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The Hawking Effect is an argument that black holes have thermal properties,

deriving from particle creation in spacetimes that develop event horizons through

stellar collapse. The radiation associated with this effect is called Hawking radiation,

and forms the basis for the theory of black hole thermodynamics. Its conceptual

foundations are rife with philosophical questions, some of which we will endeavour

to discuss in these notes.

The standard history begins with Jacob Bekenstein (1973), who proposed

a remarkable formal analogy between equilibrium thermodynamics and black holes

while he was a PhD student under John Wheeler. Something like a second law for

black holes was already in the air: evidence had been established by Penrose and

Floyd (1971), another Wheeler graduate student (!) Christodoulou (1970, 1971), and

Stephen Hawking (1971). But, the creative proposal of Bekenstein (1973, p.2333)

was that “one can hope to develop a thermodynamics for black holes — at least a

rudimentary one.” His idea was to treat black hole mass like energy, horizon area

like entropy, and surface gravity like temperature. The analogies are summarised in

Table 1.

Equilibrium Thermodynamics Black hole spacetime

Energy U Asymptotic Mass M
Entropy S Horizon Area A
Temperature T Surface Gravity κ
Contributions to Work Komar asymptotic quantities
Energy conservation Asymptoptic Mass conservation
Entropy increase Horizon area increase

Figure 1.
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This idea was largely met with scepticism until Hawking (1975) showed that,

for a black hole arising from spherically symmetric stellar collapse, the vacuum

quantum field associated at ‘very early times’ evolves to a (Gibbs) equilibrium state

at ‘very late times’, where the energy, entropy and temperature are given by the

black hole mass, area and surface gravity — just as Bekenstein proposed.1 Wald

(1994, p.151) thus takes the upshot of Hawking’s result to be that,

[t]he surface gravity, κ, is not merely a mathematical analog of tem-

perature, it literally is the physical temperature of a black hole.

One might even get the impression that, following the discovery of the Hawking

effect, related results such as the Unruh effect only further strengthened Hawking’s

case, or that shoring up Hawking’s argument is a mere mathematical cleanup-job.

In these notes, I would like to give a brief overview of the conceptual foun-

dations of Hawking’s argument. My aim is to make the following points:

(1) Some ‘toy’ arguments for the Hawking effect expressed in terms of time-

energy uncertainty are unfounded.

(2) Viewed as associated with a (statistical) thermal state of a quantum field,

the Hawking effect is conceptually distinct from the theory of black hole

thermodynamics and evaporation.

(3) Although the Unruh effect was originally devised as an attempt to better

understand the Hawking effect, these are really entirely distinct phenomena,

witnessed by their association with completely different states in the context

of a Schwarzschild black hole.

(4) There are conceptual issues with some of the approximations needed for

Hawking’s argument to work.

(5) The (orthodox) equilibrium thermodynamics of black holes, as opposed to

their statistical thermodynamics, remains on even less firm ground than that

of the Hawking effect.

1A mathematically transparent generalisation of Hawking’s argument was immediately given by
Wald (1975). A deeper and more general version of the Hawking Effect was later derived entirely
in terms of correlation functions by Fredenhagen and Haag (1990).
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1. An argument that does not work

In their textbook on general relativity, Hobson et al. (2006) summarise a

well-known ‘popular’ argument for the Hawking Effect, based on the time-energy

uncertainty principle:

“Hawking’s original calculation uses the techniques of quantum field

theory, but we can derive the main results very simply from elemen-

tary arguments. ... Pair creation violates the conservation of energy

and so is classically forbidden. In quantum mechanics, however, one

form of Heisenberg’s uncertainty principle is ∆t∆E = ~, where ∆E

is the minimum uncertainty in the energy of a particle that resides in

a quantum mechanical state for a time ∆t. Thus, provided the pair

annihilates in a time less than ∆t = ~/∆E, where ∆E is the amount

of energy violation, no physical law has been broken.” (Hobson et al.

2006, §11.11)

The rest of the story then goes: when this happens near the event horizon, one

member of the pair may fall into the black hole while the other does not, continuing

on to spatial infinity, where the latter viewed as ‘Hawking radiation’. Since this

radiation will have a positive energy, the total energy conservation suggests that

this must result in the black hole losing mass.

