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On the Willems closure with respect to Ws
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We determine when a submodule is Willems with respect to the space of distributions that
are tempered in the spatial direction.

1. Introduction

The behavioural theory of Willems exploits the correspondence between the algebraic
properties of the module describing the behaviour and the properties of the behaviour.
For excellent introductions to the behavioural theory in the 1 D case and then D case, we
refer the reader to Polderman & Willems (1998) and Pillai & Shankar (1998), respectively.

As opposed to the case of 1 D linear dynamical systems corresponding to a set of
linear ODEs with constant coefficients, in then D case there is a greater variety of possible
solution spaces and the correspondence between modules and the associated behaviours
may not be bijective: indeed, it depends on the solution space considered. There exists a
bijective correspondence between modules and behaviours if one considers the space of
smooth functions or distributions, and this was established in Oberst (1990). (In the 1 D
case this was known, and it is the content of Theorem 3.6.2 on page 100 of Polderman &
Willems, 1998.) However, this bijective correspondence does not go through for several
classical spaces, such as the space of tempered distributions,S ′ (Rn). This naturally brings
one to the notions of a Willems module and the Willems closure of a module with respect to
a given solution space, which were first introduced in the works of Pillai & Shankar (1998)
and Shankar (1999, 2001). This is analogous to the definition of the radical of an ideal in a
polynomial ring and the correspondence between affine varieties and radical ideals.

Roughly speaking, the notion of a Willems module can be explained as follows. Start
with a given set of equations and find the corresponding behaviour in a certain solution
space, sayW. Nowfind all the equations that this behaviour satisfies. If this set of equations
turns out to be the same set one started off with, then the original set is said to be Willems
with respect to the solution space under consideration. The Willems submodules play an
important role in the behavioural theory and furthermore, from a purely mathematical point
of view, the determination of Willems submodules is the Nullstellensatz for systems of
PDEs, the analogue of Hilbert Nullstellensatz, where as opposed to looking at the zeros in
Cn of a set of polynomial equations, one now looks at the solutions of a set of linear PDEs
with constant coefficients.

In Shankar (1999), it is determined when a module is Willems with respect to the
Schwartz space of tempered distributions. In this paper, following Shankar (1999), we
perform a similar calculation for another space, which we call ‘the space of distributions
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which are tempered in the spatial directions’, and this space is denoted byWs. There are
several reasons for being interested in the spaceWs, and these are discussed in detail in
Section 2.

The organization of the paper is as follows. In Section 2 we introduce the spaceWs

by first giving motivating reasons that lead one to this space and subsequently defining
it and giving examples of the other spaces it encompasses. Section 3 recalls some of the
definitions from the behavioural theory of Willems. In particular, we recollect the notions
of Willems module and Willems closure of a submodule with respect to a given solution
space. We fix some algebraic notation in Section 4 and also, for the sake of completeness,
we give a few algebraic definitions that may not be well known in the engineering
community. Finally, in the last section, we prove our main theorem and consider a few
examples.

2. The space Ws

In this section, one might find that at certain instances the writing shows too little regard
for concision—for which I apologize. I have made a point, rather, of explicitly formulating
the thoughts that lie in the background of studying the spaceWs.

Motivation for the space Ws

The diffusion equation [
∂

∂t
−

(
∂

∂x

)2
]

w = 0

models the physical phenomenon of the diffusion of heat or the diffusion of matter. For
example, in the case of diffusion of heat, one can imagine a hot rod which cools down as
time progresses and the temperature satisfies the diffusion equation. Similarly, in the case
of diffusion of matter, one can imagine a bucket of water with a drop of ink added to it;
the ink diffuses in the water as time passes, and the density of ink satisfies the diffusion
equation.

For either of these examples, if we assume the solution space to be the space of
distributionsD′(R2), then we run into difficulties regarding the notion of time autonomy†.
Indeed, according to Theorem 3.4 in Sasaneet al. (2002), the distributional behaviour
corresponding to the diffusion equation is not time autonomous (since deg[p(η, ξ)] =
deg[ξ − η2] = 2 �= 1 = deg[ξ ] = deg[p(0, ξ)]), in contrast to our physical intuition. One
expects, in the case of heat diffusion, that if we have a cold rod up to the time instant zero,
and we do nothing to it, then in the future there cannot be a non-zero temperature profile.
Similarly, in the case of diffusion of matter, non-time-autonomy would imply that if we
have a bucket of clear water up to time zero, and we do nothing to it, there is still some ink
in it in the future, whose density evolves in time. We now claim that this anomaly arises
since we have assumed the solution space to be too general: in particular, we have not

†We quickly recall that the set of solutions of a PDE is said to be time autonomous if the only solution with
zero past is the trivial solution.
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imposed any growth restriction on the trajectories in the spatial direction. But before we
elaborate on this, let us consider the following example of a trajectory which is zero in the
past, non-zero in the future and which satisfies the diffusion equation. Letw ∈ C∞(R2, C)

be given by

w(x, t) =
∞∑
k=0

f (k)(t)
x2k

(2k)! , −∞ < x, t < ∞, (1)

with

f (t) =
{

e
− 1

t2 for t > 0,

0 for t � 0.

