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1
REALISM

1. Pre-theoretic realism

Of the many odd and various things we believe, few are believed
more confidently than the truths of simple mathematics. When
asked for an example of a thoroughly dependable fact, many will
turn from common sense—‘after all, they used to think humans
couldn’t fly’—from science—*the sun has risen every day so far, but
it might fail us tomorrow’—to the security of arithmetic—‘but 2
plus 2 is surely 4°.

Yet if mathematical facts are facts, they must be facts about
something; if mathematical truths are true, something must make
them true. Thus arises the first important question: what is
mathematics about? If 2 plus 2 is so definitely 4, what is it that
makes this so?

The guileless answer is that 2 + 2 = 4 is a fact about numbers,
that there are things called ‘2’ and ‘4’, and an operation called
‘plus’, and that the result of applying that operation to 2 and itself
is 4. 2+ 2 = 4’ is true because the things it’s about stand in the
relation it claims they do. This sort of thinking extends easily to
other parts of mathematics: geometry is the study of triangles and
spheres; it is the properties of these things that make the statements
of geometry true or false; and so on. A view of this sort is often
called ‘realism’.

Mathematicians, though privy to a wider range of mathematical
truths than most of us, often incline to agree with unsullied
common sense on the nature of those truths. They see themselves
and their colleagues as investigators uncovering the properties of
various fascinating districts of mathematical reality: number
theorists study the integers, geometers study certain well-behaved
spaces, group theorists study groups, set theorists sets, and so on.
The very experience of doing mathematics is felt by many to
support this position:
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The main point in favor of the realistic approach to mathemarics is the
instinctive certainty of most everybody who has ever tried to solve a
problem thar he is thinking about ‘real objects’, whether they are sets,
numbers, or whatever . . . (Moschovakis (1980), 605}

Realism, then (at first approximation), is the view that math-
ematics is the science of numbers, sets, functions, etc., just as
physical science is the study of ordinary physical objects, astro-
nomical bodies, subatomic particles, and so on. That is, math-
ematics is about these things, and the way these things are is what
makes mathematical statements true or false. This seems a simple
and straightforward view. Why should anyone think otherwise?

Alas, when further questions are posed, as they must be,
embarrassments arise. What sort of things are numbers, sets,
functions, triangles, groups, spaces? Where are they? The standard
answer is that they are abstract objects, as opposed to the concrete
objects of physical science, and as such, thar they are without
location in space and time. But this standard answer provokes
further, more troubling questions. Qur current psychological
theory gives the beginnings of a convincing portrait of ourselves as
knowers, but it contains no chapter on how we might come to
know about things so irrevocably remote from our cognitive
machinery. Our knowledge of the physical world, enshrined in the
sciences to which realism compares mathematics, begins in simple
sense perception. But mathematicians don’t, indeed can’t, observe
their abstract objects in this sense. How, then, can we know any
mathemartics; how can we even succeed in discussing this remote
mathematical realm?

Many mathematicians, faced with these awkward questions
about what mathematical things are and how we can know about
them, react by retreating from realism, denying that mathematical
statements are about anything, even denying thac they are true: *we
believe in the reality of mathematics, but of course when
philosophers attack us with their paradoxes we rush to hide behind
formalism and say “Mathematics is just a combination of meaning-
less symbols” .. ."." This formalist position—thar mathematics is
just a game with symbols—faces formidable obstacles of its own,
which 'l touch on below, but even without these, many math-
emarticians find it involving them in an uncomfortable form of

! Dieudonne, as quoted in Davis and Hersh (1981}, 321,
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double-think. The same writer continues: ‘Finally we are left in
peace to go back to our mathematics and do it as we have always
done, with the feeling each mathematician has that he is working
on something real’ {Davis and Hersh {1981}, 321}. Two more
mathematicians summarize:

the typical working mathematician is a [realist] on weekdays and a
formalist on Sundays. That is, when he is doing mathematics he is
convinced that he is dealing with an objective reality whose properties he is
attempting to determine. But then, when challenged to give a philosophical
account of this reality, he finds it easiest to pretend that he does not believe
in it after all. (Davis and Hersh (1981), 321}

Yet this occasional inauthenticity is perhaps less troubling to the
practising mathematician than the daunting requirements of a
legitimate realist philosophy:

Nevertheless, most attempts to turn these strong [realist] feelings into a
coherent foundation for mathematics invariably lead to vague discussions
of ‘existence of abstract notions’ which are quite repugnant to a
mathematician . . . Contrast with this the relative ease with which formal-
ism can be explained in a precise, elegant and self-consistent manner
and you will have the main reason why most mathematicians claim to be
formalists {when pressed} while they spend their working hours behaving
as if they were completely unabashed realists. (Moschovakis (1980), 605-6)

Mathematicians, after all, have their mathematics to do, and they
do it splendidly. Dispositionally suited to a subject in which
precisely stated theorems are conclusively proved, they might be
expected to prefer a simple and elegant, if ultimately unsatisfying,
philosophical position to one that demands the sort of metaphysical
and epistemological rough-and-tumble a full-blown realism would
require. And it makes no difference to their practice, as long as
double-think is acceptable.

