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Selections from
Introduction to Mathematical Philosophy

BERTRAND RUSSELL

L. The series of natural numbers

Mathematics is a study which, when we start from its most familiar por-
thIl‘S,. may be pursued in either of two opposite directions. The more
famlllar direction is constructive, towards gradually increasing complex-
lty:_f_rom integers to fractions, real numbers, complex numbers; from
afidmon and multiplication to differentiation and integration, and on to
higher ma:thematics. The other direction, which is less familiar, proceeds,
Py analysing, to greater and greater abstractness and logical simplicity;
msteaq of :asking what can be defined and deduced from what is assumed
to begin w1.th, we ask instead what more general ideas and principles can
be found, in ter.ms of which what was our starting-point can be defined
or dgduced. It is the fact of pursuing this opposite direction that char-
acteflses mathematijcal philosophy as opposed to ordinary mathematics.
But it shoulq be understood that the distinction is one, not in the subject
matter, bgt in the state of mind of the investigator. E;rly Greek geome-
ters, passing frf)fn the empirical rules of Egyptian land-surveying to the
grelr(lje::l]le r1laropos;5tlon_s ’by w'hich those rules were found to be justifiable,
o, p;eikt)cgo l}xlchd s axioms and postulates, were engaged in mathe-
axioms and poslt)ul);'t acc}:]ordmg to the above definition; but when once the
we find it in Eucli ¢s had been reached, their deductive employment, as

' 1t In Euclid, belonged to mathematics in the ordinary sense. The
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great, so the easiest conceptions to grasp are those that are neither very
complex nor very simple (using ‘‘simple’’ in a logical sense). And as we
need two sorts of instruments, the telescope and the microscope, for the
enlargement of our visual powers, so we need two sorts of instruments .
for the enlargement of our logical powers, one to take us forward to the
higher mathematics, the other to take us backward to the logical founda-
tions of the things that we are inclined to take for granted in mathe-
matics. We shall find that by analysing our ordinary mathematical
notions we acquire fresh insight, new powers, and the means of reaching
whole new mathematical subjects by adopting fresh lines of advance
after our backward journey. It is the purpose of this book to explain
mathematical philosophy simply and untechnically, without enlarging
upon those portions which are so doubtful or difficult that an elementary
treatment is scarcely possible. A full treatment will be found in Principia
Mathematica (1910-13); the treatment in the present volume is intended
as an introduction.

To the average educated person of the present day, the obvious start-
ing-point of mathematics would be the series of whole numbers,

1,2,3,4,...,etc.

Probably only a person with some mathematical knowledge would think
of beginning with 0 instead of with 1, but we will presume this degree of
knowledge; we will take as our starting-point the series:

0,1,2,3,...n,n+1,...

and it is this series that we shall mean when we speak of the ‘‘series of
natural numbers.*’ ' _

It is only at a high stage of civilisation that we could take this series as
our starting-point. It must have required many ages to discover that a
brace of pheasants and a couple of days were both instances of the num-
ber 2: the degree of abstraction involved is far from easy. And the dis-
covery that | is a number must have been difficult. As for 0, it is a very
recent addition; the Greeks and Romans had no such digit. If we had
been embarking upon mathematical philosophy in earlier days, we should
have had to start with something less abstract than the series of natural
numbers, which we should reach as a stage on our backward jour.gey.
When the logical foundations of mathematics have grown more far;uhar,
we shall be able to start further back, at what is now a late stage in our
analysis. But for the moment the natural numbers seem to represent what
is easiest and most familiar in mathematics.

But though familiar, they are not understood. Very few people are‘ ‘prt’::
pared with a definition of what is meant by *‘number,’” or *‘0,”” or 1.
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1t is not very difficult to see that, starting from 0, any other of the natural
numbers can be reached by repeated additions of I, but we shall have to
define what we mean by “‘adding 1,”” and what we mean by ‘‘repeated.”
These questions are by no means easy. It was believed until recently that
some, at least, of these first notions of arithmetic must be accepted as too
simple and primitive to be defined. Since all terms that are defined are
defined by means of other terms, it is clear that human knowledge must
always be content to accept some terms as intelligible without definition,
in order to have a starting-point for its definitions. It is not clear that
there must be terms which are incapable of definition: it is possible that,
however far back we go in defining, we always might go further still. On
the other hand, it is also possible that, when analysis has been pushed far
enough, we can reach terms that really are simple, and therefore logically
incapable of the sort of definition that consists in analysing. This is a
question which it is not necessary for us to decide; for our purposes it is
sufficient to observe that, since human powers are finite, the definitions
known to us must always begin somewhere, with terms undefined for the
moment, though perhaps not permanently.

All traditional pure mathematics, including analytical geometry, may
be regarded as consisting wholly of propositions about the natural num-
bers. That is to say, the terms which occur can be defined by means of
the nat}lral numbers, and the propositions can be deduced from the
propertxes of the natural numbers - with the addition, in each case, of the
ideas and propositions of pure logic.

That all traditional pure mathematics can be derived from the natural
numbers is a fairly recent discovery, though it had long been suspected.
Pythagoras, who believed that not only mathematies, but everything
else, could be deduced from numbers, was the discoverer of the most
serious obstacle in the way of what is called the “‘arithmetising’* of math-
ematics. It was Pythagoras who discovered the existence of incommen-
surables, and, in particular, the incommcnsurability of the side of a
Square 'and the.diasom?]. If the length of the side is 1 inch, the number of
;nlifrx‘if ein the1 lc:hagonal is the square root of 2, which appeared not to be a
oo at all. The problem thus raised was solved only in our own day,
o 10:;5’ ?ﬁlfc;olzg? gz":f;gﬁ}; (I;y ﬂ}e gelp‘of the reduction of arithmetic
we shall take for granted the arithm (') o.wmg chapters. F‘or the presenlt,
was a feat of the very sremte metisation of mathematics, though this

Having reduced all traditi abinion ;
natural nambers (1e n:t S’:ém{al pure mather{xatlcs to the theory of the
. s P in logical analysis was to reduce this theo
itself to the smallest set of premis i e LS el
could be derived. This o e ses and ur}defmed terms from which it

ork was accomplished by Peano. He showed
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that the entire theory of the natural numbers could be derived from three
primitive ideas and five primitive propositions in addition to those.of pure
logic. These three ideas and five propositions thus F)ecame, . it were,
hostages for the whole of traditional pure mathematics. If they could‘ be
defined and proved in terms of others, so could all pure ma.thematlcs.
Their logical “*weight,” if one may use such an expression, is equal to
that of the whole series of sciences that have been deducgd from thﬁe
theory of the natural numbers; the truth of this whole series is as‘sured if
the truth of the five primitive propositions is guaranteedz provided, of
course, that there is nothing erroneous in the purely togmzﬂ apparatl{s
which is also involved. The work of analysing mathematics is extraordi-
narily facilitated by this work of Peano’s. .
The three primitive ideas in Peano’s arithmetic are:

0, number, successor.