Then it can be shown that (1) converges uniformly and it satisfies the diffusion equation.
Furthermore, it can also be shown that for eacht > 0, there do not exist constantsM andA
such that|w(x, t)| � MeAx2

. (This example was constructed by A. N. Tychonov; see for
instance Example 2 on pages 50–51 of Hellwig, 1964.) We claim that this is the reason for
the lack of conformity with our physical intuition concerning time-autonomy. Indeed, in the
case of the diffusion of heat one expects that at each point of time the temperature profile is
an element inL∞(R). Similarly, in the case of diffusion of matter, one expects that by the
law of conservation of mass, the total amount of ink in the water remains the same, that is,
the density of ink at each point of time is an integrable function (with a constantL1-norm).
And clearly if we have growth faster than eAx2

, then we fall outside either of the above
solution spaces. So we search for the ‘right’ solution space; one which encompasses most
natural solution spaces associated with PDEs, but excludes certain pathological solutions,
such as the one demonstrated above. Furthermore, it is desirable that our solution space
possess features that enable one to prove useful algebraic theorems in the context of linear
control theory forn D systems, as pioneered in Pillai & Shankar (1998).

Wepurport that the spaceWs which we define below is one such.

The space Ws

If V1 andV2 are topological vector spaces, then we denote byL(V1,V2) the space of
continuous linear maps fromV1 toV2. For example,L(D(R),D′(R)) denotes the space of
continuous linear maps fromD(R) to D′(R). For a short introduction about vector-valued
distributions, we refer the reader to Carroll (1969). IfT ∈ D′(R2), then one can associate a
continuous linear mapιT : D(R) → D′(R) as follows:〈(ιT )(ϕ), ψ〉 = 〈T, ψ ⊗ ϕ〉 for all
ϕ ∈ D(R) andψ ∈ D(R). We recall below the Schwartz kernel theorem (see for instance
page 128, Theorem 5.2.1, Hörmander, 1990).

LEMMA 2.1 (The Schwartz kernel theorem.) The mapT 
→ ιT is an isomorphism from
D′(R2) ontoL(D(R),D′(R)).

We note thatL(D(R),S ′(R)) ⊂ L(D(R),D′(R)) andι−1L(D(R),S ′(R)) ⊂ D′(R2).
In the sequel, we will denote the spaceι−1L(D(R),S ′(R)) by Ws, and throughout this
paper, we will study the behavioural trajectories that lie in this spaceWs. The spaceWs

is closed with respect to partial differentiation with respect to time and with respect to the
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FIG. 1. The spaceWs.

spatial variable. The spaceWs is furthermore isomorphic to the completed projective (or†

epsilon) topological tensor product of the spacesD′(R) andS ′(R):

Ws � D′(R)⊗̂εS ′(R) � D′(R)⊗̂πS ′(R).

Roughly speaking, one can think ofWs as comprising those maps for which if one freezes
a time instant, then the resulting map (along the spatial axis) is inS ′(R) (see Fig. 1). So
a ‘wild’ growth in the spatial direction is ruled out. The spaceWs is calledthe space of
distributions on R2 that are temperate in the spatial direction. Finally, we mention that
the choice of the notationWs is motivated by the fact that the subscripts serves the dual
purpose of referring tospace andSchwartz: in the spatial direction, one has a profile in
the Schwartz space of tempered distributionsS ′. The capitalW, on the other hand, is
used simply because it is the set comprising littlew’s, the traditional choice of denoting
trajectories in a behaviour.

Spaces contained in Ws

Since all theL p-spaces,L p(R), for 1 � p � ∞, can be identified with subspaces ofS ′(R)

it follows that the spaceWs captures the situation when the spatial profile is a function in
L p. In particular, the case of the diffusion of heat (p = ∞) and the diffusion of matter
(p = 1) are covered. Also, the case when the spatial profile is a square integrable function,
is contained inWs. This is in conformity with the traditional infinite-dimensional system
theoretic framework‡ of handling some PDEs, where very often the state space is taken to
be L2 or a subspace thereof.

Moreover, since the space of compactly supported distributionsE ′(R) is also contained
in S ′(R), this includes the scenario when the physical domain is restricted, for instance
when one has a heated rod of finite length and outside that length the temperature is zero.

†The projective tensor product topology and the epsilon tensor product topology coincide, since at least one of
the two spaces (and in fact in our case, bothD′(R) as well asS ′(R)!) is nuclear.

‡Here one looks at certain linear PDEs as if they were ODEs, but with an infinite-dimensional Hilbert space as
the state space. See for instance Curtain & Zwart (1995).
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In fact, all trajectories such that at each point of time their profile in the spatial direction
is a locally integrable function with at most polynomial growth, are contained inWs.

