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1 Introduction

Negotiations often share the following two features. First, players revise initial claims

in order to reach a compromise. Their ability to make revisions depends on the context

of the negotiations and may differ among players. Second, concessions may be induced

by the threat of an ultimate take-it-or-leave-it offer. However, negotiators discourage

such uncompromising behavior by adopting a firm posture - threatening to walk away

from negotiations without agreement - when facing such an ultimatum. These two

features are extensively discussed in the negotiation literature (Sebenius 1992, Lewicki

et al. 1994) and also appear in practical guides for negotiators, as in the defense

procurement and acquisition guidelines by the US Department of Defense:1 “Aim high”

but “Give yourself room to compromise”and “Be willing to walk away from or back

to negotiations”.

In the bargaining literature, Harsanyi (1977) justified the solution of Nash (1950)

by comparing the risk limits of players in the pursuit of their claims. A player’s risk

limit is the highest probability of disagreement that he would accept in the pursuit of

his claim in an ultimatum, when accepting his opponent’s claim is the alternative. The

player with higher risk limit is in a weak bargaining position and is more likely to accept

his opponent’s claim. Since a lower claim decreases the own risk limit and increases the

opponent’s risk limit, players avoid a weak bargaining position by exhibiting restraint

in the formulation of their claims. Risk limits are equalized if each player claims his

payoff in the Nash solution.

Moulin (1984) justified the solution of Kalai and Smorodinsky (1975) in an auction

in which each player bids a probability of disagreement when an uncompromising oppo-

nent pursues his dictatorial outcome in an ultimatum. The player with the lower bid is

given the advantage to propose any feasible utility allocation as a compromise. Hence,

the competition for first-mover advantage rewards restraint in the choice of resistance

probabilities against uncompromising behavior. In a maxmin equilibrium of the bid-

ding strategies, both players commit to equal resistance probabilities which eliminates

first-mover advantage. They both propose the Kalai-Smorodinsky solution in which

they reduce their claims in the same proportion. In particular, this solution solves the

trade-off for each player between the commitment to higher resistance in order to deter

uncompromising behavior and the commitment to lower resistance in order to obtain

a leadership position.

In his justification of the Nash solution, Harsanyi assumed that claims cannot be re-

vised, leaving little room to compromise. In his justification of the Kalai-Smorodinsky

solution, Moulin assumed that players pursue their dictatorial outcomes in an ultima-

tum, excluding restraint in the formulation of claims. The two approaches motivate the

1The Contract Pricing Reference Guides (Vol5, Ch6) of the DPAP of the US Department of Defense,
http://www.acq.osd.mil/dpap/cpf/docs/contract_pricing_finance_guide/vol5_ch6.pdf .
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analysis of a mechanism with four stages showing how avoidance of a weak bargaining

position and competition for first-mover advantage interact. Players start by making

claims, as in Harsanyi. In the second stage, players bid resistance probabilities, as in

Moulin. Leadership is acquired by the player with the lowest bid. In the third stage,

the leader proposes a compromise within the set of feasible compromises which depends

on his claim but remains beyond his control in all other respects. In the final stage, the

follower accepts or rejects the compromise. If he rejects, then he obtains his claim in an

ultimatum unless he meets resistance to which the leader is committed by the second

stage; the negotiations end in disagreement with the leader’s resistance probability.

The single distinguishing feature of these games is the extent to which claims can

be subsequently revised. The revision procedure defines the Pareto-effi cient maximal

revision of each player’s claim. The room to compromise is the gap between the maxi-

mal utility which a player can give to his opponent in the maximal revision and in the

pursuit of his claim. The Nash solution and the Kalai-Smorodinsky solution are imple-

mented in subgame-perfect equilibrium in the extreme cases excluding or admitting all

revisions respectively. The main contribution of this paper is the highlighting of when

and how the strategic justifications of Moulin and Harsanyi interact for intermediate

revision procedures considered in the negotiation literature. The key in this interaction

is the new concept of the extended Nash product of a player’s claim, which multiplies

his claim with the opponent’s utility in his maximal revision. The player with the

larger extended Nash product of his claim is the strong player as he needs a lower

resistance probability to impose his maximal revision which avoids an ultimatum. In

particular, players face a trade-off between claiming more so as to achieve more in an

ultimatum and claiming less so as to obtain a strong bargaining position. This allows

us to analyze how the aforementioned features in the negotiations literature play out

in equilibrium. Players should not only aim high when formulating claims, but also

leave suffi cient room to compromise in order to obtain a strong bargaining position.

The paper shows that in equilibrium there is interaction between both strategic

justifications in intermediate revision procedures, with two exceptions. Players restrain

their claims which makes them equally strong, as in Harsanyi, but at the same time they

restrain their resistance so that their concessions stand in the same proportion to their

claims, as in Moulin. We distinguish between two cases. In the first case, maximal

revisions are incompatible. Competition for the strong bargaining position induces

restraint in the formulation of claims, unless one player has a claim which puts him in

a strong bargaining position for all claims of the other player. The strong player imposes

his maximal revision for the largest of such claims in the first exception. Otherwise, at

least one of the players gains by reducing his claim, which closes the gap between the

maximal revisions or makes them compatible. In the second case, maximal revisions

are compatible. The proportional solution in which the players’utilities stand in equal

proportion to their claims is a feasible compromise. The competition for leadership
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equalizes the players’ resistance probabilities by adopting Moulin’s maxmin bidding

strategies. By the monotonicity of the proportional solution for strictly compatible

maximal revisions, each player gains by increasing his claim, unless claims are maximal.

Players agree on the Kalai-Smorodinsky solution in the second exception. Otherwise,

none of the players can gain by changing his claim only when maximal revisions meet for

claims with equal extended Nash products. The maximal revisions of the equilibrium

claims meet in the Kalai-Smorodinsky solution for the bargaining problem with these

claims as ideal points.

The mechanism underlines that room to compromise is essential for a strong bar-

gaining position, as recommended in the negotiation literature. When a negotiator is

able - for a claim below his maximal claim - to increase his opponent’s payoff in his

maximal revision, larger extended Nash products improve his bargaining position al-

lowing for a better deal. A negotiator gains in equilibrium by facing fewer restrictions

regarding the revisions of all claims below his maximal claim. Still, such exogenous

restrictions can be important in particular contexts. For example, restrictions on revi-

sions can be explicitly specified in the mandate given to the negotiator by his principal

or arise from costs of revising initial plans. The restrictions may also arise from unful-

filled expectations raised by the initial claims or from aversion to making concessions.

In these examples, one expects better agreements for negotiators who do not fear to

disappoint their principals or suppress their frustration. Our analysis sheds light on

this, evaluating more generally the impact of revision procedures on the bargaining

outcome.

The mechanism also clarifies the role of ultimatums with endogenously chosen risk

of disagreement needed for imposing a compromise. This is further illustrated for un-

restricted revisions in the alternating-offer game (Rubinstein (1982)). In each round

the responder can stop negotiations in an ultimatum and the proposer needs time to

build resistance in order to deter such ultimatum for a better deal. The introduc-

tion of ultimatums moves the equilibrium outcome away from the Nash solution - the

equilibrium solution of the alternating-offer game with equal waiting times - towards

the Kalai-Smorodinsky solution - the equilibrium solution of the four-stage mechanism

with unrestricted revisions.

Related Literature According to Nash (1953), the relevance of a solution concept is

enhanced if one arrives at it from very different points of view. The Nash program, as

reviewed in Thomson (2010), attempts to complement the axiomatic properties of solu-

tion concepts with non-cooperative foundation. While Harsanyi (1977), Moulin (1984),

Binmore et al. (1986) and Howard (1992) implement the Nash program for a single bar-

gaining solution, we achieve implementation for a family of solutions in subgame-perfect

equilibrium, as Miyagawa (2002) and Anbarci and Boyd (2011). Miyagawa’s mecha-

nism implements any solution that maximizes a welfare function belonging to a set
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of quasi-concave functions, including the Nash and Kalai-Smorodinsky solution. The

second player counters the offer of the first player, but this offer is restricted to provide

the same aggregate welfare as the first offer. In the mechanism of Anbarci and Boyd,

compatible utility allocations are implemented in a first stage and incompatible utility

allocations are implemented with equal probability in a second stage, unless there is an

exogenously imposed probability of disagreement. The Kalai-Smorodinsky solution is

the unique robust solution which both players demand above a threshold. There is no

general robustness ranking for other solutions. We propose a mechanism with endoge-

nously chosen probability of disagreement which occurs only off the equilibrium path

and which induces restraint in the claims depending on the revision procedure. Inter-

estingly, we find the Nash and Kalai-Smorodinsky solution for two opposite extremes.

By considering intermediate revision procedures, we are able to compare and deepen

our insight in Harsanyi’s and Moulin’s seminal contributions to the Nash program.