By *‘successor’ he means the next number in the natural order. Thit isto
say, the successor of 0 is 1, the successor of 1 is 2, and so on. By ! nurq-
ber”” he means, in this connection, the class of flatural numbers.' He is
not assuming that we know all the members of thxs’class, but on!y that we
know what we mean when we say that this or that is a number, just as we
know what we mean when we say ‘‘Jones is a man,” though we do not
know all men individually.

(1) 0is a number. .

(2) The successor of any number is a number.

(3) No two numbers have the same successor.

(4) 0is not the successor of any number.

(5) Any property which belongs to 0, and also to the succe;sor of
every number which has the property, belongs to all numbers.

i jcal inducti 11
The last of these is the principle of ma.therflamal. md‘uc.t;‘on. vffefhfi !
have much to say concerning mathematical }nductloq in the s?qana,l or
the present, we are concerned with it only as it occurs in Peano’s A\
of arithmetic,

Let us consider briefly the kind of w: ons. To
natural numbers results from these three ideas and five propositions.

"
begin with, we define I as ““the successor of 0,7 2 as “‘the 'succgssordcz;t%llrzi-
and 5o on. We can obviously go on as long as we like wnt}'!li hese o
tions, since, in virtue of (2), every number that we reach wi be::\ ]?eady
cessor, and, in virtue of (3), this cannot be any of the ?;gl o
defined, because, if it were, two different numbers would have

ay in which the theory of the

d will be
"We shall use *‘oumber®” in this sense in the present chapter. Afterwards the wor

used in a more general sense.
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successor; and in virtue of (4) none of the numbers we reach in the series
of successors can be 0. Thus the series of successors gives us an endless
series of continually new numbers. In virtue of (5) all numbers come in
this series, which begins with 0 and travels on through successive succes-
sors: for (@) 0 belongs to this series, and () if a number n belongs to it,
so does its successor, whence, by mathematical induction, every number
belongs to the series.

Suppose we wish to define the sum of two numbers. Taking any num-
ber m, we define m+0as m, and m+ (n+1) as the successor of m+n. In
virtue of (5) this gives a definition of the sum of m and n, whatever num-
ber n may be. Similarly we can define the product of any two numbers.
The reader can easily convince himself that any ordinary elementary
proposition of arithmetic can be proved by means of our five premisses,
and if he has any difficulty he can find the proof in Peano.

It is time now to turn to the considerations which make it necessary to
advance beyond the standpeint of Peano, who represents the last perfec-
tion of the “‘arithmetisation’” of mathematics, to that of Frege, who first
succeeded in “‘logicising’’ mathematics, i.e. in reducing to logic the arith-
metical notions which his predecessors had shown to be sufficient for
n}athematics. We shall not, in this chapter, actually give Frege’s defini-
tion of number and of particular numbers, but we shall give some of the
reasons why Peano’s treatment is less final than it appears to be.

In the first place, Peano’s three primitive ideas - namely, *‘0,” “‘num-
?er,” and “‘successor” ~ are capable of an infinite number of different
Interpretations, all of which will satisfy the five primitive propositions.
We will give some examples.

(1) Let **0” be taken to mean 100, and let **number”’ be taken to mean
;I:I;t;abifi?ef;‘:: égi(:ig::;v:rd in ’tt;f series of natural numbers. Then all
is the successor ol:‘ 99, 99 isrrexéta HS‘ECd' even"ﬂ}e fourth, for, t!mugh o

su , a ‘“‘number”’ in the sense which we are

Now glving to the word *‘number.*’ It is obvious that any number may be
substituted for 100 in this example.
$6£YYY 4 +

usagza)lllj_/le;allo"e}lz:enl;smu;:rasl ’I’nza?i“llg’ tht ‘l‘et “numb?’r" T ber be

what results from adding tv;o t it The e‘ "S}ICC'CSSOI of a number b¢

oit. Then ““1*’ will stand for the number

two, “2°" will stand for the
’ number four, and s : i € -
bers” now will be R 0 on; the series of “‘num

0, two, four, six, eight...

All Peano’s five premisses are satisfied still.

LEF3Y Y
(3) Let ““0”’ mean the number one, let “‘number’’ mean the set
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111
» 2’ 4’ 8’ 167"°
and let “‘successor”’ mean ‘‘half’’. Then all Peano’s five axioms will be

true of this set. o _
It is clear that such examples might be multiplied indefinitely. In fact,

given any series

1

XQ,X},X;,)C:;,...X,,,.. .

which is endless, contains no repetitions, has a beginni.ng', and has no
terms that cannot be reached from the beginning inﬁ a finite pufnber f’f
steps, we have a set of terms verifying Peano's ax:onls.”Thls is easily
seen, though the formal proof is somewhat long. Let “0 mean”xg, let
“number’® mean the whole set of terms, and let the “*successor”” of X,

mean X,4;. 1hen

(1) “0” is a number,” i.e. Xo is a member of the set.

(2) *“The successor of any numberisa number,”’ i.e. taking any term
x, in the set, X4 is also in the set. o

3) “"No two numbers have the same successor,”” i.e. 1f Xp an_dfx,, ar?
two different members of the set, Xm+1 ar}d Xn4 are dif em?i’
this results from the fact that (by hypothesis) there are no repe
tions in the set. ,

(4) *0is not the successor of any number,

comes before xg.
(5) This becomes: Any property which belongs to Xo, and belongs to

¥
X4 provided it belongs to Xy, belongs to all the x’s.

This follows from the corresponding property for numbers.
A series of the form

* j.e. no term in the set

X02 X135 X250 0 Xpseer

is no
in which there is a first term, & Successor to each term (so that there 1

last term), no repetitions, and every term can be reached from ﬂle ;;arrtelali
a finite number of steps, is called a progression. Progmsspns ar 0 egwry
importance in the principles of mathematics. As we have Jl;st senv,e ey

progression verifies Peano’s five axioms. It can }ae prove Cro ression’
that every series which verifies Peano’s five axioms 18 ? « Ogressions:
Hence these five axioms may be used 10 define the class o Pt o An;'
“progressions”’ are ‘‘those series which verify these five ax ::;n I:;ay give
progression may be taken as the basis of pure mat’}’xemaucs.h ot
the name **0’’ to its first term, the name «spumber’’ to the whol€
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terms, and the name “‘successor’’ to the next in the progression. The pro-
gression need not be composed of numbers: it may be composed of
points in space, or moments of time, or any other terms of which there is
an infinite supply. Each different progression will give rise to a different
interpretation of all the propositions of traditional pure mathematics; all
these possible interpretations will be equally true.

