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Selections from 
Introduction to Mathematical Philosophy 

BERTRAND RUSSELL 

I. The series of natural numbers 

Mathematics is a study which, when we start from its most familiar por
tions, may be pursued in either of two opposite directions. The more 
familiar direction is constructive, towards gradually increasing complex
ity: from integers to fractions, real numbers, complex numbers; from 
addition and multiplication to differentiation and integration, and on to 
higher mathematics. The other direction, which is less familiar, proceeds, 
by analysing, to greater and greater abstractness and logical simplicity; 
instead of asking what can be defined and deduced from what is assumed 
to begin with, we ask instead what more general ideas and principles can 
be found, in terms of which what was our starting-point can be defined 
or deduced. It is the fact of pursuing this opposite direction that char
acterises mathematical philosophy as opposed to ordinary mathematics. 
But it should be understood that the distinction is one, not in the subject 
matter, but in the state of mind of the investigator. Early Greek geome
ters, passing from the empirical rules of Egyptian land-surveying to the 
general propositions by which those rules were found to be justifiable, 
and thence to Euclid's axioms and postulates, were engaged in mathe
matical philosophy, according to the above definition; but when once the 
axioms and postulates had been reached, their deductive employment, as 
we find it in Euclid, belonged to mathematics in the ordinary sense. The 
distinction between mathematics and mathematical philosophy is one 
which depends upon the interest inspiring the research, and upon the 
stage which the research has reached; not upon the propositions with 
which the research is concerned. 

We may state the same distinction in another way. The most obvious 
and easy things in mathematics are not those that come logically at the 
beginning; they are things that, from the point of view of logical deduc
tion, come somewhere in the middle. Just as the easiest bodies to see are 
those that are neither very near nor very far, neither very small nor very 

Reprinted by kind permission of the publishers from Bertrand Russell Introduction to 
Mat~ematical Philosophy (New York: The Macmillan Company; Londo~: George Allen & Unwm Ltd., 1919), pp. 1-19, 194-206. 
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great so the easiest conceptions to grasp are thos~ t~at are) n~~~~;:~ 
com 'lex nor very simple (using "simple" in a logrca ~ense . 
neeltwo sorts of instruments, the telescope and the mtcrosfc?pet, foretn~~ 

. e need two sorts o ms rum · enlargement of our visual powers, so w f d to the 
I . I e s one to take us orwar for the enlargement of our ogtca pow r , h I . I founda-

higher mathematics, the other to ~ak: us backw:rdf to t :n~;~c~n mathe
tions of the things that we are mchne~ to ta e ~~n~y mathematical 

matics. We shall find t.ha~ by analyst:!r::n~:he means of reaching 
notions we acquire fresh mstght, new po ~ f h lines of advance 
whole new mathematical subjects by adoptmg fretsh. book to explain 

d · y It is the purpose o IS 
after our back war JOurne. · h . lly without enlarging 

. I h., hy stmply and untec mea , 
mathemattca P I osop f 1 d'ffcult that an elementary 
upon those portions which are so doubt u or I .;, be found in Principia 
treatment is scarcely possible. A full tre.atmhent WI t volume is intended 
Mathematica (1910-13); the treatment m t e presen 

as an introduction. t day the obvious start-
To the average educated person of the presen ' b 

d b h ·es of whole num ers, ing-point of mathematics woul e t e sen 

1,2,3,4, ... ,etc. 

. thematical knowledge would think 
Probably only a person With so~e rna b 'll presume this degree of 
of beginning with 0 instead of With I, ut ~e WI . . 

. t ting-pomt the senes. knowledge; we wtll take as our s ar 

0,1, 2, 3, ... n, n+ I,... . 

when we speak of the "senes of and it is this series that we shall mean 

natural numbers." . . . . hat we could take this series as 
It is only at a high stage of ctvlhsati?n ~ any ages to discover that a 

our starting-point. It must have require m both instances of the num
brace of pheasants and a couple ~f days w~:~ar from easy. And the dis
ber 2: the degree of abstraction mvo~edn difficult. As for o, it is a very 
covery that 1 is a number must have ee h d no such digit. If we had 
recent addition; the Greeks and Rom~lns ahy in earlier days, we should 
been embarking upon mathematical phi :~op t than the series of natural 
have had to start with something less a s rae our backward journey. 
numbers, which we should reach as a sta~e ~:ve grown more familiar, 
When the logical foundations of mathe:a~t~:t is now a late stage in our 
we shall be able to start further back, 1 b s seem to represent what 
analysis. But for the moment the natura ~urn er 
. . f T r in mathematics. 
IS eastest and most amt ta d t d Very few people are pre-

But though familiar. they are ~ot un e~ ~? · mber " or "0," or "1." 
pared with a definition of what ts meant y nu ' 
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It is not very difficult to see that, starting from 0, any other of the natural 
numbers can be reached by repeated additions of I, but we shall have to 
define what we mean by "adding 1," and what we mean by "repeated." 
These questions are by no means easy. It was believed until recently that 
some, at least, of these first notions of arithmetic must be accepted as too 
simple and primitive to be defined. Since all terms that are defined are 
defined by means of other terms, it is clear that human knowledge must 
always be content to accept some terms as intelligible without definition, 
in order to have a starting-point for its definitions. It is not clear that 
there must be terms which are incapable of definition: it is possible that, 
however far back we go in defining, we always might go further still. On 
the other hand, it is also possible that, when analysis has been pushed far 
~nough, we can reach terms that really are simple, and therefore logically 
mcapable of the sort of definition that consists in analysing. This is a 
que~ti?n which it is not necessary for us to decide; for our purposes it is 
sufficient to observe that, since human powers are finite, the definitions 
known to us must always begin somewhere, with terms undefined for the 
moment, though perhaps not permanently. 

All traditional pure mathematics, including analytical geometry, may 
be regarded as consisting wholly of propositions about the natural num
bers. That is to say, the terms which occur can be defined by means of 
the nat~ral numbers, and the propositions can be deduced from the 
~ropertles of the natural numbers -with the addition in each case of the 
Ideas and propositions of pure logic. ' ' 

That all traditional pure mathematics can be derived from the natural 
~umbers is a fairly recent discovery, though it had long been suspected. 

ythagoras, who believed that not only mathematics, but everything 
els~, could be d~duced from numbers, was the discoverer of the most 
seno~s obstacle 1n the way of what is called the "arithmetlsina" of math· 
ematlcs. It was Pythagoras who discovered the existence of incommen· 
:urables, and, i? particular, the incommensurability of the side of a 
. quare _and the diagonal. If the length of the side is 1 inch the number of 
mches m the diagonal · th . • ts e square root of 2, whtch appeared not to be a 
number at all The probl th · 

d 
· em us ratsed was solved only in our own day 

an was only solved compl t 1 b h ' 
t l 

. . . e e Y Y t e help of the reduction of arithmetic 
o Ogic, which Will be expla· d . f II . 

h ll 
me m o owmg chapters For the present 

we s a take for g a t d th · · . · ' f r n e e arithmetlsatJOn of mathematics though this 
was a _eat of the very greatest importance. , 

na~~:lmngumrebdeucedthall traditional pure mathematics to the theory of the 
rs, e next step in lo · a1 1 · 

itself to the smallest et f . gJc ana ysis.was to reduce this theory 
could be derived T~· o p~emisses and undefmed terms from which it 

· Is wor was accomplished by Peano. He showed 
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that the entire theory of the natural numbers could be derived from three 
primitive ideas and five primitive propositions in addition to those of pure 
logic. These three ideas and five propositions thus became, , it were, 
hostages for the whole of traditional pure mathematics. If they could be 
defined and proved in terms of others, so could all pure mathematics. 
Their logical "weight," if one may use such an expression, is equal to 
that of the whole series of sciences that have been deduced from the 
theory of the natural numbers; the truth of this whole series is a~sured if 
the truth of the five primitive propositions is guaranteed, provided, of 
course, that there is nothing erroneous in the purely logic~) apparat~s 
which is also involved. The work of analysing mathematics IS extraordi
narily facilitated by this work of Peano's. 

