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Representation of symmetry transformations in
quantum mechanies
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SUMMARY

A celsbruted theorem dus to E. T, Wigner slates that any quantum mechenics] invariance
wansformation (syrmometry trapsformation] may e ropresentod by o unitary or by su anti.
mnitery aprrator on a complex Hilbert space and that, conversely, any operater of this kingd repro-
sents sp invariance transformation. Wigner's theorem holds when the quentum mechanical de-
seription is not subject to superselsation rules. This paper presents 4 generalization of Wigner's
rspresentution theorem which may be applisd aiso when superselection rnles (of a apecified
charaater) musat be taken inko aceount. At the same Lime soms gaps in existing proofs of Wigner’s
thearern are eliminated., The connection hetween Wigner’s theorem: and ths zo ealled fundamental
thaorem of projective geametry i paintec out, and & new, short proof of the latter theorem
(valid for un arbitrary field of numbers) {s presentod.

The oquivelent possibilities of characterizing symmetry transformetions as (1) mappings leaving
invariant Ihe logicsl structure of quantum meshanies, as (2) isometrie linear or conjugated linear
transformations connecting two complex Hilbert spaess, or as (3) mappings leaving invariant
the algebraic strueture of quantum mechanies (or equivalantly the structure of the squations of
mation) ave discussed and lead to an invariant {coordinate free) characterization of “reversal of
tho direetion of motion” (time inversion).

An enalogue of Wigner's theorem for symmetry tronsformations in the recently discussed
quaternion gusnturn mechanics is proved in an appsndix, end it is pointed out how quaternion
uantum mechanics, as well as ordinary complex quanturn mechentces, mey be congisiently repro-
sented in the fremework of reel quentum mechanics, which in this sense appears ns a “‘super
theory™,

The aymmairy transformations of clagsical mechanics are discussed in relution to their quentum
mechanicel analogues in another appendix, They are intimately connected with the canonical
fornwlism.t

Introduction

Invariance principles play an important role in quantum mechanics, in particular
in the formulation of relativistic quantum field theory but also in varicus applica-
tions.? A systematic analysig of the consequences due to the invariance of a quantum
mechanical system under symmetry operations was developed by Wigner in his
dlessical book “‘Gruppenthearie und ihre Anwendung auf die Quantenmechanik der
Atomspektren’ in connection with the particular case of space symmetries (transla-

! A more detailed treatment of symmebry transformations in elassical mechenics will be given
by tha authar in & forthcoming paper.

¥ For instunce, in the dorivation of Onsager’s reciprocal relations end in the formulation of
eonstitubive equations,
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U. URLEORN, Symmetry transformations in quantum mechanics

tions, rotations and inversions)! and was subsequently applied by him ta the ¢nye of
time symmetries {time inversion).? Wigner later extended his treatment to a profound
analysis of the consequences of relativistic invariance un.rler Very general AFSILIN]-
tions, independent of the dypamical structure of the phiysical system.s

A remark concerning the notation may be NECOSSATY, By symmetrics or symmelry
operaitons we shall understand certain transformatu.ms D'f coordinates (in a wids
gense} which usually are characterized by a set of invariants and which fuay he
interpreted cither as active operations, changes of th“e- coordin_at-es of the physical
system relative to a fixed trame of reference, ar as peesive operations, transitions from
one frame of refoerence to another for a fixed state of the physical system. By postulate
any symmelry operation induces a translation of one guantum mechanical deserip-
tion into another. Such a translation of the quantum mechanical description has a
precise mathematical meaning and will be called o syrumeley transformation.t A duan.
tnm mechanical deseription is based on the identification of physical states witl,
vector vays in a Hilbert space, a veetor ray being a collection of all vectors which are
constant multiples of each other. Une to the existence of superselection ruless there
will in general be vector rays in the Hilbert space which do not correspond to physicsl
states. [t is, however, usually assumed that the superselection rules determine g
decamposition of the Hilbert space into (a direct sum of) mutually orthogonal Hilhert
subspaces such that every vector ray in any of these subspaces corresponds to gy
Physical state.® A symmetry transformation is defined as a mapping of the physically
realizable vector rays of one Hilbert space onto the physically realizabie vector rays
of another Hilbert space, which admits an inverse and leaves invariant the transition
probability associated with any pair of vestor rays. That is, svmmnetry transforma-
tions are the invariance transtormations of quantum mechanics. The two Hilbert
spaces may be identical but are in general different. Considering a symmetry transfor.
mation as the representative of 4 passive symmetry operation, it is of course natural
to assume that the Hilbert spaces corresponding to different frames of reference are
different. It follows easily from the definition that if two vector rays belong to the
same Hilbert subspace in the decomposition of one Hilbert space induced bw the
superselection rules then the symmetry transformed vector rayy belong to the same
Hiibert subspace in the corresponding decomposition of the second Hilbert, space.
Henee the assumed decomposition induced by the supergelection rules malkes it soffi-
eient to consider symmetry transformations which are mappings of the rays of one
Hilbert spave onto the rays of another Hilbert space.

In Wigner’s general analysis mentioned above a basic position is held by a theo-
rem” which states that any symmetry operator, that is, any symmetry transformation

b Wigner (1931), ch. 20, pp. 240-254. .

* Wigner {1932) eod Wigner {1959), eh, 28, pp. 325848, Oniy the non-relativistic eaas is
considerad,

* Wigner (1959) and Wigner {1856), Compere also Wightman (1959).

* The farmal definition is given in seetjon 2.

° Wik, Wightman and Wigner (1053),

® This may be an oversimplification. Tha farm of decomposition mentioned above is obtaincd o3
a special result of a thearem on the decomposition of von Noumann algebras of aperators inlo
factora. Tho definition of symmstry transformations given in this paper appliss to the case corre.
sponding to factors of the type T only. For the definition of these concepts see for instence Neu-
mark (1949) or the nrigingl worlk of Mwrray and von Newnann. The generalization of the definition
of symmetry transformations to the case eorresponding to factors of the type II, that is, to con-
tinuous {pointfrea) prometries is interesting but will not he considerad here,

T Wigner (1931), appendix to cl. 20, pp. 251-2534,
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of the rays of a Hilbert space onto the rays of the same Hilbert space is indueed cither
by a unitary ar by an andi-unitary operator on the Hilbert space. In spitc of the
fundamental character of Wigner’s theoremmn, it seems as if no completely satisfactary
proof of it has been published.! The present note is intended to provide such a proof
and to give a discussion on the deep connection of Wigner’s theorem with the logical
and algebraic structure of quantum mechanics.

We shall in fact prove a theorem whieh is somewhat more general than Wigner's
original theorem, using a less restrictive definition of symmetry transformations than
the one given ahove. We shall replace the requirement of the invariance of transition
pmhabilities by the requirement that orthogonal vector rays are transformed into
orthogonal veetor rays, that is, incoherent states are transformed into incoherent
states.* By this definition, a symmetry transformation is a mapping preserving the
logieal structure of quantum mechanics, whereas the definition stated above corre-
sponds to a mapping preserving the probabilistic structure of quanturn mechanics.
Further, we shall not restrict ourselves to symmetry operators, but consider arbitrary
gymumnetry transformations. This general form of Wigner’s theorem then states that
any symmetry transformation of the rays of one Hilbert space anto the rays of a
second Hilbert space is induced either by a linear or hy a conjugated linear (anti-linear)
isometrie transformation of the first Ililbert space onto the second. Though mathe-
matically trivinl this generalization is not pointless, On the conbrary it is obvicusly
necepgaty when superselection rnles must be considered.

Tinally, we emphasize that symmetry transformations can also be characterized
in terms of the alyebra of observables. There is in fact a one to one correspondence
betweell the symmetry transformations of the rays of one Hilbert spaee onto the rays
of a second Hilbert space and the isomorphisms and anti-isomorphisms of the algebras
of bounded operators on the two spaces. In many respects it is the most physical
approach to consider symmetry transformations as isomorphisms and anti-isomor-
phisms of operator algebras, Sueh a definition gives a direct distinction between
symmetry transformations which arc even with respect to an inversion of the direc-
tion of the motion (isomorphisms) and such which are odd (anti-isomorphisms),
thereby exhibiting the connection with the classical (non-guantal} theory. Tn fact,
the symmetry transformations of the classical theory are the canonical and the anti-
canonical transformations.?

The veetor rays of a Hilbert space are considered as the points of the corresponding
projective space. Wigner’s theorem is indeed closely related to the so called funda-
mental theorem of projective geometry.® This connection is nob surprising since the
analysis of Birkhoff and von Neumann® has revealed the structural equivalence of the
logic of quantum mechanics and the geometry of certain projective spaces.® On the

1 A diseussion of existing praofs is given in appendix 1.

* Tt 13 assumed that the number of dimensions of the Hilbert space is at least equal to three.
In the criginal definition no reatriction of this kind is needed,

3 The connection between quuntum theory and classical theory is treated in appendix 4.

+ Our prool of Wigner’s theorsra will be cercied out in such & way thet it provides alse a proaf
of the fnndamental thearem of projeclive geometry. This prook Is valid alsa 7T the field of complex
numbers ia replaced by arbitrary fields (not necessarily comriutative) and appears to be shurter
then the one given in Baer (1952).

# Birkhoff und won Ncumann (1936}, Also Baer {1852).

& Tt ik mesumecd by these suthors that the logie of quentum. mechanics has the strueture of a
eomplernented modular lattice of finits dimensions (the two-dimenzional case being excluded).
The tepresentative projective space will then necessarily be finite-dimensional. Note that the
moduler identity does nat hold without restriction in the complemented lattice formed by tac
subspaces of an infinite dimensional Hilbert space.
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basis of this equivalence it is possible to construet theories which are similar to the
conventional form of quantum mechanies but differ from it in the respect that the
coetficients (the c-numbers) are not complex numbers but elements of some othey
field. The ficld of e-numbers is not necessarily commutative. It muet, however, satisty
certain requirements which were determined by Birkhotf and von Neumann. If the
field of c-numbers is required to he continuous and connected there are only thres
possibilities: the field of real numbers, the ficld of complex numbers and the field of
quaternions.! The possibility of qusternion guantum mechanics has been investigated
by Finkelstein, Janch and Speiser.? It will be shown that Wigner’s theorem has itg
cémplete analogue in quateruion guantum mechanies,? and in real quantum mechan.
ics. The representatives of symmetry transformations of real quantum mechanies
are the linear isometric transformations of one real Hilbert space onto a second real
Hilbert space. Any symmefry transformation determines a representative isometric
transformation up to the sign. It may be mentioned that quantum mechsnics in
real Hilbert space is a more general theory than the ordinary complex quantum
mechanics and the more recently discussed quaternion guantum mechanics. It ig in
fact possible to represent eomplex guantum mechanies and guaternion quantnm
mechanics in real Hilbert space. The probabilistic structure of the three thearies is
congistent with this representation. Hence it is always possible to consider complex
guantum mechanics and quaternion quanturn mechanics as restricted forms of real
quantwin mechanies.

1. Rays in Hillert space

In the following F is the field of coruplex numbers «,5,.... We shall deal with the
vectars x.%, ... of a complex Hilbort space ZF. The discussion will be independent of
the number of dimensions of [F which in partienlar may be finite or denumerably
infinite. The inner product (¥ |z} is assumed to be linear in the second factor, so that
(gt |moey =y | 2por (for any complex number x).* The norm of a vector z is given by
2] =< [2>*.