In Peano’s system there is nothing to enable us to distinguish between
these different interpretations of his primitive ideas. It is assumed that
we know what is meant by 0, and that we shall not suppose that this
symbol means 100 or Cleopatra’s Needle or any of the other things that it
might mean.

This point, that “0” and “number” and “successor” cannot be defined
by means of Peano’s five axioms, but must be independently under-
stood, is important. We want our numbers not merely to verify mathe-
matical formulae, but to apply in the right way to common objects. We
want to have ten fingers and two eyes and one nose. A system in which
“1" meant 100, and *2* meant 101, and so on, might be all right for pure
mathematics, but would not suit daily life. We want 0"’ and *“‘number”’
and *‘successor’’ to have meanings which will give us the right allowance

and so on, and our use of numbers in arithmetic must conform to this
knowledge, We cannot secure that this shall be the case by Peano's
method; all that we can do, if we adopt his method, is to say *‘we know
what We mean by ‘0’ and ‘number’ and ‘successor,’ though we cannot
exglgm what we mean in terms of other simpler concepts.” It is quite
%egmmat.e to say this when we must, and at some point we all must; but it
is the object of mathematical philosophy to put off saying it as long as

possible. By the logical theory of arithmetic we are abje to putitoff fora
very long time.

It might be Suggested that, instead of setti

] [ ¢
and ‘succgssor’ as terms of which we know the meaning although we
:an'rgotp deﬁn’e them, We might let them stand for any three terms that
enty Peano’s five axioms. They will then no longer be terms which have

: they will be “variables,”
Ypotheses, namely, those

ng up 0" and “number”’

roved concerning an ascer-
. but concerning all sets
dure is not fallacious;
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metic. In the first place, it does not enable us to know whether thfere are
any sets of terms verifying Peano’s axioms; it does not even give the
faintest suggestion of any way of discovering whether there are such se:;s.
In the second place, as already observed, we want our fnumbe_rs to be
such as can be used for counting common objects, and this requires that
our numbers should have a definite meaning, not m(?relyn that they should
have certain formal properties. This definite meaning is defined by the

logical theory of arithmetic.

X1. Definition of number

The question ““What is a number?’’ is one which pas often been as‘l;c;i
but has only been correctly answered in our own time. "i;helallllswe; e
given by Frege in 1884, in his Grundlagen der Am‘hr{:enk. ’A t otl;gn L his
book is quite short, not difficult, and of the very highest 1m1;19rh . C(;n-
attracted almost no attention, and the definition of number w 13 '; o
tains remained practically unknown until it was rediscovered by

resent author in 1901. ) .
° In seeking a definition of number, the first thing to ll)e dei‘; ;b‘;u;e‘;
what we may call the grammar of our inquiry. Many phi OSgPﬁne N
attempting to define number, are really setting to wor}( tt; ea cteriitic "
ity, which is quite a different thing. Number is what is ¢ all:t eriste
numbers, as man is what is characteristic of men. A Pluff‘ 1 3;1 en for
instance of number, but of some particular number. : tg(i)s(; nr;lnst;nce
example, is an instance of the number 3, and the num erThis Coint may
of number; but the trio is not an instance of nu.mber‘. L e (o
seem elementary and scarcely worth mentioning; yet it P

subtle for the philosophers, with few exc;ptlons. llection of terms hav-

A particular number is not identical ’Mtt“l any collectior consisting of

ing that number: the number 3 is not identical with th:‘mz consisting of
Brown, Jones, and Robinson. The number 3 is somet llr:g N loetons. A
have in common, and which distinguishes th?m from other e nely.thoss
number is something that characterises certain collections, s

that have that number. of a

Instead of speaking of a ““collection,” we shall as at }::rltfaiizafl; ¢ the

“class,” or sometimes a ‘‘set.”” Other !:&fords,?sed in nlllahave e oo say
same thing are “‘aggregate’” and ‘‘manifold. .We sha little as possible.
later on about classes. For the present, we wﬂl' say as ki 1

But there are some remarks that must be made meedna;eﬁ);;t Sight seem

A class or collection may be defined in two ways that a

: t in his Grundgesetze
*The same answer is given more fully and with more developmen
der Arithmetik, vol. 1, 1893,
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quite distinct. We may enumerate its members, as when we say, “The
collec'tion I mean is Brown, Jones, and Robinson.” Or we may n';ention
a defining property, as when we speak of ‘“‘mankind’’ or ‘‘the inhabi-
tan‘t‘s of andon.” The definition which €numerates is called a definition
by ?xFe.nsmn,” and the one which mentions a defining property is called
a defu‘utlo'n by “intension.”” Of these two kinds of definition, the one by
1{1ten51on 1s logically more fundamental. This is shown by two, considera-
.tlons:.(l) that the extensional definition can always be reduced to an
1ntl;3nsll)onal one; (2) that the intensional one often cannot even theoreti-
;:va:) r)(/j 0(; (rei(;l:s:tit:n.the extensional one. Each of these points needs a
y h(il )hB_rown, Jones, and quinson a!l of them possess a certain property

¢h 15 possessed by nothing else in the whole universe, namely, the

Jones or x is Robj ;,Con.sider such a formula as ““x is Brown or x is
namely B 1s Robinson.” This formula will be true for just three x’s,
cubi e,uat(.)wn a_nd .Jones and Robinson. In this respect it resembles a

Quation with its three roots, It may be taken as assigning a prop-
ers of the class consisting of these three men,

and peculiar to them A simj
- A similar treatment can i i
any other class given in extension. cbviously be epplied o

(2) It is obvious that in pr.
class without being able to

numbers: they are 0, 1, 2, 3,
€ must content ourselves with ‘‘and so on.”
i uctlons or all irrational numbers, or all of any

on. s our knc'nyl.edge in regard to all such collec-
rom a definitjon by intension.

ant, when we are seeking the definition of
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to define ““number”’ in such a way that infinite numbers may be possible;
thus we must be able to speak of the number of terms in an infinite col-
lection, and such a collection must be defined by intension, i.e. by a
property common to all its members and peculiar to them.

