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We determine when a submodule is Willems with respect to the space of distributions that
are tempered in the spatial direction.

1. Introduction

The behavioural theory of Willems exploits the correspondence between the algebraic
properties of the module describing the behaviour and the properties of the behaviour.
For excellent introductions to the behavioural theory in the 1 D case and Ehease, we
refer the reader to Polderman & Willems (1998) and Pillai & Shankar (1998), respectively.

As opposed to the case of 1 D linear dynamical systems corresponding to a set of
linear ODEs with constant coefficients, in th® case there is a greater variety of possible
solution spaces and the correspondence between modules and the associated behaviours
may not be bijective: indeed, it depends on the solution space considered. There exists a
bijective correspondence between modules and behaviours if one considers the space of
smooth functions or distributions, and this was established in Oberst (1990). (In the 1 D
case this was known, and it is the content of Theorem 3.6.2 on page 100 of Polderman &
Willems, 1998.) However, this bijective correspondence does not go through for several
classical spaces, such as the space of tempered distribufiqis}). This naturally brings
one to the notions of a Willems module and the Willems closure of a module with respect to
a gven solution space, which were first introduced in the works of Pillai & Shankar (1998)
and Shankar (1999, 2001). This is analogous to the definition of the radical of an ideal in a
polynomial ring and the correspondence between affine varieties and radical ideals.

Roughly speaking, the notion of a Willems module can be explained as follows. Start
with a given set of equations and find the corresponding behaviour in a certain solution
space, sayV. Now find all the equations that this behaviour satisfies. If this set of equations
turns out to be the same set one started off with, then the original set is said to be Willems
with respect to the solution space under consideration. The Willems submodules play an
important role in the behavioural theory and furthermore, from a purely mathematical point
of view, the determination of Willems submodules is the Nullstellensatz for systems of
PDEs, the analogue of Hilbert Nullstellensatz, where as opposed to looking at the zeros in
C" of a set of polynomial equations, one now looks at the solutions of a set of linear PDEs
with constant coefficients.

In Shankar (1999), it is determined when a module is Willems with respect to the
Schwartz space of tempered distributions. In this paper, following Shankar (1999), we
perform a similar calculation for another space, which we call ‘the space of distributions
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which are tempered in the spatial directions’, and this space is denotad, byhere are
several reasons for being interested in the spa&geand these are discussed in detail in
Section 2.

The organization of the paper is as follows. In Section 2 we introduce the 3pace
by first giving motivating reasons that lead one to this space and subsequently defining
it and giving examples of the other spaces it encompasses. Section 3 recalls some of the
definitions from the behavioural theory of Willems. In particular, we recollect the notions
of Willems module and Willems closure of a submodule with respect to a given solution
space. We fix some algebraic notation in Section 4 and also, for the sake of completeness,
we give a few algebraic definitions that may not be well known in the engineering
community. Finally, in the last section, we prove our main theorem and consider a few
examples.

2. The space W

In this section, one might find that at certain instances the writing shows too little regard
for concision—for which | apologize. | have made a point, rather, of explicitly formulating
the thoughts that lie in the background of studying the sp&ge

Motivation for the space Ws

The diffusion equation

2
[3 (2) ] w=0
at ax
models the physical phenomenon of the diffusion of heat or the diffusion of matter. For
example, in the case of diffusion of heat, one can imagine a hot rod which cools down as
time progresses and the temperature satisfies the diffusion equation. Similarly, in the case
of diffusion of matter, one can imagine a bucket of water with a drop of ink added to it;
the ink diffuses in the water as time passes, and the density of ink satisfies the diffusion
equation.