What are examples of trajectories not inWs? Since e±x �∈ S ′(R), whenever we have
exponential growth in the spatial direction, the trajectory does not belong toWs. Also,
certainly growth faster than eAx2

in the spatial direction is excluded andw given by (1)
does not belong toWs.

Moreover, Fourier transformation in the spatial variable allows one to prove ‘algebraic
theorems’ that characterize properties of the behaviour satisfying a set of PDEs in terms of
properties of the polynomial matrix describing the behaviour (see for instance Theorems
3.1, 4.1 and 4.2 in Sasane, 2003). Here we recall the following weak version of the
fundamental principle forWs from Sasane (2003).

THEOREM 2.2 If l ∈ Ws, p ∈ C[η] \ {0} andq ∈ C[ξ ] \ {0}, then there exists aw ∈ Ws

such that

p

(
∂

∂x

)
q

(
∂

∂t

)
w = l.

3. Behaviours and the notion of Willems closure

We denote the polynomial ringC[η, ξ ] by A. We use the different symbolsη and ξ to
indicate thatη corresponds to the spatial indeterminate (that is, it is replaced by∂

∂x in order
to obtain the corresponding differential map) and theξ is the indeterminate corresponding
to time (that is, it is replaced by∂

∂t , in order to obtain the corresponding differential map).
Let W be a subspace ofD′(R2) that is closed under differentiation with respect to

the spatial variable and time. An elementχ = [
χ1 · · · χw

] ∈ Aw gives rise to a
differential mapDχ : Ww → W as follows:

Dχ


w1

···
ww

 =
w∑

k=1

χk

(
∂

∂x
,

∂

∂t

)
wk.

Given a submoduleR of Aw, theW-behaviour given by R, denoted by the symbolBW (R),
is defined by

BW (R) = {w ∈ Ww | Dχw = 0 for all χ ∈ R}.
Given aW-behaviour, sayB, define

R(B) = {χ ∈ Aw | Dχw = 0 for all w ∈ B}.
It is clear thatR(B) is a submodule ofAw. It was shown in Shankar (1999) that

BW (R(B)) = B

for all W-behavioursB. Also for any submoduleR of Aw, there holdsR ⊂ R(BW (R)).
However, the equalityR(BW (R)) = R does not hold in general, and it depends on the
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spaceW under consideration. Given any submoduleR of Aw, R(BW (R)) = R, if W is
C∞ orD′ (see Oberst, 1990). IfW = D(R2) orS(R2), then the equalityR(BW (R)) = R
does not hold for all submodulesR of Aw. This motivates the following definition.

If R(BW (R)) = R, then the moduleR is said to beWillems with respect to W.
This terminology has been used earlier, for example in Pillai & Shankar (1998). The
moduleR(BW (R)) is called theWillems closure of R with respect to W. This definition
is analogous to the classical definition of a radical ideal in algebraic geometry.

The following example illustrates that not every submodule ofAw is Willems with
respect toWs.

EXAMPLE If we takeR = 〈1 + η〉, then theWs-behaviour given byR is zero, and so the
set of all annihilators of thisWs-behaviour is the full moduleC[η, ξ ], which is not equal
to 〈1 + η〉.

Next we give an example of a module that is Willems with respect toWs.

EXAMPLE Weshow that theC[η, ξ ]-module〈ξ − η2〉 is Willems with respect toWs. If w

is an element in theWs-behaviour, we have

∂

∂t
w =

(
∂

∂x

)2

w

and so ifq = q0 + · · · + qNξN ∈ C[η, ξ ] is such thatDqw = 0, whereq0, . . . , qN ∈ C[η],
then we have

0 = q0

(
∂

∂x

)
w + · · · + qN

(
∂

∂x

) (
∂

∂t

)N

w = q0

(
∂

∂x

)
w + · · · + qN

(
∂

∂x

) (
∂

∂x

)2N

w.

(2)

Defineŵ ∈ D′(R2) by

〈ŵ, ψ ⊗ ϕ〉 = 〈F[(ιw)(ϕ)], ψ〉, for ϕ, ψ ∈ D(R),

whereF : S ′(R) → S ′(R) denotes the Fourier transformation. (By the approximation
lemma quoted in Sasane (2003) or Exercise 11 on page 56 of Carroll (1969), it follows that
the above defines a distribution onR2.) Thus from (2), we have[

q0(2π iy) + · · · + qN(2π iy)(2π iy)2N
]
ŵ = 0.