For many purposes, a class and a defining characteristic of it are prac-
tically interchangeable. The vital difference between the two consists in
the fact that there is only one class having a given set of members,
whereas there are always many different characteristics by which a given
class may be defined. Men may be defined as featherless bipeds, or as
rational animals, or (more correctly) by the traits by which Swift deline-
ates the Yahoos. It is this fact that a defining characteristic is never
unique which makes classes useful; otherwise we could be content with
the properties common and peculiar to their members.> Any one of these
properties can be used in the place of the class whenever uniqueness is
not important.

Returning now to the definition of number, it is clear that number is a
way of bringing together certain collections, namely, those that have a
given number of terms. We can suppose all couples in one bundle, all
trios in another, and so on. In this way we obtain various bundles of col-
lections, each bundle consisting of all the collections that have a certain
number of terms. Each bundle is a class whose members are collections,
i.e. classes; thus each is a class of classes. The bundle consisting of all
couples, for example, is a class of classes: each couple is a class with two
members, and the whole bundle of couples is a class with an infinite
number of members, each of which is a class of two members.

How shall we decide whether two collections are to belong to the same
bundle? The answer that suggests itself is: **Find out how many members
each has, and put them in the same bundle if they have the same number
of members.’’ But this presupposes that we have defined numbers, and
that we know how to discover how many terms a collection has. We.are
5o used to the operation of counting that such a presupposition mlg}?t
easily pass unnoticed. In fact, however, counting, though familiar, is
logically a very complex operation; moreover it is only available, as a
means of discovering how many terms a collection has, when the collec-
tion is finite. Qur definition of number must not assume in advancf: }hat
all numbers are finite; and we cannot in any case, without a vicious
circle, use counting to define numbers, because numbers are used in
counting. We need, therefore, some other method of deciding when two
collections have the same number of terms.

IAs will be explained later, classes may be regarded as logical fictions'. manufac(ured out
of defining characteristics. But for the present it wifl simplify our exposition to treat classes
as if they were reat.
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In actual fact, it is simpler logically to find out whether two collections
have the same number of terms than it is to define what that number is.
An illustration will make this clear. If there were no polygamy or
polyandry anywhere in the world, it is clear that the number of husbands
living at any moment would be exactly the same as the number of wives.
We do not need a census to assure us of this, nor do we need to know
what is the actual number of husbands and of wives. We know the num-
ber must be the same in both collections, because each husband has one
wife and each wife has one husband. The relation of husband and wife is
what is called ‘‘one-one.”

A relation is said to be ‘‘one-one’’ when, if x has the relation in ques-
tion to y, no other term x’ has the same relation to y, and x does not have
the same relation to any term y‘ other than y. When only the first of these
two conditions is fulfilled, the relation is called ‘‘one-many’’; when only
the second is fulfilled, it is called ‘““many-one.” It should be observed
that the number 1 is not used in these definitions.

In Christian countries, the relation of husband to wife is one-one; in
Mahometan countries it is one-many; in Tibet it is many-one. The rela-
tion of father to son is one-many; that of son to father is many-one, but
that of eldest son to father is one-one. If 7 is any number, the relation of
nto n+1 is one-one; so is the relation of n to 27 or to 3n. When we are
considering only positive numbers, the relation of n to n? is one-one; but
when negative numbers are admitted, it becomes two-one, since n and
-n ha\{e the same square. These instances should suffice to make clear
the notions of one-one, one-many, and many-one relations, which play a
gregt part in the principles of mathematics, not only in relation to the
definition of numbers, but in many other connections.

Two classes are said to be “‘similar’’ when there is & one-one relation
which correlates the terms of the one class each with one term of the
other class, in the same manner in which the relation of marriage corre-
lates hu.sbam.is‘“./ith wives. A few preliminary definitions will help us to
state this d'efmmon more precisely. The class of those terms that have a
g}llven relation to something or other is called the domain of that relation:
;r:i}f:tgglr; :1}; ec:?fhiorlzzltriloﬁf ot?ﬁ rell)ation of father. to child, husbang‘ls
of the relation of wife to husband - :r}lld tth) g lee§ AR
the domain of the relation of marl,"an Tl'l}f andS_and it o end
is called the converse of the relati lag(;.h ; reation 'Of WI'f : t ° husban'd
the converse of greater, later is thOn S sband to.w1fe. Similarly fess 1
ally, the converse of a éiven relatii)rclqnvﬁrse % e_arller, gnd e

» and x whenever the given rela i, hls ltd at relation which holds between
domain of a relation is the d inOf Its between xand y. The convfzrse
¢ domain of its converse: thus the class of wives
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. . W
is the converse domain of the relation of husband to wife. We may no
state our definition of similarity as follows: -

One class is said to be “scimilar’’ to another _when {here is ahoni;
one relation of which the one class is the domain, while the other

the converse domain.

It is easy to prove (1) that every class is similar to itself, (2) that if a

class a is similar to a class 8, then g is similar to &, & that if l;x 15 j‘lzf:;izz
to 8 and 8 to v, then « is similar to 7. A r'elatlon is sau.i t;)w lfe’:it o
when it possesses the first of these properties, Symmef"'f'fi s obvious
sesses the second , and fransitive when it possesses the third. be reflexive
that a relation which is symmetrical and transitive must : r(:i erseare v
throughout its domain. Relations which possess t}}esi p.rOPiS one of this
important kind, and it is worth while to note that simi arity

ki ions.

