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Probability

Maria Carla Galavotti

Historical sketch

The origin of the notion of probability, taken in the quantitative sense that is nowadays 
attached to it, is usually traced back to the decade around 1660 and associated with 
the work of Blaise Pascal and Pierre Fermat, followed by that of Christiaan Huygens 
and many others. 
	 Since its beginnings, the notion of probability has been characterized by a peculiar 
duality of meaning: its statistical meaning concerning the stochastic laws of chance 
processes; and its epistemological meaning relating to the degree of belief that we, 
as agents, entertain in propositions describing uncertain events. Such a duality lies 
at the root of the philosophical problem of the interpretation of probability, and 
has nurtured various schools animated by the conviction that a specific sense of 
“probability” should be privileged and made the essence of its definition. After a long 
period in which the “doctrine of chance” and the “art of conjecture” had peacefully 
coexisted, this absolutist tendency became predominant around the middle of the 
nineteenth century and gave rise to the different interpretations of probability that 
will be described in the following sections. 
	 By the turn of the eighteenth century, probability had progressed enormously, having 
progressively widened its scope of application. Great impulse to its development came 
from the application of the notion of the arithmetic mean first to demographic data, 
then to fields like medical practice and legal decisions, and finally to the physical and 
biological sciences. 
	 A pivotal role in the history of probability was played by the Bernoulli family, 
including Jakob, who started the analysis of direct probability, that is, the probability 
to be assigned to a sample taken from a population whose law is known, and proved 
the result usually called the “weak law of large numbers.” The theorem holds for 
binary processes, namely processes that admit of two outcomes – such as “heads” or 
“tails” and the “presence” or “absence” of a certain property – and says that if p is the 
probability of obtaining a certain outcome in a repeatable experiment, and m the 
number of successes obtained in n repetitions of the same experiment, the probability 
that the value of m/n falls within any chosen interval p 6 ε increases for larger and 
larger values of n, and tends to 1 as n tends to infinity. Bernoulli’s result is based on 
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the concept of stochastic independence, which receives an unambiguous definition for 
the first time. Bernoulli’s work also sheds light on the relationship between probability 
and frequency, by keeping separate the probability and the frequency with which the 
events of the considered dichotomy can theoretically occur in any given number n 
of experiments, and sets the probability distribution over possible frequencies: 0, 1, 
2, . . ., n, usually called “binomial distribution.” Bernoulli’s work on direct probability 
was gradually generalized by other probabilists, including De Moivre, Laplace, and 
Poisson, to receive great impulse in the nineteenth and twentieth centuries, especially 
by Borel, Cantelli, and the Russian probabilists Chebyshev, Markov, Lyapunov, and 
Kolmogorov.
	 Other important members of the Bernoulli family were Nikolaus, who formulated 
the so-called “Saint Petersburg problem,” and Daniel, who did seminal work on 
mathematical expectation and laid the foundations of the theory of errors, which 
reached its peak with the subsequent work of Gauss. 
	 Special mention is due to Thomas Bayes, who proposed a method for assessing 
inverse probability, that is, the probability to be assigned to an hypothesis on the ground 
of available evidence. Whereas by direct probability one goes from the known proba-
bility of a population to the estimated frequency of its samples, by inverse probability 
one goes from known frequencies to estimated probabilities. Inverse probability is also 
called the “probability of causes,” because it enables the estimation of the probabilities 
of the causes underlying an observed event. The method is based on the idea that the 
final or posterior probability P(H|E) of a certain hypothesis (H), given a certain piece 
of evidence (E), is proportional to the product of the initial or prior probability P(H) 
of the hypothesis calculated on the basis of background knowledge, and the so-called 
likelihood P(E|H) of E given the considered hypothesis, namely on the assumption 
that the considered hypothesis holds. A general formulation of Bayes’s rule, that takes 
into account a family of hypotheses H1 . . . Hn, is the following:

P(Hi|E) 5 [P(Hi) 3 P(E|Hi)] / Σ
n
i51 [P(Hi) 3 P(E|Hi)].