Let us define

α(y) = q0(2π iy) + · · · + qN(2π iy)(2π iy)2N

and let R > 0 be large enough such that the roots ofα are all contained in the ball
B(0, R) = {s ∈ C | |s| < R}. Clearly the non-zero trajectory

w0 = e2π i Rx ⊗ e−4π2R2t ∈ Ws
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belongs to the behaviour. Furthermore,

ŵ0 = δR(y) ⊗ e−4π2R2t

satisfies 0= α(y)ŵ0 = α(R)ŵ0. Sinceα(R) �= 0, we havêw0 = 0, which contradicts
the fact thatw0 �= 0. Consequently the polynomialα ∈ C[y] must be zero. Consider the
unique ring homomorphismΘ : C[η, ξ ] → C[y] such thatξ 
→ (2π iy)2 andη 
→ 2π iy.
Weclaim that kerΘ = 〈ξ −η2〉. Clearly,〈ξ −η2〉 ⊂ ker(Θ). To show the reverse inclusion,
let r ∈ ker(Θ), and let us writer = r0 + r1ξ + · · · + rMξM, for somer0, r1, . . . , rM ∈ C[η].
Sinceξ = ξ − η2 + η2, we haveξk = (ξ − η2 + η2)k = (ξ − η2)hk + η2k, where
hk ∈ C[η, ξ ], k ∈ N. Hence we obtainr = β + γ (ξ − η2) for someβ ∈ C[η] and
γ ∈ C[η, ξ ]. Finally, sincer ∈ ker(Θ), we haveβ(2π iy) = 0 and soβ = 0. Consequently
r ∈ 〈ξ − η2〉. Hence we have shown thatq is divisible byp, that isq ∈ 〈p〉. So the module
〈ξ − η2〉 is Willems with respect toWs.

Finally, we recall the definition of time controllability with respect to a spaceW ⊂
D′(R2): A W-behaviour, sayB, is said to betime controllable (with respect to the space
W) if for anyw1 andw2 in B, there exists aw ∈ B and aτ � 0 such that

〈w, ϕ〉 =
{ 〈w1, ϕ〉 for all ϕ ∈ D

(
R2

)
with supp(ϕ) ⊂ R × (−∞, 0),

〈στw2, ϕ〉 for all ϕ ∈ D
(
R2

)
with supp(ϕ) ⊂ R × (τ, ∞),

whereστ denotes translation by(0, τ ) ∈ R2: 〈στw2, ϕ〉 = 〈w2, ϕ(•, • + τ)〉 for all ϕ ∈
D(R2).

4. Algebraic preliminaries and notation

Weassume familiarity with rings, ideals and modules.
Let A be the ringC[η, ξ ]. Given a subsetE of A, the affine variety of E in C2 is

denoted byV (E) and it is defined as follows:

V (E) = {ζ ∈ C2 | p(ζ ) = 0 for all p ∈ E}.
Let M be anA-module. An elementp ∈ A defines an endomorphismΦp of M , namely
χ 
→ p · χ . The elementp is said to be azero divisor in M if Φp is not injective. The
elementp is said to benilpotent in M if Φp is nilpotent. A submoduleQ of M is primary
in M if

(1) Q �= M and
(2) every zero divisor inM/Q is nilpotent.

(If M = A andQ is an ideal inA, then we simply callQ a primary ideal.) Theradical of
(a submodule) Q in M is

rM (Q) = {p ∈ A | pnM ⊂ Q for some n > 0}.
(If M = A andQ is the idealI , then we simply call it theradical of the ideal I , and denote
it by r(I ). More generally, the radical of a subsetE of A is defined as follows:

r(E) = {p ∈ A | pn ∈ E for some n > 0}.
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ClearlyV (r(E)) = V (E).) If P, Q are submodules ofM , we define(P : Q) to be the set
of all p ∈ A such thatp Q ⊂ P; it is an ideal ofA. If Q is primary inM , then(Q : M) is
aprimary ideal and (hence)rM (Q) is a prime ideal, sayp. Wethen say thatQ is p-primary
(in M). A primary decomposition of (a submodule) Q in M is a representation ofQ as an
intersection

Q = ∩n
i=1Qi (3)

of primary submodules ofM . If, moreover,

(1) the (pi :=) rM (Qi) are all distinct, and
(2) none of the componentsQi can be omitted from the intersection, that is,∩j�=iQj �

Qi (1 � i � n),

then the primary decomposition (3) is said to beirredundant. Such an irredundant primary
decomposition always exists for any given proper submoduleQ of M = Aw, whereA =
C[η, ξ ] (see, for instance, Eisenbud, 1995). In fact there also exist algorithms to find them
out using Gr̈obner bases (see Eisenbudet al., 1992).

If p ∈ C[η, ξ ], thenp can be expressed asp = a0+a1ξ +· · ·+aNξN ∈ C[η][ξ ], where
a0, . . . , aN ∈ C[η] andaN �= 0. Then theη-content of p, denoted byCη(p), is defined to
be the ideal generated bya0, . . . , aN. From Gauss’s lemma (see for instance, Reid, 1995),
it follows that if p andq are polynomials inC[η, ξ ], then

Cη(pq) = Cη(p)Cη(q), (4)

whereCη(p)Cη(q) denotes the product of the idealsCη(p) andCη(q), that is, it is the set
of all finite sums

∑
i ai bi , with eachai ∈ Cη(p) and eachbi ∈ Cη(q). In the sequel,A

always refers to the ringC[η, ξ ]. Given an idealI in A, theη-content of the ideal I is

Cη(I ) = ∪p∈I Cη(p).