H;? ic;forlj\l/?ct:l?: to common sense that two finite c}asses have t};ec Zirrrllttf
number of terms if they are similar, but not othe.rw1se. Thee.:tlctt }?e o
ing consists in establishing a one-oné correlat}on be;lw:are o dupin
objects counted and the natural numbers (excluding 0) t }? s many
the process. Accordingly common sense concludes that t tt; o e o
objects in the set to be counted as there are numbers lllp o onfine
ber used in the counting. And we also know that, so ox;g N o
ourselves to finite numbers, there are just 7 numbers trom

i i ion is the
Hence it follows that the last number used in counting a collecti

ion is finite. But
number of terms in the collection, provided the .co“eclile?:rtlic;:lsfmcllteepegds
this result, besides being only applicable to fink® o2 similar’ have the
upon and assumes the fact that two classes which are ) 10 objects is
same number of terms; for what we do \‘vh'en we count (S:¥ numbers 1 to
to show that the set of these objects i similar to thz§el the operation of
10. The notion of similarity is logically pl.esuppos'el'alrn In counting, it is
counting, and is logically simpler ‘ho‘fgh less fami lcle.r as first, second,
necessary to take the objects counted in a certain 0; : ;t is an irrelevant
third, etc., but order is not of the essence of number: al point of view.
addition, an unnecessary complication from the l?flc exzmple we saw
The notion of similarity does not demand an order.bOr f wives ’without
that the number of husbands is the same as the numtﬁzxcr)l The r;otion of
having to establish an order of precedence amon}gr h arc; similar should
similarity also does not require that the classes WIC cluding 0) on the
be finite. Take, for example, the natural numbers ( ° umerator on the
one hand, and the fractions which have 1 for t.hfllrl /nZ 3 with 1/3, and
other hand: it is obvious that we can correlate 2 wit ’

imilar.
so on, thus proving that the two classes are similar
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We may thus use the notion of ““similarity”” to decide when two collec-
tions are to belong to the same bundle, in the sense in which we were ask-
ing this question earlier in this chapter. We want to make one bundle
containing the class that has no members: this will be for the number 0.
Then we want a bundle of all the classes that have one member: this will
be for the number 1. Then, for the number 2, we want a bundle con-
sisting of all couples; then one of all trios; and so on. Given any collec-
tion, we can define the bundle it js to belong to as being the class of all
those collections that are “‘similar” to it. It is very easy to see that if (for
example) a collection has three members, the class of all those collections
that are similar to it will be the class of trios. And whatever number of
terms a collection may have, those collections that are *“‘similar’’ to it will
have the same number of terms. We may take this as a definition of
“having the same number of terms.” It is obvious that it gives results
conformable to usage so long as we confine ourselves to finite collections.

So far we have not suggested anything in the slightest degree paradoxi-
cal. But when we come to the actual definition of numbers we cannot

about the class of couples: it is indubi

wh'ereas the number 2, in any other sense, is a metaphysical entity about

t it exists or that we have tracked it

couples, which we are sure of, tha

which must always remain elusiv
definition: -

nto hunt for a problematical number 2
€. Accordingly we set up the following

The number of a class is

0 it the class of alf those classes that are similar

Thus the number of a couple will be the class of all couples. In fact, the
class of aj] couples will e the number 2, according to our definition. At
the €xpense of a little oddity, this definition secures definiteness and in-
dubltableness; and it is not difficult to prove that numbers so defined
have all the Properties that we €Xpect numbers to have,

X Vﬁg: may now go on to flefine Numbers in genera] ag any one of the
undles into whjch similarity collects classes. A number will be a set of

classes such. as that any two are similar to each other
the set are similar to any insid

eral) is any collection which
more simply still:

A number is an ything which is the number of some class.
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Such a definition has a verbal appearance of being cir(fular, but'm fact
it is not. We define ‘‘the number of a given class” without using the
notion of number in general; therefore we may define m.lrrfber in gen<?ral
in terms of “the number of a given class” without committing any logical
error.

Definitions of this sort are in fact very common.'T.he class o'f fathers,
for example, would have to be defined by first defmmg what it is to be
the father of somebody; then the class of fathers will be all those who are
somebody’s father. Similarly if we want to define square numbers gsay),
we must first define what we mean by saying that one number is the
square of another, and then define square numbefs as those that are :ihi(:
squares of other numbers. This kind of procedure is very common, an
is important to realize that it is legitimate and even ofFen nece;sar;". )

We have now given a definition of numbers which .w11.l serve for finite
collections. It remains to be seen how it will serve for 1nf1.mt.e (':Oll’C’CtIO{ls.
But first we must decide what we mean by ““finite’’ and “infinite,” which
cannot be done within the limits [here].

111. Mathematics and logic

Mathematics and logic, historically speaking, ha}/e been e{ltlrgl);] déstm]((:t
studies. Mathematics has been connected with science, logic wit r:lele:
But both have developed in modern times: logic has become more ma is
matical and mathematics has become more 1081‘:*‘1'.The Consequlfntc\fm'
that it has now become wholly impossible to draw a line t-)et-we;n tofxth o;
in fact, the two are one. They differ as boy and man: lOgl.C 1s_;he. yview "
mathematics and mathematics is the ma:}hQOd ° ! logltC .d olfS classical
resented by logicians who, having spept their time in 'the $ uo zing and by
texts, are incapable of following a piece of symbolic rea;l_ o inquire
mathematicians who have learnt a technique without ;rou :tlsly growing
into its meaning or justification. Both types are now ortun the border-
rarer. So much of modern mathematical.work 18 O.t)VlOUSIfy Orr:]al that the
line of logic, so much of modern logic is Sym.bOhC and for e oiwious to
very close relationship of logic and mathematics has becom f course, a
every instructed student. The proof of thelr.ldentlt)’ 'S’bo niversa,lly
matter of detail: starting with premisses which w ould :Jlltjs which as
admitted to belong to logic, and arriving by deducuofl atre o ot which
obviously belong to mathematics, we find that there is nohpmatics to the
a sharp line can be drawn, with logic to the le_ft anq mat. ¢ f logic and
right. If there are still those who do not El'dl'n.l[ the 1denr:1tty o ¢ in the
mathematics, we may challenge them to indicate at w ah fn(:ltic’a they
successive definitions and deductions of Principia Mathe ’
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consider that logic ends and mathematics begins. It will then be obvious
that any answer must be quite arbitrary.

In the earlier chapters of this book, starting from the natural numbers
we have first defined ‘‘cardinal number’’ and shown how to generalisé
the con.ceptlon of number, and have then analysed the conceptions in-
volved in the definition, until we found ourselves dealing with the funda-
mentals of logic. In a synthetic, deductive treatment these fundamentals
come first, and the natural numbers are only reached after a long jour-
ney. Such treatment, though formally more correct than that which we
have adopted, is more difficult for the reader, because the ultimate logi-
cal ?(?ncepts and propositions with which it starts are remote and un-
familiar as cqmpared with the natural numbers. Also they represent the
present t'"r(.)ntler of knowledge, beyond which is the still unknown; and
the dominjon of knowledge over them is not as yet very secure ,
titlt, ’u§ed to be said that mathematics is the science of “quantity.”.“Quan'
ch’ wlosrz \:flfllllfn :)v:r(,i’, but for the sake of argument we may replace it by
mumber wom lr].nt Th(? statemgnt that mathematics is the science of
are recopn b hrue in two dlffefent ways. On the one hand, there
number o eomni es of mathematics which have nothing to do with
for example: gro'eet Ty that does pot. use co-ordinates or measurement,
which sor (-fp jec 1ve. and descriptive geometry, down to the point at

rdinates are introduced, does not have to do with number, or

merged i ) ¥ exclusive. Multiplication is
ged in the theory of “selections,” i.e, of a certain kind ofpoﬁ:fmany

relations. Finj i ;
itude is merged in the general study of ancestral relations,

which yields the whole
/ theory of ical i i i
Properties of the various kind:'of nr:;t hematl_cal and he slemence ot
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created a set of new deductive systems, in which traditional arithmetic is
at once dissolved and enlarged; but whether any one of these new deduc-
tive systems - for example, the theory of selections - is to be said to
belong to logic or to arithmetic is entirely arbitrary, and incapable of
being decided rationally.