Schelling (1956) discusses take-it-or-leave-it offers and commitments as strategy de-

vices. Kahneman and Tversky (1995) show that loss aversion appears as concession

aversion in the context of negotiations. The experimental literature shows that people

accept losses by rejecting unfair outcomes in ultimatums (Camerer (2003)). Punishing

unfair treatment is rationalized in Fehr and Schmidt (1999). We refer to this liter-

ature to justify the commitment of accepting the loss of disagreement with positive

probability in an ultimatum.

The paper is organized as follows. The next section defines the bargaining problem,

the four-stage mechanism and the revision procedures. Section 3 analyzes the extreme

revision procedures allowing no or all revisions. Section 4 characterizes the solution

for intermediate revision procedures. We provide examples of revision procedures in

section 5. Before concluding, the robustness of the mechanism is analyzed in section

6. The complete description of the subgame-perfect equilibrium and proofs are given

in appendix.

2 The model

In this section, we define the bargaining problem and a mechanism for selecting a

solution in the bargaining set.

2.1 The bargaining problem

Let N = {1, 2} be the set of players. The players are male. Player −i is player i’s
opponent for i ∈ N . The closed and convex set S is a subset of D = [0, 1] × [0, 1].

The elements of S are the normalized utility allocations u = (u1, u2) associated with

feasible outcomes, which are known by each player. For i ∈ N , the concave function
uP−i : [0, 1]→ [0, 1] : ui 7→ sup {u−i|u ∈ S} is assumed to be strictly decreasing. It takes
the value uP−i (0) = 1 in the dictatorial outcome of player −i and the value uP−i (1) = 0
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in the dictatorial outcome of player i. The utility allocation in disagreement is (0, 0).

It follows that the set S defines a strictly comprehensive bargaining problem. The set

of Pareto-effi cient utility allocations in S is the Pareto frontier PO(S) ≡ {u ∈ S|u2 =

uP2 (u1)}.

2.2 The mechanism

The extensive form of the mechanism Γ for selecting a solution in S has four stages.

The first stage is a demand stage, inspired by Harsanyi’s demand game. Both

players simultaneously formulate utility claims p ∈ D, where pi is player i’s utility

when he successfully pursues his claim in an ultimatum. The second stage is a bidding

stage, inspired by Moulin’s auction game. Both players simultaneously bid resistance

probabilities q ∈ D, where qi is the probability of disagreement when player i’s opponent
pursues his claim in an ultimatum. The third stage is the compromising stage. The

player with the lowest resistance probability is the leader L, who makes a compromise

proposal. The fourth and final stage is the approval stage. The follower F accepts L’s

compromise or pursues his claim risking that negotiations end in disagreement with

probability qL.

The claims p of the demand stage serve a double purpose. While player i’s claim pi

defines his utility when he wins in his ultimatum, it also defines the maximal revision

mi (pi) ∈ PO (S) of his claim in the compromising stage, wheremi
i (pi) is his maximally

revised claim and mi
−i (pi) is his opponent’s payoff in the maximal revision of his claim.

We consider comprehensive revision procedures.

Definition 1. The revision procedure m =
(
m1,m2

)
is comprehensive iff mi

−i is a non-

increasing concave function on [0, 1] such that uP−i (pi) ≤ mi
−i (pi) ≤ 1 for pi ∈ [0, 1]

and i ∈ N.

The revision procedure is beyond the control of the players and the single distin-

guishing feature of each mechanism with extensive form Γ. All comprehensive revision

procedures are collected in the set M. We index the extensive form Γ for special

comprehensive revision procedures. In ΓH , as in Harsanyi (1977), no revisions are al-

lowed and each player’s payoff in his maximal revision is equal to his claim, that is,

mi
i (pi) = pi for pi ∈ [0, 1]. In ΓM , as in Moulin (1984), unrestricted maximal revisions

of any claim yield the payoffs of the opponent’s dictatorial outcome, that is mi
i (pi) = 0

for pi ∈ [0, 1].

The set of player i’s compromises is

Ci (pi) ≡
{
c ∈ S|mi

i (pi) ≤ ci ≤ pi
}
for pi ∈ [0, 1] and m ∈M.

We assume for tractibility that a leader can also propose those compromises which are
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feasible for the follower.2 Hence, the set of feasible compromises is

C (p) ≡ C1(p1) ∪ C2(p2).

Claims are incompatible if p /∈ S. Maximal revisions are incompatible if for incompat-
ible claims C1(p1) ∩ C2(p2) = ∅.

The resistance probabilities in the second stage serve a double purpose as well.

While qi is player i’s choice of the probability of disagreement when he is leader and

his opponent rejects his compromise in an ultimatum, it also rewards lower resistance

with first-mover advantage. In case of equal bids, leadership is assigned to player 1 for

some labeling of the players. This rule is a mapping M → {1, 2} which we define in
Definition 3. Hence,

L (q) =

{
i if qi < q−i,

1 if q1 = q2.

The rules of the mechanism can be summarized as follows:

• Stage 1. All i ∈ N formulate claims p ∈ D.

• Stage 2. All i ∈ N bid resistance probabilities q ∈ D.

• Stage 3. The leader L(q) proposes the compromise c ∈ C (p).

• Stage 4. The follower F ∈ N \ {L(q)} chooses R∈ {Y,N}.

The payoffs for player i ∈ N are

ui =


ci

(1− qL) pF

(1− qL)uPL (pF )

if R = Y,

if R = N and i = F,

if R = N and i = L.

3 Two extreme revision procedures

We start by showing that the Kalai-Smorodinsky solution and the Nash solution can be

implemented in subgame-perfect equilibrium in mechanisms with the same extensive

form, but with different procedures for revising claims. All revisions are allowed for the

former and no revisions are allowed for the latter. The non-cooperative justifications of

these solutions recast the arguments of Moulin (1984) and Harsanyi (1977) respectively.

2This assumption is relaxed in section 6. In all the mechanisms, we exclude upward revised claims
(mi

i(pi) > pi) and ineffi cient revisions (mi
−i(pi) < uP−i (pi)). We also ignore comprehensive bargaining

problems which are not strictly comprehensive. Such extensions would only change strategies without
changing the allocation implemented in subgame-perfect equilibrium.
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3.1 The Kalai-Smorodinsky solution

Kalai and Smorodinsky (1975) proposed the Pareto-effi cient allocation uKS(p) for which

uKS1 (p)/p1 = uKS2 (p)/p2 as a solution to the reduced bargaining problem

S(p) ≡ {u ∈ S|u ≤ p} for p /∈ S \ PO (S) .

We call uKS(p) the proportional solution of S (p). In this solution, the concessions

are proportional to the claims and the payoffs are increasing in the own claim. The

mechanism ΓM with unrestricted revisions provides a non-cooperative justification of

the Kalai-Smorodinsky solution of S. Following Moulin (1984), bidding

qKSi (p) = 1−
uKS−i (p)

p−i

corresponds to a maxmin strategy for player i ∈ N . To see this, consider the resistance
probability qi of player i in stage 2. If player i leads the negotiations (i.e. qi ≤ q−i),

knowing that his opponent rejects any compromise with payoff below (1 − qi)p−i in
stage 4, he proposes the Pareto-effi cient compromise

ci (qi) ∈ arg max
c∈S(p)

{ci| c−i ≥ (1− qi)p−i}

in stage 3. If the opponent leads the negotiations with bid q−i (i.e. q−i ≤ qi), then

(1− q−i) pi is player i’s payoff. Since q−i ≤ qi, player i’s payoff as a follower is bounded
from below by (1− qi) pi. Hence, min

{
cii(qi), (1− qi) pi

}
is a lower bound for his payoff

when bidding qi. As higher resistance probability increases his payoff cii(qi) as leader,

but decreases his payoff (1− qi) pi as follower, the minimum of the two payoffs reaches

a maximum when ui = cii(qi) = (1− qi) pi. Since u−i = (1− qi) p−i, the payoffs of the
players stand in the same proportion to their claims in the maxmin bidding strategy of

player i. The resistance probabilities are equal for qKS1 (p) = qKS2 (p) and each player

would propose the proportional solution as a leader. Hence, the proportional solution

is implemented in subgame-perfect equilibrium.

The stages 2 to 4 of ΓM recast the mechanism proposed by Moulin (1984) for the

reduced bargaining problem S (p). Since in the Kalai-Smorodinsky solution for S(p),

uKSi (p) is monotone in pi, nobody shows restraint in the formulation of claims in stage

1 and p = (1, 1) = 1. By augmenting Moulin’s model with a demand stage, ΓM justifies

Moulin’s assumption that players make maximal claims.

Proposition 1. The Kalai-Smorodinsky solution uKS (1) is implemented in subgame-

perfect equilibrium in the mechanism ΓM with unrestricted maximal revisions.

Proof. See appendix.
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3.2 The Nash solution

The solution uN of Nash (1950) to a bargaining problem maximizes the Nash product

u1u2 for u ∈ S. Harsanyi (1977) derived the Nash solution as an equilibrium for a

demand game in which, according to the conjecture of Zeuthen (1930), the player with

the higher risk limit is in a weak bargaining position and eventually makes concessions.