If I and J are ideals such thatI ⊂ J , then clearlyCη(I ) ⊂ Cη(J ). Also, for any idealI ,
using (4), it can be seen that

Cη(r(I )) ⊂ r(Cη(I )).

Finally, we give the notion of the determinantal ideal of a given submoduleR of Aw.
First of all, given a submoduleR of Aw, it can be generated by a finite number, sayg, of
elements inAw (sinceAw is Noetherian). ThusR can be represented by ag×wmatrix with
entries inA, where theg rows (as elements ofAw) generateR. For the definition of the
(wth†) determinantal ideal, we require thatg � w, and this can be arranged, for instance,
by augmenting the matrix with zero rows. Consider now thewth determinantal ideal of this
matrix, that is, the ideal generated by the determinants of allw × w minors of the matrix.
Then it can be seen that this ideal, denoted byIw(R), depends only on the submoduleR,
and not on the choice of the generators above. Given a submoduleR of Aw, Iw(R) is called
thedeterminantal ideal of R.

†Although we do not need it in this article, in general, one speaks of thekth determinantal ideal of a submodule
R of Aw.
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5. Main result

First we will prove the following useful result about the support of the Fourier transform
(only in the spatial variable) of trajectories that satisfy a single scalar PDE, which will be
used in proving our main result (Theorem 5.2).

LEMMA 5.1 If p ∈ C[η, ξ ] andw ∈ Ws is such thatDpw = 0 and〈w, ϕ〉 = 0 for all
ϕ ∈ D(R2) with supp(ϕ) ⊂ R × (−∞, 0), then

supp(ŵ) ⊂
(

1

2π i

[
V (Cη(p)) ∩ iR

]) × [0, ∞),

whereŵ ∈ D′(R2) denotes theFourier transform of w in the spatial direction, defined† by

〈ŵ, ψ ⊗ ϕ〉 = 〈F [(ιw)(ϕ)] , ψ〉 for ϕ ∈ D(R), ψ ∈ D(R). (5)

Proof. Let theη-content ofp be generated bya ∈ C[η]. Thus p = ap1, where p1 =
a0 + a1ξ + · · · + aNξN, a0, . . . , aN ∈ C[η], with Cη(p1) = 〈1〉. We have

Dpw = Dp1(Daw) = Dp1w1 = 0,

wherew1 := Daw ∈ Ws has zero past, that is,〈w1, ϕ〉 = 0 for all ϕ ∈ D(R2) with
supp(ϕ) ⊂ R × (−∞, 0).

First we will show thatw1 = 0. We have

a0

(
∂

∂x

)
w1 + a1

(
∂

∂x

)
∂

∂t
w1 + · · · + aN

(
∂

∂x

) (
∂

∂t

)N

w1 = 0.

Thus for allϕ ∈ D(R) we obtain

a0

(
∂

∂x

)
(ιw1)(ϕ) + a1

(
∂

∂x

) (
ι
∂

∂t
w1

)
(ϕ) + · · · + aN

(
∂

∂x

) (
ι

(
∂

∂t

)N

w1

)
(ϕ) = 0.

Upon Fourier transformation we get

a0(2π iy)F [(ιw1)(ϕ)] + · · · + aN(2π iy)F
[(

ι

(
∂

∂t

)N

w1

)
(ϕ)

]
= 0. (6)

From (6), we obtain that the Fourier transform ofw1 in the spatial direction, namelŷw1,
satisfies

a0(2π iy)ŵ1 + a1(2π iy)
∂

∂t
ŵ1 + · · · + aN(2π iy)

(
∂

∂t

)N

ŵ1 = 0.

Applying the uniqueness theorem of Holmgren (see Theorem 5.3.1 on page 125 of
Hörmander, 1969), withΩ := �

{
(x, t) ∈ R2 | aN(2π ix) = 0

}
, Φ ∈ C1(Ω) defined by

Φ : (x, t) 
→ −t andx0 any point inΩ ∩ (R × {0}), we have

supp(ŵ1) ⊂
{
(x, t) ∈ R2 | aN(2π ix) = 0, t � 0

}
†By the approximation lemma (see, for instance Exercise 11 on page 56 of Carroll, 1969), it follows that (5)

defines a distribution onR2.
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real zeros of aN(2πi• )

support of w1

t

y

FIG. 2. The support of̂w1.