We are thus brought face to face with the question: What is the sub-
ject, which may be called indifferently either mathematics or logic? Is
there any way in which we can define it?

Certain characteristics of the subject are clear. To begin with, we do
not, in this subject, deal with particular things or particular properties:
we deal formally with what can be said about any thing or any property.
We are prepared to say that one and one are two, but not that Socrates
and Plato are two, because, in our capacity of logicians or pure mathe-
maticians, we have never heard of Socrates and Plato. A world in which
there were no such individuals would still be a2 world in which one and
one are two. It is not open to us, as pure mathematicians or logicians, to
mention anything at all, because, if we do so, we introduce something
irrelevant and not formal. We may make this clear by applying it to the
case of the syllogism. Traditional logic says: “All men are mortal,
Socrates is a man, therefore Socrates is mortal.” Now it is clear that what
we mean to assert, to begin with, is only that the premisses imply the con-
clusion, not that premisses and conclusion are actually true; even the
most traditional logic points out that the actual truth of the premisses i's
irrelevant to logic. Thus the first change to be made in the above tradi-
tional syllogism is to state it in the form: *‘If all men are mortal anfi
Socrates is a man, then Socrates is mortal.”” We may now observe that it
is intended to convey that this argument is valid in virtue of itsform,. not
in virtue of the particular terms occurring in it. 1f we had omitted
“‘Socrates is & man" from our premisses, we should have had a non-
formal argument, only admissible because Socrates is in fact a man; in
that case we could not have generalized the argument. But when, as
above, the argument is formal, nothing depends upon the terms that
occur in jt. Thus we may substitute o for men, 8 for mortals, and x for
Socrates, where o and 8 are any classes whatever, and x is any individual.
We then arrive at the statement: ‘‘No matter what possible values'x and a
and 8 may have, if all a’s are 8’s and x is an o, then xisa §8’’; in Othér
words, “‘the propositional function ‘if all &’s are B and x is an a then xis
a B’ is always true.”” Here at last we have a proposition of logic - the one
which is only suggested by the traditional statement about Socrates and
men and mortals.

It is clear that, if formal reasoning is what we are aiming at, we shall
always arrive ultimately at statements like the above, in which no actual
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things or properties are mentioned; this will happen through the mere
desire not to waste our time proving in a particular case what can be
proved generally. It would be ridiculous to go through a long argument
about Socrates, and then go through precisely the same argument again
about Plato. If our argument is one (say) which holds of all men, we shall
prove it concerning ‘“x,’’ with the hypothesis *‘if x is a man.”’ With this
hypothesis, the argument will retain its hypothetical validity even whenx
is not a man. But now we shall find that our argument would stiil be valid
if, instead of supposing x to be a man, we were to suppose him to be a
monkey or a goose or a Prime Minister. We shall therefore not waste our
time taking as our premiss ‘‘x is a man’’ but shall take ‘‘x is an a,”’ Where
a is any class of individuals, or *‘¢x’’ where ¢ is any propositional func-
tion of some assigned type. Thus the absence of all mention of particular
things or properties in logic or pure mathematics is a necessary result of
the fact that this study is, as we say, ‘‘purely formal.”’

At this point we find ourselves faced with a problem which is easier to
state than to solve. The problem is: ‘“‘What are the constituents of a logi-
cal proposition?” I do not know the answer, but I propose to explain
how the problem arises.

Take (say) the proposition ““‘Socrates was before Aristotle.’” Here it
seems obvious that we have a relation between two terms, and that the
cpnstituents of the proposition (as well as of the corresponding fact) are
simply the two terms and the relation, i.e. Socrates, Aristotle, and
before. (1 ignore the fact that Socrates and Aristotle are not simple; also
the fact that what appear to be their names are really truncated descrip-
tions. Neither of these facts is relevant to the present issue.) We may rep-
resent the general form of such propositions by “‘x R »,”" which may be
read *‘x has the relation R to y.”" This general form may occur in logical
propositions, but no particular instance of it can occur. Are we to infer
that 'lhe general form itself is a constituent of such logical propositions?

Glyen a pr.oposition, such as “‘Socrates is before Aristotle,"’ we have
certain constituents and also a certain form. But the form is not itself a
new constituent; if it were, we should need a new form to embrace both it
and the. che{ constntpents. We can, in fact, turn ail the constituents of a
proposition into variables, while keeping the form unchanged. This is
what we do when we use such a schema as ““x R y,” which stands for any

g:tewof a certain class of propositions, namely, those asserting relations
Y So;e;itr;v: tterm’s,. jﬁ{e can proceed to general assertions, such as “xR_y
S true 1.e. there are cases where dual relations hold. This

assertion will belong to logic (or m ics) i i
: athematics) in the sense in which we
are using the word. But in this a ) ar

: i ssertion we do not mention any particu-
lar things or particular relation o

§; no particular things or relations can
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i i S as
ever enter into a proposition of pure logic. We are left with pure form

the only possible constituents of logical propositions. e form R
1 do not wish to assert positively that pure fqrms - e.g.the o e

- do actually enter into propositions of.t!]e klpd we a%re (i:)nne With. The

question of the analysis of such propc.)smons is a dif 1cuhec; {ve o

flicting considerations on the one side and on the otﬁrs.t sy

embark upon this question now, but we qlay acc<?pt,l asa D e

tion, the view that forms are what enter into logica pﬁ)pdeﬁne) s

constituents. And we may explain {(though not for.ma y

mean by the “‘form’ of a proposition as follows: - ‘

that, in it, that remains umn-

. » ition is X
The ‘‘form” of a Propes he proposition 18 replaced by

changed when every constituent of t
another.