For player i’s positive claim pi and his opponent’s compromise c, his risk limit is defined

as

ri(ci, pi) ≡ max

{
1− ci

pi
, 0

}
.

In our setting, the risk limit stands for the highest resistance probability that a follower

in stage four would be willing to face in the pursuit of his claim when accepting the

compromise c is the alternative. In other words, a follower accepts the compromise c

only if his risk limit does not exceed the leader’s resistance probability.

The mechanism ΓH clarifies why the player with the lower risk limit is in a weak

bargaining position and eventually concedes. In ΓH , claims cannot be revised. Each

player i obtains his claim pi as a payoff in his unique Pareto-effi cient compromise

mi (pi) which he prefers to his opponent’s compromisem−i (p−i) for incompatible claims

p. If player i’s risk limit exceeds his opponent’s, then player i ensures his claim by

bidding a resistance probability qi in between his and his opponent’s risk limit. As

leader, he is in a strong bargaining position. He obtains leadership for a resistance

probability exceeding his opponent’s risk limit r−i
(
mi
−i (pi) , p−i

)
, so that his opponent

accepts mi (pi). On the contrary, his opponent is in a weak bargaining position because

m−i (p−i) would be rejected when he leads for q−i ≤ qi < ri
(
m−ii (p−i) , pi

)
. As leader,

the weak player proposesmi (pi) rather than facing an ultimatum, a lottery withmi (pi)

and the disagreement outcome as prizes. Hence, mi (pi) is implemented.

As in Harsanyi’s justification of the Nash solution, players compete to be in a strong

bargaining position by adjusting their claims to have the higher risk limit. The player i

with the higher risk limit has the higher Nash product mi
−i (pi) pi. For pi = uNi , player

i maximizes the Nash product of his claim, so that his risk limit is never below his

opponent’s. This claim ensures a strong bargaining position for incompatible claims.

None of the players can receive a payoff below his payoff in uN , as he would have a

profitable deviation. Hence, both players would propose uN as a leader and uN is

implemented in subgame-perfect equilibrium in ΓH .

Proposition 2. The Nash solution uN is implemented in subgame perfect equilibrium

in the mechanism ΓH without revisions of claims.

Proof. See appendix.

3.3 Discussion

The solutions of Nash and of Kalai and Smorodinsky are implemented in mechanisms

with the same extensive form to be distinguished only by the extent to which claims
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can subsequently be revised. In both mechanisms first-mover advantage in stage 3

disappears in equilibrium since, respectively for c = m1 (p1) = m2 (p2) = uN and

c = uKS (1),

r1(c1, p1) = r2(c2, p2).

However, the reason for achieving equality of risk limits in the two solutions is different.

Moulin’s justification of the Kalai-Smorodinsky solution focuses on situations with

compatible maximal revisions. As long as maximal revisions are compatible, there is

no reason to show restraint in claims. However, each player faces a trade-off between

increasing resistance in order to block the other player’s ultimatum in the pursuit of a

better deal and decreasing resistance to acquire the leadership position. Competition

for leadership forces players to show restraint in their resistance. For maximal claims,

qKSi (1) = r−i(uKS−i (1), 1) = 1− uKS−i (1). The maxmin strategy equalizes the resistance

probabilities leading to the Kalai-Smorodinsky solution.

Harsanyi’s justification of the Nash solution focuses on situations with incompati-

ble maximal revisions. Each player faces a trade-off between decreasing his claim for

obtaining a strong bargaining position and increasing his claim to increase his payoff

in his ultimatum. Competition to be in a strong bargaining position forces players to

show restraint in claims. As long as the strong player’s claim exceeds his payoff in

the Nash solution, his strong bargaining position can be put in jeopardy. The weak

player can become strong for a claim with a larger Nash product and become leader

for a lower resistance probability. Hence, both players claim their payoffs in the Nash

solution. Without revisions, mi
i (pi) = pi. Since maximal revisions are the same in

equilibrium, restraint in claims drives the risk limits towards zero (ri(uNi , u
N
i ) = 0).

4 Comprehensive revision procedures

This section analyzes the interaction of Harsanyi’s and Moulin’s justification of a bar-

gaining solution for any comprehensive revision procedure. For any positive claim,

unlike in ΓH , maximal revisions may increase the opponent’s payoff, but, unlike in ΓM ,

may remain incompatible. In order to characterize a strong bargaining position, we

introduce the concept of the extended Nash product of a player’s claim, the product of

a player’s claim and his opponent’s utility in the maximal revision of his claim. The

player with the larger extended Nash product is the strong player who imposes his max-

imal revision or the proportional solution, as he prefers. The solution in Γ for m ∈M
can therefore be obtained in a two-stage mechanism in which the strong player imposes

his preferred option after both players formulated their claims. With two exceptions,

the maximal revisions meet in the proportional solution for the equilibrium claims.
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4.1 Bidding Resistance Probabilities: the Extended Nash Product

The minimal resistance probability needed by player i to impose his maximal revision

mi (pi) is

ρi(p) ≡ r−i(mi
−i (pi) , p−i) for i ∈ N. (1)

For all concessions in Ci (pi) other than player i’s maximal revision, the opponent’s

risk limit exceeds ρi (p). We therefore say that the player with the higher minimal

resistance probability is in a weak bargaining position because he, unlike his opponent,

can no longer impose a compromise within his set of feasible compromises as a leader

when his opponent bids a resistance probability strictly in between ρ1 (p) and ρ2 (p).

From (1),

ρi(p) ≥ ρ−i(p) iff pimi
−i (pi) ≤ p−im−ii (p−i) for i ∈ N.

Definition 2. The product pimi
−i (pi) is the extended Nash product of player i’s claim

pi.

The characterization of the weak and the strong player by Harsanyi (1977) remains

valid with revisions of claims by extending the concept of the Nash product. The

extended Nash product and the Nash product coincide when no revisions are allowed.

For m ∈ M, the claim p̂i which maximizes the unimodal extended Nash product of

player i’s claim is unique. A strong bargaining position is valuable in the competition

for leadership. Recall that leadership is given to the player with label 1 in case both

players bid equal resistance probabilities.

Definition 3. The player with the label 1 for m ∈M is a player for whom p̂1m
1
2 (p̂1) ≥

p̂2m
2
1 (p̂2) holds.

In case of equal maximized extended Nash products, any preferential treatment can

be excluded by giving the label 1 to each player with equal probability.

Definition 4. Player s is strong and player w is weak for claims p which are not

strictly compatible

(i) if psms
w (ps) > pwm

w
s (pw) ,

(ii) if psms
w (ps) = pwm

w
s (pw) with s = 1, w = 2.

The characterization of the strong and weak player allows us to combine Harsanyi’s

approach with an emphasis on the importance of a strong bargaining position with

Moulin’s approach with an emphasis on the competition for leadership.3 As in Harsanyi,

the strong player’s strategic advantage is driven by the first-mover advantage of the

player bidding lower resistance probability when maximal revisions are incompatible.

By bidding a resistance probability in between ρs (p) and ρw(p) in case (i) of Definition

3We always explicitly mention the claims p for which one of the players is given the label s. The
player s who is strong for p may remain strong or may become weak for other claims.
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4, the strong player is strong enough to impose his maximal revision as a leader. If

the weak player becomes leader by underbidding the strong player, the weak player’s

minimal resistance probability is too high for imposing his maximal revision. As a

leader, the weak player proposes a compromise within the strong player’s set of feasible

compromises, which he prefers to the strong player’s ultimatum, a lottery with as

prizes the disagreement outcome and the outcome in which the strong player obtains

his unrevised claim.

In case (ii) of Definition 4, ρ1 (p) = ρ2 (p). By the labeling of the players, s = 1 for

p. By the rule assigning leadership, L (q) = 1 for q1 ≤ q2 and L (q) = 2 for q2 < q1.

If maximal revisions are incompatible for claims with equal extended Nash products,

then only player 1’s maximal revision can be implemented. However, player 2 can

undo player 1’s advantage and become strong by any small reduction of p2 > p̂2 or

by claiming p̂2, unless player 1 has a claim for which he is strong for all claims of

player 2 when p̂1m
1
2 (p̂1) > p̂2m

2
1 (p̂2). In that case, existence of an equilibrium in the

formulation of claims requires that a tie (q1 = q2) is resolved in favor of player 1.

If the proportional solution is a feasible compromise, any player can make sure

that it is implemented by Moulin’s maxmin bidding strategy of resistance. Since both

players propose the same compromise as a leader, leadership and the labeling of the

players does not matter. The proportional solution is a feasible compromise only if it

is weakly preferred by the strong player to his maximal revision. This follows from

qKSi (p) ≥ ρi(p) iff uKS (p) ∈ Ci (pi) for p /∈ S \ PO (S) . (2)

an immediate implication of (1), the monotonicity of r−i (., p−i) and qKS1 (p) = qKS2 (p).