(see Fig. 2). IfaN is a constant (�= 0), then we obtain̂w1 = 0 and sow1 = 0, and we are
done. IfaN is not a constant then there exists ak < N such that(ak, aN) = 1, that is, the
greatest common divisor ofak andaN is 1. Each half-line in�Ω ∩ (R × [0, ∞)) carries
a solution of the differential equation with polynomial coefficients and̂w1 is the sum of
these. We prove our claim for each of these summands, because each of these has support
on the corresponding half-line. By means of a translation, we may assume that the half-line
is {0} × [0, ∞). Let T ∈ (0, ∞). Thenŵ1 is a distribution of finite order inR × (−T, T ).
Applying Theorem 2.3.5 (Ḧormander, 1990, p. 47), it follows that there exist distributions
T1, . . . , TJ ∈ D′(R), with TJ �= 0 such that

ŵ1 =
J∑

j=1

(
∂

∂y

)j

δy ⊗ Tj (7)

in the strip R × (−T, T ). Then it can be seen that supp(TJ|(−T,T )) ⊂ [0, T ), since
supp(ŵ1) ⊂ R × [0, ∞). From (7), we have

w1 =
J∑

j=1

(2π ix)j ⊗ Tj

in R × (−T, T ). SinceDp1w1 = 0, we have

Dp1

(
∂

∂y

)J

w1 = 0,

and soDp1(1x ⊗ TJ) = 0, where1x denotes the regular distribution corresponding to the
constant function taking value 1 everywhere. But now we can drop all the terms inDp1

which contain ∂
∂x , leaving a linear ordinary differential operator, sayDp0, in only t with

constant coefficients. Owing to our assumption that(ak, aN) = 1, we obtain thatp0 �= 0.
From the fact thatDp0(1x ⊗ TJ) = 0 in R × (−T, T ), we haveDp0TJ = 0 in (−T, T ).
SinceTJ is zero in(−T, 0), it follows thatTJ = 0 in (−T, T ) (this follows from Theorem
8.6.8 on page 312 of Ḧormander (1990) applied top0). Soŵ1 = 0 in R × (−T, T ). But
we recall that the choice ofT was arbitrary. Hencêw1 = 0 and finallyw1 = 0.
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Finally, we observe that sinceDaw (= w1) is zero, upon Fourier transformation in the
spatial variable, we geta(2π iy)ŵ = 0, and so

supp(ŵ) ⊂ {y ∈ R | a(2π iy) = 0} × R.

But we know thatw|(−∞,0)×R = 0 and so

supp(ŵ) ⊂ {y ∈ R | a(2π iy) = 0} × [0, ∞).

Consequently, supp(ŵ) ⊂ 1
2π i

[
V (Cη(p)) ∩ iR

] × [0, ∞), and this completes the proof.�
REMARK This result is analogous to the observation that if a tempered distributionw ∈ S ′
satisfies a PDE corresponding to a polynomialp, then the support of its Fourier transform is
contained in the intersection of the variety of the polynomialp with the imaginary axes. Of
course, in the case ofWs, since we have a tempered profile only in the spatial direction, we
get a result that is not quite symmetric with respect to the indeterminates in the polynomial.

We now give our main result. The proof is similar to the proof of Theorem 2.3 of
Shankar (1999), in which it is determined when a given submodule is Willems with respect
to the space of tempered distributions,S ′. In the following theorem, we characterize
the submodules that are Willems with respect to the spaceWs of distributions that are
temperedonly in the spatial direction.

THEOREM 5.2 LetR be a submodule ofAw such that the correspondingWs-behaviour,
BWs

(R), is time controllable. LetR = ∩r
i=1Qi be an irredundant primary decomposition

of R, whereQi is pi-primary inAw. Let r0 be the integer satisfying 1� r0 � r for
which

(1) V (pi) ∩ (iR × C) �= ∅, for all i ∈ {1, . . . ,r0}, and

(2) V
(
∩r
i=r0+1pi

)
∩ (iR × C) = ∅.

ThenR
(
BWs

(R)
) = ∩r0

i=1Qi. In particular,R is Willems with respect toWs iff r0 = r.

Proof. Let us denote∩r0
i=1Qi by R0. Then R0 is independent of the primary

decomposition ofR. Indeed, letI be the ideal∩r
i=r0+1pi. Then I is an ideal such that

I ⊂ pi, i = r0 + 1, . . . ,r and that is not contained in the otherpi. (This is because if
∩r
i=r0+1pi ⊂ pi for somei ∈ {1, . . . ,r0}, then we would have

∅ �= V (pi) ∩ (iR × C) ⊂ V
(
∩r
i=r0+1pi

)
∩ (iR × C) = ∅,

acontradiction!) Consider the ascending chain of submodules

(R : I ) ⊂ (R : I 2) ⊂ . . . .

Then this chain stabilizes to the submodule∩r0
i=1Qi, and this submodule is therefore

independent of the primary decomposition.

Part 1. We first show that theWs-behaviour ofR0 equals that ofR. As R ⊂ R0, it suffices
to show that

BWs
(R) ⊂ BWs

(R0). (8)
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Clearly w1 = 0 belongs to theWs-behaviour ofR. If (8) is not true, then there exists a
w2 ∈ BWs

(R) and aχ ∈ R0 \ R such thatDχw2 �= 0.
SinceBWs

(R) is time controllable, there exists a trajectoryw ∈ BWs
(R) that patches

up w1 andw2 along the time direction. If necessary, by shiftingw2 beforehand, we can
ensure thatDχw �= 0. But for everyp ∈ (R : χ), we have

Dp(Dχw) = Dp·χw = 0,

and so it follows from Lemma 5.1 that

supp(D̂χw) ⊂
(

1

2π i

[
V (Cη(p)) ∩ iR

]) × R.