But to the philosopher, double-think is not acceptable. If the very
experience of doing mathematics, and other factors, scon to be
discussed, favour realism, the philosopher of mathematics must
either produce a suitable philosophical version of that position, or
explain away, convincingly, its attractions. My goal here will be to
do the first, to develop and defend a version of the mathematician’s
pre-philosophical attitude.

Rather than artempt to treat all of mathematics, to bring the project
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down to more manageable size, T'll concentrate here on the
mathematical theory of sets.? I've made this choice for several
reasons, among them the fact that, in some sense, set theory forms a
foundation for the rest of mathematics. Technically, this means that
any object of mathematical study can be taken to be a set, and that
the standard, classical theorems about it can then be proved from
the axioms of set theory.?

Striking as this technical fact may be, the average algebraist or
geometer loses little time over set theory. But this doesn’t mean that
set theory has no practical relevance to these subjects. When
mathematicians from a field outside set rheory are unusually
frustrated by some recalcitrant open problem, the question arises
whether its solution might require some strong assumption
heretofore unfamiliar within that field. At this point, practitioners
fall back on the idea that the objects of their study are ultimately
sets and ask, within set theory, whether more esoteric axioms or
principles might be relevant. Given that the customary axioms of
set theory don’t even settle all questions about sets,* it might even
turn out that this particular open problem is unsolvable on the basis
of these most basic marthematical assumptions, that entirely new set
theoretic assumptions must be invoked.> In this sense, then, set
theory is the ultimate court of appeal on questions of what
mathematical things there are, that is to say, on what philosophers
call the ‘ontology’ of mathematics.®

Philosophically, however, this ontological reduction of math-
ematics to set theory has sometimes been taken to have more
dramatic consequences, for example that the entire philosophical
foundation of any branch of mathematics is reducible to that of set
theory. In this sense, comparable to implausibly strong versions of

T A set is a collection of objects. Among the many good introductions to the
mathematical theory of these simple entities, [ recommend Enderton (1977).

3 See e.g. the reduction of arithmetic and real number theory to set theory in
Enderton (1977), chs. 4 and 5. There are some exceptions to the rule that all
mathematical objects can be thought of as sets—e.g. proper classes and large
categories—but I will sgnore these cases for the time being.

4 Some details and philosophical consequences of this situation are the subject of
ch. 4.

5 Eklof and Mekler (forthcoming) give a survey of algebraic examples, and
Moschovakis (1980) does the same for parts of analysis.

% In philosophical parlance, ‘ontology’, the study of what there is, is opposed to
‘epistemology’, the study of how we come to know what we do about the world. 1
will use the word ‘metaphysics’ more or less as a synonym for “ontology’.
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the thesis that physics is basic to the natural sciences,” I think the
claim that set theory is foundational cannot be correct. Even if the
objects of, say, algebra are ultimately sets, set theory itself does not
call attention to their algebraic properties, nor are its methods
suitable for approaching algebraic concerns. We shouldn’t expect
the methodology or epistemology of algebra to be identical to that
of set theory any more than we expect the biologist’s or the
botanist’s basic notions and techniques to be identical to those of
the physicist. But again, this methodological independence of the
branches of mathematics from set theory does not mean there must
be mathematical entities other than sets any more than the
methodological independence of psychology or chemistry from
physics means there must be non-physical minds or chemistons.®

But little hangs on this assessment of the nature of set theory’s
foundational role. Even if set theory is no more than one among
many branches of mathematics, it is deserving of philosophical
scrutiny. Indeed, even as one branch among many, contemporary
set theory is of special philosophical interest because it throws into
clear relief a difficult and important philosophical problem that
challenges many traditional attitudes toward mathematics in
general. I will raise this problem in Chapter 4.

Finally, it is impossible to divorce set theory from its attendant
disciplines of number theory and analysis. These two fields and
their relationship to the theory of sets will form a recurring theme
in what follows, especially in Chapters 3 and 4.

PAGES6-19 SKIPPED BELO\

7 This view is called ‘physicalism’. I'll come back to it in ch. 5, sect. 1, below.

% There was a time when the peculiarities of biological science led practitioners
to vitalism, the assumption that a living organism contains a non-physical
component or aspect for whose behaviour no physical account can be given.
Nowadays, this idea is discredited—simply because it proved scientifically sterile—
and, as far as [ know, no one ever urged the acceptance of ‘chemistons’. Today,
psychology is the special science that most often lays claim to a non-physical subject
matter, but as suggested in the text, it seems to me that a purely physical ontology is
compatible with the most extreme methodological independence. For discussion, see
Fodor (1975), 9-26.
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4, Realism in mathematics

Let me turn at last to realism in the philosophy of mathematics
proper. Most prominent in this context is a folkloric position called
‘Platonism’ by analogy with Plato’s realism about universals. As is

*4 See e.g. Putnam (1977), 125. Or, from a different point of view, Burgess
(forthcoming a).
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common with such venerable terms, it is applied to views of very
different sorts, most of them not particularly Platonic.*> Here I will
take it in a broad sense as simply synonymous with ‘realism’ as
applied to the subject matter of mathematics: mathematics is the
scientific study of objectively existing mathematical entities just as
physics is the study of physical entities. The statements of
mathematics are true or false depending on the properties of those
entities, independent of our ability, or lack thereof, to determine
which.