The three primitive ideas in Peano's arithmetic are: 

0, number, successor. 

By "successor" he means the next number in the natural order. That is to 
say, the successor of 0 is I, the successor of I is 2, and so on. By '1 'nu~
ber" he means, in this connection, the class of natural numbers. He IS 
not assuming that we know all the members of this class, but on~y that we 
know what we mean when we say that this or that is a number, JUSt as we 
know what we mean when we say "Jones is a man," though we do not 

know all men individually. 

(I) 0 is a number. 
(2) The successor of any number is a number· 
(3) No two numbers have the same successor. 
(4) 0 is not the successor of any number. 
(S) Any property which belongs to 0, and also to the successor of 

every number which has the property, belongs to all numbers. 

The: last of these is the principle of mathematical induction. We shall 
have much to say concerning mathematical induction in the sequel; f~r 
the present, we are concerned with it only as it occurs in Peano's analysis 

of arithmetic. h f th 
Let us consider briefly the kind of way in which the t eo.r~ 0 e 

natural numbers results from these three ideas and five propostttons. To 

b . . h d fi 1 "the successor of 0 " 2 as "the successor of 1," egm wtt , we e me as ' . . fi · 
and so on. We can obviously go on as long as we like wtt~ these de lnt-
tions since in virtue of (2), every number that we reach wdl have a su~
cesso~ and' in virtue of (3), this cannot be any of the numbers alrea Y 
defined, be~ause, if it were, two different numbers would have the same 

. h Afterwards the word will be 
1We shall use "number" in this sense m the present c apter. 

used in a more general sense. 
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successor; and in virtue of (4) none of the numbers we reach in the series 
of successors can be 0. Thus the series of successors gives us an endless 
series of continually new numbers. In virtue of (S) all numbers come in 
this series, which begins with 0 and travels on through successive succes
sors: for (a) 0 belongs to this series, and (b) if a number n belongs to it, 
so does its successor, whence, by mathematical induction, every number 
belongs to the series. 

Suppose we wish to define the sum of two numbers. Taking any num
ber m, we define m+Oas m, and m+ (n+ 1) as the successor of m+n. In 
virtue of (S) this gives a definition of the sum of m and n, whatever num
ber n may be. Similarly we can define the product of any two numbers. 
The reader can easily convince himself that any ordinary elementary 
proposition of arithmetic can be proved by means of our five premisses, 
and if he has any difficulty he can find the proof in Peano. 

It is time now to turn to the considerations which make it necessary to 
advance beyond the standpoint of Peano, who represents the last perfec
tion of the "arithmetisation" of mathematics, to that of Frege, who first 
succeeded in "logicising" mathematics, i.e. in reducing to logic the arith
metical notions which his predecessors had shown to be sufficient for 
mathematics. We shall not, in this chapter, actually give Frege 's defini
tion of number and of particular numbers, but we shall give some of the 
reasons why Peano's treatment is less final than it appears to be. 

In the first place, Peano's three primitive ideas -namely, "0," "num
ber," and "successor" - are capable of an infinite number of different 
interpretations, all of which will satisfy the five primitive propositions. 
We will give some examples. 

(I) Let "0" be taken to mean 100, and let "number" be taken to mean 
the numbers from 100 onward in the series of natural number5. Then all 
?ur primitive propositions are satisfied, even the fourth, for, though 100 
Js the successor of 99, 99 is not a "number., in the sense which we are 
now giving to the word "number." It is obvious that any number may be 
substituted for 100 in this example. 

(2) Let "0" have its usual meaning, but let "number" mean what we 
usually call "even numbers," and let the "successor" of a number be 
what results from adding two to it. Then "1" will stand for the number 
tw "2" ·n d .. h o,, WI • stan 10r t e number four, and so on; the series of "num-
bers ' now wlll be 

0, two, four, six, eight ... 

All Peano's five premisses are satisfied still. 
(3) Let "0" mean the number one, let "number" mean the set 
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I I I I 
1'2'4'8'16'"' 

and let "successor" mean "half". Then all Peano's five axioms will be 

true of this set. . fi · 1 I f t 
It is clear that such examples might be multiplied mde mtte y. n ac • 

given any series 

Xo,XI ,Xz,X3, • • • Xn, • • • 

which is endless contains no repetitions, has a beginni_n~, and has n~ 
terms that cann~t be reached from the beginning in a fmtte ~u~ber -~ 
steps we have a set of terms verifying Peano's axioms. Thts IS east

1 
Y 

' 1 L "0" mean x et seen, though the formal proof is somewhat ong. et" s r" ~f x 
"number" mean the whole set of terms, and let the succes 0 " 

mean Xn+I· Then 

(I) "0" is a number " i.e. Xo is a member of the set. . 
' . b r " i e takmg any term 

(2) "The successor of any number IS anum e • · · 
Xn in the set, Xn+ I is also in the set. " . . are 

(3) "No two numbers have the same successor, I.e. tf Xm a~d Xn . 
nd x are dtfferent, 

two different members of the set, Xm+l a n+I ( 
this results from the fact that (by hypothesis) there are no repe 1-

tions in the set. ,. . no term in the set 
(4) "0 is not the successor of any number, I.e. 

comes before Xo· • and belongs to 
(5) This becomes: Any property which belongs to Xo, , 

xn+ I provided it belongs to Xn, belongs to all the x s. 

This follows from the corresponding property for numbers. 

A series of the form 

x0, X 1 ,X2, • ··XII,··· 

ch term (so that there is no 
in which there is a first term, a successor toe~ hed from the start in 
last term), no repetitions, and every term ca~ ~eacgressions are of great 
a finite number of steps, is called aprogre~w~ ro have just seen, every 
importance in the principles of math~maucr s w: proved, conversely, 
progression verifies Peano's five axioms. fit can . e s ·

1
s a progression. 

'f' p o's tve axiOm 
that every series which ven 1es ean fi h tass of progressions: 
Hence these five axioms may b~ used_to de 1~e ~he c five axioms." Any 
"progressions" are "those senes w?Ich v~:/mat~:matics: we may give 
progression may be taken as the basts of.~ ber" to the whole set of its 
the name "0" to its first term, the name num 
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term~, and the name "successor" to the next in the progression. The pro
gr~ssio~ need not be composed of numbers: it may be composed of 
POI~t~ ~~space, or mome~ts of time, or any other terms of which there is 
~ m mite _supply. Each different progression wiH give rise to a different 
:~ erpreta~IOn ?fall the propositions of traditional pure mathematics· all 

ese possible Interpretations will be equally tru , 
In Peano's t h · . e. 

these dift :~s em t ere. ts nothmg to enable us to distinguish between 

We know 
erhent _mterpretatwns of his primitive ideas. It is assumed that 
w a Is meant by ''0 " d h 

symbol means 100 Cl '' an t at we shall not suppose that this 
might mean. or eopatra s Needle or any of the other things that it 