Griffiths is particularly unimpressed with the kind of argument.2 He writes:

“It is often said that the uncertainty principle means that energy is

not strictly conserved in quantum mechanics-that you’re allowed to

‘borrow’ energy ∆E, as long as you ‘pay it back’ in a time ∆t ∼

~/2∆E; the greater the violation, the briefer the period over which

it can occur. There are many legitimate readings of the energy-time

uncertainty principle, but this is not one of them. Nowhere does

2Another dissenter is Bunge (1970), who gives a short but scathing criticism of the time-energy
approach to virtual particles.
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quantum mechanics license violation of energy conservation”. (Grif-

fiths 1995, p.115)

Indeed, mass-energy is exactly conserved in an isolated physical system, in quantum

physics no less than classical physics. In quantum theory, the unitary propagator

Ut (a strongly continuous unitary representation of the reals under addition) can be

written Ut = e−itH , where the self-adjoint generator H is the energy. And, for any

initial state ρ that evolves unitarily according to ρt := UtρU
∗
t , the energy expectation

value does not change over time, since H and Ut commute: for all t ∈ R,

(1) Tr(ρtH) = Tr(UtρU
∗
t H) = Tr(ρU∗t HUt) = Tr(ρH).

In this sense, the conservation of energy in quantum theory is never violated.3 So,

time-energy uncertainty cannot be the explanation of Hawking radiation!

On the other hand, as we will soon see, there is a sense in which Hawking

radiation, when viewed as a comparison between a quantum field theory constructed

at past null infinity and one at constructed at future null infinity, is indeed associated

with particle creation. But, this is a global construction associated with inequivalent

vacua, and so spontaneous symmetry breaking, not of local time-energy uncertainty.

2. The Hawking effect

2.1. Background spacetime. Consider the spacetime (M, gab) corresponding to

an initially static dust cloud, which collapses spherically symmetrically to a black

hole; its conformal diagram is depicted in Figure 2.

A key idea in adopting this spacetime is to use Birkhoff’s theorem, which

assures that the region outside the collapsing matter is isometric to a mathematically

‘nice’ spacetime, namely the maximally-extended Schwarzschild blackhole, with a

white hole its past and a black hole in its future; its conformal diagram is depicted

in Figure 2.1.

3An alternative interpretation of virtual particles and time-energy uncertainty is given by Roberts
and Butterfield (2020).
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Figure 2. Conformal diagram of a dust cloud collapsing to a black hole.
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Figure 3. Maximally extended Schwarzschild spacetime.

This spacetime is particularly nice because it matches the collapsing dust

black hole at past and future infinity. And, unlike the collapsing dust cloud, it

admits a notion of global time translation symmetry that allows one to define a

precise quantum field theory. So, by building a quantum field theory at past and

future timelike infinity, we can compare the behaviour of a quantum field on this

spacetime at ‘late’ and ‘early’ times.

Note the use of a common strategy in physics: model the ‘very far away’ as

infinitely far. In particular, we will model the quantum field ‘long before’ the black

hole forms as associated with the infinite past, and the quantum field ‘long after’

collapse occurs as associated with the infinite future. This is reasonable practice
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insofar as it is just a mathematical convenience. But, it also compels us to check

that this infinite idealisation is not ‘essential’ to the calculation.4

Note also the use of the semiclassical approximation of quantum fields on a

fixed background spacetime, thus ignoring their possible effect on the background

spacetime geometry. This is reasonable insofar as the quantum field theory as-

sociated with particle creation is not affected by any quantum effects from the

gravitational field.

2.2. Hawking’s Argument. The Hawking effect is derived by comparing a quan-

tum field theory at past-infinity to one at future-infinity, and arguing that from

the perspective of an observer outside the black hole horizon, the system evolves

into a statistical mixture associated with a temperature T = κ/2π, where κ is the

surface gravity5 of the black hole event horizon. The main steps in the Hawking

(1975) derivation, with some technical supplements from Wald (1975), can now be

summarised as follows.

