
those operators. 
l1 Roughly speaking, one has a collection of quantum fields, which commute when their arguments 

are spacelike separated, acting on a Hilbert space H carrying a unitary representation of the 
Poincar6 group P under which the fields transform covariantly, and containing a unique vacuum 
state which is invariant under this representation. 
l2 In non-relativistic quantum mechanics one thinks of the free Hamiltonian He and the full one 
H as related by H = HO + V, where V is the interaction. In quantum field theory, this is not the 
right point of view: here H and HO are the same. 
l3 Unfortunately, it shares the feature of many older textbooks on operator algebras that practically 
no examples are included. 
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element of the algebra), interpreted as the expectation value. l4 As in the usual 
formalism, a state may be pure or mixed. From a state w one may construct 
a representation rrW of the algebra as operators acting on a concrete Hilbert 
space 3-&; the state is then represented by a unit vector R, in this space. There 
are natural notions of irreducibility, l5 multiplicity, and unitary equivalence of 
representations. 

One problem with the structure laid out so far is the existence of far too 
many states on Ql. Most of these seem to have no decent physical interpretation, 
corresponding e.g. to infinite energy in a finite region. The way out is to 
somewhat ‘soften the dogma’ that the net 0 - 2(O) contains all physical 
information by adding the extra input of specifying a collection (folium) of 
physically realizable states, which do have tolerable properties. An important 
point is that the physicality requirement can be stated locally; that is, it concerns 
the restriction of a state to each local algebra ?2l(O). Once such a folium has 
been specified, one can extend the local algebras l6 to somewhat larger algebras 
R(O). l7 

The correspondence 0 - R( 0) becomes much better behaved if one restricts 
the regions 0 to causally complete regions. ‘* If we denote the spacelike 
complement of a region 0 by 0 I, then 0 is said to be causally complete if 
CV = 0. In any case, W1 is the causal completion of 0. The set LK of 
causally complete regions forms an orthocomplemented lattice, with 01 v 02 = 

(01 u 02)” and 0, A 02 = Oi n OZ. 
Let us now take a fixed reference state w . Another orthocomplemented lattice 

of interest is the one consisting of (von Neumann) subalgebras of B(L?fW) (i.e. 
the algebra of all bounded operators on 3f,,,). The orthocomplementation is 
given by the commutant, lg and the join and meet are Mi v ?J& = (ml u ?I&)” 
and 9Jlr A 9Jlz = ?JJli n !J.Jlz, respectively. 

In addition, once w, understood as lying in the physical folium, has been 
specified, one may identify the ‘R(O) with their concrete realizations on 3&,, 
and extend the net 0 - R(O) so as to include unbounded regions 0. *O This 
brings us to a truly marvellous aspect of Haag’s theory. One may postulate that 

14This assignment is linear, and such that positive operators have positive expectation values. The 
unit operator always has expectation 1. 

is Irreducible representations correspond to pure states. 
16Initially taken to be C*-algebras. 
17These arc von Neumann algebras, which by definition are algebras of bounded operators on a 

Hilbert space which are closed in the weak operator topology. The extension in question is just 
the weak closure in the representation induced by any physical state. 
‘*The so-called additivity axiom implies that the net 0 - !X(O) is completely determined by 
such regions; see Horuxhy (1990) and Baumgiirtel and Wollenberg (1992). These books describe 
a number of further axioms, and derive many theorems from them. Also, the latter book, 
which is complementary to Haag’s, contains a comprehensive introduction to and analysis of the 
mathematical structure of algebraic quantum field theory. 
lgThe commutant 9Jl’ of an algebra of bounded operators 9JI on a Hilbert space is the set of all 
bounded operators which commute with all members of !JX. 
‘O The reference state is usually taken to be a vacuum state. The extension depends on the reference 
state, even if one stays in the physical folium. 
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the map 0 - R.(O) be a homomorphism of or&complemented lattices. Recall, 
for example, that Einstein causality merely requires that R(W) c Z(O)‘; 
the postulate implies that a( O1 ) = R(O)‘, *l an equality which is central to 
algebraic field theory. ** The ‘A’ part of the postulate is believed (or has been 
shown) to hold in all reasonable theories, but the ‘v’ part excludes even free 
field theories. It would be an algebraic quantum field theorist’s dream that the 
full postulate be satisfied by gauge theories, but at present there seems to be no 
evidence for this. 