This point that "0" d " , 
by means of Peano's ~ n~mber and "successor" cannot be defined 
stood is important W tve axioms, but must be independently under-
matic~l formulae, but t~ ::n~ oi:r ~um_bers not merely to verify mathe
want to have ten fin ers P Y t e nght way to common objects. We 
"1" meant 100, and .~2 .. ;~:n~~~tyes and one ~ose. A system in which 
mathematics, but would not . d '.~nt. so on, might be all right for pure 
and "successor" to have su.It aJ y. Ife. We want "0" and "number" 

meamngs which ·u · . 
of fingers and eyes and noses. We h WI give us the nght allowance 
not sufficiently articulate or a I .a)ve already some knowledge (though 
and so on d na ytic of what we mean by "I" and "2" , an our use of numb . . . 
knowledge. We cannot secure ers m .anthmetJc must conform to this 
method; all that we can d 'f tha~ this .shall be the case by Peano's 
what we mean by '0' ando: I w~ a' opt his method, is to say "we know 
explain what we mean in t;um er and 's~ccessor'' though we cannot 
legitimate to say this when w;ms of other simpler concepts." It is quite 
is the object of mathematical m~.~t, and at some point we all must; but it 
possible. By the logical theory P f 

1 0.s~phy. to put off sayina it as long as 
very long time. 0 ant metlc we are able to put it off for a 

It might be suggested that · . 
and "successor" as t f' ms;ead of settmg up .. 0" and "number" 

erms o whtch we k h 
can.not define them, we might let th now t e meaning although we 
venfy Peano's five axio Th em stand for any three terms that 
a meaning that is defin~;· tho ey ;m ~en no longer be terms which have 
terms concerning wh' h ug un efined: they will be ''variables " 

· IC we make cert · h ' 
stated m the five axioms but h. h am YP<>theses, namely those 
adopt this plan our theo' w .Ic are otherwise undetermined If we 
t . d , rems wdl not be d . 
ame set of terms called "th prove concerning an ascer-

of t h . e natural numb " b . erms avmg certain propert' S ers, ut concerning all sets 
mdeed for certain purposes ·/es. uch a procedure is not fallacious· 
But from two points of view itt f~~p;ese~ts a valuable generalisation: 

s 0 giVe an adequate basis for arith· 
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metic. In the first place, it does not enable us to know whether there are 
any sets of terms verifying Peano's axioms; it does not even give the 
faintest suggestion of any way of discovering whether there are such sets. 
In the second place, as already observed, we want our numbers to be 
such as can be used for counting common objects, and this requires that 
our numbers should have a definite meaning, not merely that they should 
have certain formal properties. This definite meaning is defined by the 
logical theory of arithmetic. 

II. Definition of number 

The question "What is a number?" is one which has often been asked 
but has only been correctly answered in our own time. The answer was 
given by Frege in 1884, in his Grundlagen der Arithmetik. 2 Although this 
book is quite short, not difficult, and of the very highest importance, it 
attracted almost no attention, and the definition of number which it con
tains remained practically unknown until it was rediscovered by the 
present author in 190 l. 

In seeking a definition of number, the first thing to be clear about is 
what we may call the grammar of our inquiry. Many philosophers, when 
attempting to define number, are really setting to work to define plural
ity, which is quite a different thing. Number is what is characteristic of 
numbers, as man is what is characteristic of men. A plurality is not an 
instance of number, but of some particular number. A trio of men, for 
example, is an instance of the number 3, and the number 3 is an instance 
of number; but the trio is not an instance of number. This point may 
seem elementary and scarcely worth mentioning; yet it has proved too 
subtle for the philosophers, with few exceptions. 

A particular number is not identical with any collection of terms hav· 
ing that number: the number 3 is not identical with the trio consisting of 
Brown, Jones, and Robinson. The number 3 is something which all trios 
have in common, and which distinguishes them from other collections. A 
number is something that characterises certain collections, namely, those 
that have that number. 

Instead of speaking of a "collection," we shall as a rule speak of a 
"class," or sometimes a "set." Other words used in mathematics for the 
same thing are "aggregate" and "manifold.'' We shall have much to say 
later on about classes. For the present, we will say as little as possible. 
But there are some remarks that must be made immediately. 

A class or collection may be defined in two ways that at first sight seem 

2The same answer is given more fully and with more development in his Grundgeset;,e 
rkr Arithmetik, vol. I, 1893. 
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quite distinct. We may enumerate its members, as when we say, "The 
collection I mean is Brown, Jones, and Robinson." Or we may mention 
a defining property, as when we speak of "mankind" or "the inhabi
tants of London." The definition which enumerates is called a definition 
by "extension," and the one which mentions a defining property is called 
~ defi~iti~n by "intension." Of these two kinds of definition, the one by 
I~tenswn IS logically more fundamental. This is shown by two considera
~Ions:. (I) that the extensional definition can always be reduced to an 
mtenswnal one; (2) that the intensional one often cannot even theoreti
cally be reduced to the extensional one. Each of these points needs a 
word of explanation. 

(_1) B.rown, Jones, and Robinson all of them possess a certain property 
Which IS poss~ssed. by nothing else in the whole universe, namely, the 
property of ?emg either Brown or Jones or Robinson. This property can 
be used to giVe a d~finition by intension of the class consisting of Brown 
and Jones and Robmson. Consider such a formula as "xis Brown or xis 
Jones or x is Robins " Th" '" 1 • • 

on. IS •ormu a Will be true for JUSt three x's, 
na~ely, Brown and Jones and Robinson. In this respect it resembles a 
cubic equation with its thre t 1 b . . 

e roo s. t may e taken as ass1gnmg a prop-
erty com~on to the members of the class consisting of these three men, 
and peculiar to them A · ·1 . . 

. ·. simi ar treatment can obviOusly be applied to 
any other class given m extension. 

(2) It is obvious that in p t" 
1 . . rae Ice we can often know a great deal about a 

c ass Without bemg able to enumerate its members No one man could 
actual~y en.umerate all men, or even all the inhabita~ts of London yet a 
~~:~td ;.a

1
• 

1~ known about each of these classes. This is enough to' show 
B ~ lllitlon by extension is not necessary to knowledge about a dass. 
. ut w en we come to consider infinite classes we find that enumeration 
Is not even theoretically p obi .. b . ' 
r w ossJ e •Or emgs who only live for a finite 
Imde. e cannot enumerate all the natural numbers· they are 0 I 2 3 

an so on At some 0 t · ' ' ' ' 
W · POm we must content ourselves with "and so on." e cannot enumerate all fracti II . . 
other infinite collection. Th ons or a Irrati~nal numbers, or all of any 
tions can only be deriv d f us our kn?~l~dge Ill regard to all such collec-

Th e rom a defimtJon by intension 
ese remarks are relevant wh . 

number in three d"ff ' en we are seeking the definition of 
, I erent ways In the fi t I I 

form an infinite collect" · rs P ace, numbers themse ves 
tion. In the second pla:~n;h:nd can~ot there~ ore b~ defined by enumera
themselves presumabJ f, coJ~eC~I~ns havmg a given number of terms 
for example that the Y orm ~n mfmite collection: it is to be presumed, 
"f , re are an mfinite collect· f . . f 
I this were not the case th 1 IOn o tnos m the world, or 
finite, which, though possi~~~ta number. of things in the world would be 

' seems unlikely· In the third place, we wish 
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to define "number" in such a way that infinite numbers may be possible; 
thus we must be able to speak of the number of terms in an infinite col
lection and such a collection must be defined by intension, i.e. by a 
proper;y common to all its members and peculiar to them. 