Traditionally, Platonism in the philosophy of mathematics has
been taken to involve somewhat more than this. Following some of
what Plato had to say about his Forms, many thinkers have
characterized mathematical entities as abstract—outside of
physical space, eternal and unchanging-—and as existing necessarily—
regardless of the details of the contingent make-up of the physical
world. Knowledge of such entities is often thought to be a
priori—sense experience can tell us how things are, not how they
must be—and certain—as distinguished from fallible scientific
knowledge. 1T will call this constellation of opinions ‘traditional
Platonism’.

Obviously, this uncompromising account of mathematical reality
makes the question of how we humans come to know the requisite
a priori certainties painfully acute. And the successful application
of mathematics to the physical world produces another mystery:
what do the inhabitants of the non-spatio-temporal mathematical
realm have to do with the ordinary physical things of the world we
live in? In his theory of Forms, Plato says that physical things
‘participate’ in the Forms, and he uses the fact of our knowledge of
the latter, via a sort of non-sensory apprehension, to argue that the
soul must pre-exist birth.*® But our naturalized realist will hardly
buy this package.

Given these difficulties with traditional Platonism, it’s not
surprising that various forms of mathematical anti-realism have
been proposed. I'll pause to consider a sampling of these views
before describing the two main schools of contemporary Platonism.

45 For example, though the term ‘Platonism’ suggests a realism about universals,
many Platonists regard mathematics as the science of peculiarly mathematical
particulars: numbers, functions, sets, etc. An exception is the structuralist approach
considered in ch. 5, sect. 3, below.

46 See his Phaedo 72 077 a.
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In the late 1600s, in response to a number of questions from
physical science, Sir Isaac Newton and Gottfried Wilhelm von
Leibniz simultaneously and independently invented the calculus.
Though the scientist’s problems were solved, the new mathematical
methods were scandalously error-ridden and confused. Among the
most vociferous and perceptive critics was the idealist Berkeley, an
Anglican bishop who hoped to silence the atheists by showing their
treasured scientific thinking to be even less clear than theology. The
central point of contention was the notion of infinitesimals,
infinitely small amounts still not equal to zero, which Berkeley
ridiculed as ‘the ghosts of departed quantities’.*” Two centuries
later, Bolzano, Cauchy, and Weierstrass had replaced these ghosts
with the modern theory of limits.*3

This account of limits required a foundation of its own, which
Georg Canror and Richard Dedekind provided in their theory of
real numbers, but these in turn reintroduced the idea of the
completed infinite into mathematics. No one had ever much liked
the seemingly paradoxical idea that a proper part of an infinite
thing could be in some sense as large as the whole—there are as
many even natural numbers as there are even and odd, there are as
many points on a one-inch line segment as on a two-inch line
segment—but the infinite sets introduced by Cantor and others
gave rise to outright contradictions, of which Bertrand Russell’s is
the most famous:*’ consider the set of all sets that are not members
of themselves. It is self-membered if and only if it isn’t. The opening
decades of this century saw the development of three great schools
of thought on the nature of mathematics, all of them designed to
deal in one way or another with the problem of the infinite.

The first of these is intuitionism, which dealt with the infinite by
rejecting it outright. The original version of this position, first
proposed by L.E.J. Brouwer,’” was analogous to Berkeleian

47 See Berkeley (1734), subtitled ‘A Discourse Addressed to an Infidel Mathe-
matician. Wherein It is Examined Whether the Object, Principles, and Inferences of
the Modern Analysis are More Distinctly Conceived, or More Evidently Deduced,
than Religious Mysteries and Points of Faith’. The quotation is from p. 89.

*8 For a more detailed description of the developments sketched in this paragraph
and the next, see Kline (1972), chs. 17,40, 41, and 51, or Boyer (1949).

4 The paradox most directly associated with Cantor’s work is Burali-Forti’s
(1897). See Cantor’s discussion (1899). Russell’s primary target was Frege, as will be
noted below.

9 Brouwer (1913; 1949). Other, less opaque, expositions of this position are
Heyting (1931; 1966) and Troelstra (1969).
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idealism: it takes the objects of mathematics to be mental
constructions rather than objective entities. The modern version,
defended by Michael Dummett,’! is a brand of verificationism: a
mathematical statement is said to be true if and only if it has been
constructively proved. Either way, a series of striking consequences
follow: statements that haven’t been proved or disproved are
neither true nor false; completed infinite collections (like the set of
natural numbers) are illegitimate; much of infinitary mathematics
must either be rejected (higher set theory) or radically revised (real
number theory and the calculus).

These forms of intuitionism face many difficulties—e.g. does
each mathematician have a different mathematics depending on
what she’s mentally constructed? how can we verify even state-
ments about large finite numbers? etc.—but its most serious
drawback is that it would curtail mathematics itself. My own
working assumption is that the philosopher’s job is to give an
account of mathematics as it is practised, not to recommend
sweeping reform of the subject on philosophical grounds. The
theory of the real numbers, for example, is a fundamental
component of the calculus and higher analysis, and as such is far
more firmly supported than any philosophical theory of math-
ematical existence or knowledge. To sacrifice the former to preserve
the latter is just bad methodology.