To illustrate this formula, let us take a factory that has 3 machines for the production 
of bolts, of which it produces 60,000 pieces daily. Of these, 10,000 are produced by 
machine A1, 20,000 by machine A2, and 30,000 by machine A3. All three machines 
occasionally produce faulty pieces, F. On average, the rejection rates of the 3 
machines are as follows: 4 percent in the case of A1, 2 percent in the case of A2, 4 
percent in the case of A3. Given a defective bolt taken from the rejects, we ask for the 
probability that it was produced by each of the three machines. In order to calculate 
such a probability by means of Bayes’s rule, we start from prior probabilities, obtained 
in this case from the information concerning the production of the machines. They 
are as follows:

P(A1) 5 10,000/60,000 5 1/6
P(A2) 5 20,000/60,000 5 1/3
P(A3) 5 30,000/60,000 5 1/2.
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The likelihoods are provided by information on the rejection rates:

P(F|A1) 5 4/100
P(F|A2) 5 2/100
P(F|A3) 5 4/100.

Posterior probabilities are calculated as follows:

P(A1|F) 5 (1/6 3 4/100) / [(1/6 3 4/100) 1 (1/3 3 2/100) 1 (1/2 3 4/100)] 
5 1/5 5 20%
P(A2|F) 5 (1/3 3 2/100) / [(1/6 3 4/100) 1 (1/3 3 2/100) 1 (1/2 3 4/100)] 
5 1/5 5 20%
P(A3|F) 5 (1/2 3 4/100) / [(1/6 3 4/100) 1 (1/3 3 2/100) 1 (1/2 3 4/100)] 
5 3/5 5 60%.

We therefore have a probability of 20 percent that a defective bolt taken at random 
was produced by machine A1, a probability of 20 percent that it was produced by 
machine A2 and a probability of 60 percent that it was produced by machine A3. The 
obtained result shows that, although the machine A2 works twice as well as A1, it is 
equally probable that the defective piece originates from A2 as from A1, because the 
second machine produces twice as many pieces. Machine A3, which supplies half of 
the total production, is nevertheless assigned probability 3/5 of having produced the 
defective piece because one of the two other machines works more reliably. 
	 The crucial step in the application of Bayes’s rule lies with fixing prior probabilities. 
This is a matter of debate. By allowing for the evaluation of hypotheses in a probabil-
istic fashion, Bayes’s method spells out a canon of inductive reasoning. It was applied 
in the first place by Laplace, and later on came to be regarded as the cornerstone of 
statistical inference by the statisticians of the Bayesian School. The place of Bayes’s 
inductive method within the whole of statistics is the subject of a major ongoing 
controversy. 
	 The eighteenth century saw a tremendous growth in the application of probability 
to the moral and political sciences. Important work in this connection was done by 
Condorcet, the pioneer of the so-called “social mathematics,” meant to produce a 
statistical description of society instrumental for a new political economy.
	 Between the nineteenth and twentieth centuries the study of statistical distribu-
tions progressed enormously thanks to the work of a number of authors, including 
Quetelet, Galton, Karl Pearson, Weldon, Gosset, Edgeworth, and others, who shaped 
modern statistics, by developing the analysis of correlation and regression, and the 
methodology for assessing statistical hypotheses against experimental data through 
the so-called “significance tests.” Other branches of modern statistics were started 
by Fisher, who prompted the analysis of variance and covariance, and the likelihood 
method for comparing hypotheses on the basis of a given body of data. Also worth 
mentioning are Egon Pearson and Jerzy Neyman, who extended the methodology of 
tests to the comparison of two alternative hypotheses. 



PROBABILITY

417

	 In the nineteenth century, probability gradually entered physical science, not only 
in connection with errors of measurement, but more penetratingly as a component of 
physical theory. Such developments started with the work of Robert Brown on the 
motion of particles suspended in fluid, which paved the way to the analysis of physical 
phenomena characterized by great complexity, leading to the kinetic theory of gases 
and thermodynamics, developed by Maxwell, Boltzmann, and Gibbs. Around 1905–6 
von Smoluchowski and Einstein brought to completion the analysis of Brownian 
motion in probabilistic terms. More or less in the same years, the study of radiation 
led Einstein and other outstanding physicists, including Planck, Schrödinger, de 
Broglie, Dirac, Heisenberg, Born, Bohr, and others to formulate quantum mechanics, 
in which probability became an ingredient of the description of the basic components 
of matter. 
	 In 1933 Kolmogorov spelled out his famous axiomatization, meant to shed light on 
the mathematical properties of probability, and to draw a distinction between probabil-
ity’s formal features and the meaning it receives in practical situations. Put simply, the 
formal properties of probability are the following: (1) for any event A, its probability 
is > 0; (2) if A is certain, its probability equals 1; (3) probabilities are additive, that 
is, if two events A and B cannot both occur, P(A or B) 5 P(A) 1 P(B). Kolmogorov’s 
axiomatization met with a wide consensus and obtained a twofold result: for one 
thing, it gained an equitable position for probability among other mathematical disci-
plines; and by tracing a clear-cut boundary between the mathematical properties of 
probability and its interpretations it made room for the philosophy of probability as an 
autonomous field of enquiry. 