(1) In-state Fock Construct a quantum field theory for the infinite past, where

the spacetime is static and thus there are timelike Killing vector fields. This

follows our usual technique: given the solution space of a classical Klein-

Gordon field on this spacetime, quantise to produce a one-particle structure

H, using the timelike Killing fields to identify the energy representation.

Then adopt the usual (Fock space) field representation. We denote the vac-

uum by ψ0.

(2) Out-State Fock (trickier). Construct a quantum field theory for the infinite

future. Difficulty: the spacetime is static outside the black hole, but there is

no Cauchy surface in that region (it must pass through the collapsing matter.

Thus, instead we assume:

4This duty, which was known even to Galileo, is discussed in enlightened terms by Butterfield
(2011) and by Norton (2014).
5‘Surface gravity’ is a property associated with an arbitrary Killing horizon with Killing field ξa,
which can be interpreted as the (redshifted) proper acceleration associated with orbits of ξa as one
gets arbitrarily close to the horizon.
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• Asymptotic completeness: in the asymptotic future, each state ψ ∈

S propagates entirely through the black hole horizon, and/or out to

infinity.6

• Late/early time surface Σ and subspaces: Focus on a subspace SL con-

sisting of solutions that propagate to their future fate at ‘late times’.

More precisely, we adopt a Cauchy surface Σ that intersects the event

horizon outside the collapsing matter, and let SL be those solutions

whose data on Σ have support outside the black hole. Similarly, we

let SE be the ‘early time’ subspace of solutions whose data on Σ has

support inside the black hole.

• Pair solutions with maximal Schwarzschild: Define the ‘out’ one-particle

structure by choosing late-time solutions ψL ∈ SL corresponding to the

‘positive frequency part’, where this positive-negative frequency split is

defined with respect to maximal Schwarzschild time translations). Then

adopt the ordinary Fock space field representation.

(3) Compute S-matrix Dynamics: The basic technique is to begin with the

(infinite future) Out-State Fock representation of positive frequency solu-

tions, and propagate them backwards to the infinite past, considering and

decompose them into positive and negative frequencies there.

• Geometrical optics approximation: One now argues that the propaga-

tion of a state ψ into the asymptotic past is approximately that starting

from near the Schwarzschild region just outside the collapsing matter

— this helps to see where the κ surface gravity term arises. There is

an infinite blueshift in the above procedure, which allows one to apply

the so-called ‘geometrical optics approximation’ (cf. Wald 1984, p.71),

that the surfaces of constant phase of the wave are null. This implies

that we can view its positive-negative frequency decomposition as as-

sociated with that of the corresponding solution in maximally-extended

6This property provably holds for massless fields (Dimock 1985), and a collection of recent results
have sought to argue for it in various other contexts.
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Schwarzschild spacetime, defined with respect to an affine parameter

along the white hole horizon. With this ey step, one defines a unitary

S-matrix U relating the In-State and Out-State representations. (This

calculation is described in detail by Wald (1975, 1994).)

• Density matrix: To obtain a density matrix corresponding to observa-

tions outside the black hole, one finally takes the partial trace of Uψ0,

and derives a density matrix of the form,

(2) ρ =
∏
i

(
∞∑
n=0

e−2πnωi/κEi

)
,

where each Ei is a projection onto the energy eigenstate associated with

time translations outside the black hole, nωi is the associated energy,

and κ is the surface gravity. (For precise details of this calculation, see

Wald (1975).)

(4) Statistical interpretation: Interpreting this density matrix as an equilib-

rium state associated with a statistical ensemble, Equation (2) has the form

of an equilibrium state with T = κ/2π interpreted as temperature.

Thus we find that the quantum field associated with a horizon of this kind is asso-

ciated with a temperature in the statistical mechanical sense, called Hawking tem-

perature. Expressing it in more informative units leads to a spectacular relationship

between constants of nature, which is now written on Stephen Hawking’s tombstone

in Westminster Abbey:

(3) T =
~c3

8πGMk
.