For many purposes, a class and a defining characteristic of it are prac
tically interchangeable. The vital difference between the two consists in 
the fact that there is only one class having a given set of members, 
whereas there are always many different characteristics by which a given 
class may be defined. Men may be defined as featherless bipeds, or as 
rational animals, or (more correctly) by the traits by which Swift deline
ates the Yahoos. It is this fact that a defining characteristic is never 
unique which makes classes useful; otherwise we could be content with 
the properties common and peculiar to their members. 3 Any o~e of the~e 
properties can be used in the place of the class whenever umqueness IS 
not important. . 

Returning now to the definition of number, it is clear that number IS a 
way of bringing together certain collections, namely, those that have a 
given number of terms. We can suppose all couples in one bundle, all 
trios in another, and so on. In this way we obtain various bundles of c~l
lections, each bundle consisting of all the collections that have a ce.rtam 
number of terms Each bundle is a class whose members are collections, 

. · . f II i.e. classes; thus each is a class of classes. The bundl~ conSIStm~ o a 
couples, for example, is a class of classes: each couple IS a .class w.1th. t~o 
members, and the whole bundle of couples is a class With an mf1mte 
number of members, each of which is a class of two members. 

How shall we decide whether two collections are to belong to the same 
bundle? The answer that suggests itself is: "find out how many members 
each has and put them in the same bundle if they have the same number 
of members." But this presupposes that we have define~ numbers, and 
that we know how to discover how many terms a collection ~~s. We. are 
so used to the operation of counting that such a presuppos1Uo~ .mlg~t 

o o f h ntino though fam1har IS eas1ly pass unnoticed. In act, owever, cou .,, . • 
I o · . e it is only available as a ogtcally a very complex operation, moreov r • 

. • 11 tion has when the collec-means of d1scovenng how many terms a co ec • 
tion is finite. Our definition of number must not assume in advanc~ .that 
all numbers are finite; and we cannot in any case, without a VICIO~S 
circle use counting to define numbers, because numbers are used m 
coun;ing. We need, therefore, some other method of deciding when two 
collections have the same number of terms. 

d d 1 · 1 fictions manufaciUred out 3 
As will be explained later, classes may be re~ar. e .as ~g•ca si,tion 

10 
treat classes 

of defining characteristics. But for the present 11 will stmphfy our expo 
as if they were real. 
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In actual fact, it is simpler logically to find out whether two collections 
have the same number of terms than it is to define what that number is. 
An illustration will make this clear. If there were no polygamy or 
polyandry anywhere in the world, it is clear that the number of husbands 
living at any moment would be exactly the same as the number of wives. 
We do not need a census to assure us of this, nor do we need to know 
what is the actual number of husbands and of wives. We know the num
ber must be the same in both collections, because each husband has one 
wife and each wife has one husband. The relation of husband and wife is 
what is called "one-one." 

A relation is said to be "one-one" when, if x has the relation in ques
tion toy, no other term x' has the same relation toy, and x does not have 
the same relation to any term y' other than y. When only the first of these 
two conditions is fulfilled, the relation is called "one-many"; when only 
the second is fulfilled, it is called "many-one." It should be observed 
that the number 1 is not used in these definitions. 

In Christian countries, the relation of husband to wife is one-one; in 
Mahometan countries it is one-many; in Tibet it is many-one. The rela
tion of father to son is one-many; that of son to father is many-one, but 
that of eldest son to father is one-one. If n is any number, the relation of 
n ton+ 1 is one-one; so is the relation of n to 2n or to 3n. When we are 
considering only positive numbers, the relation of n to n 2 is one-one; but 
when negative numbers are admitted, it becomes two-one, since n and 
-n have the same square. These instances should suffice to make clear 
the notions of one-one, one-many, and many-one relations, which play a 
great part in the principles of mathematics, not only in relation to the 
definition of numbers, but in many other connections. 

Two classes are said to be "similar" when there is a one-one relation 
which correlates the terms of the one class each with one term of the 
other class, in the same manner in which the relation of marriage corre· 
lates h~sban~s .~ith wives. A few preliminary definitions will help us to 
state this defmition more precisely. The class of those terms that have a 
given relation to something or other is called the domain of that relation: 
thus fathers are the domain of the relation of father to child husbands 
are the domain of the relation of husband to wife wives are t'he domain 
of the rel~tion of wife to husband, and husbands ~nd wives together are 
~he domam of the relation of marriage. The relation of wife to husband 
Is called the converse of the relation of husband to wife. Similarly less is 
the converse of greater, later is the converse of earlier, and so on. Gener
ally, the converse of a given relation is that relation which holds between 
~and~ whenever. the. given relation holds between x andy. The converse 

omam of a relatiOn IS the domain of its converse: thus the class of wives 
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is the converse domain of the relation of husband to wife. We may now 

state our definition of similarity as follows: -

l . 'd to be "similar" to another when there is a on~-
One c ass IS sal · h ·1 the other IS 

one relation of which the one class is the domam, w I e 

the converse domain. 

1 . imilar to itself, (2) that if a 
It is easy to prove (I) that every ~ as.s 1~1 s t (3) that if a is similar 

class a is similar to a class (j, then (j IS simi arl ~a,. .,;d to be renexive 
· · ·1 t Are at1on IS s... J' 

to (j and (j to 'Y' then a IS Simi ar o 'Y. . mmetrical when it pes-
when it possesses the first of these pr~perues, sy th thi'rd It is obvious 

· · h 1t possesses e · 
sesses the second, and transllwe w en d 't' e must be reflexive 

. . . t · al an trans! IV 
that a relatiOn wh1ch IS sym.me nc . these properties are an 
throughout its domain. Relauons :Which poss~sst 'milarity is one of this 
important kind, and it is worth while to note t a SI 

kind of relations. fi 't classes have the same 
It is obvious to common sense that two mhi e ·Ise The act of count-

. ·1 but not ot erw · 
number of terms if they are simi ar, 

1 
t' n between the set of 

. . . bl' h' g a one-one corre a 10 . mg consists m esta IS m 1 d' O) that are used up m . 1 umbers (exc u mg 
objects counted and the natura n 1 d that there are as many 

. sense cone u es 
the process. Accordmgly common bers up to the last num-
objects in the set to be counted as therek are n~:at so long as we confine 
ber used in the counting. And we also . now ~bers from 1 up to n. 
ourselves to finite numbers, there are jU~t· n n~nting a collection is the 
Hence it follows that the last n~mber u~~de1: ~~e collection is finite. But 
number of terms in the collecuon, ~ro 

1 
fnite collections, depends 

this result, besides being only apphca~ e to 
1
hich are similar have the 

upon and assumes the fact that two c as~es we count (say) 10 objects is 
same number of terms; for wha~ we ~0 ':"m~l~;to the set of numbers 1 to 
to show that the set of these obJects 15 Sl d in the operation of 

. 'I . . logically presuppose .. 
10. The notion of s1m1 amy IS h 1 familiar In counting, It IS 
counting, and is logically simpler thoug esst 1·n orde~ as first, second, 

· nted in a cer a • . necessary to take the objects cou f mber: it is an melevant 
third, etc., but order is not of t~e e~sen~e 0 ~~e logical point of view. 
addition, an unnecessary comphcauon ;om rder· for example, we saw 
The notion of similarity does not deman anho m. ber of wives, without 

d . the same as t e nu . f that the number of husban s IS them The notiOn o 
. . d f precedence among . . . ld havmg to estabhsh an or er o h'ch are s1milar shou 

. . . . that the classes w I h 
similanty also does not reqmre 

1 
b rs (excluding 0) on t e 

be finite. Take, for example, the natura nlu;n etheir numerator on the 
. hich have lOr d one hand and the fractiOns w 2 'th 1/2 3 with 1/3, an 

' correlate WI ' other hand: it is obvious that we can . .1 lasses are simi ar · so on, thus proving that the two c 
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We may thus use the notion of "similarity" to decide when two collec
tions are to belong to the same bundle, in the sense in which we were ask
ing this question earlier in this chapter. We want to make one bundle 
containing the class that has no members: this will be for the number 0. 
Then we want a bundle of all the classes that have one member: this will 
be for the number l. Then, for the number 2, we want a bundle con
sisting of all couples; then one of all trios; and so on. Given any collec
tion, we can define the bundle it is to belong to as being the class of all 
those collections that are "similar" to it. It is very easy to see that if (for 
example) a collection has three members, the class of all those collections 
that are similar to it will be the class of trios. And whatever number of 
terms a collection may have, those collections that are "similar" to it will 
~ave _the same number of terms. We may take this as a definition of 

havmg the same number of terms." It is obvious that it gives results 
conformable to usage so long as we confine ourselves to finite collections. 