The classical interpretation 

The “classical” interpretation is usually construed as the interpretation of probability 
developed at the turn of the nineteenth century by the mathematician–physicist–
astronomer Pierre Simon de Laplace. Called “the Newton of France” for his work 
on mechanics, Laplace made a substantial contribution to probability, both techni-
cally and philosophically. His philosophy of probability is rooted in the doctrine of 
determinism, according to which the universe is ruled by a principle of sufficient reason 
stating that all things are brought into existence by a cause. The human mind is 
incapable of grasping every detail of the connections of the causal network underlying 
phenomena, but one can conceive of a superior intelligence able to do so. Making use 
of the methods of mathematical analysis and aided by probability, man can approach 
the all-comprehensive view of such a superior intelligence. Being made necessary by 
the incompleteness of human knowledge, probability is an epistemic notion, having 
to do with our knowledge, rather than being inherent in phenomena.
	 Laplace defines probability as “the ratio of the number of favorable cases to that 
of all possible cases,” according to the statement known as the “classical” definition. 
This is grounded on the assumption that all cases in question are equally possible, 
lacking information that would lead us to believe otherwise. The stress placed on the 
dependence of the judgment of equal possibility on there being no reason to believe 
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otherwise inspired the term “principle of insufficient reason” – also known in the 
literature as the “principle of indifference,” after a terminology coined by Keynes – to 
refer to Laplace’s assumption. In other words, for the sake of determining probability 
values, equally possible cases are taken as equally probable. This assumption is made 
for ease of analysis and is not endowed with metaphysical meaning. Laplace insists on 
the need to make sure that some outcomes are not more likely to happen than others, 
before applying his method. Moreover, Laplace’s epistemic interpretation protects his 
definition of probability from the charge of being circular: once probability is taken 
as epistemic, it stands on a different ground from the possibility of the occurrence of 
events. 
	 Dealing with inverse probability, Laplace enunciates a principle which amounts 
to Bayes’s rule. Under the assumption of equally likely causes, he derives from it the 
method of inference called in the literature “Laplace’s rule.” In the case of two alterna-
tives – like occurrence and non-occurrence – this rule allows us to infer the probability 
of an event from the information that it has been observed to happen in a given 
number of cases. If m is the number of observed positive cases, and n that of negative 
cases, the probability that the next case to be observed is positive equals (m 1 1) / (m 
1 n 1 2). If no negative cases have been observed, the formula reduces to (m 1 1) / 
(m 1 2). Laplace’s method is based on the assumptions of the equiprobability of priors 
and the independence of trials, conditional on a given parameter – like the compo-
sition of an urn, or the ratio of the number of favorable cases to that of all possible 
cases. The authors who later worked on probabilistic inference in the tradition of 
Bayes and Laplace – including Johnson, Carnap, and de Finetti – eventually turned to 
the weaker assumption of exchangeability.
	 Laplace’s theory of probability was very influential. However, while it can handle 
a wide array of important applications, it gives rise to problems, such as the impos-
sibility, in many situations, of determining the set of equally likely cases. In such 
situations – think for instance of the probability of a biased coin falling on either 
side or the probability that a given individual will die within a year – instead of 
looking for possible cases, we count the frequency with which events take place in 
order to calculate probability. Furthermore, when applied to problems involving an 
infinite number of possible cases, the classical interpretation generates the so-called 
“Bertrand’s paradox,” after the French mathematician Joseph Bertrand.