One-dimensional subspaces of the Hilbert space {F are called rays, and will be
denoted by a,b,.... A ray is a set of vectors of the form wxe, where = is a fixed, non.
zero vector and « is any complex number. Any non-zero veetor z ¢ontained in the
ray a will be called a repiesentative of a. In order to point out that o is the ray deter-
mined by the vector = we shall also use the notation a =z (recall that F denates the
field of complex numbers). :

The rays a; =z, F, ..., a, =%, I (where n is any positive integer) are said to be inde-
pendent exactly if the representative vectors z,....,z, are linearly independent. If
the representative vectors are lincarly dependent the rays are said to be dependent.

Two rays a=xF and b=y F are said to he orthogonal exactly if the representative
vectors z and y are orthogonal, {y|z)=0. Otherwise the rays are said to be non-
orthogonad.

1t i3 evident that the definition of independent rays and of orthogonal reys is
independent of the choice of representative vectors.

We shall necd the following, geometrically evident, lemma, the proof of which is
omitted.

! Bee e.g. van der Wacrden (1859} and for a eamplete proof Pontrjagin (1957), ch. 4, section 26,

? Finkelstein, Fauch and Speiscr {1959).

4 Appendix 2.

4 In order to chtain a consistent notation we shell write the produet of the veetor z and the
nuruber & us e Note that (ye|azd =wdy|x).
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Temma LY. 5+ 1 rays ay, ...ty o, are independent exactly if the n first roys aq, .., 4,
are independent and there exists a vay b which is orthogonal to the n first rays and non-
orthogonal 1oty .

Tn the conventional formulation of quantum mechanies physical states are repre-
sented by rays a,b ... in a complex Hilbert space JF. In accordance with this interpre-
tation of the mathematical framework we define the transition probability p(a,b)
ausociated with two arbifrary rays ¢ and b by

Syl <elyy
xlay Qy o

Tt is evident that this definition is independent of the choice of representative vectors
xand ¥

Some useful properties of the transition probability are immediate consequences of
the definition. The transition probability is symmetrie, p(a,b)=p(b,a). 1t satisfies
the (Sehwarz} inequality, 0 <pe,b}<1. The transition probability »{e,b) is egual to
zero exactly if the rays o and & are orthogenal, and equal to one exactly if the TAYS ¢
and b arc identical !

The transition. probability pn(a.b) is a measure of the degree of coherence of the
physiea! states ropresented by the rays a and 6. The states are incoherent if the rays
and b are orthogonal, or equivalently if the transition probability p(e.b) vanishes.

nla, b) = {o=xl", b=y (1.1}

2. Symmetry transformations

A gymmetry transformation may be introduced as the mathematieal formulation
of the equivalence of two observers of the same physical system. Assuming that one
ghserver uses the rays ¢,b, .. in the complex Hilbert space IF ag representatives of
physical states, and that the other observer uses the rays a’.%’,... in the complex
Hilbert space I' F (which is not necessarily identical with I I}, we are naturally led to
the following formal definition,

A symametry transformation T is a correspondence between the rays a,8,... of a
eomplex Hilbert spave IF and the rays «',b",... of a complex Hilbert space I'F,
satisfying the requirements.®

(81) The correspondence is one to one: Corresponding to any ray o i IF there is a
uniguely determined ray Ta in I'F. Corresponding to any ray « in I'F lhere is o
uniquely determined roy a in IF such that o’ =Ta.

(82) Puirs of orthogonal rays correspond to poirs of orthogonal rays: The rays a4 and b
in IF are orthogonal exactly tf the vays Ta and Tb in I'F wre orthogonal,

The requirement (S1) may be considered as the mathematical definition of the
invariant concept of a physical state. A stabels a state to any chserver, though differ-
ent observers describe “the same physical state” in ditferent ways, The renuirement
{82} corresponds to the agsumption that incoherence of physical states is an invariant
eoncept. Physical states which are incoherent to one observer are incoherent to any
ohserver.

! These propertiss of the transition probability may be used for the construction of a metrie
in the space formed by all rays in the Hilbert space IF, that is in the projective space PIF. See
appendix 3,

! This definition corresponds to the assumption that no superselection rules exist. 4s puinted
aut above the general coge 1a also covered by this definition il the superselection rules are of the
farm described on p. 308, note 6.
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Lemma 2.1, Any symmetry transformation T satisfies the following independence
Condition (S3). )

(83) The rays ,......a, wn T F are independent exactly if the roys Pay, ... Ta, m I'F
are ndependent.

Proof of Lemma 2.1: A symmetry transformation T satisfies the requirements (81)
and (82). The proposition is true fer n=1 hy the requircment (S1). We shall show
that if the proposition is true for n=p, then it is also true for n =p+1. According to
Lemma 1.1 the r8y8 Gq, ... 0y, Gy in JF are independent exactly if the first p rayy
arc independent and there exists a ray b, orthogonal to each of the p first rays and
non-orthogonal to @,.,. By our assumption and the requirement (32} this is trye
exactly if Pa,, ..., T'a, arc independent rays in I'F and there exists a ray T ortho.
gonal to Tay,...Ta, and non-orthogonal to Tay,,. By Lemma 1.1 this is true
exactly if the rays Tay, ..., Ta, Pa,,, are independent, as was to be proved.

Corollary to Condition (83). If the number of dimensions of the Hilbert space ITF is
finite, then the spaces IF and I'F have the same nuinber of dimensions.

I'rora & physical point of view, the requirements (81) and (82}, defining a symuetry
transformation, may look rather wealt, and it may seem necessary to replace (S2)
hy the apparently stronger requivement that the transition probability associated
with an arbitrary pair of physical states has to be an invariant quantity. Assuming
that the transition probability is defined in agreement with equation (1.1) for any
pair of rays in 7F and for any peir of rays in I'¥, we state the following condition,

(84) For arbitrary rays ¢ and b in 1F, pla,b) =p{ Ta, T8H).)

Tt is evident that this econdition implies (82). But it can be shown, as we shall see
in the following scctions, that Conditions (82) and (S4) are in fact equivalent if
only the number of dimensions of the Hilbert space 1§ is at least equal to three.

It may finally be remarked that Condition {81) requires a little more than is abse-
lutely necessary. The existence of a unigue inverse can be derived from (33).

3. Semi-lincar tramsformations

In order to discuss the connection between ray trensformations and vector trans-
formations we shall introduce the concept of semi-linear transformations.”

A mapping 8 of the complex Hilbert space 14 into the complex Hilbert space
I'F is ealled a semi-linear transformation of I F into I'F if the following conditions
are satisfied.

(L1) To any vector x in I F there corresponds a unigue vector 8x in I'F.

(L2) The fransformation 0 is additive. For arbitrary vectors x and y in 15

Bl +y) =0x+0y.
{L3) The transformation 0 is semi-homogeneous. For any vector v in IF and any
complexr number o
(@) = (0z) glar),
where @ b8 an automorplism of the field F of complex nwmbers, that is g és a one fo one
mapping of the field &' onto dtself, determined by U and satisjying
1 We use the same symbol p for the transition prohability defined analogous to (1.1) for 1ays
in I8 )
? This notation, which was mtraduced by . Segre in 1889, is standard in the mathernaticsl

literature,
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gl g =pla) +elf), laf) =g(odg(B)  (for arbitrury complex numbers x and B).
n addition to this we require the reality condition
i) =@ (for any complex number z).

Lemma 3.1, The veality conditivn defermines the form of the nutomorphism @ of the
field F of complez nusnbers, Bither glo) = for any complex number a or @lo) =u for
any complex nuwmber o

Proojt: It follows from the definition of ¢ that ¢(0) =0 and ¢(1)=1, further,
(o)~ —qle) and plat) =p(a)- for any complex munber «. We find p({i)g(i) =
p(—1)=—1 and hence cither @(i) =1 or (i) == — 4. For any complex number &=« +
#'i (o and o real numbers) we have @la) ==g@(a”) +-rp(a”]¢(vﬁ), Tt follows from tho
reality condition that¢(a’) and g(a”) are real numbers. Hence it is sufficient to con-
sider qla) for real values of its argument only. Let o be real and h=1* positive

- glatR)=ple) + @) =pla) + el > pla),

that is, @{x) is monotonically increasing. For any rational number +=mfn (m, n
integers, n== 0) we have n g(r) =p{nr) =gp{m) =mp(l) =m=nr, that i, @(r)=r. Now
let & he any real number and consider the monotonic sequences of rational numbers
i} and {5} te, 74 oo Then ri =g(r) S@la) Selrs) <rn, and in the limit
a<ple) <o, Collecting the rosults obtained we find that either glo)=a (for any
complex nurmber ) or @) =% (for any complex number «).

(L3 T'he transformation § is called linear if g(a) =w for any compler number a.

(13" The transformation € is called conjugated linear (or anti-linear) if p(e) =& for
uny compler number o,

A mapping 6 4¢ called a semi-linear transformation of IF onte I'F if & salisfies in
addition to Comditions (L1), (L2), and {L3) the following requirement.

(L) To any vector x' in I'F there corresponds a wnique vecbor w wn IF such thet
x' =0

Lemma 3.2. Any semi-linear transformation { of 11 onto I'F induces o transforna-
tion T of the rays in IF onto the rays in I' I satisfying Conditions (S{) and (83) if we put

MaF)y=(0z)F
jor any mon-zero vector x in IF.

Proof of (81): The relation 7=y F (z and y in IF) holds exactly if x =y« {for some
2= 0. By {L1), (L3}, and (I4) this is true exactly if Oz =0(ya) = {fy)p{a). As plo)+0
is arbitrary, this means that (fz)F =(8y)F, as was to be proved.

Proof of (33): The rays #, ¥, ...z, F in IF are independent exactly if any linear

comhination y =z, +... -2, vanishes only if « =..=e,=0, or cquivalently,
exactly if any linear combination fy=(fx;)ple) t... +(fr,)e(e,) vanishes only if
wlay) =...=gla,) =0. This is true exactly if the rays T, B, ., DNz, Iy in DF are

independent, as was to be proved.

Lemma 3.3. Two sewi-linear transformations 0, and 6, of IF onto I'F may induce
the same ray transformation T. If the number of dimensions of LF is at least equal fo
fwo, this holds exactly 1f there exists a non-zero complex number o such that 8 ={0x)x
for any vector x in LI (note that « is independent of z).

1 Thig giraple proaf of a well-known foet iz given only to meale the treatment geli-ponsistent,
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Proof: Two semi-linear transformations @, and f; of IF onto 7' # induce the game
ray transformation 7T exactly if for any non-zero vector x in [F 82 =(6,z) el
where z{z) is & non-zero complex number which may depend on . We shall show that
z{z) is in fact independent of =. Let x and y be linearly independ[‘.nt vectars in JJ',
Thon (e +y) =Bzl +u) + (Buylals +y) = (Gex)alz) + (Oylaly). Hence afx) —gfx+
) =er{y) for linearly indspendent vectors z and y. If x and y are linearly dependent
non-zers vectors, we choose the vector z linearly independent of = and . Ry the
previcus argument o(x) =o(z) = e(y). With the definition «(0) = =a(2) {x=+0) we
have the desired result. ,

We may express the content of this theorem by the introduction of the concept of
rays of semi-Unear transformations. A ray of semi-linear transformations of 7 antg
I"Figthe sot of all transformations of the form (2130, where § is a fixed semilinear
transformation of 75 cnto ' Fand «l’ is the operator onlo I'F induced by the arbi-
trary complexnmmber ¢. ((«]')2’ =z’ for any vestor ¢’ in 1" #). The non-zera clements
of a ray of semi-linear transformations of {F onto I'F are exactly the semi-linear
transformations which induce the same ray transformation. In this sense we may say
that any ray of semi-linear transformations is equivalent to a ray transformation.