Since this is true for eachp ∈ (R : χ), weobtain

supp(D̂χw) ⊂
(

1

2π i

[
V (Cη(R : χ)) ∩ iR

]) × R. (9)

As R = ∩r
i=1Qi, (R : χ) = ∩r

i=1(Qi : χ), and asχ is in every one ofQ1, . . . , Qr0 and
not in at least one of the otherQi, it follows thatr((R : χ)) is equal to the intersection of a
subset (say,pik , k ∈ {1, . . . ,K}) of pr0+1, . . . , pr (Qi is pi-primary). Thus it follows that

Cη

(∩K
k=1pik

) = Cη(r((R : χ))) ⊂ r(Cη(R : χ))

and so

V (Cη(R : χ)) = V (r(Cη(R : χ))) ⊂ V
(
Cη

(∩K
k=1pik

)) ⊂ V
(

Cη

(
∩r
i=r0+1pi

))
.

Consequently, from (9), we obtain

supp(D̂χw) ⊂
(

1

2π i

[
V

(
Cη

(
∩r
i=r0+1pi

))
∩ iR

])
× R.

But by assumption,

V
(
∩r
i=r0+1pi

)
∩ (iR × C) = ∅.

This implies that

supp(D̂χw) ⊂ ∅

and soD̂χw = 0. Consequently, we obtainDχw = 0, in contradiction to the assumption
above.

Part 2. Now we show thatR0 is the largest submodule ofAw with the sameWs-behaviour
as that ofR. So let

χ = [
χ1 · · · χw

]
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be any element ofAw \ R0, and consider the exact sequence

0 −→ A/(R0 : χ)
Ψχ−→ Aw/R0

π−→ Aw/(R0 + 〈χ〉) −→ 0,

where the morphismΨχ above maps the class ofp to the class ofp · χ , andπ is the
canonical surjection. SinceC∞ is an injectiveA-module (see for instance Theorem 3 on
page 305 of Palamodov, 1970), it follows that the sequence

0 −→ HomA(Aw/(R0 + 〈χ〉), C∞) −→ HomA(Aw/R0, C∞)

Dχ−→ HomA(A/(R0 : χ), C∞) −→ 0

is exact. Observe that the above sequence is, by Malgrange†,

0 −→ BC∞(R0 + 〈χ〉) −→ BC∞(R0)
Dχ−→ BC∞((R0 : χ)) −→ 0.

As R0 = ∩r0
i=1Qi, χ is not in at least one of theseQi, so that V (R0 : χ) is the union of

some of theV (p1), . . . , V (pr0). From the proof of Theorem 2.2 on page 1823 of Shankar
(2001), it follows that the union of these varieties of thepi is contained in the variety
of Iw(R0), where Iw(R0) denotes the (wth) determinantal ideal ofR0; namely, we have
∪r0
i=1V (pi) ⊂ V (Iw(R0)).

Each of the varietiesV (p1), . . . , V (pr0) intersects iR×C, and hence so does the variety
of (R0 : χ). Let (x0, t0) be some point in this intersection. Consider the smooth function
w0 : (x, t) 
→ e〈(x,t),(x0,t0)〉 in HomA(A/(R0 : χ), C∞), that is theC∞-behaviour of the
ideal (R0 : χ). As the spatial coordinate of(x0, t0), namelyx0, is purely imaginary, it
follows thatw0 belongs toWs. From the last part of the proof of Theorem 2.3 on page 371
of Shankar (1999)),w0 is the image of an element in theC∞-behaviour ofR0, which
is of the formu(x, t)e〈(x,t),(x0,t0)〉, where the components ofu are polynomials. Thus,
in fact, w0 is the image of an element in theWs-behaviour ofR0, that is an element in
HomA(Aw/R0,Ws). By exactness of the sequence above, it then follows that this element
in theWs-behaviour ofR0 cannot be in theWs-behaviour ofR0 + 〈χ〉. This proves that
R0 is Willems with respect toWs. �

REMARK We note that we made the assumption thatBWs
(R) is time controllable. Such

a corresponding assumption is not present in Theorem 2.3 of Shankar (1999). Indeed, it
is certainly desirable to have a test for the Willems-ness of a submodule purely in terms
of R, that is, purely in terms of algebraic computations withR. However, in the case of
the spaceWs we suspect this task to be a formidable one, if at all possible. The reason
is that there is no simple relation available between the support of the Fourier transform
(in the spatial direction) ofw and the algebraic properties of the polynomialp such that
Dpw = 0. This relation lies at the very core of Theorem 2.3 in Shankar (1999), where
indeed owing to the choice of the space, namelyS ′(Rn), an elegant such relation exists. In
our case, for the spaceWs, a relation exists, provided we assume thatw has, for instance,
past equal to zero. (This is precisely the content of Lemma 5.1 above.) Because of this

†He observed that HomA(Aw/R,W) � BW (R). See Malgrange (1963).
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lacuna in the knowledge of algebraic-analytic results, one makes the assumption of time
controllability with respect toWs. Of course, an algebraic test onR that characterizes the
property of time controllability of the corresponding behaviour with respect toWs will
yield purely algebraic assumptions in the theorem above. However, an algebraic test onR
characterizing timecontrollability is presently not known and it is an open problem (see
Sasane, 2003).