The basic structure of algebraic field theory has now been laid out. 23 What 
remains is a huge reconstruction programme, in which all the usual ingredients 
of quantum field theory and elementary particle physics (internal symmetries, 
unobservable charged fields, Fermi or Bose statistics, particles, antiparticles, 
scattering cross-sections, etc.) anz to be derived from the net of observables. 
This programme has been completed for theories with short-range forces in 
four space-time dimensions by the DHR ** analysis, which is the main topic of 
Chapter IV. 

Haag saw that a superselection sector may be identified with an irreducible 
representation 25 of the algebra of observables; superselection rules arise if 
there exist inequivalent representations of 2L The Hilbert space of states of the 
usual formalism arises as a direct sum over all physically relevant representation 
spaces (‘sectors’). In this setting, the matrix element of any observable between 
vectors in different sectors identically vanishes, which fact captures the better- 
known definition of superselection. The essence of the DHR analysis is to firstly 
construct a large enough family of sectors, and secondly define charged fields 
as operators that map the various sectors into each other. 26 These charged 
fields are unobservable, and do not necessarily commute at spacelike distances: 
one of the results of the theory is that one can have either commutation or 
anticommutation. In case the field theory describes particles, these alternatives 
are directly related to their Bose or Fermi statistics; (also, one has the usual 
connection between spin and statistics). In view of the two-line textbook 
argument leading to the Bose-Fermi alternative, one may wonder why this part 
of the DHR analysis is necessary. This argument claims that a permutation of 
identical particles can only change the state vector by a phase, which then must 
be +- 1 since repeating the permutation yields the identity. This argument would 

*‘With characteristic modesty, Haag refers to this as the ‘duality relation’. Everybody else calls 

it ‘Haag duality’. 
** Haag duality is violated in certain theories, but its non-fulfilment provides interesting information 

about the vacuum structure of such theories. 
23Chapter III contains a discussion of the Goldstone theorem as well, but unfortunately the 
arguments only apply to symmetries of the algebra of observables. For the breakdown of internal 

symmetries, cf. Buchholz er al. (1992). 
z4This algebraic household acronym stands for Doplicher-Haag-Roberts. 
2s Unitarily equivalent representations correspond to the same sector. 
26The final step from the charged fields of DHR to quantum fields in the conventional sense 

requires a procedure to pass from nets to quantum fields and back. This difficult issue is not 
discussed in Haag’s book; see Horuzby (1990). Baumgiirtel and Wollenberg (1992). and Borchers 

and Yngvason (1992). 
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be correct if all operators on the state space were observable, but it misses the fact 
that by assumption observables are invariant under permutations This opens 
the possibility of having arbitrary unitary representations of the permutation 
group. 27 

A physically relevant sector is defined by DHR as a representation which 
corresponds to states o that do not appreciably differ from the vacuum state COO 
at spatial infinity28 A weaker requirement replaces ‘infinity’ by ‘infinity minus 
a spacelike cone’; the DHR analysis (whose main input is Haag duality in the 
vacuum sector) largely goes through in that case as well. In either casezg one 
concludes after arduous mathematical reasoning that the superselection sectors 
correspond to the unitary representations of a compact group (playing the tile 
of the internal symmetry group of the theory). Roughly speaking, the existence 
of antiparticles is then equivalent to the existence of a conjugate to any such 
representation. In the non-abelian case the internal symmetry group plays yet 
another r&e in the DHR analysis: it converts particles with parastatistics into 
particles with Bose or Fermi statistics having an additional ‘colour’ charge. 3o 

Given the depth and complexity of the matter, Haag’s discussion of the 
superselection structure is rather concise. For example, since a discussion of 
multiplicities in the case of non-abelian symmetry groups is missing, 31 a 
conventional quantum field theorist will still be unable to see how the charged 
fields of the DHR analysis relate to the usual charged fields acting on a Fock 
space of (asymptotic) particle states 

Also, the original DHR analysis could have given rise to awkward night 
thoughts concerning the local nature of the theory. For superselection sectors 
are initially defined as inequivalent representations of the algebra of observables, 
yet the inequivalence disappears the moment one restricts the corresponding 
states to any local algebra. Hence one would think that these sectors are only 
globally determined, contradicting both the basic locality idea of algebraic field 
theory and the explicit criterion DHR used to select physically relevant sectors. 
Such worries are soothed by the fact that the DHR analysis is performed 