We shall be particularly interested in semi-linear transformations of the Hilhert
space 14 onto the Hilbert space I'F which induce symmetry transformations. Tt is
evident that a semi-linear transformation 8 of I onto I'F induces a symmetry
transformation exactly if the following orthogonality condition, corresponding to the
requirement (S2) in the definition of symmetry transformations, is satisfied.

{L5) The transformation § preserves the orthogonality of wectors. If x and y are ar.
bitrary orthogonal vectors in 1T then Oz and Oy are orthogonal vectors in I'F. I} o' and '
are arbitrary orthogonal veclors in I'F then there are orthogonal vectors » and y in IF
such that o' =0z and ' =0y.

We shall derive an equivalent characterization of the semi-linear transformations
indueing symmetry transformations.

Lemma 3.4. A semi-linear transformation O of the Hilbert space IF onlo the Hilbert
space 'L satisfies Condition (L8) exacily if it satisfies the jollowing condition (L6),
(L6) For arbitrary vectors © and y in IF

Oy |y =8p((y |22y (with some constant §>0),

where the junction pla) is defermined by 8 and satisfies the conditions stated in (L3). As
@ particular case of (L6) we have the following condition:
(L7} For any vector z in IF

|0z =68|«| (with some constant & =0).

Proof of Lemma 3.4: For any non-zero vector z in [ F we define d(z) by |0z =d(z)
||l - It follavys that 8(z) > 0. We shall show that d(x) is in fact independent of . Tet y
be any vector in I.F, non-orthogonal to z. The vectors y and 2 =2y |y) —ydy|x) ate
orthogonal, and hence it follows from (L&} that

0 =By 0=y = |y || By [6x> — oy | 3) || By| 2= 0. (a.1)

Interchanging » and y, and taking the complex conjugate we find

|(|2¢By | B — go( <y | ) || 2 = 0. (3.2)
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As z and y are non-orthogonal the same is true for Oz and By, so that {0y |ba> =0.
Combining the two equations (3.1) and (3.2) we find that 8(z) =d(y} if z and y are non-
arthogonsl. If x and y are orthogonal non-zero vectars we have M) =x +y) =y,
With the definition §(0}=0d=4d(x) (for any non-zero vector z), we have the desired
resuit, If the vector ¥ in equation (3.1) is non-zero, we have by the result juat estab-
lished <Oy|0x> =& ({y|2>), a8 was to be proved. ‘

Lenuva 8.5. It follows dircctiy from the fact that |@(e) | = | o| (for any complex number =)
hy the result just eslablished that any semi-linear transformation § satisfying tha ortho-
gonality Condition (L8) induces a ray transformation T safisfying Condition (82) of
section 2,

Finally, we mention some interrclations between the conditions (T.1), ..., (L7) which
are sometimes useful.

Lemma 3.6. A iransformation 0 of the Hilbert spuce 15 onto the Hilbert space I'F
satisfying Conditions (L1), (L4), and (L6) ts semi-linear, that is, it satisfies Conditions
(LE) and {L3).

Proof: If =,, and 2 are arbitrary vectors in 7F and « and f are arbitrary complex
rumbers we have {0z|6[za -yB]> =dp((z|za +y8>) =dp(z| ) p(er) - Splz |y )(§) =
02 |Besrep(ae) + {0z | Oy dp(B) = <Oz | (Da)p(a) + (By)gp(B)>. The veetor Bz in I’ F is arhitrary
and it follows that 8 [z +yf] = (Dz)p(=) + (By)p(f), as was to he proved.

Lemma 3.7. A semi-linear transformation 8 of the Hilbert space IF onto the Hilbert
space I’ F, satisfying in addition to Conditiona (LI), (L2), (L3), and (I4) alss Condition
(L7), satisfies the condition (L6}

Proof: The polarization formule? for the inner product of two arbitrary vectors fx
and By in I'F

4By By = |0z + By |2~ || 0 — Oy ||2+-4)| 62+ {By)i |2 — 3| Bz — (By)i |2,
vumbined with fhe semi-lincarity of 8 gives the degired result.

Lemma 3.8. A transformation 0 of the Hilbert space 1F ondo the Hilbert space I'F is
called isometrie if i sotisfies Condition (L6) with the constant d=1. It jollows from the
previous discussion that from a ray of semi-linear transformations reprasenting a sym-
metry transformation it is ahoays possible lo choose an isomelbric representative, This
representative s determined by the ray of semi-linear transformations up fo a constant
complex factor of modulos one. Conversely, any semi-linear isometric transformation of
17 onto I' F induces a symmelry transformation.

4. Representation of symmetry transformations by semi-linear
isometric transformations

We have seen in the previous section (Lemmia 3.8) that any semi-linear isometrie
transformation of a complex Hilbert space IF onto a complex Hilbert space I'F
induces a symmetry transformation of the rays in JF onto he rays in I'F, We shall
show in this section that conversely any symmetry transfermation T is induced by
some semi-linear transformation §, provided symmetry transformations are charac-

! Compars section 8.
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terized by Conditions (81) and (52) if the number of dimensllions of the Hilbert space ) #
is at least equal to three, and by Conditions (S1)and (54) if the number of dimensjons
is equal to two. According to the discussion in section 3 (Lemma 3.7 and Temmy
3.3}, it is possible to choose an isomelric representabive §am1-hnear transformation ),
which is then determined by the symmetry transformation up to a complex constant
factor of modulos one, B

The proof will be given in this section for the case of a complex Hilbert space 77,
the number of dimensions being at least cemal to three. That is, the space J# jy
assumed to contain at least three indcpendent rays. We shall prove the following
theorem which is in fact more general than the one stated above, )

Theorem 4.1. Ij T is a transformation of the vays in the complex Hilbert space 1F
(of dimension =3) onto the rays in the complex Hilbert space I'D" satisfying the require.
ments (SI) und (83), there exisls o ray of semi-linear transformations of IF ento ['F
such that the non-zero elements of the ray of vector transfermations are the representatives
of the ray transformation T

The representation thecrem for symmetry transformations iz an obvicus conse-
guence of this general theorem and the discussion in seetion 3 (Lemma 3.7 and
Lemma 3.3).

Theorem 4.2. Any symmelry transformation 17 of the rays in the Hilbert space IF
oo the rays in the Hilbert space I'F is induced by o sewi-linear wometric transforma.
tion of IF onio I'F, which is determined by T up to u complex factor of modulos one,

Though the proof of the representation theorem (4.1) is long and. will be given by
several steps, its general ides is simple, The first step ia the construction of a mapping
1 of the vector space IF into the vector space I’ F which induces the ray transforma-
tion T. Then it is shown, and this is the essential part of the proof, that the mapping «
determines an additive mapping 0 which induces the same ray transformation T.
Finally, it is demonsgtrated that the additive mapping § iz in fact a semi-linear trans-
formation of I F onte I'F, and hence a representative of 7' of the form desired.

4.1, Construction of @ mapping of IF into I'F which induces T

We shall say that a mapping 7 of the vector space IF into the vector space I'F
induces the ray transformation T'if for any vector min [F the T-transform of the vay
o F, determined by «, is equal to the ray determined by Tz, T(2.F) =(r2x)F. There is
no difficulty in constructing, corresponding to o given ray transformation 7' a
mapping = which induces 7, For any non-zero z in the vector space IF, choose 1z to
be some non-zero element in the ray T'(z#) in the vectar space I'F, and let the nuli
veetor of IF be mapped onto the null vector of I'F, 70=0'. We do not require the
vectar transformation 7 to be one to one,

4.2. De finition of the function o (x,¥) for linearly independent x and v

Let z and y be lincarly independent veetors in IF. The rays xF and yF are inde-
pendent, whereas the rays £ F, y F and (z - y) F are dependent. As the ray transforma-
tion 7' satisfies the requirement (33), this is truo exactly if the rays 7 Fx) and T(Fy)
are independent, whereas the rays (a7, T(y ) and T{{x +4) F) are dependent. The
vectors Tz, Ty and 7{z-+y) in I'F are representatives of the rays T{zF), 7'(4F) and
T{z—y)F respectively. Consequently
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ety =)z, — 1y + (y)oly, s +y,x)

where ex{x,m Ty, %) and wlz,2+y,2) are complex numbers which are uniquely deter-
mined by their three arguments and the mapping . Tn fact, they are determined hy
two of the arguments and we may delete the third argument, writing wix,s +y) =
ez ty,y) and wiy. sty =wly.x+y,v). The coefficients wiz,x+y) and w(y,z +y)
cannot: vanish for this wonld imply that the ray T[({z -y} F] would be identical with
ane of the rays T'(w#) or T(y¥), and hence with bath, contrary to the assumption
that the rays ' and y F" and hence the rays T{xF) and T(yF) are independent.

Thus the non-vanishing complex function w(r,%) is defined for arbitrary linearly
independent veetors x and y in I F,

4.3. Chain relation for the funciion m (x, v)
Lot #, i and z be threc linearly independent vectors in I F, It follows that the vectors
zz, v and Tz in I'F are linearly independent. Consider
x+y) 2] = (tx)olz, 2 T yjwa+y,x+y +2)
+{ryjes(y.x —iwls = yoaty 2} Rz e -y Se)
(note that any pair of vectors neeurring as arguments of the w-function above is a
pair of linearly independent vectors)
=1zt (y +2) | =(wriolv, o +y +z) = (wy)ely.y 2wy Fee -y +32)
+(o(zyt 2wy ety +a).
Identifving the coefficients of 72 we obtain
witztylm(sry,cty -tz =wzatytz).

Thus the function miz,y) satisfies for arbitrary lincarly independent vectors z,y and
zin I F the chain relation
wlz, )y, 2) = wla,2). (4.1}

4.4. Definition of the function w (x,y) for arbitrary vectors x and vy

We shall show that it is possible to extend the definition of wm(x,y) to arbitrary
pairs of non-zero vectors = and y in such a way that the chain relation {4.1) becomes
valid for arbitrary vectors @, y and 2in J¥.

44.1. If a and y are linearly independent vectors

awfz, oy, x)=1.
Prooj: Choose 2 such that x, ¥ and z are linearly independent, and consider
w(r.y) [w(y,z)w{e,2)] =wlzs, y)oly.z) =wlz,z)].

As e{2,2) % 0 the desired result follows.

442 If = and y are lincarly dependent non-zero vectors (that is if . =yF}, wo
define for any vector 2z which is linearly independent of  and y (that is, such that zF
is distinet from xF =y F)

wl®. y;2) = w(@, 2)a(zy).

4.4.3. The function w(wx,y;z) is independent of =
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Proof: Denote o ¥ =y F =a and assume that the vectors 2 and » are such thyt 2T
and »f are both distinct from a. We consider two mutaally exclusive cases,
Case @. The three rays o, =F and 2 F arc independent. Using 4.4.1 and (4.1) we Ty

ol s 2) = m(w, 2do(z,y) = wlz,2) [0z, vole.2) o 1)
wlz, by 2) == o )(u(djgw(?,;m(z,v}] [tofn,2) wlz, 1)]=olz,v)w®,y) =wlz,y; ),

Case b. The three rays a, 2F and oF are dependent. Cliooso the vootor w such thy
the three rays o, 2 and wf are independent. Cong:quently the three rays a, o F ap|
wF are independent, and using the result obtained above we have iz, y; 7) =
e,y w) = (x5, ¢). This completes the proof of 4.4.3.

d.4.4 If the non-zero vectors ¢ and ¥ are linearly dependent we define

oz, ) =oft,y, z) (2 linearly independent of x and y).

Tt follows from 4.4.1 that this definition gives for any non-zero veetor , w(w,z)=1.
"The function w{z, ¥} has now been defined for arbitrary non-zero vectors # and y.