So far we have not suggested anything in the slightest degree paradoxi
cal. But when we come to the actual definition of numbers we cannot 
a~oid what must at first sight seem a paradox, though this impression 
will soon_ wear off. We naturally think that the class of couples (for 
example) Is something different from the number 2. But there is no doubt 
about the class of couples: it is indubitable and not difficult to define, 
whereas the number 2 i a th · . . 

. • n ny o er sense, IS a metaphysical entity about 
which we can never feel sure that it exists or that we have tracked it 
down. It is ~herefore more prudent to content ourselves with the class of 
co~ples, which we are sure of, than to hunt for a problematical number 2 
wh~c~ _must always remain elusive. Accordingly we set up the following 
defmitiOn: -

Th~ number of a class is the class of all those classes that are similar to 11. 

I Thus the number of a couple will be the class of all couples In fact the 
c ass of all co 1 'II b · • 
th up e~ WI e the number 2, according to our definition. At 
d eb~xpbelnse of a httle oddity • this definition secures definiteness and in

u Ita eness; and it is not d'ffi I 
h . 1 Icu t to prove that numbers so defined 

ave all the properties that we expect numbers to have 
We may now go on to def b · · 

bundles into wh· h . .1 . me num ers Ill general as any one of the 
classes such as t~cat ~;:u :~Y coll~.s classes. A number will be a set of 
the set are similar to y . . dare Similar to each other, and none outside 
era!) is any collectio any ~~s~ ~the set. In other words, a number (in gen
more simply still: n w IC IS the number of one of its members; or, 

A number is anything which is the number of some class. 
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Such a definition has a verbal appearance of being circular, but in fact 
it is not. We define "the number of a given class" without using the 
notion of number in general; therefore we may define number in general 
in terms of "the number of a given class" without committing any logical 
error. 

Definitions of this sort are in fact very common. The class of fathers, 
for example would have to be defined by first defining what it is to be 
the father of somebody; then the class of fathers will be all those who are 
somebody's father. Similarly if we want to define square numbers ~say), 
we must first define what we mean by saying that one number Is the 
square of another, and then define square numbers as those that are th_e 
squares of other numbers. This kind of procedure is very common, and It 
is important to realize that it is legitimate and even often necessary_. . 

We have now given a definition of numbers which ~il_I ~erve for ~mite 
collections. It remains to be seen how it will serve for mfm1te collecho?s. 
But first we must decide what we mean by "finite" and "infinite," which 
cannot be done within the limits [here]. 

III. Mathematics and logic 

Mathematics and logic, historically speaking, have been e~tir~ly distinct 
studies. Mathematics has been connected with science, logic With Greek. 
But both have developed in modern times: logic has become more math~
matical and mathematics has become more logical. The consequence IS 
that it has now become wholly impossible to draw a line between the two; 
in fact the two are one. They differ as boy and man: logic is th~ yo~th ~f 

' d f 1 · This v1ew IS mathematics and mathematics is the manhoo o ogle. . 
resented by log1'cians who having spent their time in the study of classical 

' · · and by texts, are incapable of following a piece of symbohc reas~mng, . . 
mathematicians who have learnt a technique without troubling to mQ~Ire 
into its meaning or justification. Both types are now fortunately gro~mg 
rarer. So much of modern mathematical work is obviously on the bor er
line of logic so much of modern logic is symbolic and formal, t~at the 

' . . d h t"cs has become obvious to very close relationship of logic an mat ema I 
every instructed student. The proof of their identity is, of c?urse, a 

. . · h" h would be umversally matter of detail: startmg with premisses w IC . 
. . . b d d ction at results which as admitted to belong to logic, and arnvmg Y e u . h" h 

obviously belong to mathematics, we find that there is no pomt.at w ICh 
. 1 . h 1 ft and mathematiCS to t e a sharp line can be drawn, With og1c to t e e . . ic and 

right. If there are still those who do not admit the Identity 0~ log. h 
mathematics we may challenge them to indicate at what pom_t, m ~ e 
successive d~finitions and deductions of Principia Mathematlca, t ey 

173 



BERTRAND RUSSELL 

consider that logic ends and mathematics begins. It will then be obvious 
that any answer must be quite arbitrary. 

In the e~rlier c~apters of this book, starting from the natural numbers 
we have ftrst defmed "cardinal number" and h h I' ' h . s own ow to genera tse 
~oe co~ceptiOn ~f _n_umber' and have then analysed the conceptions in-

lved m the d_efmttiOn, until we found ourselves dealing with the funda
menta~ of logic. In a synthetic, deductive treatment these fundamentals 
comes Ir~t, and the natural numbers are only reached after a long jour
~ey. ~c trea~ment, though formally more correct than that which we 

c:lv~:n~tt:d, 1~ more di~f!cult f~r the r~ader, because the ultimate Iogi-

f 
.
1
. P an propositiOns With whtch it starts are remote and un

amt tar as compared with th 
present frontier of k I d e natural numbers. Also they represent the 

the d 
. . f now e ge, beyond which is the still unknown· and 

omm10n o knowledge h · ' 
It used to be said over _t ~m IS not as yet very secure. 

t.t , . that mathematics Is the science of "quantity " "Quan-
1 y IS a vague word but for th k . 

the word "number ,; Th e sa e of argument we may replace it by 
number would be . t ~ statement that mathematics is the science of 

un rue m two diffe t 
are recognised branches of mat ~en w~ys. On the one hand, there 
number - all geomet th t d hemattcs whtch have nothing to do with 

ry a oes not us d' 
for example: projective and d . . e co-or mates or measurement, 
which co-ordinates ar . t d escdnpttve geometry, down to the point at 

e m ro uce doe t h · even with quantity 
1
· th ' s no ave to do With number, or 
n e sense of great l 

through the definition of d' 
1 

er or ess. On the other hand, 
ancestral relations thro ~a~h mas, through the theory of induction and 
definitions of the ~rith~!ical ~ gener_al the.ory of series, and through the 
eralize much that used t b perattons, ~~ has become possible to gen· 
The most elementary p 

0 
e. proved only tn connection with numbers. 

. ropert1es of numb . 
relations, and similarity b t ers are concerned wuh one-one 
construction of mutually: ~ee~ classes. Addition is concerned with the 
classes which are not kn :c USI~e classes respectively similar to a set of 
merged in the theory of '~se~e t~ e ~~tually exclusive. Multiplication is 
relations. Finitude is merg d: IO~s, I.e. of a certain kind of one-many 
which yields the whole th; m tf e general s_tudy of ancestral relations, 
properties of the various k' odry 0f mathematical induction. The ordinal 
h m so numb · 

t eory of continuity of fu ct' er-senes, and the elements of the 
· n IOns and th J' · erahsed so as no longer t . 