A second anti-realist position is formalism, the popular school of
double-think mentioned above. The earliest versions of the view
that mathematics is a game with meaningless symbols played
heavily on a simple analogy between mathematical symbols and
chess pieces, between mathematics and chess, but even its advocates
were uncomfortably aware of the stark disanalogies:>>

To be sure, there is an important difference between arithmetic and chess.
The rules of chess are arbitrary, the system of rules for arithmetic is such
that by means of simple axioms the numbers can be referred to perceptual
manifolds and can thus make [an] important contribution to our
knowledge of nature.

The Platonist Gottlob Frege launched a fierce assault on early
formalism, from many directions simultaneously, but the most

31 Dummett (19753 1977).

32 Frege cites this quotation from Thomae in his critique of formalism: Frege
(1903), § 88.
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penetrating arose from just this point. It isn’t hard to see how
various true statements of mathematics can help me determine how
many bricks it will take to cover the back patio, but how can a
meaningless string of symbols be any more relevant to the solution
of real world problems than an arbitrary arrangement of chess
pieces?

This is Frege’s problem: what makes these meaningless strings of
symbols useful in applications?*® Suppose, for example, that a
physicist tests a hypothesis by using mathematics to derive an
observational prediction. If the mathematical premiss involved is
just a meaningless string of symbols, what reason is there to take
that observation to be a consequence of the hypothesis? And if it is
not a consequence, it can hardly provide a fair test. In other words,
if mathematics isn’t true, we need an explanation of why it is all
right to treat it as true when we use it in physical science.

The most famous version of formalism, the one expounded
during the period under consideration here, was David Hilbert’s
programme.’* Hilbert, like Brouwer, felt that only finitary math-
ematics was truly meaningful, but he considered Cantor’s theory of
sets ‘one of the supreme achievements of purely intellectual human
activity’ and promised, in a famous remark, that

No one shall drive us out of the paradise which Cantor has created for us.
(Hilbert (1926), 188, 191)

Hilbert proposed to save infinitary mathematics by treating it
instrumentally-——meaningless statements about the infinite are a
useful tool in deriving meaningful statements about the finite—but
he, unlike the scientific instrumentalists, was sensitive to the
question of how this practice could be justified. Hilbert’s plan was
to give a metamathematical proof that the use of the meaningless
statements of infinitary mathematics to derive meaningful state-
ments of finitary mathematics would never produce incorrect
finitary results. The same line of thought might have applied to its
use in natural science as well, thus solving Frege’s problem.
Hilbert’s efforts to carry through on this project produced the rich

33 See Frege (1903), § 91.
54 See Hilbert (1926; 1928).
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new field of metamathematics, but Kurt Gédel soon proved that its
cherished goal could not be reached.>®

For all the simplicity of game formalism and the fame of Hilbert’s
programme, many mathematicians, when they claim to be formal-
ists, actually have another idea in mind: mathematics isn’t a science
with a peculiar subject matter; it is the logical study of what
conclusions follow from which premisses. Philosophers call this
position ‘if-thenism’. Several prominent philosophers of math-
ematics have held this position at one time or another—Hilbert
(before his programme), Russell (before his logicism), and Hilary
Putnam (before his Platonism)*®—but all ultimately rejected it. Let
me briefly indicate why.

A number of annoying difficulties plague the if-thenist: which
logical language is appropriate for the statement of premisses and
conclusions? which premisses are to be presupposed in cases like
number theory, where assumptions are usually left implicit? from
among the vast range of arbitrary possibilities, why do mathemat-
icians choose the particular axiom systems they do to study? what
were historical mathematicians doing before their subjects were
axiomatized? what are they doing when they propose new axioms?
and so on. But the question that seems to have scotched if-thenism
in the minds of Russell and Putnam was a version of Frege’s
problem: how can the fact that one mathematical statement follows
from another be correctly used in our investigation of the physical
world? The general thrust of the if-thenist’s reply seems to be that
the antecedent of a mathematical if-then statement is treated as an
idealization of some physical statement. The scientist then draws as
a conclusion the physical statement that is the unidealization of the
consequent.®’

Notice that on this picture, the physical statements must be
entirely mathematics-free; the only mathematics involved is that
used in moving between them. Unfortunately, many of the

35 See Godel (1931). Enderton (1972), ch. 3, gives a readable presentation.
Detlefsen (1986) attempts to defend Hilbert’s programme against the challenge of
Godel’s theorem., Simpson (1988) and Feferman (1988) pursue partial or relativized
versions within the limitations of Gédel’s theorem.

56 See Resnik (1980), ch. 3, for discussion. There if-thenism is called ‘deductiv-
ism’. See also Putnam (1979), p. xiii. Russell’s logicism and Putnam’s Platonism will
be considered below.