It follows that acquiring a strong bargaining position is valuable only if ρw(p) ≥
ρs (p) > qKSs (p) for incompatible maximal revisions. In that case, the strong player

prefers his maximal revision to the proportional solution so that qKSs (p) > rs (ms
s (ps) , ps).

If the weak player leads for qw ∈ [rs (ms
s (ps) , ps) , ρs (p)], he is strong enough to impose

ms (ps), his preferred outcome in Cs (ps). If s = 1 and qs ∈ [ρs (p) , ρw(p)], the weak

player leads for qw < qs ≤ ρw(p) and is never strong enough to impose mw (pw) as a

leader. The strong player is just strong enough to impose ms (ps) when he leads for

qs = ρs (p). In both cases, ms (ps) is implemented.

Lemma 1. If u is the solution in Γ for m ∈M in a subgame in which the claims are

not strictly compatible, then u is the proportional solution if it is a feasible compromise

and the strong player’s maximal revision otherwise.

Proof. See appendix.
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4.2 Formulating Claims: a Simple Demand Game

We now characterize the equilibrium claims in the first stage. By Lemma 1, the relevant

set of compromises for claims which are not strictly compatible is

Ĉi(p) ≡
{
mi(pi), u

KS(p)
}
for i ∈ N .

If claims p are strictly compatible, player 1 is sure to be leader for q1 = 0 and player

2 accepts
(
uP1 (p2) , p2

)
which gives him the payoff of his ultimatum. Hence, the four-

stage mechanism Γ for the m ∈M can be reformulated as a two-stage mechanism Γ̂ à

la Nash’s demand game:

• Stage a. All i ∈ N formulate claims p ∈ D.

• Stage b.

— If claims are strictly compatible, player 1 selects
(
uP1 (p2) , p2

)
.

— If claims are not strictly compatible, the strong player s for the claims p
selects an allocation in Ĉs(p).

Formulating strictly compatible claims will not occur in equilibrium because player

2 has a profitable deviation. For claims which are not strictly compatible, each player

faces the trade-off between increasing his claim - which increases his own payoff as

the strong player - and reducing his claim - which may make him strong and which is

valuable only if the proportional solution is not a feasible compromise. For p′ such that

p′i ≥ pi and p′−i = p−i, the following two inequalities determine the equilibrium claims,

min
c∈Ĉ−i(p)

ci ≤ max
c∈Ĉi(p)

ci ≤ max
c∈Ĉi(p′)

ci. (3)

By the first inequality of (3), player i prefers selecting his preferred allocation in

Ĉi (p) to leaving this choice to his opponent in Ĉ−i(p). The first-mover advantage

max
{
mi
i (pi) , u

KS
i (p)

}
−min

{
m−ii (p−i) , uKSi (p)

}
is strictly positive, unless the pro-

portional solution is feasible for compatible maximal revisions and the identity of the

leader does not matter. By the second inequality of (3), the strong player gains by

increasing his claim as long as he remains strong, because max
{
mi
i(pi), u

KS
i (p)

}
is

strictly increasing in pi for a comprehensive revision procedure.

Lemma 2. If u is the solution in Γ for m ∈ M in subgame-perfect equilibrium, then

the equilibrium claims p ≥ p̂ are not strictly compatible. If ū is the solution in a sub-

game with claims p̄ ≥ p̂ for which player i is strong, then ūi ≥ max
{
mi
i (p′i) , u

KS
i (p′)

}
for p′i ≤ p̄i and p′−i = p̄−i. Moreover, if player i is strong for any claim of player −i
when claiming p̄i, then pi ≥ p̄i in subgame-perfect equilibrium.

13



4.3 Implementing Bargaining Solutions

If the first weak inequality of (3) is satisfied with equality for Ĉ1(p) = Ĉ2(p) ={
uKS (p)

}
, then uKS (p) = m1 (p1) = m2 (p2) is implemented by Lemma 1. This

is the case with two exceptions.

If the maximal revisions of claims are incompatible, competition for the strong

bargaining position induces restraint in the formulation of claims, unless one player has

a claim for which he is strong for all claims of the weak player. Hence, as in subcase

(a) or (b) in case (ii) of Proposition 3, this player imposes his maximal revision for the

largest of such claims. Otherwise, at least one of the players would gain by closing the

gap between the maximal revisions or by making them compatible, which cannot occur

in equilibrium.

If the maximal revisions of claims are compatible, the proportional solution is a

feasible compromise. The competition for leadership equalizes the player’s resistance

probabilities by adopting Moulin’s maxmin bidding strategies. By the monotonicity of

the proportional solution, each player gains by increasing his claim for strictly com-

patible maximal revisions, unless the proportional solution is a feasible compromise for

the maximal claims of the players, as in case (i) of Proposition 3. In that case, the

Kalai-Smorodinsky solution is implemented.

If case (i) and (ii) do not hold, the maximal revisions meet for claims with equal

extended Nash products and players are equally strong, as in Harsanyi. But the conces-

sions stand also in the same proportion to the claims, as in Moulin. The Pareto-effi cient

frontier of the reduced bargaining problem S (p) is the union of the Pareto-effi cient

frontiers of the compromise sets C1 (p1) and C2 (p1) which meet in uKS (p).

Proposition 3. The solution u in Γ for m ∈ M in subgame-perfect equilibrium is

unique. The solution u and the claims p are uniquely defined by

u = m1 (p1) = m2 (p2) = uKS(p),

with the following exceptions:

(i) if uKS (1) ∈ C (1),

then u = uKS (1) and p = 1,

(ii) if uKS (1) /∈ C (1),

(a) if m1
2 (1) ≥ m2

1 (p̂2) p̂2,

then u = m1 (1) and m1
1 (1) ≥ uKS1 (p) for p1 = 1,

(b) if m1
2 (1) < m2

1 (p̂2) p̂2 = m1
2 (p̌1) p̌1 and C1(p̌1) ∩ C2 (p̂2) = ∅,

then u = m1 (p̌1) and p = (p̌1, p̂2),

(c) if ms (p̃s) = mw (p̃w) = uKS(p̃) and s is strong for p̃ and p̃s = 1,

then u = ms (1) and ms
s (1) ≥ uKSs (p) for ps = 1.

Proof. See appendix.

The equilibrium claims are uniquely defined with the exception of subcases (a) and
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(c) of Proposition 3. If the strong player weakly prefers the maximal revision of his

maximal claim to the proportional solution for some claim of the weak player which is

not maximal, then this will also be the case for all larger claims of the weak player.

4.4 Unilateral Extension of Room to Compromise

We show that a negotiator cannot loose in equilibrium by facing fewer restrictions

regarding the revisions he can make for identical maximal revision of his maximal

claim. Consider the revision procedure
(
m̆1, m̆2

)
∈ M giving larger payoffs to player

2 in the maximal revisions of player 1 than in
(
m1,m2

)
∈ M for claims below player

1’s maximal claim. That is, player 1 is given more room to compromise in m̆ than in

m. If u = m1 (p1) = m2 (p2) or u = m1 (p̌1) in the equilibrium with m, then player

1’s extended Nash product is larger than 2’s in m̆ for the same p. Since extended

Nash products are unimodal and p ≥ p̂, equality of the extended Nash products can be
restored only for a higher claim of player 1 and a lower claim of player 2. In that case,

the player giving himself more room to compromise is rewarded.

Corollary 1. Assume that the solution u for p and the solution ŭ for p̆ are respectively
implemented in subgame-perfect equilibrium for m =

(
m1,m2

)
∈ M and for m̆ =(

m̆1, m̆2
)
∈ M in Γ. If m2 = m̆2, m1

2 (1) = m̆1
2 (1) and m1

2 (p1) ≤ m̆1
2 (p1) for all

p1 ∈ [0, 1], then ŭ1 ≥ u1 and p̆1 ≥ p1.

Proof. See appendix.

5 Examples

We characterize the solutions for specific revision procedures and show how these vary

when the revision procedures are adjusted in Example 1 and 2. We relate revision

procedures to the literature in Example 3.

Example 1: Piecewise-Linear Revision Procedure. For c ∈ PO (S) , a ≥ ac

and i ∈ N , let
mc,a,i
−i : [0, 1]→ [0, 1] : pi 7→ min

{
a

ci
− c−i

ci
pi, 1

}
.

For a comprehensive revision procedure
(
mc,a,1,mc,a,2

)
, mc,a,i
−i is tangent to S for a = ac

and for i ∈ N .
We show that c is the solution in Γ for

(
mc,a,1,mc,a,2

)
if the exceptions of Proposition

3 do not hold. Assume that ci ≥ c−i and c−i+ c1c2 = ãci ≥ ac. For a ∈ [ac, ãci ], consider

the claims

pc =

(
a− c1c2

c2
,
a− c1c2

c1

)
≤ 1.

These claims pc define maximal revisions which meet in c, that is, c = mc,a,1 (pc1) =
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mc,a,2 (pc2). Moreover, c1/p
c
1 = c2/p

c
2 for c ∈ PO (S) implies that c = uKS (pc).4 By

Proposition 3, c is the solution.