Note that the early-time vacuum state ψ0, called the Hawking-Hartle vacuum, can be

shown to be the unique non-singular (i.e. of Hadamard form) state that is invariant

under the time translation isometries of Schwarzschild spacetime.

3. Further philosophical comments

There are some further conceptual and philosophical comments worth making

about this construction.
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(1) The (minor) S-matrix issue. The first issue is that the In-State Fock and

the Out-State Fock are unitarily equivalent. As a result, there is no unitary

S-matrix relating them! This turns out to be a minor technical issue: using

Fell’s theorem, it is possible to approximate the states of one representation

to an arbitrarily high degree of accuracy within the other. So, the lack of a

unitary intertwiner is really no barrier to this construction.

(2) The ‘late-time creation’ issue. The ‘late time solutions’ SL are not unam-

biguously associated with late times: they have support outside the black

hole, but still have tails that enter the black hole at early times. However,

these tails become arbitrarily small, and so this again is no real barrier to

the construction.

(3) Comparison with the Unruh effect. Recall that the Unruh effect can be

defined on maximally extended Schwarzschild spacetime, in virtue of the

presence of a bifurcate Killing horizon. However, it is a different state from

the Hawking-Hartle vacuum. Indeed, the Unruh vacuum isn’t a Hadamard

state, and so in this sense is less ‘physically reasonable’: the problem is

that we do not have the other time-like Killing vector field whose ground

state defines a global vacuum in Schwarzschild spacetime. The uniqueness

theorems establishing the Hawking-Hartle vacuum imply that the Unruh

vacuum in maximally extended Schwarzschild spacetime must be singular —

it is in particular singular on the white hole event horizon.

(4) The linear approximation issue. A precise expression of Hawking’s argument

requires a linear field theory. But, this approximation is unlikely to be accu-

rate in the context of the high-energy interactions associated with Hawking

radiation. In the case of the Unruh effect, the so-called ‘Bisognano-Wichman

theorem’ assures a version of the effect for non-linear fields. However, as far

as I know, there is no comparable assurance available for the Hawking effect.

(5) The Trans-Planckian problem. A more substantial concern is the infinite

blueshift issue, which is sometimes called the trans-Planckian problem for
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Hawking radiation. Some argue that this is just a coordinate-based illusion:

that in Kruskal coordinates, the problem of the origin of the modes is ab-

sorbed into the ordinary problem of renormalisation for quantum field theory

in curved spacetime (Polchinski 1995). But, this still does not avoid the fact

that late-time Hawking radiation is associated with high-energy interactions

in the past.

(6) Statistical mechanics, not thermodynamics. Another important conceptual

observation is that the above argument for the Hawking effect is entirely

about the statistical mechanics of quantum fields on curved spacetime. By

itself, it is conceptually distinct from Bekenstein’s claim that black holes

themselves are associated with a model of equilibrium thermodynamics, or

Hawking’s further claim that the back-reaction associated with the Hawking

effect leads to black hole evaporation.

Let me expand a little on this last remark. Equilibrium thermodynamics,

unlike statistical mechanics, is predicated on the idea that there is a fundamental

split between two kinds of energy in a physical system, which we refer to as heat Q

and work W . Thus, denoting energy by U , we can write this split as,

(4) U = Q+W.

For example, the energy associated with an equilibrium gas is associated with work-

related variables like PdV , but also with ‘hidden internal’ degrees of freedom like

the intermolecular motion associated with heat, and which are characterised by the

term Q =
∫
TdS.

However, assuming that the variables describing a classical black hole are

associated with work degrees of freedom, namely mass, charge, and angular momen-

tum, it follows from the ‘no hair’ theorems that there are no other variables available

to be associated with heat, so that Q = 0. This kind of thinking has led many to

remark that classical black holes have temperature equal to ‘absolute zero’.

The question is whether this argument changes in quantum theory, where we

view the quantum field theory as approximating some microstate degrees of freedom
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associated with the black hole spacetime. Such degrees of freedom are not available

to us absent a quantum theory of gravity. Thus, further argumentation is needed

to establish whether statistical mechanical entropy is proportional to the black hole

area, and indeed whether the semiclassical black hole system as a whole can be

treated thermodynamically.
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