37 See Korner (1960), ch. 8. Cf. Putnam {1967b), 33.
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statements of physical science seem inextricably mathematical. To
quote Putnam, after his conversion:

one wants to say that the Law of Universal Gravitation makes an objective
statement about bodies—not just about sense data or meter readings.
What is the statement? It is just that bodies behave in such a way that the
quotient of two numbers associated with the bodies is equal to a third
number associated with the bodies. But how can such a statement have any
objective content at all if numbers and ‘associations’ (i.e. functions) are
alike mere fictions? It is like trying to maintain that God does not exist and
angels do not exist while maintaining at the very same time that it is an
objective fact that God has put an angel in charge of each star and the
angels in charge of each of a pair of binary stars were always created at the
same time! If talk of numbers and ‘associations’ between masses, etc. and
numbers is ‘theology’ (in the pejorative sense), then the Law of Universal
Gravitation is likewise theology. (Putnam (1975b), 74-5)

In other words, the if-thenist account of applied mathematics
requires that natural science be wholly non-mathematical, but it
seems unlikely that science can be so purified.*®

The third and final anti-realist school of thought I want to
consider here is logicism, or really, the version of logicism advanced
by the logical positivists. Frege’s original logicist programme aimed
to show that arithmetic is reducible to pure logic, that is, that its
objects—numbers—are logical objects and that its theorems can be
proved by logic alone.’” This version of logicism is outright
Platonistic: arithmetic is the science of something objective (be-
cause logic is objective), that something objective consists of objects
(numbers), and our logical knowledge is a priori. If this project had
succeeded, the epistemological problems of Platonism would have
been reduced to those of logic, presumably a gain. But Frege’s
project failed; his system was inconsistent.®® Russell and White-
head took up the banner in their Principia Mathematica, but were
forced to adopt fundamental assumptions no one accepted as

5% Hartry Field’s ambitious artempt to do this will be considered in ch. 3, sect. 2,
below. See Field (1980; 1989),

5% See Frege (1884).

67 The trouble was the original version of Russell’s paradox. (See Russell’s letter
to Frege, Russell (1902).) Frege’s numbers were extensions of concepts. (See ch. 3
below.) Some concepts, like ‘red’, don’t apply to their extensions, others, like
‘infinite’, do. Russell considered the extension of the concept ‘doesn’t apply to its
own extension’. If it applies to its own extension then it doesn’t, and vice versa. This

contradiction was provable from Frege's fundamental assumptions. There have been
efforts to revive Frege's system; see e.g. Wright (1983) and Hodes (1984).
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purely logical.®! Eventually, Ernst Zermelo {aided by Mirimanoff,
Fraenkel, Skolem, and von Neumann) produced an axiom system
that showed how mathematics could be reduced to set theory,** but
again, no one supposed that set theory enjoys the epistemological
transparency of pure logic.

Still, the idea that mathematics is just logic was not dead; it was
taken up by the positivists, especially Rudolf Carnap.®* For these
thinkers, however, there are no logical objects of any kind, and the
laws of logic and mathematics are true only by arbitrary conven-
tion. Thus mathematics is not, as the Platonist insists, an objective
science. The advantage of this counterintuitive view is that
mathematical knowledge is easily explicable; it arises from human
decisions. Question: Why are the axioms of Zermelo—Fraenkel
true? Answer: Because they are part of the language we’ve adopted
for using the word ‘set’.

This conventionalist line of thought was subjected to a historic
series of objections by Carnap’s student, W. V. O. Quine.®* The key
difficulty is that both mathematical and physical assumptions are
enshrined in Carnap’s official language. How are we to separate the
conventionally adopted mathematical part of the language from the
factually true physical hypotheses? Quine argues that it isn’t
enough to say that the scientific claims, not the mathematical ones,
are supported by empirical data:

The semblance of a difference in this respect is largely due to overemphasis
of departmental boundaries. For a self-contained theory which we can
check with experience includes, in point of fact, not only its various
theoretical hypotheses of so-called natural science but also such portions of
logic and mathematics as it makes use of. (Quine {1954}, 367)

Mathematics is part of the theory we test against experience, and a
successful test supports the mathematics as much as the science.
Carnap makes several efforts to separate mathematics from
natural science, culminating in his distinction between analytic and
synthetic. Mathematical statements, he argues, are analytic, that is,

¢l See Russell and Whitehead (1913).

62 Zermelo's first presentation is Zermelo (19085). See also Mirimanoff {19174,
b), Fraenkel (1922), Skolem (1923), and von Neumann (1925). The standard
axioms are now called “Zermelo—Fraenkel set theory’ or ZFC (ZF when the axiom of
choice is omitted). See Enderton (1977), 271-2.

63 See Carnap (1937; 1950).

8% See Quine (1936; 1951; 1954).
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true by virtue of the meanings of the words involved (the logical
and mathematical vocabulary); scientific statements, on the other
hand, are synthetic, true by virtue of the way the world is. Quine
examines this distinction in great detail, investigating various
attempts at clear formulation, and concludes:

It is obvious that truth in general depends on both language and
extralinguistic fact. The statement ‘Brutus killed Caesar’ would be false if
the world had been different in certain ways, but it would also be false if
the word ‘killed” happened rather to have the sense of ‘begat’. Thus one is
tempted to suppose in general that the truth of a statement is somehow
analyzable into a linguistic component and a factual component. Given this
supposition, it next seems reasonable that in some statements the factual
component should be null; and these are the analytic statements. But, for
all its a priori reasonableness, a boundary between analytic and synthetic
statements simply has not been drawn. That there is such a distinction to be
drawn at all is an unempirical dogma of empiricists, a metaphysical article
of faith. (Quine {(1951), 36-7)

Without a clear distinction between analytic and synthetic, Carnap’s
anti-Platonist version of logicism fails.