The piecewise-linear revision procedure implies that the marginal loss of player −i
in player i’s maximal revision of an increased claim is equal to the constant c−i/ci. This

ratio, measuring the marginal reduction in the room to compromise of larger claims,

uniquely identifies the solution for all a in [ac, ãci ]. Increasing a on [a, ãci ] increases

pi −mc,a,i
i (pi) without changing the solution.

The Kalai-Smorodinsky solution is implemented for c−i/ci = 1. Player i’s payoff

is increased as this ratio is reduced below 1 above a threshold c̃i−i/c̃
i
i for which ã

c̃i
i =

ac̃
i
. In this way, all elements belonging to ∪i∈N

{
c ∈ PO (S)|uKSi (1) ≤ ci ≤ c̃ii

}
are

implementable by revision procedures which have a point of tangency with S. The

Nash solution is implemented for ac = 2c1c2 when pc = (c1, c2) = uN is a point of

tangency between the revision procedure and S.5 Myerson (1991) characterized the

Nash solution by this property in Theorem 8.2.6

Finally, consider two revision procedures
(
mc,ă,1,mc,a,2

)
and

(
mc,a,1,mc,a,2

)
. If ă >

a and if the exceptions of Proposition 3 do not hold for both revision procedures, then

player 1’s equilibrium payoff in the former is increased and player 2’s is reduced by

Corollary 1. �

Example 2: Revision Procedures by Scalar Multiplication of S. For ν ≥ 1

and for i ∈ N , let

mν,i
−i : [0, 1]→ [0, 1] : pi 7→ sup {p−i| p ∈ (νS) ∩D} .

Scalar multiplication of S yields a family of nested comprehensive revision procedures(
mν,1,mν,2

)
, for which mν,i

−i (pi) is constant or continuously increasing in ν for fixed pi
and for i ∈ N .

Let uν be the solution and pν be the claims which are uniquely defined by uν =

mν,1 (pν1) = mν,2 (pν2) = uKS (pν) when the exceptions of Proposition 3 do not hold.

For ν = 1, no revisions are allowed as in ΓN and the Nash solution is implemented

for pν = uN . By increasing ν above 1, obtain uν and pν as continuous functions of ν,

until one of the exceptions of Proposition 3 holds. For ν ≥ ν̄, the maximal revisions for
maximal claims are compatible and the Kalai-Smorodinsky solution is implemented.

However, before ν̄ is reached, player 1 may impose his maximal revision for his maximal

claim for ν ∈ [ν̃, ν̄]. In that case, mν,1
2 (1) increases continuously in ν on [ν̃, ν̄] from

4For pc, mc,a,i
−i (pci ) = ai

ci
− c−i

ci

a−c1c2
c−i

= c−i and c1
pc1

= c2
pc2

= c1c2
a−c1c2 .

5Remark that c−i + c1c2 decreases when c−i/ci is reduced and player i prefers c ∈ PO (S) to uN .
6 If a ≥ āc, case (i) of Proposition 3 holds and uKS (1) is implemented. If a ∈ [ãci , ā

c], subcase (a)
of case (ii) of Proposition 3 holds. Player i imposes the maximal revision of his maximal claim and

his payoff is gradually reduced for larger a to uKSi (1) . Increasing a on [ãc̃
i

i , ā
c] recovers all solutions

in
{
c ∈ PO (S)|uKSi (1) ≤ ci ≤ c̃ii

}
. Unlike the extensive form analyzed in Miyagawa (2002), only a

subset of Pareto-effi cient allocations are implemented in Γ for
(
mc,a,1,mc,a,2

)
.
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mν̃,1
2 (1) to uKS2 (1). Hence, all the Pareto-effi cient allocations in between the Nash and

the Kalai-Smorodinsky solution are implemented for some ν ∈ [1, ν̄].

In a symmetric bargaining problem, uν = uKS (1) = uN is the unique solution for

any ν. In a non-symmetric bargaining problem, solutions outside the Nash and the

Kalai-Smorodinsky solution may be implemented and the move from the former to the

latter is not necessarily monotone.7

Finally, consider two revision procedures
(
mν̆,1,mν,2

)
and

(
mν,1,mν,2

)
. If ν̆ > ν

and if the exceptions of Proposition 3 do not hold for both revision procedures, then

player 1’s equilibrium payoff in the former is increased and player 2’s is reduced by

Corollary 1.�

Example 3: Accountability and Concession Aversion. We conclude the ex-

amples by relating revision procedures to constraints on revisions discussed in the

literature. For example, Crawford (1982) refers to costs for negotiators who retreat on

a position that they have agreed to defend. If negotiators are agents defending interests

of their principal, they have limited authority and are accountable to their principals.

If revising targets must be justified, revisions of claims will be limited. Kahneman and

Tversky (1995), however, argue that revisions are limited by concession aversion. This

may arise not only because claims raise unfulfilled expectations, but also because one’s

opponent gains in a disproportionate way.

Hence, each restriction k on the revision of player i’s claims, k = 1, ...,Ki, puts

bounds in two ways. Either, a claim pi bounds the player’s revised payoffby b¯
k
i (pi) from

below, so that pi−b¯
k
i (pi) ≥ 0 is the maximal loss he can bear. Or, a claim pi bounds the

opponent’s revised payoffby b̄k−i
(
uP−i (pi)

)
from above, so that b̄k−i

(
uP−i (pi)

)
−uP−i (pi) ≥

0 is the maximal gain of his opponent he can tolerate. It follows that, mi
−i (pi) ≤

bk−i (pi), where bk−i (pi) = uP−i(b¯
k
i (pi)) in the former or bk−i (pi) = b̄k−i

(
uP−i (pi)

)
in the

latter. Hence, for non-increasing concave bk−i,
8

mi
−i (pi) = min

{
b1−i (pi) , ..., b

Ki
−i (pi) , 1

}
∈M.

Again, as in Corollary 1, a negotiator never looses by facing fewer restrictions regarding

the revisions of claims below his maximal claim. The more a negotiator is susceptible

to feelings of frustration from unfulfilled expectations, the less proficient he will be

in negotiating. If a negotiator acts as an agent of a principal, the higher his fear of

disappointing his principal, the less ambitious the targets set by his principal and the

7The solution uν of a revision procedure with scalar multiplication belongs to
∪i∈N

{
c ∈ PO (S)|uKSi (1) ≤ ci ≤ c̃ii

}
because the piecewise-linear revision procedure of Exam-

ple 1 which connects (pν1 ,m
ν,1
2 (pν1)) and (mν,2

1 (pν2) , pν2) for ν > 1 implements uν .
8 If bk−i is a non-increasing concave function on [0, 1] for k = 1, ...K, then the pointwise infimum mi

−i
is also a non-increasing concave function on [0, 1]. Since uP−i is a decreasing concave function, b

k
−i is a

non-increasing concave function if b̄k−i is a non-decreasing concave function or b¯
k
i is a non-decreasing

convex function.
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less favorable the resulting agreement.�

6 Robustness

In this section, we justify some of the simplifying features of the mechanism Γ.

6.1 Player-specific revisions

We assumed that C1(p1)∪C2(p2) is the set of feasible compromises. That is, any oppor-

tunity for compromise available to one player is also available to the other player. We

now consider player-specific revisions in Γ̃ when each player i must make compromises

within his own set Ci(pi). This is the natural assumption in Example 3.

Player-specific revisions implement the same equilibrium allocation for the same

revision procedure not only if uKS (1) ∈ C1(1) ∩ C2(1), but also when restraint in the

formulation of claims for obtaining a strong bargaining position equalizes the extended

Nash products. In the latter case, none of the players can impose a compromise that

is better than his maximal revision. The restriction of player-specific revisions has no

bite. When subcase (a) of case (ii) in Proposition 3 does not hold, the extended Nash

products are equalized and u = ũ.9

When subcase (a) of case (ii) holds, the weak player can no longer propose in the

strong player’s set of feasible compromises and the strong player can impose compro-

mises within his set of feasible compromises for his maximal claim. As in Nash demand

games, the utility allocation implemented in subgame-perfect equilibrium is no longer

unique. The solutions are all Pareto-effi cient allocations ũ, giving utility not lower than

p̂2m
2
1 (p̂2) and not higher than m1

2 (1).

Proposition 4. Assume that ũ is an allocation implemented in subgame-perfect

equilibrium in Γ̃ with player-specific revisions for m ∈ M. Then ũ = u, where u

is the solution in Γ for m, unless uKS (1) /∈ C (1) and m1
2 (1) > m2

1 (p̂2) p̂2 when

ũ ∈
{
ū ∈ PO (S)| p̂2m

2
1 (p̂2) ≤ ū2 ≤ m1

2 (1)
}
.

Proof. See appendix.