The frequency interpretation

According to the frequency interpretation, probability is defined as the limit of the 
relative frequency of a given attribute, observed in the initial part of an indefinitely 
long sequence of repeatable events. In other words, given that the attribute A has been 
observed with frequency m/n in the initial part of sequence B, its probability equals 
limn→

 Fn (A,B) 5 m/n. The frequency interpretation is empirical and objective: proba-
bility is a characteristic of phenomena that can be empirically analyzed by observing 
frequencies. Probability values are in general unknown, but can be approached by means 
of frequencies. The frequency interpretation is fully compatible with indeterminism.
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	 Started by Robert Leslie Ellis and John V enn, frequentism reached its climax 
with Richard von Mises, member of the Berlin Society for Empirical Philosophy and 
later professor at Istanbul and Harvard. Central to von Mises’s theory is the notion 
of a collective, referring to the sequence of observations of a mass phenomenon or a 
repetitive event. Collectives are indefinitely long and exhibit frequencies that tend to 
a limit. Their distinctive feature is randomness, operationally defined as “insensitivity 
to place selection.” It obtains when the limiting values of the relative frequencies in 
a given collective are not affected by any of all the possible selections that can be 
performed on it. In addition, the limiting values of the relative frequencies, in the 
sub-sequences obtained by place selection, equal those of the original sequence. This 
randomness condition is also called the “principle of the impossibility of a gambling 
system” because it reflects the impossibility of devising a system leading to a certain 
win in any hypothetical game. The theory of probability is restated by von Mises 
in terms of collectives, by means of the operations of selection, mixing, partition, and 
combination. This conceptual machinery is meant to give probability an empirical and 
objective foundation. Because probability, according to this perspective, can refer only 
to collectives, it makes no sense to talk of the probability of single occurrences.
	 A slightly different version of frequentism was developed by Hans Reichenbach, 
another member of the Berlin Society for Empirical Philosophy and co-editor of 
Erkenntnis together with Rudolf Carnap, later professor at the University of California 
at Los Angeles. Reichenbach made an attempt to extend the frequency notion of 
probability to the single case. Any probability attribution is a posit by which we infer 
that the relative frequencies detected in the past will persist when sequences of obser-
vations are prolonged. A posit regarding a single occurrence of an event receives a 
weight from the probabilities attached to the reference class to which the event has 
been assigned. Such a reference class must obey a criterion of homogeneity guaran-
teeing that all the properties relevant to the event under study have been taken into 
account. This obviously gives rise to a problem of applicability, because one can never 
be absolutely sure that the reference class is homogeneous. Reichenbach distinguishes 
between primitive knowledge, where no previous knowledge of frequencies is available 
so that blind posits are made on the basis of the sole observed frequencies, and advanced 
knowledge where appraised posits are obtained by combining known probabilities by 
means of the laws of probability, particularly Bayes’s rule. There emerges a view of 
knowledge as a self-correcting procedure grounded on posits. Reichenbach’s theory 
includes a pragmatic justification of induction, appealing to the success of probability 
evaluations based on frequencies. 

The propensity interpretation 

Anticipated by Charles Sanders Peirce, the propensity theory was proposed in the 
1950s by K arl Raimund Popper to solve the problem of single-case probabilities 
arising in quantum mechanics. Probability as propensity is a property of the experi-
mental arrangement, apt to be reproduced over and over again to form a sequence. 
This is the kernel of the so-called “long-run propensity interpretation.” Popper 
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regards propensities as physically real and metaphysical (they are non-observable 
properties), and this gives the propensity theory a strongly objective character. In the 
1980s Popper resumed the propensity theory to make it the focus of a wider program 
meant to account for all sorts of causal tendencies operating in the world. He then 
saw propensities as weighted possibilities, or expressions of the tendency of a given 
experimental set-up to realize itself upon repetition, emphasizing single experimental 
arrangements rather than sequences of generating conditions. In so doing, he laid 
down the so-called “single-case propensity interpretation.” Of crucial importance in 
this connection is the distinction between probability statements expressing propen-
sities, which are statements about frequencies in virtual sequences of experiments, 
and statistical statements expressing relative frequencies observed in actual sequences of 
experiments, which are used to test probability statements. Popper’s propensity theory 
goes hand in hand with indeterminism. 
	 After Popper’s work the propensity theory of probability enjoyed a considerable 
popularity among philosophers of science. Some authors, such as Donald Gillies, 
embrace a long-run perspective, while others, including Hugh Mellor, Ronald Giere, 
and David Miller, prefer a single-case propensity approach. Propensity theory has 
been accused of giving rise to a variety of problems. For one thing, the propensity 
theory faces a reference-class problem broadly similar to that affecting frequentism. 
Moreover, Paul Humphreys has claimed that it is unable to interpret inverse probabil-
ities, because it would be odd to talk of the propensity of a defective bolt to have been 
produced by a certain machine. The notion of propensity exhibits an asymmetry that 
goes in the opposite direction to that characterizing inverse probability. For this reason 
various authors, including Wesley Salmon, appealed to the notion of propensity to 
represent (probabilistic) causal tendencies, rather than probabilities. 
	 Other authors value the notion of propensity as an ingredient of the description 
of chance phenomena, without committing themselves to a propensity interpretation 
of probability. Among them is Patrick Suppes, who holds the view that propensities 
do not express probabilities, but can play a useful role in the description of certain 
phenomena, conferring an objective meaning on the probabilities involved. 