I will leave the three great schools at this point. I don’t claim to
have refuted either formalism or conventionalism, though I hope
the profound difficulties they face have been drawn clearly enough.
Intuitionism I reject on the grounds given above; 1 assume that the
job of the philosopher of mathematics is to describe and explain
mathematics, not to reform it.

Let me return now to Platonism, the view that mathematics is an
objective science. Platonism naturally conflicts with each of the
particular forms of anti-realism touched on here—with intuition-
ism on the objectivity of mathematical entities, with formalism on
the status of infinitary mathematics, with logicism on the need for
mathematical existence assumptions going beyond those of logic—
but the Platonist’s traditional and purest opponent is the nominal-
ist, who simply holds that there are no mathematical entities. (The
term ‘nominalism’ has followed ‘Platonism’ in its migration from
the debate over universals into the debate over mathematical
entities.) Two forms of Platonism dominate contemporary debate.
The first of these derives from the work of Quine and Putnam
sketched above——their respective criticisms of conventionalism and
if-thenism—and the second is described by Godel as the philo-
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sophical underpinning for his famous theorems.®® As Quine and
Putnam’s writings have just been discussed, let me begin with them.

Quine’s defence of mathematical realism follows directly on the
heels of the defences of common-sense and scientific realism
sketched above. On the naturalized approach, we judge what
entities there are by seeing what entities we need to produce the
most effective theory of the world. So far, these include medium-
sized physical objects and the theoretical entities of physical
science, and so far, the nominalist might well agree. But if we
pursue the question of mathematical ontology in the same spirit,
the nominalist seems cornered:

A platonistic ontology . . . is, from the point of view of a strictly physical-
istic conceptual scheme, as much a myth as that physicalistic conceptual
scheme itself is for phenomenalism. This higher myth is a good and useful
one, in turn, in so far as it simplifies our account of physics. Since
mathematics is an integral part of this higher myth, the utility of this myth
for physical science is evident enough. (Quine (1948), 18)

If we countenance an ontology of physical objects and unobserv-
ables as part of our best theory of the world, how are we to avoid
countenancing mathematical entities on the same grounds? Carnap
suggested what Quine calls a ‘double standard’®® in ontology,
according to which questions of mathematical existence are
linguistic and conventional and questions of physical existence are
scientific and real, but we've already seen that this effort fails.

We’ve also seen that Putnam takes the same thinking somewhat
further, emphasizing not only that mathematics simplifies physics,
but that physics can’t even be formulated without mathematics:¢’
‘mathematics and physics are integrated in such a way that it is not
possible to be a realist with respect to physical theory and a
nominalist with respect to mathematical theory’ (Putnam (1975b),
74). He concludes that talk about®®

mathematical entiries is indispensable for science . . . therefore we should

¢ See his letters to Wang, quoted in Wang (1974b), 8-11, and Feferman’s
discussion (1984b).

% Quine (1951), 45.

67 See the long quotation from Putnam (19755) above. A more complete account
apgears in Putnam (1971), esp.§§ 5 and 7.

8 He really says ‘quantification over’, which derives from Quine’s official

criterion of ontological commitment (1948), but I don’t want to get into the debate
over that precise formulation.
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accept such [talk]; but this commits us to accepting the existence of the
mathematical entities in question. This type of argument stems, of course,
from Quine, who has for years stressed both the indispensability of [ralk
about] mathematical entities and the intellectual dishonesty of denying the
existence of what one daily presupposes. (Putnam (1971}, 347)

We are committed to the existence of mathematical objects because
they are indispensable to our best theory of the world and we
accept that theory.

The particular brand of Platonism that arises from these Quine/
Putnam indispensability arguments has some revolutionary features.
Recall that traditional Platonism takes mathematical knowledge to
be a priori, certain, and necessary. But, if our knowledge of
mathematical entities is justified by the role it plays in our
empirically supported scientific theory, that knowledge can hardly
be classified as a priori.® Furthermore, if we prefer to alter our
scientific hypotheses rather than our mathematical ones when our
overall theory meets with disconfirmation, it is only because the
former can usually be adjusted with less perturbation to the theory
as a whole.”® Indeed, Putnam”' goes so far as to suggest thac the
best solution to difficulties in quantum mechanics may well be to
alter our logical laws rather than any physical hypotheses. Thus the
position of mathematics as part of our best theory of the world
leaves it as liable to revision as any other part of that theory, at least
in principle, so mathematical knowledge is not certain. Finally, the
case of necessity is less clear, if only because Quine rejects such
modal notions out of hand, but the facr that our mathematics is
empirically confirmed in this world surely provides little support
for the claim that it is likely to be true in some other possible
circumstance. So Quine/Putnam Platonism stands at some consider-
able remove from the traditional vartety.

But while disagreement with a venerable philosophical theory is
no clear demerit, disagreement with the realities of mathematical
practice is. First, notice that unapplied mathematics is completely
without justification on the Quine/Putnam model; it plays no
indispensable role in our best theory, so it need not be accepted: 2

6% See Putnam (19756} for an explicit discussion of a posteriari methods in
mathematics. Kitcher (1983) attacks the idea that mathematics is a priori from a
different angle.

70 See Quine (1951}, 43—4.

! Putnam (1968).
= See also Putnam {1971), 346—7.