4.4.5. The funstion w(z,y) satisfies the chain relation (4.1} for arbitrary non-zem
vectors @, ¥ and z.

Proof: We consider the following mutually exclusive cases.

Case a. yF is not cantained in the subspace spanned by @ F and 2 £,

(lase an. 2 F and zF are distinet: (4.1) holds because 2. F, 3. and =F are independent.

Cuse ob. x¥F =2F; (4.1) holds by Definition 4 4.4.

Case b. yF is contained in the subspate spanned by 2 F and 2 F, Choose the vector
v such that vF is not included in the subspace spanned by xF and zF. Then
wlr,v)o(n,y) =wlz,y) (case a) and oy, volv.z) =o(y.z) (caso a). Henee w(w,y)oly.s)
= ez, v} (v, y)oly, v)w(v,z) = wn vjo(v,z) =w(z.2). This completes the prool,

4.5. Construction of an additive mapping of IF into I'F which induees T

Let the mapping § of J# into I'¥ defined by Oz = (rz)w(z,z,) (for any non-zen
vector x,x, is an arbitrary fixed non-zero vector) §0=0 (the nuoll vector in IF i
mapped onto the null vector in I'F). As obviously (Gx)F = {(zx)F it is evident that the
mapping 8 induees the ray transformation T

The mapping 0 is additive, A+ ) ~0x -0y ifor arbitrary vectors « and ).

Proof: For arbitrary non-zere vectors x and y, 0{z | y)={z{z tyNawlz ty.z)=
{(teden({z,z Ty heolx +imy) H{Twdoly, 2 i)z +y, 2,) = (Tx)m(x, x,) -+ (tdwiy, 1) =
Bz 1By,

4.6, The mapping O of IF into I'F is one o one

In fact, if @ and y are arbitrary vectors in JF such that fz =0y we have, by the
additivity of 8, 0" =0z — 8y =0(x ~y). If x —y==0 it fallows from Condition (1) for T
and the fact that § induces 7' that 6{x—y) =0’ in conflict with our assumption. It
follows that 2 =y. That is, the mapping 0 is one to one,

4.7. 0 is a mapping of I1F onto I'F

We have to show that if 2’ is any vector in I'F then there exists a voctor xin IF
such that 2’ =8z. According to 4.6, z is then determined by »'. Let & be an arbitrars
non-zero vector in I'F. It follows from Condition (S1) that there is o uniguely deter-
mined ray « in IF such that Tg=2'F. Choose the ray yF in IF distinet from @
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According to Condition (S3) this implies that the rays 7(y.F) =By)F and ' Fin I'F
are distinet. Corresponding to the ray (z' +8y)F in I'F which is distinet from = F
there is according to (S1) a unique ray in JJ" which is distinct from a, and thus ac-
eording to (S3) may be representod in the form (z+y)# where x is a vector in a.
That is, Tz~ ) F1=[He+y)]F =0z +0y)F = (' +0y)F. As fz belongs to the ray
# F we have 0z =2'x with some fixed «, and further (0x+0y)f=2'+0y with some
fixed . Due to the linear independence of »’' and fy this is passible only if f=g=1.
Hence fr=2a', and the proof is complete.

4.8. The mapping 0 is a semi-linear transformation of IF onto I'F

Let the complex function q(a, 2) be defined for any non-vanishing complex numhber
% and any non-zero vector by O(zx) = (0x)p(a, x). It follows from 4.6 that if o and A
are complex numbers sach that g(e,2) =g{f,+) we have w=F. If « is an arbitrary
non-zore complex number there exists according to 4.7 a complex number § such that
a=ew(f, ). That is p(x,2) determines for fixed 2 a one Lo one mapping of the lield ¥
of complex numbers onto itself. We shall show that glee, ) is in fact independent of .
Tet z and y be linearly independent vectors, and consider f[(x+y)a] = Sz +2))
gl +y) =(Bx)p(az +u) T (Oyjple, x +y) = (0x)p(e, o) + Oy)ple. y). Identifying coeffi-
cients, g{o, %) = @la, = y) ~@{e,y). If x and y are non-zero linearly dependent veetors
we choose the veetor z linearly independent of 2 and g, and obtain g(e.2) =¢(e,z) =
w{et,y), 80 that p(o,x} is really independent of x. We define p(e) = ¢(e.w) (for any
non-zero vomplex number o, x is an arbitrary non-zero vector) and g{0) =0, The
funetion g{z) is then defined for any complex number . It follows from the defini-
tion of the function g{«} that p(l)=1.

Further, for arbitrary complex numbers « and §,

wlo+5) =g{o) +(5), p(af) =pla)p(B),

Proof: Let = be a non-zeto vector and congider

(Bax)q(or + B) =b{w{o + )] =0(wee) +0{xf) = ((a)pi o) + (Pa)g( 5}
and {fx)p(xf) = 0{zxp) = Buw)p(f) = (6z)@{c)p(F).

As Oz is & non-zero vector the result follows.

4.9, The reality conditien for ¢ ()

In order to prove the representation theorem for symmetry transformations we
must derive the reality condition for g(e) which is formulated in (L3) (@) =p(a)
(for any complex numher )., This eondition will be obtained as a consequence of the
assumed property (82), which has not been used so far in the proof, For & =0 we have
#(0)=0 and the proposition holds. Now let &= 0. Assume that the vectors ar and y in
IF are orthogonal and that they have the same norm || =|y| +0. The vectors
r+yo and o +y{ —&-1) are orthegonal. Consequently their 0-transforms are orthao-
gonal, ||0x||2+@(a)p( —a-1) | fy[|*=0. We obtain, using the fact that ¢ determines an
automerphism,

‘?T“’.‘P("“)"Iﬂ, Sj ” =g g(l=1,

whicl: gives the desired relation.
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Our proof of the representation theorem for symmetry transformations is poy
complete for the case when the number of dimensions Uf'the complex Hilbert space
IF is at least equal to three. The case of a two-dimensional Hilbert space will pe
discussed in the following section.

5. Two-dimensional Hilhert space

Theorem 3.1, We shall assume that IF and I'F ave complex Hilbert spaces of dimen.
sion two. Any transformation T of rays in 1F ondo rays in L'F, satisfying Conditions
(S1) and (S4) of section 2 can be represented by a semi-Bnear isometric transformation of
LF onto I'F. If Condition. (84} is replaced by the weaker Condition (S2) it is in general
nat possible to represent the vay transjormation T by o semi-linear transformation of IF
anto I'F.

The proof of the representation theorem given in the previous seetion was essentially
dependent on the assumption that the number of dimensions of the complex Hilberg
space [F wag at least equal to three, and we shall develop the proof of the representa-
tion theorem in the two-dimensional case along quite different lines.

5.1. Construction of a semi-linear representative

We shali assume that the ray transformation 7' satisfies Conditions (S1) and {34).
A fortiori it will satisfy (82). We remark that it is no restriction to assume that the
number of dimensions of the Hilbert spaces J7 and I'# is the same {and hence equal
to two) since this follows already from Conditions (81) and (83) which are satistied by
OUr assumption.

Leto 2 and g be orthogonal, normalized vectors in 17, {yjay =0, [|=|! =% =1,
and let z=x+y. It follows from (82} that the rays F(z#) and T(yF) in I'F are
orthogonal. We choose the vector 2° in 7(zF) such that |2/ = |lz| =V2. This require-
ment determines 2’ up to a complex factor of modulos one. Now we choose the vector
' in TixF) and the vector y* in (T(yF) such that ||«'|| =|ly'|| =1 and &|aty =0,
¢z'|y"> >0, These requirements determine the orthogonal veetors 2 and ¥ uniguely.
The complex funetion &{x) is uniquely defined by

Tl tye) Fl={(="+y &) F (for any complex number a).

In particular we have £{0)=0.

Any ray ain IF, except yF, is of the form (2 +yo) F with some complex number e
which is uniquely determined by @ { and z are the fixed orthonormalized vectors
introduced above). Henee it follows from. Condition (31) that £ determines a one to
one mapping of the field F of complex numbers onto itself.

The ray in IF which is orthogonal to the ray (v+ya)F is {zty(—aNF It
follows from Condition (52) that the rays 7'[(x Tya) P ={a' +y'f{a)) F and T[(z+
= —aT DF]= (2" +yE( - F are orthogonal. This condition gives

L+&(ef (@1 =0 (for any complex number o= 0). i5.1)

So far we hiave not used Condition (34) but only the weaker Condition (82}, and we
shall find that the relation for &(a) stated above is obtained as a particular caze of an.
equation derived on the basis of (84).
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In order to determine the form of the function &(x) we have to eonsider Condition
(84). By our choice of 2, 2" and y’ it now foliows that

RCC L <
0= =00 v T 0T
so that 2’ ="+ which is equivalent to (1) =1.

Applying now (34) to the rays (z-iya)F and (z+ yf)F, » and 3 being arbiteary
complex numbers, we find

2y elwy 1 &y <2|§/

_1
|2

1 | 1+ &ﬁ |2
q L _p == [ i i
pilz+yz) 1+J3]F} l4-|a|23(1+|ﬁl2)
_ :(02)5{;3) I*
Tty T, T+ uf) Flh = - —‘ s o
Trom this equality we obtain, taking §=0,
| £(e)| = |a| (tor any «). (0.2}

and hence |1 o) {for arbitrary & and §).

The last relation can also be written
+EEB +HEBE R~ |E@EF) 2 =1 +a8+ fa t | af|
Combining this equation with (5.2) we find, with R(...) denoting the real part,
R(.E_[;)E(ﬁ)) ={zf) (for arbitrary « and 3), (9.3)
and as a particular case, taking 5 =1 and using the fact that £(1)=1.
R (a)) = fi{ ).

Cembining this result with squation (5.2) we find immediately, with 7(...) denoting
the Imaginary part, that

I(E(e)) = £ 8(a) (e} (where d(e)=+1 ar —1).

If o is & real pumber &(x) is undetermined. Finally, we show that either the plus sign
helds for all complex numbers 2 or the minus sign holds for all complex numbers o.
That is, we ghow that 8{x) is independent of . We have for any complex number «

Ela)= B{a) +E6{oc) I o).
Inserting this expression in equation (3.3) we obtain
A(et) I(a) () 1 () = L{et) ()

It is found that if « and § are not real numbers we have dl=) =0(f), as was to be
ghown,
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Herce we have either

foy=a (for any complex number x)

or Eley=a (for any complex number o).

Any vector in I F has the form za +yf with determined complex coclficients & snd
B. We define the transformation 8 of IF onte I'F by

Owa +yf) =o' E{e) Ty E(B).

Trom the form of the function £(x) it follows that the transformation 8 is in fact
semi-linear {additive and semi-homogeneous) and that it induces the ray transforma.
tion 7. As [[z] =|jz"] =] it follows by reforence to Lemma 3.4. that the serai-
Iinear transformation { is also isometric.

5.2. Necessity of Condition (54)

The gencral representation theorem (seetion 4) is invalid if the Hilbert space I F
i two-dimensionzl. The definition of the function &e in 5.1 and the derivation of
equation (5.1) is independent of Condition {34), Conversely any mapping &(x) of the
field of complex numbers onto itself satistying equation (5.1) and the condition
£(0)==0 induces a ray transformation 1" satisfying Conditions (81) and (52) but
in general not Condition (84), if T'[(z+ye)f]=(z'+y'&(a))F (for any complex
numhber &) and 7V(yF)=y'F. But a ray transformation which does not satisty Condi-
tion {84) cannot be represented by a semi-linear fransformation, satisfying Condition
(L&), as follows from Lemma 3.2,

We give the following example of & function &(a) which determines a ray transfor-
mation which cannot be ropresented by a semi-linear vector transformation of IF
onto I'F. Let the real function s(f) be defined and monotonically increasing on the
interval [0,7] from the value s(0) =0 to the value s(7) =m. Extend the definition of
s{t) to the interval [0,2z] by ¢(n +¢) =m +3(t) for 0 <t <m. Define the function &{ux) by

Eloy =&(|elexp [¢ arg o) = |&| exp [¢ s (arg «)].