‘7Unle~~ they are one-dimensional (the Bose or Fermi case), such representations describe so- 

called parastatistics. 
“The technical criterion is that w and ug induce unitarily equivalent representations of 2l(0* ) 
for all sufficiently large bounded regions 0. Haag does not say how ?2L(OL) is defined (the net 

0 - 11(O) was initially only given for bounded 0); it is the C*-algebra generated by all 2l(d) 
for which 0 is spacelike to 0. All states on 2l are automatically defined on this larger net. 
2gNeither case covers gauge theories. While these do fit into the basic structure of algebraic 

field theory, tools for analyzing their superselection structure largely remain to be developed (cf. 
Section VI.3 of the book, and ongoing work by D. Buchholz and R. Verch). 
301n space-times of dimension lower than 4 these conclusions do not hold; neither does the 
Fermi-Bose alternative. This is because the set of ordered pairs of double cones (in d = 2) or 

spacelike cones (d = 3) is no longer connected. Apart fmm the brief comments in the book, and 
references therein to the work of Fredenhagen-Rehren-Schroer and Friihlich et al., cf. Kastler 
(1990) and Schomerus (1995). 
31 See in part Doplicher et al. (1969), who turn things around by starting from the charged fields 
and investigating how the observables emerge; this is much closer to the standard approach to 
internal symmetries. 
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through the study of so-called localized morphisms of the algebra of observables, 
but a discussion of this point would not have been out of place. Fortunately, 
more recent reformulations and mathematical m-interpretations of the theory 
of charged superselection sectors largely clarify and demonstrate the local 
nature of these sectors For a fuller picture, the reader is referred to Buchholz 
et al. (1986), Roberts (1990; 1993, Baumgartel and Wollenberg (1992) and 
Baumgartel(l995). 

Chapter V, the longest in the book by a fair margin, involves a mathematical 
theme which is central to practically all modem developments in algebraic 
quantum field theory and quantum statistical mechanics in infinite volume. This 
is the Tomita-Takesaki theory of von Neumann algebras (which was developed 
in the late 6Os, partly in interplay with work on quantum statistical mechanics 
by Haag, Hugenholtz and Winnink). This theory describes the situation of a 
von Neumann algebra !JJl acting on a Hilbert space 3L- which contains a vector 
R which is cyclic and separating for 9Jl: this means that (the closure of) mn 
equals H, while Aa = 0 only holds for A E !JJl if A = 0. 

This setting is physically relevant in various cases where one possesses 
incomplete information, either beacuse one truncates the observables or because 
one starts from a mixed state. 32 In quantum field theory, 33 R is a vacuum 
state (vector) and 9Jl = R(0) for some (causally complete) region 0 of 
special interest. 34 Alternatively, R = R, could be a thermal equilibrium state, 
and 9R = rr,(%)” the (weak closure of the) corresponding representation of 
the algebra of observables. In the algebraic formalism, equilibrium states are 
characterized by the so-called KMS condition, which is the generalization to 
infinite volume of the canonical ensemble. 35 The mathematical analogy between 
these two cases has the surprising consequence that even a vacuum state may 
look like a thermal equilibrium state if it is restricted to certain local algebras 
R(0), and if one uses a suitable notion of time evolution. 36 

While much of the chapter is of a rather technical nature,37 two elements 
should be of special interest to the foundations of physics. Firstly, one finds 
two38 derivations of the KMS condition (hence of equilibrium quantum 
statistical mechanics) from first principles. In the first derivation, it is shown 

32These are related, since the restriction of a pure state to a subalgebra is often mixed. 
33 In which the cyclic and separating nature of C2 usually follows from the Reeh-Schlieder theorem. 
34 Such as a wedge-shaped region xi > lx”l. See Borchers (1995) for an overview of applications 
to quantum field theory in Minkowski space-time. More generally, in curved space-time one 
takes ~‘3 to be a region bounded by a so-called bifurcate Killing horizon, cf. Wald (1994). 
35 In addition to Haag’s treatment, see Sewell(l986) and especially Bratteli and Robinson (1981) 
for an exhaustive discussion of the KMS condition and its ramifications. KMS stands for Kubo- 
Martin-Schwinger. 
36This is a mathematical explanation of the phenomenon of Hawking radiation of black holes, 
and of the related Unruh effect in flat space-time, cf. Wald (1994). 
37For example, the Tomita-Takesaki theory is essential in showing that in quantum field theory 
the local von Neumann algebras R(O) are all isomorphic to each other if 0 is a bounded 
contractible causally complete region, and are even the same for all well-behaved theories. 
3*More derivations and greater detail may be found in Bratteli and Robinson (1981); cf. also 

Sewell (1986) for a more concise presentation of these ideas. 
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that KMS states 3g are characterized by their time-independence in conjunction 
with a condition of robustness under local perturbations of the dynamics. In 
the second, the thermal equilibrium states at positive temperature are proved 
to be precisely those in which no energy can be extracted by switching external 
forces on and off. 