The logical interpretation 

According to the logical interpretation, the theory of probability belongs to logic, and 
probability is a logical relation between propositions, more precisely one proposition 
describing a given body of evidence and another proposition stating a hypothesis. The 
logical interpretation of probability is a natural development of the idea that proba-
bility is an epistemic notion, pertaining to our knowledge of facts, rather than to facts 
themselves. With respect to Laplace’s classical interpretation, this approach stresses 
the logical aspect of probability, which is meant to give it an intrinsic objectivity. 
	 Anticipated by Leibniz, the logical interpretation was embraced by the Czech 
mathematician and logician Bernard Bolzano and developed by a number of British 
authors, including Augustus De Morgan, George Boole, William Stanley Jevons, and 
John Maynard Keynes, the latter best-known for his contribution to economic theory. 
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For all of these authors the logical character of probability goes hand in hand with 
its rational character. In other words, they aimed to develop a theory of the reasona-
bleness of degrees of belief on logical grounds. Keynes adopted a moderate form of 
logicism, permeated by a deeply felt need not to lose sight of ordinary speech and 
practice. K eynes assigned an important role to intuition and individual judgment, 
and was suspicious of a purely formal treatment of probability and the adoption of 
mechanical rules for its evaluation. He also attributed an important role to analogy, 
and held that similarities and dissimilarities among events must be carefully considered 
before quantitative methods can be applied. 
	 Another supporter of logicism was the Cambridge logician William Ernest Johnson, 
who is remembered for having introduced the property of exchangeability under the 
name of “permutation postulate.” According to that property, probability is invariant 
with respect to permutation of individuals, to the effect that exchangeable probability 
functions assign probability in a way that depends on the number of experienced cases, 
irrespective of the order in which they have been observed. 
	 Logicism counts also among its followers the V iennese philosophers Ludwig 
Wittgenstein and Friedrich Waismann. Wittgenstein held that probability is a logical 
relation between propositions, which can be established pretty much as a deductive 
relation, on the basis of the truth-values of propositions. An active member of the 
Vienna Circle, Waismann saw the logical notion of probability as a generalization of 
the concept of deductive entailment to the case in which the scope of one proposition 
(premise) partially overlaps with that of another (conclusion), instead of including it. 
The measure of such a logical relation is defined on the basis of the scope of proposi-
tions. He also pointed out that in addition to its logical aspect, probability has an 
empirical side, having to do with frequency.
	 Waismann’s conception of probability directly influenced the work of Rudolf Carnap, 
one of the prominent representatives of philosophy of science in the twentieth century. 
Starting from the admission that there are two concepts of probability – probability1, or 
degree of confirmation, and probability2, or probability as frequency, Carnap set himself 
the task of developing the former notion as the object of inductive logic. Inductive logic is 
developed as an axiomatic system, formalized within a first-order predicate calculus with 
identity, which applies to measures of confirmation defined on the semantic content of 
statements. Since it allows for making the best estimates based on the given evidence, 
inductive logic can be seen as a rational basis for decisions. Unlike probability2, which 
has only one value that is usually unknown, logical probability may be unknown only in 
the sense that the logico-mathematical procedure leading to it is not figured out. Logical 
probability is analytic and objective: in the light of the same evidence, there is only one 
rational (correct) probability assignment. Carnap devised a continuum of inductive methods, 
characterized as a blend of a purely logical component and a purely empirical element, 
among which the so-called “symmetric” functions, having the property of exchange-
ability, occupy a privileged position. Carnap’s methods belong to the broader family of 
Bayesian methods. When addressing the problem of the justification of induction, Carnap 
appealed to inductive intuition, in an attempt to keep inductive logic totally within an a 
prioristic domain, while dispensing with the pragmatic criterion of successfulness. 
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	 A further version of logicism was developed by the geophysicist Harold Jeffreys, 
who built on it a probabilistic epistemology having a strongly constructivist flavor, 
which shares some features of the subjective approach. 