It follows at onee thati £(x) detcrmines a mapping of the field # of complex numbers
onto itzelf and that it satisfies equation (5.1)
I . 1 .
L4 Efe) E(—a ) =1+ || exp [ —is{atg )] m exp [is(arg o+ m}]=0.
We determine the transition probability associated with the rays (&' +y'&(o))F=
e and {z"+y'&(f))F = 1"6.

L || 8P +2] || f] cos [s (arg &) — s (azg B)]
(L+lae™(+]|81) :

Hence we find that p(T'a, T'0) =p(a,b) if and only if |s(arg =) —slarg §)| =|arg
w—arg f|. This relation is valid for arbitrary & and § i and only if s(t) is the linear
function s(f) =¢. If s(t) is chosen to be non-linear it follows that the indueed transfor-
mation 7 satisfies (31) and (S2) but not (34). This completes the proof of the secand
half of Theorem 5.1.

p{T'a, T'b) =
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6. Complex Hilbert space as real Hilbert space

The purpese of this scetion is to emphasize the fact that it is possible to consider
apycomplex Hilbert space as a real Hilbert space and that this can be done in essentially
one way. In particular it follows that the probability structure of quantiyn mechanies
ina complex Hilbert space {complex quantum mechanics) is determined consistontly
by the probability sttucture of quantum mechanics in a real Hilbert space (reaI

nantum mechandcs).

Let TF be a complex Hilbert space. It is evidently also possible to consider TF as
p real vector space, and even as a real Hilbert space 1R with norm ||f, if only a real
inner product (,x} is defined by

(., )= B[]z = § [Ky|=> + <z | o).

It can be directly verified that the real inner product {y,2) satisfies

(yam) =(1'L‘,y), (z,m 7'“?;') = (2, :E) + (2,3/),
(ywe) = (y,x)  (for any real number ) (z,x)={r|z> =]

Conversely, the resl inner product (y,x) is uniquely determined hy the norm through
the polarization formula
& (. 2) =[xy~ [l= ~y]]*

1
Further IKy|x]= % Wy |z — (| y>) = (o4, @) = — (y, 1),

so that the Hermitean inner product is uniquely determined by the real inner product

<y[5“> ={y,%) +ilyi,z)

and consequently by the norm (through the pelarization formula used in the proof of
Lemma 3.7).

Tn particular we obtain the following expression for the transition probability
associated with the rays z#F and yFin IF

2 oy
:p (:EF_, yF}E (yﬂ x) + (yi'! x)
(%, ) (3, )
We may notice that this expression is equal to the sum of the transition probabilities
assoclated with the two pairs of real rays w R, ¥R and 2R, (yi)E in IR, That is, the
probability structure of complex quantum mechanics is determined consistently by
the probability strueture of real quantum mechanics.

A transformation # of the compex Hilbert space IF into the complex Hilbert space
I'F may obviously he considered as a trapsformation of the real Hilbert space 1R
into the real Hilbert space I' B. If in particular the transformation # of I.F into I'F is
semi-linear it is evident that the transformation 8 of IR into I'E is rcal-lincar and
satisfies either

O{z1) = (B}t {for any vector x in I R)

or f{zi)= —(Bx)i ({or any vector = in LR). (6.1}
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The imaginary unit i may now be considered as an operatqr in IR and in I'R. Con.
wversely any real-linear transformation § of IR into I'R satisfying (6.1) is equivalent
to a semi-linear transformation of JF into I'F.

Tet § be a real-linear transformation of the real Hilbert space IR into the rea)
Hilhert space I' R. The adjoint 6% of 0 is the real-linear transformation of I' B into TR
determined by -

(§*y )=y, 0r) (for any vector x in IR
and any vector %' in I'R).

Tt is evident that the adjoint of 8% is again equal to 6.

The transformation § of I F into I’ i is scmi-linear if and only if the adjoint trans.
formation §* of I' F into [F is semi-linear.

A transformation € of I F into I'F is semi-linear and isometric exactly if it satisfies

(6.1) and .
(By,0x) ={y,x} (for arhitrary vectors z and y in IF).

The last equation is equivalent to the fact that # is real-linear and satisfies
f*3 =1 (1 being the unit operator in JI), (6.2)
The semi.linear isometric transformation @ is onto J'F exactly if in addition to (6.2)
§6*=1" (1" being the unit operater in ' F). (6.3)

The adjoint 0* of a semi-lmear transformation 0 of I# inte I'F cun obviously also
be defined directly in terms of the Hermitean inner product

6% oy = (9,0% ') --ifyi, 0% &) = Oy, =) +i{ (Oy)p(i), &) =p(<By | 2")), (6.4)

where the complex function ¢(x) is determined by 0§ and either g{x)=o (for any
complex number &) or (e} =& {for any complex number «}.

Note that the complex Hilbert spaces IF and I'F may in particular be the same
space. The adjoint of a complez-linear transformation of IF into itself, that is of an
operator on [F, is according to equation (6.4) equal to the Hermitcan adjoint of the
operator.

7. Symmetry transformations of observables

We shall assume that 7 is & symmetry transformation of the rays in the complex
Hilbert space { I onto the rays in the complex Hilbert space I’ F and that A is & semni-
linear isometric transformation of IF onto I'F which is a representative of 7. Wo
shall denote by Py, F,,... the projections (projection operators) on the rays 2, b, ... in
IF and use a correeponding notation for the projections on rays in I'F.

It is our intention to obtain a transformation of observables correeponding to a
given symmetry transformation 7. That is, we want to obtain & correspondence
between the linear operators on the Hilbert space JF and the linear operators on the
Hilbert space I'F such that the projeetion P, of the ray & in JF corresponds to the
Projection Pr, of the symmetry transformed ray T'a in I’ #. In order to carry out this
program we introdunce the concept of operalors of finite rank.

Let w{g) be a ecomplex function, defined for any ray @ in JF, which is equal o
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zero for all but a finite number of valuey of its argmuent. An operator on IF of the

form
° A=Za(a)P, (7.13

where the summation is aver all rays in J# (however, the sum contains only a finite
anmber of non-vanishing terms), is called an operator of finite rank ! We may notice
that if a(a) is ditferent from zero only for the rays in a family of matually orthogonal
rays, the cxpression {1.1) represents an observable with a finite number of possible
values.

Tt is evident that the representation of the oporator 4 hy the complex function
a2) is in general not unigue. In fact we have the following lemma.

Lemma 7.1, An operator of findle rank on IF, A=E-:L(CL) P, iz the null aperator,

Az=0 (for any veclor x in LF) exactly if EEba_(s;}a(b)p(a, b} =@, where p(a,b) is the tran-

sition probability associated with the rays o and b (defined by equation (1.1)).

Proof: By definition a(e) is equal to zero for all but & finite number of rays a. In
the finite-dimensional subspace of IF spanned by all rays ¢ such that afe) =0 we
determine an orthonormal family of basic vestors z),...,z,. Let for any a the normal-
ized vector x, be a representative of the ray o. It follows that

t=n —_ f=n
Trace (A*A) =§lH Az [ = é ; o (a) o (b]i‘;Zl{zi [Py Pyl

I fan
=3 Za@a () 3 ¢

Far (T l Ty (i | ziy =

=3 ala (¥ Koe @) = ST a(a) lb) pla, ).

This expression vanishes if and only if 4z, =0 (for i=1,...,n), that Is, if and only if
Ap=0for any vector z in IF, as was to be proved.

Lemma 7.2. T'he operators of finite rank on IF form a complex vector space, the sum
of two operators of finile rank Leing an operator of the same type and the product of a
comaplex nuwmber and an operator of finite rank being an eperalor of finite rank. This
vector spoce admits a Hermitean inner produet uniquely defined, according to Lemma

71, by B
(4, B)= g ; ala) f{b)p(ab), (4= % a{a) Po, B:;ﬁ () Ps). {7.2)

Lemma 7.3. Let T be a symmelry transformation, that is, a transformalion of the

rags in TF onto the rays tn I'F satisfying Conditions {SI1) and (84). Let 7 «la) P,
a

andd 7 f{a) P, represent the same operator of finite rank on IF. Then, 5 w(a) Py,

&
and 3, B{a) Pr, represent the same operator of finite rank on I'F.
Proof: By assumption, > [«lo) - f{2}]P,=0. That is, according to Lemma 7.1,

! This dafinlt-ion,lthough not identical in form -with the definiticn of operators of finite rank
usually given in the literature (see e.g, Riesz and Bz. Nagy [1953) section §9), is in facl equivalent
to the conventional definition.
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Z}: [a () — B (@)] [ (D) — B {B)] 2 (@, B) =0. According to (84), p{a, b) =p (Ta, %) (for
arbltmly rays ¢ and b in IF), and henee by Lemma 7.1, az [t (@) — f{6)] Pra =0 a3

was to be proved.
We are now able to define corresponding to the symmotry transformation T the
transform @A of the operator A of finite ravk on IF by

(Dfl:ﬂZac(a)Pm (Aﬁ%oc(w)l’a). 15

It follows from Lemma 7.3 that the definition is independent of the particular repre.
genfation of 4.

Lemuma 7.4. It jollows jrom the definition that @ is o linear mapping of the complen
veclor pace of operalors of finite rank on IF onto the complex veclor space of vperafors
af findte rank on I'F

D(xd +4B) = (@A) +f(DB) (for arbitrary operators 4 and B of finite rank on IF
afn(l arhitrary campie:r nambers o and B}, (7.4)

which preserves the value of the inmer product {7.2)
(DA, OB)={4, B) (for arbitrary operators A and B of finite rank on IF), (7.5)
and satisfies the reality condition

DiA*)— (DA * {for any operator A of finite rank on IF). {7.6)

Henee ¢ is a linear isometric mapping of the complex vecfor space of operators of
finite ranl on I F onto the complex vector space of operators of finite rank on I'F.
Note that the properties of the transformation @, listed above, could be easily ob-
tained from the general properties (81} and (54) of the symmetry transformation T
and without the use of the semi-lincar representative transiormation 8 of IF onto
I'F. The equations (7.5) and (7.6) can be given a more physical formulation: To any
observable of the form (7.1} in one frame of reference there corresponds a uniquely
determined observable of the same form in any frame of reference. This correspond-
ence is such that the expected value of corresponding observables has the same value
in any frame of reference.

This is the ultimate justification of Definition {7.3), and conversely it follows from
the fact that the lincarity of @ (equation (7.4)) is a property which can be derived
from (7.5) and the assumed existence of an inverse transformasion, that the physically
gignificant condition (7.5) determines the form of ¢. This is the content of the
following theorem.

Theorem 7.1. Let O be ¢ mapping of the complex vector space of operators of finite
rank on LF onto the camplex vector space of operators of finite rank on I'F satisfying
equation (7.5) such that for any ray a in IF the transform QOF, is the prajection on aray
in I'F. Then © determines uniquely a symmetry transformation T, that is, a transforma-
tion satisfying Condition (S1) and (S4) in section 2, by ®P, =Py, (for any ray « in IF).
The equations (7.4), (7.6) and (7.3) are satigfied by T and D.
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Proof: The restriction of @ to projections onrays in IF evidently determines a
symmetry transformation T'. The linearity of @ (7.4) follows from the linearity of the
inner product (7.2), and (7.3) ie a consequence of (7.4). Finally, (7.6) is obtained from
7.3).