Secondly, Haag discusses the notion of ‘statistical independence’ of two 
local algebras of observables: this notion sharpens the causality requirement 
(i.e. commutativity for spaceliie separated localizations), and is defined by the 
property that for any pair {vi, pj} of (normal) states on R(6i) and R(C?,), 
respectively (with Oi and Oj spacelike separated), there exists a (normal) state QJ 
on the von Neumann algebra generated by ZZ( Oi) and R( Oj) which extends vi 
and mj, and in which these algebras are uncorrelated (i.e. q is a product state). 4o 
This property is not implied by the general setting of algebraic quantum field 
theory, but follows if the so-called nuclearity condition is imposed. Nuclear&y 
is of interest in itself: it says, loosely speaking, that the collection of states that 
are approximately 41 localized in a bounded space-time region spans a Hilbert 
space that is ‘almost’ finite-dimensional; this is closely related to the theory 
having physically reasonable thermodynamic behaviour. 

Untypically, Haag does not discuss the physical and conceptual ramifications 
of this notion of independence of spacelike separated regions, although there are 
interesting applications to the EPR argument and Bell’s inequalities, discussed 
by Summers (1990), whose treatment is mainly mathematical, and Butterfield 
(1994), who emphasizes conceptual and philosophical aspects. Moreover, apart 
from Einstein causality and statistical independence a number of other ‘auton- 
omy’ conditions on local regions deserve to be imposed or at least mentioned. 
These are reviewed by Summers (1990) and Horuzhy (1990). 

The passage from nets of observables to particles as seen in the laboratory 
is the subject of Chapter VI. In relativistic quantum field theory, a particle is 
usually defined as a certain irreducible unitary representation of the PoincanZ 
group which occupies a proper subspace of the total Hilbert space of states. This 
definition is too narrow. For example, in quantum electrodynamics the electron 
states am never on their mass shell because of the photon cloud that by Gauss’ 
law has to accompany a charged particle. 42 . Quarks and gluons are generally 
construed as particles, but fail to show up in the spectrum of the theory which 
describes them (i.e. quantum chromodynamics) for reasons of ‘confinement’. 
A similar comment applies to unstable ‘particles like the W and Z mediating 
the electmweak interaction. It turns out that algebraic quantum field theory 
naturally leads to a more general particle concept than Wigner’s. Rather than 
basing itself on the energy-momentum spectrum of the theory, it is built on 
localization. An additional advantage is that (generalized) particle states can be 

3gHere including those defined for negative temperatures, as well as ground states. 

4oThere is a disturbing typo in eq. (V.5.23), in which Ift’ should be replaced by A. 
41Exact localization is not possible in view of the Reeh-Schlieder theorem; one has to allow 
non-local exponential tails. 
42 Overlooking this leads to the infrared problem in perturbation theory, cf. Weinberg (1995) 
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constructed directly from the algebra of observables 24 (unlike the Haag-Ruelle 
scattering theory, where one needs unobservable charged fields). 

To begin with, a particle detector is mathematically represented by a positive 
element C of 2l which is ‘almost’ 43 localized in a region 0 and has zero vacuum 
expectation value. An n-particle state is then defined by its response to operators 
of the form C(xi) . . . C(x,) in the limit where the times xy approach + CQ. It 
turns out that the limiting procedure necessitates the use of so-called weights, 
which are states on a subalgebra of 12L (which has to be a left-ideal; in the 
present case, the subalgebra is generated by the detector operators) that do not 
extend to states on all of 8. Instead, they are represented by improper vectors 
in certain representations of !2l. Relating to a previous example, such single- 
particle weights describe pure electrons, whereas the corresponding proper states 
would incorporate the photon cloud. This novel approach44 has a wide range 
of applications: apart from gauge theories, it is relevant to quantum field theory 
at finite temperature and perhaps in curved space-time. 