6.2 Competition for leadership

We assumed that leadership is given to the player bidding the lower resistance prob-

ability against an uncompromising opponent who gives an ultimatum, as in Moulin’s

auction game. If leadership were given to the player with higher resistance probability,

players could lead with maximal resistance against uncompromising followers. The fol-

lower would accept any compromise, including the leader’s dictatorship, anticipating

9The bidding strategies may differ off the equilibrium path of the subgame-perfect equilibrium with
player-specific revisions.
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the disagreement outcome after rejection. Hence both players’bids and claims would

be maximal in equilibrium.

Schelling (1956) discusses bargaining with ultimatums. He argues that adherence to

a commitment - leaving the negotiation table empty-handed - must be motivated and

communicated, so that it is recognized by the other party. In particular, "the process of

commitment may be a progressive one, the commitments acquiring their firmness by a

sequence of actions" (Schelling (1956), p. 296). In that case, competition of leadership

with and without bidding of resistance yields the same outcome. The equivalence

between bidding resistance probabilities and the gradual buildup of resistance is similar

to the equivalence between the sealed-bid first-price and the Dutch auction. Assume

that after making claims both players increase resistance, simultaneously and at the

same pace, until one of the players stops and proposes a compromise. A player takes the

lead as soon as he is confident that his resistance probability to an uncompromising

opponent is suffi ciently high to impose his compromise. The equilibrium strategies

when players bid for leadership or when resistance is built up until one player takes the

lead yield the same resistance probability.

6.3 Alternating offers

We finally discuss ultimatums when the uncompromising follower has the option of

continuing negotiations with a counteroffer, as in the alternating-offer game of Ru-

binstein (1982). Even if leadership alternates exogenously, adding ultimatums as an

option of stopping negotiations induces restraint in the resistance probabilities as in

the four-stage mechanism with competition for leadership. After formulating claims

in the first stage in the extensive form Γ̆, players take turns in making proposals in

their compromise set until one player accepts his opponent’s proposal or pursues his

claim in an ultimatum. In line with Rubinstein’s game, we focus on the revision pro-

cedure for which all revisions are feasible in the mechanism Γ̆M . Hence players start

with formulating maximal claims in order to maximize their payoffs as followers in an

ultimatum. The progressive process of commitment to a resistance probability in the

follower’s ultimatum is assumed to be time-consuming. The higher the probability of

disagreement, the longer it takes to convince one’s opponent of one’s firmness.10 Player

i’s discounted payoff of the compromise c for the resistance probability qi is exp(−εqi)ci
for some positive ε. Since delay is costly, the leader proposes as soon as he is confident

that he can block an ultimatum.

For each element of a decreasing sequence of small positive ε, consider a compromise

proposal ci (ε) ∈ PO (S) and resistance probability qi (ε) for each player i ∈ N . For
10"Be willing to walk away from or back to negotiations", the guideline for the negotiator referred to

in the introduction, can be viewed as costly signalling of one’s firmness to the follower. The commitment
to a higher resistance probability also takes more time in persuading one’s principal of the need to be
firm. Remark that the leader’s payoff in an ultimatum will be decreasing in the resistance probability
only when restrictions on the revision of claims induce restraint in the formulation of claims.
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the compromises to be proposed and accepted in equilibrium, one needs

c−ii (ε) = exp(−εqi(ε))cii(ε) = (1− q−i(ε)) for all i ∈ N . (4)

By the first equality in (4), accepting the opponent’s offer c−i(ε) is as good as waiting

for a time εqi(ε) before proposing ci(ε) for all i ∈ N . For equal waiting times εqi(ε) =

εq−i(ε), the Nash products of the proposals are equal, as in Rubinstein’s game. By

the second equality in (4), accepting the opponent’s compromise c−i(ε) is as good as

stopping with an ultimatum, in which case the initial claim is obtained with probability

1− q−i(ε). Before player i can respond with a counterproposal or an ultimatum to the

proposal c−i(ε), player −i has built up a resistance probability q−i (ε) = ri
(
c−ii (ε) , 1

)
which deters an ultimatum, as in ΓM .

By combining the equalities in (4) for both i ∈ N , it follows that

ln c2
2 (ε)− ln c1

2 (ε)

ln c1
1 (ε)− ln c2

1 (ε)
=
r1

(
c2

1 (ε) , 1
)

r2

(
c1

2 (ε) , 1
) =

1− c2
1 (ε)

1− c1
2 (ε)

.

For ε→ 0, c1(ε) and c2(ε) converge to c∗, which by l’Hopital’s rule satisfies

−d ln c2

d ln c1

∣∣∣∣
c∗2=uP2 (c∗1)

=
1− c∗1
1− c∗2

.

The lefthand side is increasing in c∗1 and equal to 1 for c∗ = uN . The righthand

side is decreasing in c∗1 and equal to 1 for c∗ = uKS (1) . Hence, the compromise c∗ lies

strictly in between the Nash and the Kalai-Smorodinsky solution, unless both solutions

coincide.

Assume that uNi > uKSi (1). The introduction of ultimatums in Rubinstein’s alter-

nating offer game moves the equilibrium solution away from the Nash solution towards

the proportional solution. When the Nash solution is proposed as a compromise, player

−i’s risk limit when pursuing his maximal claim is greater than player i’s risk limit

since uNi > uN−i. Player i needs more time to build up the necessary resistance, so that

his higher impatience inhibits him to obtain a compromise as good as uN . In Rubin-

stein’s game, the player’s impatience is exogenously determined by the waiting time

for making a counterproposal. In Γ̆M , the impatience of the players is endogenized by

the choice of resistance. A player’s impatience thus increases with his own payoff in

his compromise proposal, as he requires a higher resistance to make this compromise

acceptable.

Similarly, the introduction of alternating offers in an extension of the four-stage

mechanism with unrestricted revisions moves the equilibrium solution away from the

proportional solution towards the Nash solution. Since the solution to ΓM implies

equal risk limits, its implementation in Γ̆M would imply equal waiting times between

alternating offers equal to εqKS (1). However, for short equal waiting times, a com-
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promise is proposed and accepted only if the payoffs are close to those in the Nash

solution. Proposing an offer which deters ultimatums is necessary but not suffi cient for

its acceptance with an option to counteroffers. The anticipation of counteroffers with

ultimatums results in unequal waiting times. The player preferring the proportional

solution to the Nash solution will make a proposal which his opponent prefers to the

proportional solution. As this reduces the opponent’s risk limit, he can reduce his re-

sistance needed to block an ultimatum below qKS (1) and thus the time he must wait

before making his proposal.

7 Conclusion

We analyzed a simple, intuitive mechanism that implements a unique solution to the

bargaining problem with two players. The mechanism introduces ultimatums and the

need to build resistance or to revise claims in a compromise in order to discourage

negotiators to give ultimatums. We generate a whole family of solutions by varying

the extent to which claims can be revised during the negotiations. The Nash solution

is the unique equilibrium solution, if negotiators cannot revise claims. The ability to

revise claims was assumed to be beyond the control of the negotiators in the course of

negotiations. If a player has a claim for which he is strong for all claims of his opponent,

then he gains by reducing the room for compromise for his maximal claim without

jeopardizing his strong bargaining position. However in all other cases, if a negotiator

were to suppress his feelings of frustration or if he did not fear to disappoint his principal

by making large concessions, he would achieve better deals. In the evaluation of the

performance of a negotiator, results loom larger than circumstances under which his

results were achieved. Hence, it seems plausible that professional negotiators will strive

for more room to maneuver. Similarly, principals will learn by experience to give

discretionary power to their negotiators as to decide which concessions have to be

made. If restrictions on revisions of claims other than maximal claims are loosened

in conflicts between experienced negotiators, the predicted allocation would be the

Kalai-Smorodinsky solution.
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8 Appendix

8.1 The subgame-perfect equilibrium

Let σ = (σ1, σ2) be a strategy profile in Γ form ∈M. The history hτ−1 ∈ Hτ−1 at stage

τ = 1, ..., 4 is recursively defined by hτ =
(
aτ , hτ−1

)
and h0 ∈ ∅, where a1 = p ∈ D,

a2 = q ∈ D, a3
L = c ∈ C (p) and a4

F ∈{Y,N}. The strategy of player i at stage τ in
the subgame for the history hτ−1 in σ is denoted by aτ ,σi (hτ−1). We denote by σ the

strategy profile in subgame-perfect equilibrium in Γ.

Assuming that F accepts a compromise in a tie when cF = (1 − qL)pF , by the

definition of the risk limit for h3 ∈ H3,

a4,σ
F (h3) =

{
Y if qL ≥ rF (cF , pF ) and pF > 0,

N otherwise.

The leader L proposes the compromise c ∈ C (p), which is accepted by F and gives L

the largest payoff, so that for h2 ∈ H2,

a3,σ
L

(
h2
)
∈ arg max

u∈C(p)

{
cL| aσF (c, h2) = Y

}
.

Since rF (., pF ) is decreasing, c = a3,σ
L

(
h2
)
∈ PO (S) for qL = rF (cF , pF ). The choices

a2,σ(h1) for h1 ∈ H1 and a1,σ(h0) in subgame-perfect equilibrium for ΓR are given in

Lemma 1, Lemma 2 and Proposition 3.