The subjective interpretation

According to the subjective interpretation probability is the degree of belief entertained 
by a person, in a state of uncertainty regarding the occurrence of an event, on the basis 
of the information available. The notion of degree of belief is taken as a primitive 
notion, which has to be given an operative definition, specifying a way of measuring 
it. A first option in achieving this goal is the method of bets, endowed with a long-
standing tradition dating back to the seventeenth century. Accordingly, one’s degree 
of belief in the occurrence of an event can be expressed by means of the odds at which 
one would be ready to bet. For instance, a degree of belief of 1/6 in the proposition that 
an unbiased die will turn up 3 can be expressed by the willingness to bet at odds 1:5 – 
namely, pay 1 if the die does not turn up 3, and gain 5 if it does. The general idea is to 
value the probability of an event as equal to the price to be paid by a player to obtain 
a unitary gain in case the event occurs. This method gives rise to some problems, like 
that of the diminishing marginal utility of money, in view of which various alternative 
methods have been devised. 
	 Anticipated by the British astronomer William Donkin and the French mathema-
tician Émile Borel, the subjective approach was given a sound basis by the multifarious 
genius of Frank Plumpton Ramsey. He adopted a definition of degree of belief based on 
preferences determined on the basis of the expectation of an individual of obtaining 
certain goods, not necessarily of a monetary kind, and specified a set of axioms fixing 
a criterion of coherence. In the terminology of the betting scheme, coherence ensures 
that, if used as the basis of betting ratios, degrees of belief should not lead to a sure loss. 
Ramsey stated that coherent degrees of belief satisfy the laws of probability. Thereby 
coherence became the cornerstone of the subjective interpretation of probability, the 
only condition of acceptability that needs to be imposed on degrees of belief. Once 
degrees of belief are coherent, there is no further demand of rationality to be met. 
	 The decisive step towards a fully developed subjective notion of probability was 
made by Bruno de Finetti whose “representation theorem” shows that the adoption 
of Bayes’s method, taken in conjunction with the property of exchangeability, leads 
to a convergence between degrees of belief and frequencies. This makes subjective 
probability applicable to statistical inference, which according to de Finetti can be 
entirely based on it – a conviction shared by the neo-Bayesian statisticians. For the 
subjectivist de Finetti objective probability, namely the idea that probability should be 
uniquely determined, is a useless notion. Instead, one should be aware that probability 
evaluations depend on both subjective and objective elements, and refine probability 
appraisals by means of calibration methods. 
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Concluding remarks

Of the various interpretations of probability outlined above, the classical interpre-
tation is by and large outdated, especially in view of its commitment to determinism. 
Though the same cannot be said for the logical interpretation, its formalism, especially 
in connection with Carnap’s work, has made it unpalatable to scientists. It should be 
added that philosophers of science of Bayesian orientation seem on the whole prone 
to embrace the more flexible approach based on subjective probability.
	 The frequency interpretation, due to its empirical and objective character, has 
long been considered the natural candidate for the notion of probability occurring 
within the natural sciences. But while it matches the uses of probability in areas 
like population genetics and statistical mechanics, it faces insurmountable problems 
within quantum mechanics, where probability assignments to the single case need 
to be made. The propensity interpretation was put forward precisely to solve that 
difficulty. In the debate that followed Popper’s proposal, propensity theory gained 
increasing popularity, but also elicited several objections.
	 Subjective probability has an undisputable role to play in the realm of the social 
sciences, where personal opinions and expectations enter directly into the infor-
mation used to support forecasts, forge hypotheses, and build models. Various attempts 
are being made to extend the use of subjective probability to the natural sciences, 
including quantum mechanics. 
	 While the controversy on the interpretation of probability is far from settled, the 
pluralistic approach, which avoids the temptation to force all uses of probability into 
a single scheme, is gaining ground.

See also Bayesianism; Confirmation; Determinism.
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