The final chapter contains some comments on a variety of topics, of which 
quantum field theory in curved space-time stands out in the present context. 
To the extent that no use of Poincare symmetry and vacuum states is made, 
algebraic quantum field theory applies to curved space-times; indeed, it may 
form the only coherent framework 4s for describing quantum physics in the 
presence of a (classical) gravitational field. This, however, deserves a book in its 
own right; Wald (1994) is recommended. 

The revised edition contains a new chapter, entitled Principles and Lessons 
of Quantum Physics. A Review of Interpretations, Mathematical Formalism, and 
Perspectives. This starts with a review of Bohr’s epistemological considerations; 
perhaps because Haag knew Bohr personally, his discussion is particularly 
enlightening. Brief coverage of Einstein’s critique, the measurement problem, 
decoherence, the arrow of time in quantum mechanics, and of axioms (allegedly) 
leading to the Hilbert space formalism, prepare the way for Haag’s own current 
vision of quantum mechanics (also cf. Haag, 1990; Haag, 1996). 

Still in its infancy, this is an observer-independent formulation in which, 
compared with the orthodox interpretation, measurements are replaced by 
‘events’. Here one should think of interactions (such as collisions) which are 
localized in space and time;46 measurements are seen as particular examples. 
Events are Haag’s candidate for Einstein’s ‘elements of reality’. A particle is seen 
as a causal link between two events: the creation of the particle in a source, and 

43 Since the vacuum expectation value of any positive operator in a local algebra R(Q) is non-zero 
by the Reeh-SchIieder theorem, strictly localized operators cannot nprcsent a particle detector. 
44Which, following earlier ideas of Haag himself, was (and is) mainly (being) developed by D. 
Buchhoiz and collaborators 
4sHerc it seems advantageous to modify the technical machinery somewhat, employing the so- 
called Borchers-Uhhnann algebras (Horuxhy, 1990) rather than the Haag-Kastler nets. 
461n the initial discussion space-time is assumed to be ontologically primary, as in algebraic 
quantum field theory, where observables are predicated on regions in space-time. Later on, Haag 
says he would prefer space-time to be a derived concept, bearing the stamp of the ordering 
relations between events. 
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its disappearance in a sink (think of a photon hitting a photographic plate). 
Such causal links become real only after both endpoints have been realized. A 
point Haag stresses again and again is that a particle does not have a position 
(even when its momentum is infinitely unsharp); what has a position is an event 
involving the particle (such as its detection). 

Which events happen, and where, is governed by the probabilistic laws of 
quantum mechanics What is normally seen as the collapse of the wavefunction 
following a measurement is now regarded as a change of au objective state after 
an event has occurred. Amplification is not necessary for such factualization. 
This leads to an evolutionary picture of physics: the past consists of a collection 
of events (linked by causal ties), whereas the future is open, in that there 
are no deterministic laws predicting which possibilities transform into facts. 
Irreversibility is a consequence of stochasticity; hence the arrow of time is seen 
to be quantum-mechanical in origin. 

Taken by itself, none of the above ideas is particularly new; most modem 
authors treat measurements as particular kinds of interactions, and equally 
many are keen to abandon the so-called eigenvector-eigenvalue link (which Haag 
implicitly does in his discussion of particle localization). Also, the idea of a 
relational definition of factualization is common to most versions of the many- 
worlds interpretation and the modal interpretation. Combining all these with 
the insistence on space-time localization seems typical of Haag, however. Much 
remains to be elaborated, but the seeds for an attractive realist interpretation of 
quantum field theory appear to be there. 

3. Discussion 

In the community of mathematical physicists there exists no doubt that the 
body of work reported in Haag’s book (much of which was initiated by Haag 
himself) is of the highest quality and depth. While experts may criticize certain 
details of some arguments, or even the general style of the book (which is a 
compromise, admittedly at times somewhat peculiar, between an overview and a 
textbook), the reviewer found the book pleasant and highly rewarding reading. 
Philosophers of physics will be daunted by the mathematics, but will eventually 
appreciate the precision and clarity in addressing the foundations of quantum 
field theory (and, to a lesser extent, quantum statistical mechanics). 