Theorem 7.2. Let O be the transformation of operators of finite rank on I F determined
by the symmelry transformation T and let 6 be a semi-linear isometric transformation of
[ F gnto I' F which induces T. Then, either 0 is linear and

DA =046 (for any operator A of finite ronk on 17, 7.7
or 1) ie conjugated linear and
GA=04%0" (for any operaior 4 of finite rank on I F). {7.8)

Proof: Let for any «, x; be a normalized representative vector of the ray @ in T¥.
That is, for any vectorzin IF, P —r <.L,1|:IJ> |2 ]| = 1. Tt follows that fz, is & nor-
malized representative vector of the ray Ta in I'F, so that for any vector 27 in I'F,
{OP,)z' =Prox’ =0z,{fz, |2’y We recall that any vector in I' F is of the form @' =0
and consider, with ths operator 4 defined by (7.1).

@A)y’ = (P4 2= Z {xfa) Py )bz = z {0z,) 0z, | 02> ot {m) =

=f [% Ty, (g |T> o {xie) Z @ [oe (a)] Por],

where (e} iz given by (13) in section 3. Tt follows now that either (7.7) or {7.8) is
valid.

8. Symmetry transformations of the algebra of observables

We are now in a positlon to define the fransformation of arbitrary ohservables
corresponding to a given symmetry transformation. The extension of the transforma-
tion P, introduced. in the previous section, to linear operators on I F is abvious and
unique, on the basis of Theorem 7.2. We denote by B(IF) the algebra of (bounded)
lmear operators on I F, and dofine O for any element A of B{IF) in terms of the
epresentative semi-linea.r and isometric transformation § of TF onto I'F':2

DA =0A40-1 {if § is linear),
DA =04%01 (if 0 is-conjugated linear).

Theorem 8.1. The mapping O of the algebra BUIF) onto the algebra B(I'F), determined
hy a symmetry transformation T, dinduced by a semslinear isometric transformation 0
of IF onto I'F, is a *-isomorphism if 8 is linear and o *-anti-isomorphism if 8 43 con-
jugeted inear. That is, D iz o mapping satisfying the following Conditions (T'1), (T2},
(13" or (T3").

(T1) © is a linear fransjormation of B{IF} onto B(I'F):
Olad +5B)=a(®A) 1+ B(DR) (for arbitrary operators 4 and B in B{IF) and arbitrary
wmplex numbers o and 7).

T2) DLA*y=(DAY*  (for any operator A in B(IF)}.

! The treatment of time inversion given in Uhthorn {1960} pp. 199-203 is based on this definition.
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(13) It 8 is linear: QIABY={DAVDE) (for arbitrary opemt.ors A and Bin _B(_IF])_

{(T3") I} 0 is conjugated linear: O(4 B) = (DBY(DA) (for arbitrary operators A gnd p
in B{IF)).

The comnection between symmetry transformations and isomorphisms or anti.
isomorphisms of the algebras B(IF) and B(I'F) is in fact one to one.

Theorem 8.2. 0 any isomorphism @ af the algebra B(IF) onto the algebra B{I'¥)
there corresponds a unigue symmetry transformation T' of the rays in IR onto the rays in
I'F, represented by a complexs-linear isomelric transformation 0 of I1F onto I'F. T any
anti-isomorphism ® of the algebra B{IF) onto the algebra B(I'F) there corresponds «
unigue symmetry transformation Ty of the rays of IF ontothe rays of I' F, represented by
& conjugated linear isometric transformabion 0, of IF onto I'F.

The proof of this proposition will follow from some elcmentary lemmas, which
will first be stated’. We shall assume that @ is a transformation of the algebra
B(IF) onto the algebra B(I'F), satisfying Conditions (T1), (T2) and (T8') or (T3").

Lemma 8.1. The unif operator 1 in B{IL') corresponds do the unit operator 1' in
B(I'), ®L=1". The null-vperator ¢ in B{IF) corresponds to the null-operator O’ in
BI'FY, ©0=0".

Proof: This follows directly from (T1) and (T3).

Lemma 8.2, If P is any projection tn B{IF), that is if P safisfies P*=F and PP =P,
then QP is a projection in B(I'F).

Proof: By (T2), (@ P)*=0(P*)=0F and by (T3}, (PP (D P)=Q(PP)=D P, us
wag to be proved.

Lemma B.3. If P, and P, are orthogonal projections in. B(IF), that is ¢f £, P, =0,
then O (P,) and © (P,) are orthogonal projections in B(I'F). .

Lenmma B.4. Left M, and M, be arbitrary subspaces (closed lineur manifolds) of IF
such that M, is a subspace of M,, and let P| and Py be the corresponding projections in
B(IF). That is, P, and P, are projections in B(IF) sutisfying P, Py=P,. Then O P,
and O P, are the projections corresponding fo two subspaces My and My of I'F and
M is a subspace of M.

Lemma 8.5. If B iz a non-negative operator in B{IF, that 45, if B is an operafor of
the form B=A*4 with 4 in B(IF), then @ B is o non-negative operator in B(I'F).

Lemma 8.6. For any operator A in B(IF),|OA| =] 4.

Proof: For any A in BUIF), ||4||*1—4*4 is a non-negative operator. Hence
[l 4]|2 1" ~D(4)* ©(4) is a non-negative operator in B(I'F), so that |O(4)] <4
Applying the same reasoning to the inverse of the transformation © we obtain the
desired result,

Lemma 8.7, Ezactly if P, {3 « projeciion in B(IF) corresponding to a ray « in IF,
BOF, 1s a projection in B(I'F) corresponding to a ray o’ in I' F.

Proof: If P, is the projection on the ray a of IF it follows from Lemma 8.2 that
P, is the projection on a subspace & of LF. If &' is not a ray it contains at least $wo
mutually orthogonal rays, the inverse images of whose projections under & are the
projections on mutnally orthogonal subspaces (containing non-zero vectors) of a

* Beo Dixmier (1957), pp. 8-10.
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(Lemma 8.3). But, as 2 is & one-dimensicnal subspace this iy impossible, It follows
that o' is a ray in I'F.

Lemma 8.8. If P, and Py are the projections in B(IF) of twe arbitrary rays in IF the
fol lowing ethty holds: Trace [(® LY (DO PY=((DE), (® P))Y=(P,,P,) = Trace
(PPp)L

Proof: Let @, and a, be representative normalized vectors of the rays « and b.

| PP | = sup (P, Pz | (P, Pyyad =sup (x| Py Py Py 2>
W - =

- ?lei :1<‘T|ﬂ70> o] ad (g | o> (2a] 2y =

= Trace (P, Py).

Aceording to Lemma 8.6: Trace (P, P,) =P, PD||-—||(I) (BPy)[2= ] (D P (@ Py)|2=
Trace [(I P,) (D Py)]. This completes the proof.

Proof of Theorem 8.2: From the lemmas given above it is now obvious that any
isomorphism or anti-isomorphism @ of the algebra B{IF) onto the algebra B(I'F)
induces by the definition @(P,) =Py, (where a is any ray in I'F, and P, is its projec-
tion} & fransformation 1" of the rays in I F onto the rays in I'F, satisfying Conditions
{31y and (S4) of section 2. That is, the induced transformation 7'is a symmetry trans-
formation. From the representation theorem for symmetry transformations the
corresponding representation theoremn for isomorphisms and anti-isormorphisms
follows.

9, Symmelry trapsformations and inversion of the divection of the motion

We have seen that symmetry transformations may be considered equivalently as
ray transformations, as semi-linear veetor transformations and as operator isomor-
phisms or anti-isomorphisms. The latter interpretation is in a sense the most physieal
as it gives a direct distinction between symmetry transformations which are even
with respect to an inversion of the direction of motion (isomorphisms) and those
which are odd {(anti-isomorphisms).

‘Weassume that the motion relative to some arhitrary fixed frame ef referenceisrepre-
sented by a continucus one parameter group of symmetry operators T — oo << + oa)
on the rays in the Hilbert space IF. That is, the group of symmetry operators
7', is a representation of the geoup of translations of the real line. And for any ray a in
IF the transition prohobility p{1'a, ) tends to the limit p{a,a) =1 when ¢ approaches
zero. Corresponding to each symmetry operator T, there is according te Theorem 8.1
2 unique mapping @, of the algsbra B{IF) onto itself. Any mapping @, is in fact an
automorphism of B(IF). In order to see that @, eannat be an anti-antomorphism we
notice that @, =(®;,)? for any valae of £. The time dependence of observables, repre-
sented by cperators in B(JF), is thus given by the group of antomorphisms

A Aty =04 (for any 4 in B(IF)). (9.1)

The sarne motion may he equivalently described relative to a second frame of refer-
ence corresponding to the Yilbert space I'F. The equivalence of the two frames is
cxpressed by & mapping @ of the algebra B{IF) opto the algebra B(I'F) which is

! The inner product (P,,F,) is defined by equation (7.2).
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either an isomorphism ot an anti-isomorphism (Illeorem 8.1), and by a coordinate
transformation ¢ =7(f) connecting the respective time scales. The staternent, that the
coordinate fransformation v connects two time scales meang that T determines 5
continuous automorphism of the group of translations of the real line, That ia, 7{t) is
necessarily of the form %(f) =74 (with some constant real number v,4 03, The time
dependence of observables in the second fmnlm of re’ference, represented by oporatory
in B(I'F), is given by a group of automorphisms M — oo << + co) of BI'F

A Dy A" (for any A’ in B{I'F). 9.2)

The groups of automorphisms{®,} and {®,} corresponding to different frames of
reference are eormected by the mapping @ and the coordinate transformation T,

QA =0D, A (=1t A =D A (9.3)
That is, q’;nz =0Q, 0L (9.4}

It is a consequence of Theorem 8.1 that the automorphism (9.1) is an innep auto-
morphizsm and may be represented by

O A= UM*AUR) (for any A in BIFY), (9.5)

where U/{f} is for any ¢ a unitary operator on JF which is determined by @, up to a
phase factor which may depend on £, It is a non-trivial fact, which has been praved
by Wigner,! that it is possible to choose this phase factor such that the operators
U(t) form a eontinuous cne parameter group of unitary operators on 1F. Henee,
the operaturs may be formaily given by

() =exp( —itH), (9.6)

where H is the Hamilfonian operator determined by @, up to an addifive real cons.
tant &'

Combining now equations (9.5), (9.6) and (9.3) we find that ®d;. is an mner auto-
morphism of B{I'F) and that the corresponding group of unitary operators on ['F
is generated by the Hamiltonian operator

H = 1 DH  (if @ ie an isomorphism), (8.7
Tp
1
H'= ——OH (if ® is an anti-isomorphism)®. (9.7
Ty -

However, aceording to our physical interpretation, the Hamiltonisn it not only the
generator of the motion but is also the observable corresponding to the energy of the
system. This introduces an additional assumption concerning the form of the opera-
tors ff and PH. Tt follows from Lemma 8.5 that the operator (0 is non-negative
exactly when the operator H is nor-negative. Hence it is consistent to require the
Hamiltonian to be non-negative in any frame of reference. Tt follows from equation

! Wigner (1938) and in particular Bargmann (1954). Compore algo Jauch (1961). Jauch’s
derivation of the Hamilioniun is however basad ou the assumed continuity of tho operatar {7(z)
as a funetion of &

¥ In general H is an unbounded operator and is not an element in B(IF). This fact causes no
difficulty in the definition of DOH, which may be obtained from the transform of the group of
unitary (and hence bounded) operators T(e).
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(9.7) that this recquirements infroduces the desired connection between the symmetry
transformation determined by @ and the associated transformation of the time
coordinate t—&' — T {t):

T~ 0 exactly it @ is an isomorphism;

7=0 exactly if @ is an anti.isomorphism. {2.8)

That is, the sign of 7, is chosen so as to corapensate the inversion of the direction of
the motion produced by @. .