~
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So much of mathematics as is wanted for use in empirical science is for me
on a par with the rest of science. Transfinite ramifications are on the same
footing insofar as they come of a simplificatory rounding out, but anything
further is on a par rather with uninterpreted systems. (Quine (1984), 788)

Now mathematicians are not apt to think that the justification for
their claims waits on the activities in the physics labs. Rather,
mathematicians have a whole range of justificatory practices of
their own, ranging from proofs and intuitive evidence, to plausibil-
ity arguments and defences in terms of consequences. From the
perspective of a pure indispensability defence, this is all just so
much talk; what matters is the application.

If this weren’t enough to disqualify Quine/Putnamism as an
account of mathematics as it is practised, consider one last point. In
this picture of our scientific theorizing, mathematics enters only at
fairly theoretical levels. The most basic evidence takes the form of
non-mathematical observation sentences—e.g. ‘this chunk of gold
is malleable’—and the initial levels of theory consist of non-
mathematical generalizations—‘gold is a malleable metal’. Math-
ematics only enters the picture at the more theoretical levels—‘gold
has atomic number 79’—so it is on an epistemic par with this
higher-level theory.” But isn’t it odd to think of 2 + 2 = 4’ or ‘the
union of the set of even numbers with the set of odd numbers is the
set of all numbers’ as highly theoretical principles? In Charles
Parsons’s phrase, Quine/Pumamism ‘leaves unaccounted for pre-
cisely the obviousness of elementary mathemarics’.”*

By way of contrast, the Gédelian brand of Platonism takes its
lead from the actual experience of doing mathematics, which he
takes to support Platonism as suggested in section 1 above. For
Gédel, the most elementary axioms of set theory are obvious; in his
words, they ‘force themselves upon us as being true’.”® He accounts
for this by positing a faculty of mathematical intuition that plays a
role in mathematics analogous to that of sense perception in the
physical sciences, so presumably the axioms force themselves upon
us as explanations of the intuitive data much as the assumption of
medium-sized physical objects forces itself upon us as an explana-
tion of our sensory experiences. To push this analogy, recall that
this style of argument for common-sense realism might have been

73 See Quine (1948), 18-19.

74 Parsons (1979/80), 151. See also Parsons (1983b).
7S Godel (1947/64), 484,
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undercut if phenomenalists had succeeded in giving non-realistic
translations of our physical object statements. Similarly, Gédel
notes that Russell’s ‘no-class’ interpretation of Principia was an
effort to do the work of set theory, that is, to systematize all of
mathematics, without sets. Echoing the common-sense realist,
Godel takes the failure of Russell’s project as support for his
mathematical realism:

This whole scheme of the no-class theory is of great interest as one of the
few examples, carried out in detail, of the tendency to eliminate
assumptions about the existence of objects outside the ‘data’ and to replace
them by constructions on the basis of these data.”® The result has been in
this case essentially negative . .. All this is only a verification of the view
defended above that logic and mathematics (just as physics) are built up on
axioms with a real content which cannot be ‘explained away’. (Godel
(1944), 460-1)

He concludes that

the assumption of [sets] is quite as legitimate as the assumption of physical
bodies and there is quite as much reason to believe in their existence. They
are in the same sense necessary to obtain a satisfactory system of
mathematics as physical bodies are necessary for a satisfactory theory of
our sense perceptions . . . (Godel (1944), 456-7)

But this analogy of intuition with perception, of mathematical
realism with common-sense realism, is not the end of Godel’s
elaboration of the mathematical realist’s analogy between math-
ematics and natural science. Just as there are facts about physical
objects that aren’t perceivable, there are facts about mathematical
objects that aren’t intuitable. In both cases, our belief in such
‘unobservable’ facts is justified by their role in our theory, by their
explanatory power, their predictive success, their fruitful inter-
connections with other well-confirmed theories, and so on. In
Godel’s words:

even disregarding the {intuitiveness] of some new axiom, and even in case it
has no [intuitiveness] at all, a probable decision about its truth is possible
also in another way, namely, inductively by studying its ‘success’.

There might exist axioms so abundant in their verifiable consequences,

76 In this passage, ‘data’ means ‘logic without the assumption of the existence of
classes’ (Godel (1944), 460 n. 22). Earlier in this same paper, Godel refers to arithmetic
as ‘the domain of the kind of elementary indisputable evidence that may be most
fittingly compared with sense perception’ (p. 449).
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shedding so much light upon a whole field, and yielding such powerful
methods for solving problems . . . that, no matter whether or not they are
[intuitive], they would have to be accepted at least in the same sense as any

well-established physical theory. (Godel (1947/64), 477)

Quite a number of historical and contemporary justifications for set
theoretic hypotheses take this form, as will come out in Chapter 4.
Here the higher, less intuitive, levels are justified by their
consequences at lower, more intuitive, levels, just as physical
unobservables are justified by their ability to systematize our
experience of observables. At its more theoretical reaches, then,
Godel’s mathematical realism is analogous to scientific realism.