8.2 Proofs of Propositions

Proof of Proposition 1.

The mechanism ΓM belongs to the class of mechanisms considered in Proposition

3. In ΓM , C1 (1) = C2 (1) = D, so that uKS (1) ∈ C (1) for i ∈ N and that case (i)

of Proposition 3 holds. We refer to the proof of the first case of Lemma 1 to show

that players make the bids q = qKS (p) and the first case in Proposition 3 showing that

uKS (1) is implemented in subgame-perfect equilibrium.�

Proof of Proposition 2.

The mechanism ΓN belongs to the class of mechanisms considered in Proposition

3. In ΓN , mi
−i (pi) = uP−i (pi) for i ∈ N . The extended Nash product of a claim of

a player in Proposition 3 is equal to the Nash product in that case. It is maximized
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for p̂i = uNi for i ∈ N and the maximized values are equal for the two players. For

p = p̂ = uN , uN = m1 (p1) = m2 (p2) = uKS(p). We refer to the proof of Lemma 1 for

the bidding strategies with m1
1 = p1 and to the fourth case in Proposition 3 showing

that uN is implemented in subgame-perfect equilibrium.�

Proof of Proposition 3.

We distinguish between four solutions in subgame-perfect equilibrium implemented

in one of the following four cases.

In the first case, exception (i) of Proposition 3 holds. The proportional solution is

a feasible compromise for p = 1 and, by Lemma 1, uKS (1) is implemented. Let s be

the strong player for p = 1. By Lemma 2, uKSs (1) for pw = 1 is a lower bound for

s’s payoff. By its monotonicity, the proportional solution would remain feasible and

would be implemented by Lemma 1 for a lower claim of player w, but would reduce w’s

payoff. For pw = 1, the payoff of player s is bounded from above by uKSs (1). Hence,

u = uKS (1) is the unique solution for p = 1 in the first case. In the remaining cases,

the proportional solution is not feasible for p = 1.

In the second case, subcase (a) or (c) of (ii) of Proposition 3 holds. In subcase (a),

player 1 is strong for his maximal claim and obtains the payoffmax
{
uKS1 (1, p2) ,m1

1 (1)
}

by Lemma 1. Since he is strong for p1 = 1 and for all claims of player 2, his claim

is maximal in equilibrium by Lemma 2. In subcase (c), player s is strong for p̃s = 1

and the claim p̃w. He obtains the payoff max
{
uKSs (p̃) ,ms

s (1)
}
by Lemma 1, which

is a lower bound of his payoff for p̃w by Lemma 2. Remark that the conditions

ms (1) = mw (p̃w) = uKS(p̃) uniquely define p̃ ≥ p̂ by the properties of the proportional
solution. In both subcases, ms (1) is implemented iffms

s (1) ≥ uKSs (p) for ps = 1. The

proportional solution remains feasible and would be implemented for claims below pw

of the weak player, but would reduce his payoff below ms
w (1). Hence u = ms (1) is the

unique solution implemented when the maximal revisions are incompatible or meet for

ps = 1 in the second case.

In the third case, condition (b) of (ii) of Proposition 3 holds. The extended Nash

products are equal for p = (p̌1, p̂2) , so that player 1 is strong for p. Since the propor-

tional solution is not feasible for p, m1 (p̌1) is implemented by Lemma 1. Since p2 = p̂2,

player 1 remains strong for p̌1 and all claims of player 2, so that player 1 never claims

less than p̌1 by Lemma 2. Remark that player 2 becomes strong for p̂2 and any claim

of player 1 exceeding p̌1. Player 1’s payoff cannot be improved upon for the claim p̂2.

Hence, u = m1 (p̌1) is the unique solution for p̌1 and p̂2 in the third case.

In the fourth case, the exceptions of Proposition 3 do not hold and there exists

(p̌1, p̂2) defining equal extended Nash products for which C1 (p̌1) ∩ C2(p̂2) 6= ∅. If

C1 (p1) ∩C2(p2) ⊆ C1 (p̌1) ∩C2(p̂2) and player s is strong for p ≥ p̂, his payoff is equal
to max

{
uKSs (p) ,ms

s (ps)
}
by Lemma 1, which is a lower bound for the payoff of player

s for pw by Lemma 2. This lower bound is strictly decreasing in pw if uKSs (p) > ms
s (ps)

by the monotonicity of the proportional solution. This lower bound cannot be reduced
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and player w cannot gain by increasing his claim as the weak player iff C1 (p1) ∩
C2(p2) =

{
uKS (p)

}
, implying that in the solution m1 (p1) = m2 (p2) = uKS (p) for

claims defining equal extended Nash products. These conditions uniquely identify

p ≥ p̂ by the properties of the proportional solution. None of the players can gain

by changing his claim. For a larger claim, the other player is strong and implements

his maximal revision without changing the utility allocation. For a lower claim, his

payoff is reduced in the proportional solution, which remains feasible and would be

implemented. Hence, u = m1 (p1) = m2 (p2) = uKS (p) is the unique solution in the

fourth case.�

Proof of Proposition 4.

Assume that condition (a) of (ii) of Proposition 3 holds. In the subgame for the

claims p = (1, p̂2), both players bid equal resistance probabilities in [ρ1 (p) , ρ2 (p)] and

player 1 proposes c ∈ C1 (1) such that c2 = (1− q1) p̂2 which is as good as player 2’s

ultimatum. If q1 = ρ2 (p) = 1 − m2
1 (p̂2) /p1, then c2 = m2

1 (p̂2) p̂2 bounds player 2’s

payoff from below. If q1 = ρ1 (p),m1 (1) is imposed, which bounds player 1’s payoff from

below. There are no profitable deviations. Player 1 remains leader and proposes the

same compromise for a higher resistance probability of player 2. Player 2 would lead if

he lowers his or if player 1 increases his resistance probability. Either q2 = q1 = ρ2 (p),

m2 (p̂2) is implemented and player 1 looses by increasing q1. Or player 2 is unable

to impose a compromise in C2 (p̂2) and player 1 gives his ultimatum, giving a zero

payoff to player 2 and, by concavity of uP1 , (1− q1)uP1 (p̂2) ≤ uP1 ((1− q1) p̂2) = uP1 (c2)

as payoff to player 1. Player 1 remains leader by lowering q1, but can only impose

compromises with higher payoff for player 2. Hence for the claims p, all proposals ũ for

which ũ2 ∈
[
m2

1 (p̂2) p̂2,m
1
2 (1)

]
can be implemented in subgame-perfect equilibrium.

Any claim p′1 < 1 of player 1 would reduce the lower bound m1
1 (1) on his payoff for

q1 = q2 = ρ2 (p′1, p̂2) . Any other claim than p̂2 of player 2 would reduce the lower bound

m2
1 (p̂2) p̂2 of player 2. Hence, p are the equilibrium claims when condition (a) of (ii)

of Proposition 3 holds.

Assume that condition (a) of (ii) of Proposition 3 does not apply. Then either

uKS (1) ∈ C1 (1) ∩ C1 (1) for p = 1 or ρ2 (p) = ρ1 (p) in Γ for m ∈ M and ũ = u can

be implemented in Γ̃ for m. Since ũ ∈ PO (S), these lower bounds cannot be improved

upon.�

8.3 Proof of the Lemma’s

Proof of Lemma 1.

For any subgame with claims p which are not strictly compatible, uKS (p) is well

defined. By definition, qKS1 (p) = qKS2 (p) = ri
(
uKSi (p) , pi

)
and uKSi (p) /pi = 1 −

qKSi (p) for i ∈ N . A proposal c of L is proposed and accepted for qL if and only if

qL ≥ rF (cF , pF ). By the monotonicity of rF (., pF ), F rejects c′ if he strictly prefers c
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to c′. We derive the bids in subgame-perfect equilibrium for any subgame for p. We

distinguish between two cases when s is strong for p.

In the first case, uKSs (p) ≥ ms
s (ps) , so that uKS (p) ∈ Cs (ps) ⊆ C (p) and the

proportional solution is feasible. We distinguish between two subcases.

In the first subcase, uKSs (p) < ps, so that ri
(
uKSi (p) , pi

)
> 0 and uPi (p−i) <

uKSi (p) < pi for i ∈ N . For the bidding q = qKS (p), q1 = q2. The allocation would

remain unchanged for a higher bid of player i ∈ N , since player −i would be the leader
for q−i and would propose uKS (p) which would be accepted by player i. The utility

of a lower bidder i would be reduced. As a leader, either he proposes an acceptable

offer which reduces his payoff by the monotonicity of r−i (., p−i) or he proposes an

unacceptable offer yielding (1− qi)uPi (p−i) ≤ uPi (p−i) < uKSi (p). Since no player has

a profitable deviation, q = qKS (p) is an equilibrium for p. Moreover, player i ∈ N

ensures a payoff which is bounded below by uKSi (p) for the bid qi = qKSi (p). Since

uKS (p) ∈ PO (S), the lower bound for one player sets an upper bound on the payoff

for the other player. Hence L proposes uKS (p), F accepts and both players bid qKSi (p)

in equilibrium for the claims p.