. ’ as
““Napoleon is greater than Wellington,” though every
two propositions is different. - charac-
Wg mZy thus lay down, as @ necessary (though 1:1 c;tt;lgyﬁ:;zntt; be such
teristic of logical or mathematical [.)r.OPOSH‘O“_S’_t a o variables (i.¢. 10
as can be obtained from a proposition Coma.unmg . onstituent into a
such words as all, some, @, the, etc.).by turning everysgmetimes true, or
variable and asserting that the result is always tr ue‘:t:les that the result is
that it is always true in respect of some of the varl iant of these forms.
sometimes true in respect of the others., or any vartmlt ogic (or mathe-
And another way of stating the same thing is o saz,ned with them only in
matics) is concerned only with forms, and is conctti:mes true - with all the
the way of stating that they are always of S?,m; t may Occur.
permutations or ‘‘always' and ‘‘sometimes o e function is to indi-
There are in every language some wor.dS whose S;:monest in languages
cate form. These words, broadly speaking, are oM™ Here “‘is”’ is not a
having fewest inflections. Take *‘Socrates 1S h.umam.the o bject predicate
constituent of the proposition, but Fnerely mdlf:atetsle e S g “ithan”
form. Similarly in ‘‘Socrates is earl.ler t‘han Aristo as’ «gocrates precedes
merely indicate form; the pr oposition 1S the samez and the form is other-
Aristotle,’” in which these words have d1§appeard otherwise than by spe-
wise indicated. Form, as a rule, can be indicate of what is wanted. But
cific words: the order of the words can do m(l)St it is difficult to see how
this principle must not be pressed. For examp g f propositions (i-€- what
we could conveniently express molecular forms 0 aﬁ We saw ... that on¢
we call “truth-functions™) without any wor¢ & d c')r symbol expressing
word is enough for this purpose, namely, a wc:-ould find ourselves in
incompatibility. But without even one W¢ §
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difficulties. This, however, is not the point that is important for our
present purpose. What is important for us is to observe that form may be
the one concern of a general proposition, even when no word or symbol
in that proposition designates the form. If we wish to speak about the
form itself, we must have a word for it; but if, as in mathematics, we
wish to speak about all propositions that have the form, a word for the
form will usually be found not indispensable; probably in theory it is
never indispensable.

Assuming - as | think we may ~ that the forms of propositions can be
re‘presented by the forms of the propositions in which they are expressed
w1tpout any special word for forms, we should arrive at a language in
which everything formal belonged to syntax and not to vocabulary. In
such a language we could express all the propositions of mathematics
even if we did not know one single word of the language. The language
of mathematical logic, if it were perfected, would be such a language. We
should pave symbols for variables, such as *x*’ and ““R’’ and “‘y,”’ ar-
ranged }n various ways; and the way of arrangement would indicate that
something was being said to be true of all values or some values of the
variables. We should not need to know any words, because they would
only be needed for giving values to the variables, which is the business of
Fhe applied mathematician, not of the pure mathematician or logician. It
1s one of the marks of a proposition of logic that, given a suitable lan-
guage, such a proposition can be asserted in such a language by a person
who knows the syntax without knowing a single word of the vocabulary.
. But,”after al}, there are words that express form, such as ‘‘is’’ and
| than.”” And in every symbolism hitherto invented for mathematical
Ogic there are symbols having constant formaj meanings. We may take
as an example the symbol for incompatibility which is employed in build-
ing up truth-functions. Such words or symbols may occur in logic. The
Question is: How are we to define them? .

Such words or symbols express what are called *‘logical constants.”

¢ defined exactly as we defined forms; in fact,

ny other by substitution

For example, “Napoleon of terms one for another.

‘ X Is greater than Wellj »
“S ; - ellington”’ results from
ocrates is earlier than Aristotle” by the substitution of ““Napoleon”

for « ” . ,
lier ,,Sggrr:;es; * “Wellington”* for “Aristotle > and “greater” for “‘ear-
. Propositions can be obtained in th
. . in
“‘Socrates is earlier than Aristotle*’ this way from the prototype

4 .and Some cannot; those that can are
1.€. express dual relations. We cannot
ototype by term-for-term substitution such
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propositions as ‘‘Socrates is human’ or ‘‘the AFhenians gave the hem-
lock to Socrates,’’ because the first is of the subject-predicate form aqd
the second expresses a three-term relation. If we are to have any _words in
our pure logical language, they must be such as express ‘‘logical con-
stants,”” and “‘logical constants’ will always either be, or.be derived
from, what is in common among a group of propositioqs d(?rlvable frorp
each other, in the above manner, by term-for-term substitution. And this
which is in common is what we call *‘form.” .

In this sense all the ““constants’’ that occur in pure mathematics are
logical constants. The number 1, for example, is derivative from proposi-
tions of the form: *‘There is a term c such that ¢x is true when, and_ gnly
when, x is ¢.”” This is a function of ¢, and various Qiffert?nt propos‘mons
result from giving different values to ¢. We may (with a little omission of
intermediate steps not relevant to our present purpo§e) take th‘e abov‘e
function of ¢ as what is meant by *‘the class determined by ¢ is a unit
class’ or “‘the class determined by ¢ is a member of 1’* (1 bf:mg a class'of
classes). In this way, propositions in which 1 occurs acquir¢ a meanerg
which is derived from a certain constant logical form. And the same ?wll
be found to be the case with all mathematical constants: all are loglcz}l
constants, or symbolic abbeviations whose full use in a proper context 1§
defined by means of logical constants. .

But although all logical (or mathematical) proposntlor_ls can be ?szisiz‘i
wholly in terms of logical constants together with variables, it is ;1 o
case that, conversely, all propositions that can be expressed ;;1 t Lst cri)i
are logical. We have found so far a necessary but pqt asu 1;51:: e
terion of mathematical propositions. We have sufficiently de ;“:1 L
character of the primitive ideas in terms of \yhlch all th.elldea: gm e
Matics can be defined, but not of the primitive propositions rr]n o i
all the propesitions of mathematics can be deduced. Thisisa <
cult matter, as to which it is not yet known what the full answer si't -