For either of these examples, if we assume the solution space to be the space of
distributionsD’ (R?), then we run into difficulties regarding the notion of time autondémy
Indeed, according to Theorem 3.4 in Sasahal. (2002), the distributional behaviour
corresponding to the diffusion equation is not time autonomous (sindgdeg)] =
dedé — n?] = 2 # 1 = ded&] = ded p(0, £)]), in contrast to our physical intuition. One
expects, in the case of heat diffusion, that if we have a cold rod up to the time instant zero,
and we do nothing to it, then in the future there cannot be a non-zero temperature profile.
Similarly, in the case of diffusion of matter, non-time-autonomy would imply that if we
have a bucket of clear water up to time zero, and we do nothing to it, there is still some ink
in it in the future, whose density evolves in time. We now claim that this anomaly arises
since we have assumed the solution space to be too general: in particular, we have not

Twe quickly recall that the set of solutions of a PDE is said to be time autonomous if the only solution with
zero past is the trivial solution.
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imposed any growth restriction on the trajectories in the spatial direction. But before we
elaborate on this, let us consider the following example of a trajectory which is zero in the
past, non-zero in the future and which satisfies the diffusion equation: ke€>®(R2, C)

be given by

x 2K

@0 —00 < X, t < 00, (1)

w(X,t) = Z f® )
k=0

with
_1
fy=1 © 2 for t>0,
0 for t<O.

Then it can be shown that (1) converges uniformly and it satisfies the diffusion equation.
Furthermore, it can also be shown that for each0, there do not exist constarisand A
such thatw(x, t)| < Mer<, (This example was constructed by A. N. Tychonov; see for
instance Example 2 on pages 50-51 of Hellwig, 1964.) We claim that this is the reason for
the lack of conformity with our physical intuition concerning time-autonomy. Indeed, in the
case of the diffusion of heat one expects that at each point of time the temperature profile is
an element irL  (R). Similarly, in the case of diffusion of matter, one expects that by the
law of conservation of mass, the total amount of ink in the water remains the same, that is,
the density of ink at each point of time is an integrable function (with a conktgnbrm).
And clearly if we have growth faster tharﬁ\’éz, then we fall outside either of the above
solution spaces. So we search for the ‘right’ solution space; one which encompasses most
natural solution spaces associated with PDEs, but excludes certain pathological solutions,
such as the one demonstrated above. Furthermore, it is desirable that our solution space
possess features that enable one to prove useful algebraic theorems in the context of linear
control theory fom D systems, as pioneered in Pillai & Shankar (1998).

We purport that the spac@/; which we define below is one such.

The space Ws

If V1 and ), are topological vector spaces, then we denoteCly1, V2) the space of
continuous linear maps froivy to V». For example L(D(R), D’ (R)) denotes the space of
continuous linear maps froM(R) to D’ (R). For a short introduction about vector-valued
distributions, we refer the reader to Carroll (1969)T IE D’(R?), then one can associate a
continuous linear magrl : D(R) — D'(R) as follows:{((:T) (), ¥) = (T, ¥ ® ¢) for all

¢ € D(R) andy € D(R). Werecall below the Schwartz kernel theorem (see for instance
page 128, Theorem 5.2.1pknander, 1990).

LEMMA 2.1 (The Schwartz kernel theorem.) The map— (T is an isomorphism from
D' (R?) onto L(D(R), D' (R)).

We note thatZ(D(R), S'(R)) ¢ L(D(R), D'(R)) and:~1L(D(R), S'(R)) C D'(R?).
In the sequel, we will denote the spacé L(D(R), S'(R)) by W, and throughout this
paper, we will study the behavioural trajectories that lie in this sp&geThe spacé/V,
is closed with respect to partial differentiation with respect to time and with respect to the



220 A. J. SASANE

2

/\% time

FIG. 1. The spacé/Vs.

space

spatial variable. The spad#® is furthermore isomorphic to the completed projectivé (or
epsilon) topological tensor product of the spaf¥&R) andS’ (R):

Ws ~ D'(R)®.S'(R) ~ D' (R)R,S' (R).

Roughly speaking, one can think @#s; as comprising those maps for which if one freezes
a tme instant, then the resulting map (along the spatial axis) & (R) (see Fig. 1). So

a ‘wild’ growth in the spatial direction is ruled out. The spak¥ is calledthe space of
distributions on R? that are temperate in the spatial direction. Finally, we mention that
the choice of the notatiow; is motivated by the fact that the subscripterves the dual
purpose of referring tgpace and Schwartz: in the spatial direction, one has a profile in
the Schwartz space of tempered distributiod®. The capital)V, on the other hand, is
used simply because it is the set comprising litifs, the traditional choice of denoting
trajectories in a behaviour.