In the second subcase, uKSs (p) = ps, so that uKSi (p) = pi and ri
(
uKSi (p) , pi

)
= 0

for i ∈ N . If uKSw (p) > mw
w (ps) , qw = 0 is the only way for w to avoid that s acquires

leadership for qs > 0 and makes a proposal in Cw (pw) which s would prefer to uKS (p)

and which w would accept as a follower. Hence, uKS (p) is implemented for qw = 0 and

qs ∈ [0, 1]. If uKSw (p) = mw
w (ps), that is C (p) =

{
uKS (p)

}
, L has no other option

than to propose uKS (p) and leadership is valuable for none of the players. Hence,

qi ∈ [0, 1] for i ∈ N implements uKS (p). It follows that uKS (p) is implemented in

equilibrium. Conclude that in the first case, the proportional solution is the unique

solution implemented in equilibrium whenever it is feasible for claims p.

In the second casems
s (ps) > uKSs (p), so that uKS (p) /∈ Cs (ps) and rs (ms

s (ps) , ps) <

qKS1 (p) = qKS2 (p). By (2), it follows that ρw (p) ≥ ρs (p) > qKSs (p), so that rs (ms
s (ps) , ps) <

ρs (p) and uKS (p) /∈ Cw (pw). It follows that uKS (p) /∈ C (p), so that the proportional

solution is not feasible. We show that ms (ps) is implemented for the equilibrium bids

qw ∈ [rs(m
s
s (ps) , ps), ρs (p)],

qs ∈
{

[ρs (p) , ρw (p)]

[ρs (p) , ρw (p))

if s = 1,

if s = 2.

If w = L, then qw ≤ qs < ρw (p) or q2 < q1 = ρ2 (p) and s rejects proposals in Cw (pw) .

As a result, w cannot do better than by proposing ms (ps) in Cs (ps) which is accepted

by s for qw ≥ rs (ms
s (ps) , ps). If s = L, then qs = ρs (p) for qw ≤ ρs (p) implies that

ms (ps) is accepted by w and that any better proposal for s in Cs (ps) \ {ms (ps)}, if
any, is rejected by w. The payoff of player i ∈ N is bounded below by ms

i (p) for these

bids. Sincems (p) ∈ PO (S), the lower bound for one player sets an upper bound on the

payoff for the other player. Hence, ms (ps) is implemented for the bids q in equilibrium.
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Remark that ms (ps) would also be implemented for qw ∈ [0, 1] if Cs (ps) = {ms (ps)}
and s has no other choice than to proposems (ps) as a leader. We show that some player

has a profitable deviation for all other bidding strategies. For qw < rs (ms
s (ps) , ps),

w = L and proposes u ∈ PO (Cs (ps)) for which us = (1− qw) ps > ms
s (ps). For

qw > ρs (p) and Cs (ps) 6= {ms (ps)}, s = L for qw > qs > ρs (p) and can impose a

preferred compromise in Cs (ps) \ {ms (ps)}. For qs < ρs (p), s = L when player w

chooses qw = ρs (p) and player s must propose in Cw (pw). Finally, for qs > ρw (p) if

s = 1 and qs ≥ ρw (p) if s = 2, w = L for qw = ρw (p) and can propose in Cw (pw).

Hence, if any player were to change his bidding strategy, his payoffwould be lower than

the one in ms (ps). We conclude that ms (ps) is implemented in equilibrium when the

proportional solution is not feasible for p.�

Proof of Lemma 2.

For strictly compatible claims p, m1
1 (p1) ≤ p1 < uP1 (p2) ≤ m2

1 (p2). Player 1 is

leader by bidding q1 = 0. For this bid, player 2’s ultimatum and player 1’s proposal(
uP1 (p2) , p2

)
are equivalent. Let player 2 bid q2 ∈ [0, 1] if m2

2 (p2) = p2.and q2 = 0

if m2
2 (p2) < p2. In the former, player 2 accepts

(
uP1 (p2) , p2

)
, player 1’s preferred

outcome in C (p) . In the latter, player 2 would be leader for q1 > 0 and
(
p1, u

P
2 (p1)

)
would be implemented, reducing player 1’s payoff. Hence,

(
uP1 (p2) , p2

)
is implemented

in a subgame with strictly compatible claims p. Formulating strictly compatible claims

cannot occur in subgame-perfect equilibrium, since the strictly compatible claims p′,

p′1 = p1 and p′2 > p2 increase player 2’s payoff and player 2 has a profitable deviation.

Assume that s is strong in the subgame for claims p which are not strictly com-

patible. By Lemma 1, u is the strong player’s preferred option in Ĉs (p) for the

claims p. By the monotonicity of the proportional solution and the comprehensive-

ness of the revision procedure, max
{
mi
i (pi) , u

KS
i (p)

}
is strictly increasing in pi. If

ps < p̂s, then by claiming p̂s, player s would remain strong and increase his pay-

off for given pw. Since profitable deviations of one player are excluded, ps ≥ p̂s in

subgame-perfect equilibrium. If pw < p̂w and uKSs (p) ≥ ms
s (ps), then the proportional

solution is implemented and player w could increase his payoff for a larger claim for

given ps. If pw < p̂w and uKSs (p) < ms
s (ps), then ms (ps) is implemented. By claiming

p̂w, either player w becomes strong for p′, p′w = p̂w and p′s = ps and would obtain

max
{
mw
w (p̂w) , uKSw (p′)

}
≥ uKSw (p′) > uKSw (p). Or player s remains strong for p̂w,

ms (ps) is implemented and ms
w (ps) ps ≥ mw

s (p̂w) p̂w > mw
s (pw) pw. Player s would

remain strong and would gain for a claim larger than ps ≥ p̂s for given pw. Since prof-
itable deviations of one player are excluded, pw ≥ p̂w in subgame-perfect equilibrium.

Consider any subgame with claims p̄ ≥ p̂ implementing ū. If player s is strong for p̄,
he remains strong for p′s ∈ [p̂s, p̄s] and for p′w = p̄w. Hence, ūs = max

{
ms
s (p̄s) , u

KS
s (p̄)

}
≥

max
{
ms
s (p′s) , u

KS
s (p′)

}
. Moreover, if s is strong for p̄ and for all claims of player w,

then he will never claim less than p̄s in subgame-perfect equilibrium.�
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8.4 Proof of the Corollary

Proof of Corollary 1.

We distinguish between two cases. In the first case, condition (i) of Proposition 3

holds for m, so that u = uKS (1) ∈ C (1). Since C (1) ⊆ C̆ (1), uKS (1) ∈ C̆ (1) for

m̆. It follows that ŭ = u and p̆ = p = 1. In the second case uKS (1) /∈ C̆ (1), so that

uKS (1) /∈ C (1) and condition (i) of Proposition 3 does not hold for m as well as for

m̆. It suffi ces to consider three subcases. Remark that maxp1 m̆
1
2 (p1) p1 ≥ m1

2 (p̂1) p̂1 ≥
m2

1 (p̂2) p̂2, so that the labeling of the players is the same for m̆ as for m.

In the first subcase, subcase (a) of Proposition 3 holds for m. Since m1 (1) = m̆1 (1)

and m2 = m̆2, this subcase also holds for m̆, so that ŭ1 = u1 and p̆1 = p1 = 1.

In the second subcase, subcase (b) of Proposition 3 holds for m. Since m̆1
2 (p̌1) p̌1 ≥

m1
2 (p̌1) p̌1 = m2

1 (p̂2) p̂2, player 1 is strong for any claim of player 2 when claiming p̌1

for m̆, so that p̆1 ≥ p̌1 by Lemma 2 and ŭ1 ≥ u1 when m̆1 (p̆1) is implemented

In the third subcase, the exceptions of Proposition do not hold or subcase (c) of (ii)

holds. There exists p such that m1 (p1) = m2 (p2) = uKS (p) for m. Since the extended

Nash products are equal, player 1 is the strong player. Since m̆1
2 (p1) ≥ m1

2 (p1) and

m̆2 = m2, player 1 remains strong for p and for m̆. By Lemma 2 for m̆, player

1’s payoff is not smaller than max
{
m̆1

1 (p1) , uKS1 (p)
}
for p2. If m̆1 (p1) = m1 (p1) ,

ŭ1 = u1 and there exist a claim for player 1 for which p̆1 = p1. If m̆1 (p1) > m1 (p1),

then m̆1
1 (p1) > uKS1 (p) and m̆1

1 (p1) is implemented for p by Lemma 1. Since player 2

remains weak for larger claims than p2, ŭ1 > u1. For p̆, the equality of the extended

Nash products must be restored, either for p̆2 = p̂2, as in the second subcase or for

m̆1 (p̆1) = m̆2 (p̆2) = uKS (p̆). In both cases, p̆1 > p1.�
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