EXAMPLES

(1) Let R = 〈1 + η〉. Then theWs-behaviour given byR is zero, and so it is trivially
time controllable. Clearly withQ1 := R, it follows thatR = Q1 is an irredundant
primary decomposition ofR, with Q1 being (p1 =) 〈η + 1〉-primary inA. Since
V (p1) ∩ (iR × C) = (−1 × C) ∩ (iR × C) = ∅, R is not Willems with respect to
Ws. We haveR(BWs

(R)) (being an empty intersection) is equal to〈1〉 = A.
(2) LetR = 〈[

ξ − η2 −η
]〉

. Then the correspondingWs-behaviour,BWs
(R), is the

set of allw =
[

w1
w2

]
∈ W2

s such that

[
∂

∂t
−

(
∂

∂x

)2
]

w1 = ∂

∂x
w2.

First of all we will show that

BWs
(R) =

{
w ∈ W2

s | there exists anl ∈ Ws such thatw =
[

∂
∂x

∂
∂t − (

∂
∂x

)2

]
l

}
.

From Theorem 2.2 it follows that there exists anl0 ∈ Ws such that

w1 = ∂

∂x
l0.

Let us definew2,0 to be
[

∂
∂t − (

∂
∂x

)2
]

l0. Then we have

∂

∂x
w2,0 =

[
∂

∂t
−

(
∂

∂x

)2
]

∂

∂x
l0 =

[
∂

∂t
−

(
∂

∂x

)2
]

w1.

Consequently

∂

∂x
(w2 − w2,0) = 0,

and so from Lemma 2.5 (Cotroneo & Sasane, 2002), it follows that there exists a
T ∈ D′(R) such thatw = w2,0 + 1x ⊗ T , where1x denotes the regular distribution
corresponding to the constant function taking value 1 everywhere. LetS ∈ D′(R)

such thatS′ = T that is,S is a primitive ofT (that such a primitive exists follows
for instance from the fundamental principle forD′(R)). Define

l = l0 + 1x ⊗ S ∈ Ws.
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We have

∂

∂x
l = ∂

∂x
(l0 + 1x ⊗ S) = ∂

∂x
l0 = w1,

and

w2 = w2,0 + 1x ⊗ T

=
[

∂

∂t
−

(
∂

∂x

)2
]

l0 +
[

∂

∂t
−

(
∂

∂x

)2
]

(1x ⊗ S)

=
[

∂

∂t
−

(
∂

∂x

)2
]

(l0 + 1x ⊗ S)

=
[

∂

∂t
−

(
∂

∂x

)2
]

l.

Now from Theorem 4.1 in Sasane (2003), it follows thatBWs
(R) is time

controllable.
It can be checked that withQ1 := R, R = Q1 is an irredundant primary
decomposition ofR, with Q1 being (p1 =) 0-primary inA2. Thus

V (p1) ∩ (iR × C) = C2 ∩ (iR × C) = iR × C �= ∅·
Thusr0 = r = 1, and consequentlyR is Willems with respect toWs.

(3) Let R = 〈[
(η + 1)(ξ − η2) −(η + 1)η

]〉
. In light of the previous example, it is

easy to see that

BWs
(R) =

{
w ∈ W2

s | there exists anl ∈ Ws such that

(
∂

∂x
+ 1

)
w

=
[

∂
∂x

∂
∂t − (

∂
∂x

)2

]
l

}
.

Hence from Theorem 4.1 in Sasane (2003), it follows thatBWs
(R) is time

controllable.
It can be checked that ifQ1 := 〈[

ξ − η2 −η
]〉

and Q2 :=〈[
η + 1 0

]
,
[

0 η + 1
]〉

, then R = Q1 ∩ Q2 is an irredundant primary
decomposition ofR, with Q1 being (p1 =) 0-primary in A2, and Q2 (p2 =)
〈η + 1〉-primary inA2. Thus

V (p1) ∩ (iR × C) = C2 ∩ (iR × C) = iR × C �= ∅
while

V (p2) ∩ (iR × C) = (−1 × C) ∩ (iR × C) = ∅.

Thusr0 = 1 < 2 = r, and consequentlyR is not Willems with respect toWs. In
fact, we haveR(BWs

(R)) = Q1.
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