We may take the axiom of infinity as an example of atr;)r::(s)serted
Which, though it can be enunciated in logical ter.ms, cannoh e
by logic to be true. All the propositions of logic have a ¢ i:r;l - their
which used to be expressed by saying that they were analytic, 0 hat el
Contradictories were self-contradictory. This. n_lode. of staltexzfle ;mong
ever, is not satisfactory. The law of contradlqnon is m(:irel:!e  of that
logical propositions; it has no special pre-eminence; and t ii’ Thely to
the contradictory of some proposition is self—contradlc;or())lmradiction.
Tequire other principles of deduction besides the lﬁW o E e are in
NEVErtheless, the characteristic of logical propositions t ad by those
search of is the one which was felt, and intended to be define t’ragiction.
Who said that it consisted in deducibility from the law of con
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This characteristic, which, for the moment, we may caj tautology,
obviously does not belong to the assertion that the number of individuals
in the universe is n, whatever number n may be. But for the diversity of
types, it would be possible to prove logically that there are classes of n
terms, where n is any finite integer; or €ven that there are classes of Ko
terms. But, owing to types, such proofs . . - are fallacious. We are left to

there will be worlds having one, two, three, . .. individuals. There does
Not even seery any logical necessity why there should be even one indi-
vidual* - why, in fact, there should pe any world at all. The ontological
proof of the existence of God, if it were valid, would establish the logical
necessity of at least one individual, But it is generally recognized as in-
valid, and in fact T€StS upon a mistakep view of

Mmeaningless to argue from *‘this is the so-
and-so”’ apqg “the 50-and-so exjsts’

Principle of logic can assert ‘¢
none can be of the form “the
times trye,* Propositiong of

impljes T, or that, if g1 a’sare 3’
sitions may oceur in logic, and their try¢p i

of the universe: We may Jay j, down that, if there were no universe, a//
general. Propositions would be true; for the contradictory of g general
Proposition. ,  is 4 propos i

ition asserting existence and would therefore
always pe false if no Universe eXisted, ’
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are some kinds of propositions wh.ich it would be very difficult to sup
pose we could know without experlince: " or “mathematics” must be
It is clear that the definition of _ !oglc or lr: notion of “analytic:
sought by trying to give a new definition of the ol fied to define logical
propositions. Although we can no longer be satisfi radiction el
itions as those that follow from the l.aw of contr ) oo
O ill admit that they are a wholly different class of propoh e
?rrg:nnxzszuth:t \Te come to know empirically. 1“‘hey all hav’e’ t"?;iz ;r)m_
teristic which, a moment ago, we agreed to call t:::)lltl(;'l(i)ﬁyt-erms o;‘ vari-
bined with the fact that they can ce expressed “11) cing something which
ables and logical constants (a logical constant /I its constituents are
remains constant in a proposition even Whenrz mathematics. For the
changed), will give the definition o‘f lo‘g‘lc or ::)u 5 It would be easy o
moment, 1 do not know how to define “‘tauto Ogﬁ" r a while; but I know
offer a definition which might seem saust"actor.y (())f feeling thoroughly
of none that 1 feel to be satisfactory, in SI;‘I'te't'on is wanted. At this
familiar with the characteristic of which a de l;ll lntier of knowledge on
point, therefore, for the moment, we reach the rnos; of mathematics.
our backward journey into thedloilg?llri(z)‘::l]s:tt::t summary introduction
We have now come to an en ot c ' dequately the
to m:nhematical philosophy. It is impossible to:::;ga?n frqom the use
\deas that are concerned in this Subject so lonﬁ aSno words that naturally
of logical symbols. Since ordinary language has ecessary, so long as we
s o ctly what we wish tof:i?:f:éh:l; il:\trcl) unusual meanings; and
e rader e S e et o o o s 2510 whet 1
’ oY
Usual meanings to words, thus arriving at wro:rga:?‘lggmax 'S extraord.
imtended to be said. Moreover, ordinary grar:n:lrds numbers; ‘‘ten men”’
inarily misicading. This i ‘?e ﬁszé e‘.‘i‘/haiferrgen,;’ so that 10 might _be
is grammatically the same for A WK " It is the case, again,
‘h:“:hmt to be i“ adjective q'uahfylns‘ m?\r/‘cd latmldS in particular as
Wherever propositional functions are invo language is misleading, as
regards existence and descriptions. Because lied to logic (for which
ell as because it is diffuse an]d Il:;g?)?itsxlhiesna?)!;glutely necessary tofany
i intended), logical sy . ders, therefore,
:ztx:cisonre:;:):ough treatment of our scbjcct. Tt;osc; tr}T:matics, will, it is
ho wish to acquire a mastery of the principles of m g the symbols -
t“(,) gew;lsop:da r?ot shrink from the labour of mastering

. inted out to me
- thematics was poin w
. o »* for a definition of ma lem. I do not kno
’Therlmportanccl tﬂxd:z:t;)\l’?tgenstein, who was working on the prob
Y my former pupi

is alive or dead.
whether he has solved it, or even whether he is alive
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On the infinite

DAVID HILBERT

As a result of his penetrating critique, Weierstrass has provided a solid
foundation for mathematical analysis. By elucidating many notions, in
particular those of minimum, function, and differential quotient, he
removed the defects which were still found in the infinitesimal calculus,
rid it of all confused notions about the infinitesimal, and thereby com-
pletely resolved the difficulties which stem from that concept. If in analy-
sis today there is complete agreement and certitude in employing the
deductive methods which are based on the concepts of irrational number
and limit, and if in even the most complex questions of the theory of dif-
ferential and integral equations, notwithstanding the use of the most
ingenious and varied combinations of the different kinds of limits, there
nevertheless is unanimity with respect to the results obtained, then this
happy state of affairs is due primarily to Weierstrass’s scientific work.

And yet in spite of the foundation Weierstrass has provided for the
infinitesimal calculus, disputes about the foundations of analysis still
g0 on,

These disputes have not terminated because the meaning of the in-
finite, as that concept is used in mathematics, has never been completely
clarified, Weierstrass's analysis did indeed eliminate the infinitely large
and the infinitely small by reducing statements about them to [statements
about] relations between finite magnitudes. Nevertheless the infinite still
appears in the infinite numerical series which defines the real numbers
and in the concept of the real number system which is thought of as a
completed totality existing all at once.

In his foundation for analysis, Weierstrass accepted unreservedly and
used repeatedly those forms of logical deduction in which the concept of
the infinite comes into play, as when one treats of a// real numbers with a
certain property or when one argues that there exist real numbers with a

certain property.

Delivered June 4, 1925, before a congress of the Westphalian Mathematical Society in
Munster, in honor of Karl Weierstrass. Translated by Erna Putnam and Gerald J. Massey
from Marhematische Annalen (Berlin) vol. 95 (1926), pp. 161-90. Permission for the trans-
lation and inclusion of the article in this volume was kindly granted by the publishers,

Springer Verlag.

183