However, as far as the traditional foundational questions in quantum physics 
are concerned, 47 Haag’s book leaves the reader with questions Par one thing, 
both the orthodox Copenhagen spirit and Haag’s increasingly critical attitude 
towards it are reflected in the writing. One often finds an operationalistic 
attitude: physical relevance seems equated with measurement and observation, 
and even special relativity is motivated by the need for a convention for the 
synchronization of clocks. Haag stresses the need for the ‘Heisenberg cut’ 
between a system and an observer with his instruments, and quotes Bohr in 

47Cf. Saunders (1988) for a philosophical critique of algebraic quantum field theory in general. 
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saying that the observer plus instruments side is described by classical physics 
(p. 3). Mathematically, though, the system side is described by states, which 
are physically identified with an equivalence class of preparation pmcedures, 
whereas instruments are represented by operators in a non-commutative algebra 
(ideal detectors corresponding to projection operators). Few quantum field 
theorists would follow Haag in believing that (the observable combinations of) 
their quark and photon field operators describe the detectors placed in a collider 
(or, worse, the experimentalists’ manuals) rather than the fields themselves. 

Haag’s attempt to motivate the formalism of quantum mechanics by appealing 
to the theory of self-dual cones and Jordan algebras is not really carried through, 
and would be fishy if it were. For infinite-dimensional state spaces do not emerge 
in that fashion: to arrive at those, one needs the additional axiom of facial 
homogeneity, whose physical relevance is agreed even by the proponents of this 
approach to be obscure; cf. Ajupov et af. (1990). MoEover, the step from Jordan 
algebras to C* -algebras is non-trivial. 

The physical meaning of localization is that elements of !2$( 0) are ‘observables 
which can be measured in the region 0’ (p. 110). However, as we saw in the 
discussion of Chapter VI, particle detectors can only be localized up to infinite 
tails. To those worrying about such epsilonics, Haag would presumably say that: 
‘we do not want to bother and we need not know in such detail’ (p. 273). 
It is not clear, however, that this cavalier attitude is justified. For example, in 
Chapter VI (esp. pp. 281-282) we learn that (in an infinite system) the velocity 
of an electron defines a superselection rule, excluding quantum interference. As 
Haag is quick to point out, this conclusion is in manifest contradiction with 
experiment; tongue in cheek, he adds ‘the reader is encouraged to work out how 
the quantum mechanical description of an electron interference experiment can 
be justified in the field theoretic setting’ (p. 282)! 

A related point is that all physically admissible (i.e. locally normal) states 
happen to be mixed on each local algebra R(0) ; their possible purity on 31 
derives from operators that are infinitely delocalized. Thus, contrary to the 
locality principle, one might come to believe that physically relevant things are 
happening at infinity. The resolution of this difficulty is given in Buchholz et al. 

(1986), and is based on the so-called split property (which is discussed by Haag, 
though not quite in the present context). This property, which follows from the 
nuclearity condition discussed earlier, says that for any pair of bounded regions 
01 C 02, with associated local (von Neumann) algebras a(&) C 2%(02), there 

is an intermediate algebra 48 LW, such that 2X(0,) c N c R(O21, and physical 
states exist which are pure on LN. Hence one can doctor the region between 01 
and 02 so as to screen off all external correlations. The fact that all physical 
states are mixed on a region with a sharp boundary remains. 

In any case, it would be welcome to have a theory describing how su- 
perselection rules in the most general sense of inequivalent representations 
are approximated in very large but finite regions, so that one eliminates the 
dilemma that B (describing an infinite system) has sharp superselection rules 

48Technically, a typ I factor. 
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whereas none of its approximants 2UCI) (for a bounded region 0) admits (non- 
pathological) inequivalent representations. Such a theory would be as appealing 
as the theory of phase transitions in classical statistical mechanics, where one 
can see &onset of a phase transition in a finite system by its behaviour at the 
boundary. 

Haag expresses the feeling that it is to the credit of algebraic quantum field 
theory that it stands on its own, in the sense that it is not the quantization of 
any classical theory (unlike conventional quantum field theory). Nonetheless, 
it would have been useful to see what the classical counterparts of some its 
concepts and ingredients are. For example, does Einstein causality (whose 
classical analogue would be the property that certain Poisson brackets vanish) 
really express the mutual non-disturbance of particular measurements, or is it a 
statement about (the absence of) transformations generated by the observables? 
And what is the classical analogue of a superselection sector? Even if one does 
not believe that quantization is a fundamental procedure, one may see such 
questions in the context of the classical limit of quantum field theory, which 
may shed considerable light on the quantum theory itself. 4g 

Despite these somewhat critical remarks, the reviewer would like to emphasize 
that for those interested in the foundations of quantum field theory Haag’s book 
is second to none. Indeed, everyone interested in modem physics should read it. 
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