1 
e Imtts of functions, can be gen-

. . . o mvo ve any es t' I 18 a pnnctple in all form 1 . sen Ia reference to numbers. It 
h ' a reasonmg to 1. we t ereby secure that . ' genera tze to the utmost since 

'd I a given process f d d . ' 
WI e Y applicable results· 0 e uctiOn shall have more 
r · ' we are theref · easonmg of arithmetic 1 ' . ore, m thus generalizing the 
ad · · ' mere Y followmg mitted m mathematics A d . a precept which is universally 

· n m thus g 1· · enera IZing we have, in effect, 
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created a set of new deductive systems, in which traditional arithmetic is 
at once dissolved and enlarged; but whether any one of these new deduc
tive systems - for example, the theory of selections - is to be said to 
belong to logic or to arithmetic is entirely arbitrary, and incapable of 
being decided rationally. 

We are thus brought face to face with the question: What is the sub
ject, which may be called indifferently either mathematics or logic? Is 
there any way in which we can define it? 

Certain characteristics of the subject are clear. To begin with, we do 
not, in this subject, deal with particular things or particular properties: 
we deal formally with what can be said about any thing or any property. 
We are prepared to say that one and one are two, but not that Socrates 
and Plato are two, because, in our capacity of logicians or pure mathe
maticians, we have never heard of Socrates and Plato. A world in which 
there were no such individuals would still be a world in which one and 
one are two. It is not open to us, as pure mathematicians or logicians, to 
mention anything at all, because, if we do so, we introduce something 
irrelevant and not formal. We may make this clear by applying it to the 
case of the syllogism. Traditional logic says: "All men are mortal, 
Socrates is a man, therefore Socrates is mortal." Now it is clear that what 
we mean to assert, to begin with, is only that the premisses imply the con
clusion, not that premisses and conclusion are actually true; even the 
most traditional logic points out that the actual truth of the premisses is 
irrelevant to logic. Thus the first change to be made in the above tradi
tional syllogism is to state it in the form: "If all men are mortal and 
Socrates is a man, then Socrates is mortal." We may now observe that it 
is intended to convey that this argument is valid in virtue of its form, not 
in virtue of the particular terms occurring in it. If we had omitted 
"Socrates is a man" from our premisses, we should have had a non
formal argument, only admissible because Socrates is in fact a man; in 
that case we could not have generalized the argument. But when, as 
above, the argument is formal, nothing depends upon the terms that 
occur in it. Thus we may substitute a for men, fJ for mortals, and x for 
Socrates, where a and fJ are any classes whatever, and xis any individual. 
We then arrive at the statement: "No matter what possible values x and a 
and fJ may have, if all a's are fJ's and xis an a, then xis a fJ"; in other 
words, ''the propositional function 'if all a's are fJ and xis an a, then xis 
a fJ' is always true." Here at last we have a proposition of logic- the one 
which is only suggested by the traditional statement about Socrates and 
men and mortals. 

It is clear that, if formal reasoning is what we are aiming at, we shall 
always arrive ultimately at statements like the above, in which no actual 
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things or properties are mentioned; this will happen through the mere 
desire not to waste our time proving in a particular case what can be 
proved generally. It would be ridiculous to go through a long argument 
about Socrates, and then go through precisely the same argument again 
about Plato. If our argument is one (say) which holds of all men, we shall 
prove it concerning "x," with the hypothesis "if xis a man." With this 
hypothesis, the argument will retain its hypothetical validity even whenx 
is not a man. But now we shall find that our argument would still be valid 
if, instead of supposing x to be a man, we were to suppose him to be a 
monkey or a goose or a Prime Minister. We shall therefore not waste our 
time taking as our premiss "xis a man" but shall take "xis an a," where 
a is any class of individuals, or "cpx" where cp is any propositional func
tion of some assigned type. Thus the absence of all mention of particular 
things or properties in logic or pure mathematics is a necessary result of 
the fact that this study is, as we say, "purely formal." 

At this point we find ourselves faced with a problem which is easier to 
state than to solve. The problem is: "What are the constituents of a logi
cal proposition?" I do not know the answer, but I propose to explain 
how the problem arises. 

Take (say) the proposition "Socrates was before Aristotle.'' Here it 
seems obvious that we have a relation between two terms, and that the 
constituents of the proposition (as well as of the corresponding fact) are 
simply the two terms and the relation, i.e. Socrates, Aristotle, and 
before. (I ignore the fact that Socrates and Aristotle are not simple; also 
the fact that what appear to be their names are really truncated descrip
tions. Neither of these facts is relevant to the present issue.) We may rep
resent the general form of such propositions by "x Ry.'' which may be 
read "x has the relation R toy." This general form may occur in logical 
propositions, but no particular instance of it can occur. Are we to infer 
that _the general f~r~ itself is a constituent of such logical propositions? 

Gtven a proposltlon, such as "Socrates is before Aristotle " we have . . ' 
certam constttuents and also a certain form. But the form is not itself a 
new constituent; if it were, we should need a new form to embrace both it 
and the other constituents. We can, in fact turn all the constituents of a 
proposition into variables, while keeping 'the form unchanged. This is 
what we do w~en we use such a schema as "x R y," which stands for anY 
one of a certam class of propositions, namely, those asserting relations 
?etween two terms. We can proceed to general assertions such as "x Ry 
ts so~etim~s true" - i.e. there are cases where dual relations hold. This 
assertt.on wtll belong to logic (or mathematics) in the sense in which we 
are us!ng the word. But in this assertion we do not mention any particu
lar thmgs or particular relations; no particular things or relations can 
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. . . W re left with pure forms as 

ever enter into a proposttton of pure logtc. ea .. 
. f 1 ·cal propostttons. 

the only possible constituents o ogt the form "xRy" 
· · 1 th t pure forms- e.g. 

I do not wish to assert postttv~ ~ a f th kind we are considering. The 
-do actually enter into propostttons o .. e . d'tfficult one with con-

I · f h propostttons ts a ' 
question of the ana ysts o sue 'd d the other. We cannot 

. · the one st e an on . 
f!icting constderattons on t as a first approxtma-

. · ow but we may accep , . 
embark upon thts questton n , . t I gical propositions as thetr 
tion, the view that forms are wh~t en~er ~~ ~o~ formally define) what we 
constituents. And we may explam .<~ oug . 
mean by the "form" of a proposttton as follows. - . 

. . . h in it that remams un-
The "form" of a prop?sttton ~s t~ea~roposi~ion is replaced by 

changed when every constttuent o 

another. 
. . Aristotle" has the same form as 

Thus "Socrates ts earlter t?an " though every constituent of the 
"Napoleon is greater than Welhngton, 

two propositions is different. (th ugh not sufficient) charac-
d as a necessary o h We may thus lay own, . . that they are to be sue 

h (cal propostttons, . 
teristic of logical or mat ema 1 

. . tat'ning no variables (t.e. no 
. d f proposttton con . . as can be obtame rom a · every constttuent mto a 

th etc ) by turnmg 
such words as all, some, a, e, · . 

1 
true or sometimes true, or 

variable and asserting that the result ts a ~~~:variables that the result is 
that it is always true in respect of some 0 ariant of these forms. 