Foaces contained in W

Since all thel p-spacesl p(R), for 1 < p < oo, can be identified with subspacesS{RR)
it follows that the spac&V, captures the situation when the spatial profile is a function in
L p. In particular, the case of the diffusion of heqt & oo) and the diffusion of matter
(p = 1) are covered. Also, the case when the spatial profile is a square integrable function,
is contained iNV,. This is in conformity with the traditional infinite-dimensional system
theoretic frameworkof handling some PDEs, where very often the state space is taken to
be L, or a subspace thereof.

Moreover, since the space of compactly supported distributiG(i®) is also contained
in S’(R), this includes the scenario when the physical domain is restricted, for instance
when one has a heated rod of finite length and outside that length the temperature is zero.

TThe projective tensor product topology and the epsilon tensor product topology coincide, since at least one of
the two spaces (and in fact in our case, bbttiR) as well asS’(R)!) is nuclear.

THere one looks at certain linear PDEs as if they were ODEs, but with an infinite-dimensional Hilbert space as
the state space. See for instance Curtain & Zwart (1995).
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In fact, all trajectories such that at each point of time their profile in the spatial direction
is a locally integrable function with at most polynomial growth, are containédfjn

What are examples of trajectories noti,? Since &* ¢ S’(R), whenever we have
exponential growth in the spatial direction, the trajectory does not belong{oAlso,
certainly growth faster than®’ in the spatial direction is excluded amdgiven by (1)
does not belong tdVs.

Moreover, Fourier transformation in the spatial variable allows one to prove ‘algebraic
theorems’ that characterize properties of the behaviour satisfying a set of PDEs in terms of
properties of the polynomial matrix describing the behaviour (see for instance Theorems
3.1, 4.1 and 4.2 in Sasane, 2003). Here we recall the following weak version of the
fundamental principle foyVs from Sasane (2003).

THEOREM 2.2 Ifl € Ws, p € C[n]\ {0} andq € C[£] \ {0}, then there exists @ € W,

such that
9 AV
Plox) 9\ ) v ="

3. Behavioursand the notion of Willemsclosure

We denote the polynomial rin@[#, £] by A. We use the different symbolg and& to

indicate thaty corresponds to the spatial indeterminate (that is, it is replacg@ byorder

to obtain the corresponding differential map) andghs the indeterminate corresponding

to time (that is, it is replaced b§L in order to obtain the corresponding differential map).
Let W be a subspace dP’(R?) that is closed under differentiation with respect to

the spatial variable and time. An element= [ X1 0 Xw ] e AV gives rise to a

differential mapD, : WY — W as follows:

w1

_ il a9
Dy : =|;Xk ax’ ot wk -

Ww

Given a submodul® of A", theWW-behaviour given by R, denoted by the symb@&y (R),
is defined by

BwR) ={weW"|D,w=0 forall x € R}.
Given aWW-behaviour, sayB, define
R(B) ={x € A | D,w =0 forall we B}.
Itis clear thatR(B) is a submodule af4". It was shown in Shankar (1999) that
Bw(R(B)) =B

for all W-behavioursB. Also for any submodul® of A%, there holdR c R(By(R)).
However, the equalityi (28, (R)) = R does not hold in general, and it depends on the
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spacelV under consideration. Given any submodBlef A", R(By(R)) = R, if Wis
C*> or D’ (see Oberst, 1990). W = D(R?) or S(R?), then the equalitfi(B(R)) = R
does not hold for all submodulé&sof .A". This motivates the following definition.
If R(By(R)) = R, then the moduleR is said to beWllems with respect to W.
This terminology has been used earlier, for example in Pillai & Shankar (1998). The
moduleR(Byy (R)) is called theWillems closure of R with respect to V. This definition
is analogous to the classical definition of a radical ideal in algebraic geometry.
The following example illustrates that not every submoduleddfis Willems with
respect taVs.

ExampLE If we takeR = (1 + n), then theW;-behaviour given by is zero, and so the
set of all annihilators of thi¥V,-behaviour is the full modul€&[n, £], which is not equal
to (1+ n).

Next we give an example of a module that is Willems with respeVto

EXAMPLE We show that theC[, £]-module(¢ — 52) is Willems with respect toVs. If w
is an element in th&V;-behaviour, we have

3 3\?