APPENDIX 1

Formulations and proofs of Wigner’s theorem

In this appendiz we shall discuss proofs of Wigner's theorern which have been
given by Wigner (1932, 1959 and 1957}, Hagedorn (1959), Jauch (1960) and Ludwig
{1954). Throughout the discussion IF is & fixed compiex Hilbert space of vectors
I,y .....

AL1. In his original treatment,! Wigner considered a mapping 0 of the Hilbert
space I onto ftself, satisfying the following conditions.

(1) Corresponding to any vector 2 in £ there is a unique vector fiz in 7.

(2; Carresponding to any vector » in 17" there is a unique vector 2’ in I F such that
z=0z",

(3) For any pair of vectors © and y in IF the equality |(fy|f2>| = |<y|z>] holds.

Wigner stated that there exists & mapping 6, which has the same properties and the
same physical content as ( and iz either unitary or anti-unitary, and is defermined by
§up to a constant phase factor. Wigner’s statement is ocquivalent to the following two
propositions.

{4) There exists a complex function ¢(z) of modulos one on I 7 such that the mapping
gy defined for any vector 2 in IF by A,z ={0x)c(x), satisfies in addition to the
requirements (1), (2) and (3) also the following vondition. For arbitrary vectors x
and y in I, Oy(x 1 9) =0,z + 0. This condition determines the function c(z) up
to a constant phase factor.

(5} The mapping f,, defined in (4}, is either a unitary or an anti-unitary operator on
IF. That is, f, admity a unique inverse on I F, and cither

(5 {Bgy |Bpx» =<y | x> (for any pair of vectors x and y in I F), or

(5") By | By = (x| ¥> (for any pair of vectors z and y in IF).

Condition {2) iz not stated explicitly by Wigner but is assumed in his proof. This
condition iz necessary only if the Hilbert spaece is infinite dimensional. The require-
ment “unique’ can, be omitted in (2). In the finite dimensional case this weaker formo
of condition (2} can be derived from {1) and (3). It is also possible to replace “unique”
in (1) by a weaker requirement. The additive mapping 8,, derived from 0, will always
satisfy Conditions (1) and (2) in their strict form.?

! Wigner {1931), appendix to ch. 20; Wigner {1059), ch. 25,
* Bee Jauch (1961).
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Al.2. Wigner’s original proof of the propositions (4) and (5) i3 not complete. Tn the
transition from his equation (D) to equation (E) the possibility o, =0 eannot he
axciuded. Thiz means that the phase function ¢y is undetermined for all vectors
which are orthogonal to W', Further, it cannot be concluded from equation () thet
only the cases (E'yand (1) can oceur, as different values of the index»xmay correspand
to different possibilities in (G). It doos not seem easy to extend this proof to a com.
plete proof, )

Al.3. According to Jauch? there exista a proof given by Wigner in 1957 of the
proposibion (4) sbove.? A simplified proof of the same proposition has been published
}jy Hagedorn.t However, Hagedorn’s paper containg gome errors which invalidate
his proof, Tn fact, Hagedorn’s construction of & continuous and homogeneous mapping
9 (section 3.8, Theorem 6 in his paper) ig incm’nplete as it gives no definition of § for
vectors which are orthegonal 4o the weetor gg. 1t can be proved, though not in the
way indicated by Hagedorn, that the constru eted § is really continnous in its domain
of definition, that is, in a neighbourhood of the vector 6 consisting of the open set of
all vectors which are non-orthoganal to gg. The question whether it is possible in
general to extend 0 to a continuous and homogeneous mapping on the whaole Hilbert
space will, however, be of no inferest to us. The construction of a homogencous and
continuous O is in fact a détour which introduces irrelevant concepts into the proof
of Wigner’s theorem. Further, Hagedorn makes an inconvenient choice of independ-
ent variables in the funetion w (section 3.9) which gives rise to his complicated rela-
tion (3.5) in the place of our chain condition (section 4 of the present paper). Withouy
further justification Hagedorn assumes the function o to be continuous. Finally, and
this is the most serions error, Hagedorn has not realized that the function o cannot
be defined by the equation in section 3.5 (Theorem 2ii) when the argument vectars
arc linearly depepdent and that this invalidates completely the discussion given in
his appendix as a justifieation of the proof of his Theorem 7.

Al.4, JanchS has derived the proposition (5) ahove from Conditions (1), (2}, (3) and
the assumed validity of proposition (4). His proof is not complete, but can be made
camplete without much difficulty. We give the following alternative to Jauch’s
proot.

Writing § instead of 6, we have according to Jauch's assumptions for arbitrary
vectors @ and y in TF, 6{z+y) =Gz+0y and|0y|fx>| = |{y|x>| Hence it follows
direetly that for arbitrary vectors z, y and z in IF

[{Oy B>+ 0=z | 0> | = | {ylap +{=lap].

Equating the squares of both sides of this equation we find, with £{...) denoting the
Teal part,

R{{By |6y {Bx|8z)) = R{<y|a> {z|z>). (A1)

With the particular choice z=z+0 in {Al.1) we obtain, using Condition (3},

! The references in thig section ure to Wigner (1831),

2 Jauoh (1961).

3 Unpublished lectures by E. P. Wigner at Leiden {1957). I have not seen this proof.

! Hogedorn (1953) and {196T).

% Tauch (1961},
: % Tt iz obvious that the derived equation {A1.1) eontains Condition (3) as a particular case
put z=1y).

332

L mimmii e

i s



ARKIV FOR ¥Ysik. Bd 23 nr 30
R{(By |0>) = B{<y| ). (A1.2)

{lombining equation (A1.2) and Condition {3) we find that
Ty |025) = T(<y | 23)8 (2, ). - (Al3)

where J(...) denotes the imaginary part and 6(z, %) =8{y,z) is & factor which is defined
it and only if J({y|=>}+ 0 and satisfies 6(z, )2 =1. We must show that 8(z,y) is inde-
pendent of z and y—this corresponds to the part of the proof which is omitted by
Jauch. Combining equatlons {Al. 1) (A1.2) and {Al.3) we {ind directly 8(x, y]

TG\ %) 8@,z) J((a| wp) =T ((y|2>) J((2| ), and hence d(z,y) 8(z,2) =1 for arbitrary
veetors x, 3 and z if only &m,y) and é(a: z) are defined. Hence for arbitrary vectors
38,92 0T, y) = =0(x, 2) =0(z, %) =4(z, v}, which proves that d{x,y) is independent of x
and y. Due to the fact that § admits an inverse on IF it now follows that J is either

unitary (d=1) or anti-unitary (d= —1}.

Al.5. Ludwig? considers a transformation T of the lattice, formed by all (closed)
subspaces of the Hilbert space 17, onto iteelf. It is assumed that the transformation
T admits a unigue inverse and that it preserves the lattice operations and the rela-
tion of orthogonality between subspaces. Further it is assumed, though not explicitly
stated, that the Hilbert space 1§ is separable and that its dimensionality is at least
equal to three. Ludwig proves that IF is induced either by a unitary or by an anti-
unitary operator on I F. The continuity of the transformation 7 is used in the proof
However, Ludwig gives no explanation of how the sontinuity of T is defined. But it is
possible to give such a definition by considering the lattice of subspaces as & metrie
space (sce appendix 3 of the present papor) and then the result needed in Ludwig’s
proof can be derived. lLudwig’s proof is completely correct, except for the omission of
a final step which can easily be completed, but it iz based on some rather complicated
geomotric constructions which are not easily verified.

APPENDIX 2

The analogue of Wignet’s theorem in quaternion quantum mechanics

A2.1. Quaternions

In this appendix ¥ denotes the field of quaternions «, §..... Any quaternion « may
be represented in the form

= oty by oty Oy oty £y lrety £y (o, real number, n=0, 1, 2, 3), (A2.1)
with the basic elements iy, 4y, 25, 55. The rules of multiplication
To by =ty T bp = — Ty by bp=%n ip=1, (u=1,2,3)
By iy =ty = g 1y, by by =Ty = g by, Gy by =iy = iy Tg, (A2.2)

are associative but not commutative. The multiple a, ¢, is identified with the real
number % The field of real nunibers is the center of the field of quaternions, that is,

! Ludwipg (1954}, pp 101-103 and pp. 447-448.
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the real nambers are the only elements of F' which commute with any element of F.
Defining the compler conjugate of an arbitrary quaternion z by

5 == g g — o0 1 — 0y g a o, (423)
and its norm |x| by |0t|2=of&¢&d=sf%"i'a¥+ag+a%, (A24)
we find that |a] >0if o0 and ot = |a| (42.5)

Complex conjugation is an anti-quiomarphism ol the field ¥
(oz_ﬁ) =p5 (for arbifrary guaternions o and . (A2.6
The real part B{e) of a quaternion e is defined by
Bla)=ay=4{ac T &). (A2.7)
1t follows that =R, e) (p=0,1,2.9) (A2.8)

Conventionally , is called the scalar post of the quaternion o, and a =g 1) +ay i,
-ty 7 3 called the vectoy part of & The product of two quaternions « and # is given by

aff = agfy— o B o feot - ax B, (A2 .6}
where a-f denoctes thie sealar product and o X B the vector product of the threc-di.
mensional Cartesian vectors e and B,

A2.2, Quaternion Hilhert space

We shall assume that 17 is a Hilbert space of vectors z, y,... over the field of
quaternions. The Hermitean inner product {¥|=> 15 & quaternion-valned function
satisfying the conditinns

<;|—3—> ={x|y>  (for arbitrary vectors 2 and y), {A2.10)
|x||?={z|2»>0 (for any vector w=0),* {A2.11)

yle e =ylay 4 {y|z> (for arbitrary vectors z,y.7),

Gy |eay =<y |xbe (for arbitrary vectors z and y and any quaternion «).?  (A2.12}

The treatment of the eomplex Hilbort space IF given in sections 1 and 2 of the
vresent paper can be applied without change to the guaternion Hilbert spece IF.
We notice in particular that Definition (1.1) of the transition probability pia,b)
associated with the rays @ and & makes sense also in the gquaternion rase.

A2.3. Semi-lineor transformations of quaternion Hilbert spaces

The definition of semi-linear transformations of the Hilbert space IF into the
Hilbert space I'F is avalogous to the definition given in section 3. The form of the
automorphism @ of the field I of quaternions, satisfying the reality condision stated

! Note that (A2.10) implies that {v|z} = (|} is a real number,

® And henee {ye|zy - Go|yay = 2y | 2>,
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in (1.3} is given by the following lemma which replaces the Lomma 8.1 for the complex
case.

Lemma A2.1, dny automorphism ¢ of the field F of quaternions, satisfying the reality
condition gple) =p(x) (for any quaterndon «), is an inner automarphism of ¥. That is
there exists un element y in &, determined by ¢ wp to a real non-vanishing factor, such
that (o) =y~ ay {for any quaternion ).