. . f the others, or any v . h 
somettmes true tn respect 0 h' i to saY that logtc (or mat e-
And another way of stating the same t ~~~ sconcerned with them only in 
matics) is concerned only with forms, an ts tt'mes true - with all the 

. h re always or some 
the way of staung that t ey a .. t'mes" that may occur. . . 
permutations or "always" and some 

1
d whose sole function is to tndt

There are in every language some wo:. s are commonest in languages 
cate form. These words, broadly spea mg_, h n " Here "is" is not a 

. T k "Socrates ts uma · · 
having fewest inflecttons. a e 1 . d' ates the subject-predtcate 

. . but mere y m tc " h " constituent of the proposttton, A · t tie " "is" and t an 
· l'er than ns 0 ' form Similarly in ''Socrates ts ear 1 as "Socrates precedes 

· '(on is the same . 
merely indicate form; the propost 1 • ed and the form ts other-

. . . h ords have dtsappear . b e-
Anstotle " m whtch t ese w . d' ted otherwtse than Y sp 

' I can be m tea d B t wise indicated. Form, as a ru e, d st of what is wante · u 
cific words: the order of the words can o mole it is difficult to see how 

b ed For examp • . · h t this principle must not e press · 
1 

f rms of propositiOns (t.e. w a 
we could conveniently express molecu ar o d at all We saw ... that one 

· ") 'thout any wor · · we call "truth-functwns wt d or symbol expressmg . namelY a wor . 
word is enough for thts purpose, ' should find ourselves m 

. h t even one we incompatibility. But wtt ou 
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difficulties. This, however, is not the point that is important for our 
present purpose. What is important for us is to observe that form may be 
~he one concern of a general proposition, even when no word or symbol 
m tha~ proposition designates the form. If we wish to speak about the 
f~rm Itself, we must have a word for it; but if, as in mathematics, we 
Wish to speak about all propositions that have the form a word for the 
form ~ill. usually be found not indispensable; probabl; in theory it is 
never Indispensable. 

Assuming- as I think we may- that the forms of propositions can be 
represented by the forms of the propositions in which they are expressed 
Wit~out any special word for forms, we should arrive at a language in 
Which everything formal belonged to syntax and not to vocabulary. In 
such ~ lang~age we could express all the propositions of mathematics 
even If we di~ not know one single word of the language. The language 
of mathematical logic 'f 't c h • I I were per1ected, would be such a language. We 
s ould ~ave ~ymbols for variables, such as "x" and "R" and "y " ar
ranged .m vanous ways; and the way of arrangement would indicat~ that 
so~ethmg was being said to be true of all values or some values of the 
variables. We should not need to know any words because they would 
only be ne d d f, · · ' 
h . e e or givmg values to the variables which is the business of 

t e apphed mathematician t f h ' . . . . 
. • no o t e pure mathematician or logician. It 
IS one of the marks of a · · f . 

proposition o logic that given a suitable lan-
guage, such a propositio b . • 

h k n can e asserted m such a language by a person 
w 0 nows the syntax without k · · 

B nowmg a smgle word of the vocabulary 
"th ut, .~f~r a~l, there are words that express form such as "is" and 

I .an.h nd m every symbolism hitherto invented for mathematical 
ogic t ere are symbols hav· 

as a mg constant formal meanin11s We may take 
· n example the ~ymbol for incompatibility which Is empioyed In build· 
mg up truth-functtons Such wo d bo 
question is· How are · d n r s or sym Is may occur In Josie. The 

· we to e me them? 
Such words or symbols e h 

Lo · 1 xpress w at are called "logical constants " g1ca constants may be defined 1 • 
they are in essence th h' exact Y as we defined forms; in fact, 
that which is in c e same t mg. A fundamental logical constant will be 
which can result f~:n:~n ~~~~g a num.ber.of propositions, any one of 
For example "N 1 Y . by substitUtiOn of terms one for another. 

' apo eon ts greater th "' II' "Socrates is earlier tha Ar' , an ne mgton" results from 
for "Socrates " ""' 11• n Istotle by the substitution of "Napoleon" 

• ne mgton" f "A · 
Iier." Some pro ·t· or nstotle," and "greater" for "ear-

post tons can be obtained . h' 
"Socrates is earlier than A . 

1 
, Ill t Is way from the prototype 

th nstot e • and som ose that are of the form "x R , . e cannot; those that can are 
obtain from the above y, t.e. express dual relations. We cannot 

prototype by term-for-term substitution such 
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propositions as "Socrates is human" or "the Athenians gave the hem
lock to Socrates," because the first is of the subject-predicate form and 
the second expresses a three-term relation. If we are to have any words in 
our pure logical language, they must be such as express "logical con
stants," and "logical constants" will always either be, or be derived 
from, what is in common among a group of propositions derivable from 
each other, in the above manner, by term-for-term substitution. And this 
which is in common is what we call "form." 

In this sense all the "constants" that occur in pure mathematics are 
logical constants. The number I, for example, is derivative from proposi
tions of the form: "There is a term c such that t/Jx is true when, and only 
when, xis c." This is a function of q,, and various different propositions 
result from giving different values to t/J. We may (with a little omission of 
intermediate steps not relevant to our present purpose) take th.e abov.e 
function of q, as what is meant by "the class determined by t/J IS a umt 
class" or "the class determined by q, is a member of 1" (1 being a class of 
classes). In this way, propositions in which 1 occurs acquire a meani~g 
which is derived from a certain constant logical form. And the same ~Ill 
be found to be the case with all mathematical constants: all are logic~! 
constants, or symbolic abbeviations whose full use in a proper context IS 
defined by means of logical constants. 

But although all logical (or mathematical) propositions can be expressed 
wholly in terms of logical constants together with variables, i~ is ~ot the 
case that conversely all propositions that can be expressed m t.hls wa.y 

' ' ffi nt en-are logical. We have found so far a necessary but not a su JcJe 
terion of mathematical propositions. We have sufficiently defined the 
character of the primitive idtas In terms of which all the ideas of mat~e
matics can be d~~'lntd, but not t>f the primitive propositions from wd~f1cf~ 

""'' d d Th' · a more 1 J-ail the propositions t>f mathematics can be de uc:e · IS IS . 
cult matter, as to which it is not yet known what the full answer 1s:. 

We may take the axiom of infinity as an example of a proposltJo~ 
which, though it can be enunciated in logical terms, cannot be asse~t~ 
by logic to be true All the propositions of logic have a charactenhst~c 

h. · . h alytic or that t etr w Jch used to be expressed by saymg that t ey were an • h 
contradictories were self-contradictory. This mode of statement, ow
ever, is not satisfactory. The law of contradiction is merely one amf ohng 
I · . · e· and the proo t at Ogical propositions· it has no spectal pre-emmenc • . . . 
h , . . . If t adtctory IS likely to t e contradictory of some propostuon ts se -con r d. . 

require other principles of deduction besides the law of contra IcUo~. 
N · '(ons that we are m 

evertheless, the characteristic of logtcal propos! I d fi d by those 
search of is the one which was felt, and intended to be e met' diction. 
Who said that it consisted in deducibility from the law of con ra 
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This characteristic, which, for the moment, we may calJ tautology, 
obviously does not belong to the assertion that the number of individuals 
in the universe is n, whatever number n may be. But for the diversity of 
types, it would be possible to prove logically that there are classes of n 
terms, where n is any finite integer; or even that there are classes of X