Thus Gédel’s Platonistic epistemology is two-tiered: the simpler
concepts and axioms are justified intrinsically by their intuitiveness;
more theoretical hypotheses are justified extrinsically, by their
consequences. This second tier leads to departures from traditional
Platonism similar to Quine/Putnam’s. Extrinsically justified hypo-
theses are not certain,”’ and, given that Godel allows for
justification by fruitfulness in physics as well as in mathematics,”®
they are not a priori either. But, in contrast with Quine/Putnam,
Godel gives full credit to purely mathematical forms of justification
—intuitive self-evidence, proofs, and extrinsic justifications within
mathematics—and the faculty of intuition does justice to the
obviousness of elementary mathematics.

Among Godel’s staunchest critics is Charles Chihara.”” Even if
Godel has succeeded in showing that the case for the existence of
mathematical entities runs parallel to the case for the existence of
physical ones, Chihara argues that he has by no means shown that
the two cases are of the same strength, and thus, that he has not
established that there is as much reason to believe in the one as to
believe in the other.®? Furthermore, Chihara argues, the existence
of mathematical entities is not required to explain the experience of
mathematical intuition and agreement:

I believe it is at least as promising to look for a naturalistic explanation
based on the operations and structure of the internal systems of human
beings. (Chihara (1982), 218)

77 Godel (1944), 449.

Godel (1947/64), 485.

79 See Chihara (1973), ch, 2; {1982},
80 Chihara (1982),213-14.
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.. . mathematicians, regarded as biological organisms, are basically quite
similar, (Chihara {1973), 80}

And finally, he questions whether Gédel’s intuition offers any
explanation at all:®!

the ‘explanation’ offered is so vague and imprecise as to be practically
worthless: all we are told about how the ‘external objects’ explain the
phenomena is that mathematicians are ‘in some kind of contact’ with these
objects. What empirical scientist would be impressed by an explanation
this flabby? (Chihara (1982),217)

Now the Godelian Platonist is not entirely defenceless in the face
of this attack. For example, Mark Steiner®? points out that
Chihara’s ‘explanation’ is likewise lacking in muscle tone: the
similarity of human beings as organisms can hardly explain their
agreement about mathematics when it is consistent with so much
disagreement on other subjects. Still, most observers tend to agree
that no appeal to purported human experiences of xs that underlie
our theory of xs can justify a belief in the existence of xs unless we
have some independent reason to think our theory of xs is true.®?
Thus the purported human dealings with witches that underlie our
theory of witches don’t justify a belief in witches unless we have
some independent reason to think that our theory of witches is
actually correct.

Burt notice: we have recently rehearsed just such an independent
reason in the case of mathematics, namely, the indispensability
arguments of Quine and Putnam. Unless endorsing these commits
one to the view that there is no peculiarly mathematical form of
evidence—and I don’t see why it should®*—there is room for an
attractive compromise between Quine/Putnam and Godelian Platon-
ism. It goes like this: successful applications of mathematics give
us reason to believe that mathematics is a science, that much of it at
least approximates truth. Thus successful applications justify, in a
general way, the practice of mathematics. But, as we’ve seen, this
isn’t enough to give an adequate account of mathematical practice,

# These remarks of Chihara’s are actually addressed to a quotation from Kreisel,
but it is clear from the context that he thinks the same objection applies to Gédel’s
intuition.

82 Steiner (19756), 190.

83 See Steiner (1975b), 190. For a similar sentiment, see Putnam (19756), 73—-4.

8% Nor does Parsons (1983b), 1923,
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of how and why it works. We still owe an account of the
obviousness of elementary mathematics, which Gadel’s intuition is
designed to provide, and an account of other purely mathematical
forms of evidence, like proof and various extrinsic methods. This
means we need to explain what intuition is and how it works; we
need to catalogue extrinsic methods and explain why they are
rational methods in the pursuit of truth.

From Quine/Putnam, this compromise takes the centrality of the
indispensability arguments; from Goédel, it takes the recognition of
purely mathematical forms of evidence and the responsibility for
explaining them. Thus it averts a major difficulty with Quine/
Putnamism—its unfaithfulness to mathematical practice—and a
major difficulty with Godelism—its lack of a straightforward
argument for the truth of mathematics. But whatever its merits,
compromise Platonism does nothing to remedy the flabbiness of
Gédel’s account of intuition. And it is in this neighbourhood that
many contemporary objections to Platonism are concentrated.®

I opened this chapter with the hope of reinstating the mathemat-
ician’s pre-philosophical realism, of devising a defensible refinement
of thar attitude that remains true to the phenomenology of practice.
Along the way, I've sided with common-sense realism, scientific
realism, and philosophical naturalism, and seconded many of the
advances of Quine/Putnam and Gédelian Platonism. It will come as
no surprise, then, that the position to be defended here is a version
of compromise Platonism. I'll call it ‘set theoretic realism’.

Chapter 2 outlines a naturalistic epistemology for items located
on the lower tier of Gédel’s two-tiered epistemology, a replacement
for Gédel’s intuition. The ontological question of the relationship
between sets and other mathematical entities, particularly natural
and real numbers, is the subject of Chapter 3. Chapter 4 contains
some preliminary spadework on the problem of theoretical
justification, the second of Godel’s two tiers. | argue that this ill-
understood problem is the most important open question of our
day, not only for set theoretic realism, but for many other
mathematical philosophies as well. Chapter 5 takes a final look at
set theoretic realism from physicalist and structuralist perspectives.

85 See ch. 2, sect. 1, below.