Proof: As a vonsequence of the reality condition i induces an amtomorphism of the
field of real numbers. The only automorphism admitted by the field of real numbers
is the identity mapping, The field of roal numbers is the center of the field of quater-
nions. Hence @ is an antomorphism of F leaving the slements of the center of F
invariant, It follows from a well known theorem? in the theory of fields that pis an
irmer automorphism of the field #. As a corollary to Lemma A2.1 we obtain the
following proposition about the form of semi-linear fransformations,

Lemma A2.2. dny ray of semi-linear iransformations of a quaternion Hilbert spce JF
into o quaternion Huilbert space I'F conluins a linear transformation.

Proof: Assume that #lxa) =(0z)ytay for any vector x and any gnaternion s with
some fized quaternion y. Define i, for any vector by Gy =(0z)y 1. It follows at
once that 8, is linear, and that it is determined by 0 up to a real non-vanishing factor
(if only 0=0).

The treatment of semi-lnear transformations given in section 8 may now be
applied without change to the guaternion case.

A2.4. Representation of symmetry transformations

The theorems and proofs in section 4 may be applied without change to the
guateroion case.

Theorem A2.1. If is possible o represent any symmetry transformation, that is, a
transformation satisfying Conditions (1) and (82} by a linear isometric veclor iranafor-
mation which 13 determined by the symmetry iransformation wyp fo its sign. It is assumed
that the mumber of dimensions of the guaternion Hilberi space IF i3 at least equul to
thyee,

Proof: Beotion 4 and Lemma A2.2,

A2.5. Two-dimensional quaternion Hilbert spece

The proof of the representation theorem for symmoetry transformations in the
two-dimensional cass can be carried out along the same lines as for complex Hilbert
spaces, if only proper account is taken of the non-commutativity of quaternion
multiplication. In partieular we find without difficulty that the function £(x) is
uniquely defined by the constrnction described in seetion 5. From the properties of
the ray transformation T it follows that & determines a mapping of the field of
quaternions onto ifsclf, and that it satisfies

?(L)=1,?{;)§{ﬁ)+éfﬂj§{a)=&6 +Aa (for arbitrary gquaternions « and j). (A2.13)

¥ Bee o.g. van der Waerden {1959} section 163.
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Tt follows from (A2.13) that the mapping d“eieg'mined by & is one 2 to one. Indeed,
agssuming & (a)=£(f) we obtein 0=[&(e)— & (5] [& () — &A=& (a) & (o) +
FEBE(G [ (@) & (B)+E B Ela)) =B+ FA— (@ + fa) = {@— B} (x—f), that is
a=§. Taking =1 in (A2.13} we find that the mapping & leaves the scalar part of
any uaternion invariant:

Loy =RE@]=§[§ (@) E{a)]=5[a - e]=R(a) =0
{for any guaternion e). (A2.14)

It follows from equation {A2.9) that

58+ foo=2(eyfy + & B) (for arbitrary quaternions « and f§}.
Combining (A2.13) and {A2.14) we thus obtain
Eto) E(f)=a-B (for arbitrary quaternions o and. ).

The vector part E{x) of £ (a) is in fact independent of the scalarpart o, of . In order
to prove this, let o and o' be arbitrary quaternions with the same vector part o.=a'.

For any quaternion f§ we have
[E(a) - Ela)]-B(B)=E () B(B) —B{«) - E{f) =af—a'f=0.

The vector £ (f) is arbitrary and hence £ (=) =& («) which proves the proposition. We.
write & (o) =¥ (o) for any quaternion «. It follows from the corresponding properties
of & that ¥ determines a one to one mapping of the three-dimensional Euclidean
space onto itself, which preserves the scalar product, ¥ (a) - 4" (8) = B for arbitrary
veetors o and 8. It follows that the mapping ‘¥ is also linear, that is ‘" is an ortho-
gonal transformation of the three-dimensional Fuclidean space cnto itself. For the
finel stop of the proof we need the following well known fact, eatablished by Hamilton
in 1844, ‘

Lemma A2.3 dny inner aulomorphism of the field of quaternions induces an oitho-
gonel transformation of the vector purt o of any quaternion o whereas the scalar part o
ig lefi tnvarignt, Conversely, any transformation of this type is induced by an Inner
automorphigmm.

1t follows now from Lemma A2.1 and Lemma A2.3 that the mapping &(e) of the
field of quaternions onto itself is equivalent to an inner automorphism

fay=yay™ (for any quaternion & with some fixed quaternion y}.

The element y, generating the automorphism is determined by £ up to a real non-
vanishing factor. Using this freedom we require

Y=
leaving only the sign of ¥ undetermined.

Let z, " and 2" be the vectors introdnced in section 4. The veetors x”,y”,2" inthe
Hilbert space I'F defined by & =x'y, 4" =y'y,2" =2’y have the same properties as

336



ARKIV FOR FYsIK, Bd 23 nr 30

¢,y's%. Further Tlz—yx)Fl=(z' +y'yay WF=(a"+y'x)F, Tyl =(y"F). For
g+0 we have T[lxe tyf)F]=T[(z+y fa")Fl=(a"+y" fa)F=(x"a +y" A1 F. We
define the transformation ) of LF onto J'F by Oex+yf)=2"w 1y’ (for arbitrary o
and A). It is evident that the transformation  is linear and isometric, and that it jg
determined by the symmetry transformation T up te the sign (s real phase factor).
This completes the proof of the representation theorem for symmetry transforma.
tions of the rays in quaternion Hilbert spaces.

A2.0. Quaternion Hilbert space as real Hilbert space

Finally, wo mention that the quaternion Hilbert space ITF may evidently be con-
sidered as a wvector space over the field of real numbers and even as o real Hilbert
space with the same norm ||z||, if only the real inner product (y,%) is defined by

(,2) = B({y|)). (A2.15)

Conversely, it foilows from. equation {A2.8) that the quaternion inner product is
determined by the real inner product {A2.15)

Joa

o

Ryl | 20) i=

0 s

“s B
wley=2 By Wi 2)he  (A216)

- s
Zp) b=
=

and conserqiently by the norm through the polarization formula for the real inner
preduct 4(y, 2} = ||z +y|*— ||« —¥||%

Tt follows from equation (AZ2.16) in analogy to the complex case (section 6) that
the transition probability associated with any pair of quaternion vector rays is given
as the sum of the transition probabilitiss associated with four pairs of real vector rays
go that the probability structure of quaternion quantum mechanics is determined
eonsistently by real gquantum mechanics. Henee we may stafe that real guantum
mechanics is & more general theory than quaternion quantum mechanies and complex
quantum meclkanics, admitting a greater number of states (rays) and a greater num-
ber of observables, Further it is an evident consequence of formula (A2.15) and ita
analogue in the complex case that the symmetry transformations of guaternion
quanturm mechanics and of complex quantum mechanics are symmetry transforma-
tions of real quantum mechaniocs but that conversely real quantum mechanics admits
a greater variety of symmetry transformations.

APPENDIX 3

Ray topology
Let @, b,... be rays in a complex Hilbert space 18 and F,, P, ... the corresponding
projections (projection operators) on IF. The family of all rays in [F is a metric
space provided a distance is defined for any pair of rays. This can be done in & num-
ber of ways and we shall consider the following possibilities.

dig, b)=||P.—Ps|| (for arbitrary rays a and b). {A3.1)
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d{a, b= V T?&c(?(?:: IT}‘ {(for arbitrary rays @ and &), (A3.2)

dy(a, b)y=min (8|8 =z #ll, z€a, yeb, ||« =yl -1}
(for arbiteary rays o and &). (A3.3)

Llementary caleulations show that the distances defined above can be expressed in
torms of the transition probability assoctated with a pair of rays (section 1).

(@, b)=VF1— b) (for arbitrary rays @ and b),. (A3.4)
by= Véd (z,b) (for arbitvary rays o and &), (A3.5)
dy{a, b) ——-V?Tfl —mﬁ] for arbitrary rays o and b). {A3.0)

The following inequalities are immediate consequences of the Schwarz inequality

for p: 0<p=l, 0=d<l, 0<d,<V2 (A37)
Prom the definitions
. ds
pnl~d2=1—dg( ;;) dd,

and hence the following inequality holds
—d, s d <<dy. {(43.8)

Henee, the distances &, d, and d, are topologieally equivalent. That is, the econvergence
of a sequence of Tays may be defined equivalently in terms of any of these distances,
Wigner and Bargmann have used the metric d,. The reason for introdueing alsa the
mctrics 4 and d, is the fact that they are closely related to the topology of certain
operator algebras on JF. Thus d corresponds to the so-called strong topology of the
aigebra of all bounded linear operators on £F, And d, corrosponds to the topologv of
the Hilbert space formed by all operators 4 on IF s:uch that Trace (4 *:1) is finite.
The inner product of two arbitrary elements A and B of this Hilbert space s defined
by {4, B)=Trace (4*B) {compare section 7).

Lemma A3.1. The transilion probebility is & continvous funchion of both arguments.
Proaf: Let a,b be arbitrary rays in IF. The transition probability p(a,b) is equal to
the inner product (#,,Ps). Hence for arbitrary rays a,,m,, b, b,

|p(a1?b1) m.’p(a'2=b2)' = | 'Pappfh_) Prz :Pb;)l .
—Py) +(-Pa1 _FII:-‘Ph) i S-fll(”ﬂ.: @) —l_dl(bh by).

This inequality proves the proposition.

Finally, we notice that the family of symmetry transformations of the rays in the
Hilbert space IF onto the rays in the Iilbert space I'F is identical with the family
of ispmetric mappings of the metrie space formed by the rays in IF onto the metric
space formed by the rays in I'F.
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APPENDIX 4

Symumetry transformations in classical mechanics

Thie to the strong coherence of the logical and dynamical structure of quantum
mechanics, symmetry transformations may be defined equivalently as isomorphisms
of the logical structure (or of the prohabilistic structure) and as isomorphisms of the
Jynamical structure, that is, transformations leaving the form of the equations of
motion invariant. In classical mechanics there is no corresponding equivalence and
much more of the dynamical structure is needed in the definition of symmetry trans-
formations. '

A symmetry transformation of classical mechanics may be represented as a trans-
sormation connecting # pairs of real variables (¢, p,) with a similar systemn of variables

g, 07}

q'=Q (g, p). pi =Pi(g. 9} (=1.....n), (Ad.1)

8@ (g, ) 8% (g, p) Q" (¢, p) 8Q'{g. ) _

such that aqz api aq1 api =0:

aP; (q, p) 0P, (g, P, (g, ) 8P (4,
;{(r;i prof,(g.p) @ k(% y2) {(qé pJEO} | (A42)
oq &p; g on;

o (¢, 18P0, p) 0Py, PO e B
ay’ e &g’ oo, O

pPe= 1, 8= 838,  (, k=1,...,n; summation convention).

The transformation {A4.1) is called canondcal if 4= +1 and anti-canonical if n=—1.
The measure dgl...dg"dp;...dp, is invariant under symmetry transformaticns.
Hence symmetry transformations preserve the probabilistic structure of classical
mechanies.
The Poisson bracket of $wo arbitrary real ditferentiable functions f{g,p) and g{q.p}
of n pairs of real variables {g'.p;) is given by

flg, Pl egle. ») Bglg, pléfin.p) . . .
=i I 2 h mat: tion).
[f.91(g, p) o7 op: &g’ ime ‘summation convention)

Lot the transformation @ corresponding to (44.1) be defined for any function A{y',p’}
of 7 pairs of real variables (q”,pi] by :

DO h(g, p) =hQ(g.2), Plg. p))-
For arbitrary differentiable functions fig'.p') and glg’,p'} of » pairs of real variables
(4", p).
Dif, g1 =n[Pf, Lgl-

Thus symmetry transformations preserve the dynamical structure of classical
mechanics. The number # is the parity of the symmetry transformation with respect
to a reversion of the direction of the motion,
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