0 terms. But, owing to types, such proofs ... are fallacious. We are left to 
empirical observation to determine whether there are as many as n indi
viduals in the world. Among "possible" worlds, in the Leibnizian sense, 
there will be worlds having one, two, three, ... individuals. There does 
not even seem any logical necessity why there should be even one indi
vidua14- why, in fact, there should be any world at all. The ontological 
Proof of the existence of God, if it were valid, would establish the logical 
necessity of at least one individual. But it is generally recognized as in
valid, and in fact rests upon a mistaken view of existence - i.e. it fails to 
realize that existence can only be asserted of something described, not of 
something named, so that it is meaningless to argue from ''this is the so
and-so" and "the so-and-so exists" to "this exists." If we reject the 
ontological argument, we seem driven to conclude that the existence of a 
world is an accident - i.e. it is not logically necessary. If that be so, no 
Principle of logic can assert "existence" except under a hypothesis, i.e. 
none can be of the form "the propositional function so-and-so is some
times true." Propositions of this form, when they occur in logic, will 
have to occur as hypotheses or consequences of hypotheses, not as com
pl_ete asrenw P•opositions. The complete assened P<opositions of logk 
Will all be such as affirm that some propositional function is always true. ~o, ~xample, it is always lme that if p implies q and q Implies r then p 
'~_Phes r, a. that, If all a's a<e ~ 's and x Is an a then x is a ~- Such P•opo· 
Sit Ions m~y occur in logic, and their truth is independent of the existence 
of the umve,se. We may lay II down that, If there were no universe all 
general. ~repositions would be true; for the contradictory of a gen~ral 
PropositiOn· · · is a Proposition asserting existence and would therefore always be false if no universe existed. ' 

Logical P•opositions a.e such as can be known a priori without study 
of the actual wo,ld. We only know f<om a study of empidcal facts that Socrates IS a man but k h . . 

. • we now t e correctness of the syllogism m Its abstract form (I e when 't · t t d · . . 
· · I ISs a e m terms of vanables) without needmg ~ny appcaJto <xperiencc. This is a cha"'cteristk not of logical p<oposi-

uons m lhe~selvcs, but of the way in which we know them {I has how-ever, a beanng upon th · . · ' 
e Question what their nature may be, since there 

4
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that at least one individual . 8tnc'f10 a~hema~1ca are such as to allow the inference 
exists. Ut now VIew th1s as a defect in logical purity. 
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. . h' h 't would be very difficult to sup-are some kinds of propositions w ~c I 
P
ose we could know without expenenl ce: " "mathematics" must be 

· · · f "og1c or 
Jt is clear that the defmJtiOn o_ . . f the old notion of "analytic" 

. · a new defm1t1on o · 1 
sought by trymg to give I be satisfied to define logica . . AI h h we can no onger . . 
propositions. t oug f h law of contradiction, we can 
propositions as those that follow rom ltl ed'fferent class of propositions 
and must still admit that they are a wh~ .Y Illy They all have the charac-

t know empirlca · · from those that we come o d II "tautology." This, com-
we agree to ca · teristic which, a moment ago, d wholly in terms of van-

bined with the fact that t ey c . t being something whic h an be expresse · h 
. I t (a logical constan . abies and logica constan s h all its constituents are 

. 'tion even w en h 
remains constant m a pr~p~~~ 

0 
ic or pure mathematics. For t e 

changed) will give the defmitwn of I g I .. sIt would be easy to 
• d r e "tauto ogy · 

moment I do not know how to e m . f for a while· but I know 
• . . ht eem saus actory • hi offer a definition which mig s . 'te of feeling thoroug Y 

of none that I feel to e. s~ Is 'ch a definition is wanted. At t Is 
b t' factory m spi h' 

familiar with the charactenstJc of whi h the frontier of knowledge on 
h ment we reac . 

point, therefore, for t ~ mo ~ ical foundations of mathematics. . 
our backward journey mto the 1 g hat summary introductiOn 

d of our somew h We have now come to an en . . 'ble to convey adequately t e 
to mathematical philosophy· It IS .1mposs

1
1 as we abstain from the use 

ideas that are concerne m t IS h no words that natura Y d · h' subject so ong 11 
. d' ary language as 

of logical symbols. Smce or m 't is necessary, so long as we 
h wish to express, 1 · s· and express exactly w at we . ds into unusual meanmg • 

adhere to ordinary language, to stram wof~ t to lapse into attaching the 
the reader is sure, after a tim . . t wrong notions as to w at Is · e if not at ars • h · 

usual meanings to words, thus ar~Ivmg ~ammar and syntax is extraor~: 
intended to be said. Mor~over, ordmary ~s regards numbers; "te~ men 
inarily misleading. This ts the case, e.g.h' en " so that 10 might be 

f as "w lte m • · is grammatically the same orm . . .. n .. It is the case, agam, 
thought to be an adjective quahfymg. mel e.d and in particular as 

. . I f t'ons are mvo v • . d' as wherever proposJtiona u~c ~. Because language is mislea mg,. 
regards existence and descnptJ~ns. hen applied to logic (for which 
well as because it is diffuse and mexacl~ w . absolutely necessary to any 

I · 1 symbo Ism Is h f re it was never intended), ogica b' t Those readers, t ere 
0 

• 

t of our su Jec · · 'II 't is exact or thorough treatmen . . les of mathematics, WI • 
1 . t y of the prmcip bois -who wish to acqUire a mas er b of mastering the sym 

· k f m the Ia our 
to be hoped, not shnn ro . pointed out to me 

" d fi 'tion of mathematics was d t know ~The importance of "tautol?gy for. a eh~~as working on the problem. I o no 
•1 L d · W!ttgenstem, w d by my former pupt u. Wig whether he is alive or dea · whether he has solved It, or even 
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a labour Which is, in fact, much less th . 
hasty survey must hav d . an mtght be thought. As the abo 

b . e rna e evtdent th . ve 
pro I ems m the subJ" ect and h , ere are mnumerable unsolved 
· 1 d · • muc work n d 
Is e mto a serious study of mathe . ee ~to be done. If any student 
have served the chief purpose for :~~~~ logtc by this little book, it will 

tch It has been written. 
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On the infinite 

DAVID HILBERT 

As a result of his penetrating critique, Weierstrass has provided a solid 
foundation for mathematical analysis. By elucidating many notions, in 
particular those of minimum, function, and differential quotient, he 
removed the defects which were still found in the infinitesimal calculus, 
rid it of all confused notions about the infinitesimal, and thereby com
pletely resolved the difficulties which stem from that concept. If in analy
sis today there is complete agreement and certitude in employing the 
deductive methods which are based on the concepts of irrational number 
and limit, and if in even the most complex questions of the theory of dif
ferential and integral equations, notwithstanding the use of the most 
ingenious and varied combinations of the different kinds of limits, there 
nevertheless is unanimity with respect to the results obtained, then this 
happy state of affairs is due primarily to Weierstrass's scientific work. 

And yet in spite of the foundation Weierstrass has provided for the 
infinitesimal calculus, disputes about the foundations of analysis still 
go on. 

These disputes have not terminated because the meaning of the in
finite, as that concept is used in mathematics, has never been completely 
clarified. Weierstrass's analysis did indeed eliminate the infinitely large 
and the infinitely small by reducing statements about them to [statements 
about] relations between finite magnitudes. Nevertheless the infinite still 
appears in the infinite numerical series which defines the real numbers 
and in the concept of the real number system which is thought of as a 
completed totality existing all at once. 

In his foundation for analysis, Weierstrass accepted unreservedly and 
used repeatedly those forms of logical deduction in which the concept of 
the infinite comes into play, as when one treats of all real numbers with a 
certain property or when one argues that there exist real numbers with a 
certain property. 

Delivered June 4, 1925, before a congress of the Westphalian Mathematical Society in 
Munster, in honor of Karl Weierstrass. Translated by Erna Putnam and Gerald J. Massey 
from Mathematische Annalen (Berlin) vol. 95 (1926), pp. 161-90. Permission for the trans
lation and inclusion of the article in this volume was kindly granted by the publishers, 
Springer Verlag. 
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