—w = — w

ot X
and soifg = qo + - - - + qnéN € Cln, £] is such thaDquw = 0, whereq, ... , g € C[n],
then we have

o a(Vws a2V o —ao (s () ()
=%k WNax) o) =% k)" WNax) ax) ™
2
Definew e D'(R?) by
(W, ¥ ® 9) = (Flw)(p)], ¥), for ¢, ¢ € DR),
where F : S'(R) — S’(R) denotes the Fourier transformation. (By the approximation

lemma quoted in Sasane (2003) or Exercise 11 on page 56 of Carroll (1969), it follows that
the above defines a distribution &3%.) Thus from (2), we have

[doc2riy) + -+ + ancriy) 2riy) ™ i = 0.
Let us define

a(y) = qo(27iy) + - - - + gn2riy) (2riy) 2

and letR > 0 be large enough such that the roots wfare all contained in the ball
B0, R) = {s € C | |s| < R}. Clearly the non-zero trajectory

; _A-2R2
wO=e27r|Rx®e4n RteW5
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belongs to the behaviour. Furthermore,

o = Sr(Y) ® e—4n2R2t

satisfies 0= a(y)wg = a(R)wg. Sincea(R) # 0, we havewg = 0, which contradicts
the fact thatwg # 0. Consequently the polynomial € C[y] must be zero. Consider the
unique ring homomorphisr® : C[n, £] — C[y] such that — (2r7iy)? andn — 27iy.
Weclaim that ker® = (&€ —5?). Clearly, (¢ —n?) C ker(©). To show the reverse inclusion,
letr € ker(©), and let us writg =rg-+ri€ + - - - +ryeM for somerg, r1, ..., rme Clnl.
Sincet = £ — %2 + %, we havetk = (& — n2 4+ 19X = & — n®hg + %, where
hk € C[n, &1, k € N. Hence we obtaim = 8 + y (¢ — %) for somep e C[n] and
y € Cl[n, &]. Finally, sincer € ker(©), we haved(2riy) = 0and so8 = 0. Consequently
r € (¢ —n?). Hence we have shown thais divisible by p, that isq € (p). So the module
(£ — n?) is Willems with respect t&V;.

Finally, we recall the definition of time controllability with respect to a spagzec
D'(R?): A W-behaviour, sayB, is said to betime controllable (with respect to the space
W) if for anywj; andw; in %8, there exists a € %5 and ar > 0 such that

(w.¢) = (w1,9) forall ¢ € D(R?) with suppp) C R x (—o0,0),
' $r= (orwa, @) forall ¢ € D (Rz) with supfe) C R x (t, 00),

whereo;, denotes translation b, 1) € R2: (o, w2, ¢) = (w2, p(e, e+ 7)) forall ¢ €
D(R?).

4. Algebraic preliminariesand notation

We assume familiarity with rings, ideals and modules.
Let A be the ringC[n, £]. Given a subseE of A, the affine variety of E in C? is
denoted by (E) and it is defined as follows:

V(E)={¢ € C?| p(¢)=0 forall peE}.

Let M be anA-module. An elemenp € A defines an endomorphisg, of M, namely
x — p- x. The elementp is said to be aero divisor in M if @ is not injective. The
elementp is said to benilpotent in M if &, is nilpotent. A submodul& of M is primary
in M if

(1) Q # M and

(2) every zero divisor irM/Q is nilpotent.

(If M = AandQ is an ideal in4, then we simply calQ aprimary ideal.) Theradical of
(asubmodule) Q in M is

tM(Q)={peA| p"M c Q forsomen > 0}.

(If M = AandQ is the ideall , then we simply call it theadical of theideal |, and denote
it by t(1). More generally, the radical of a subdef A is defined as follows:

t(E)={pe.A| p" € E forsomen > 0}.
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ClearlyV (x(E)) = V(E).) If P, Q are submodules d¥1, we define(P : Q) to be the set
ofall p € AsuchthatpQ C P;itis anideal of A. If Q is primary inM, then(Q : M) is
aprimary ideal and (hence)j, (Q) is a prime ideal, say. We then say tha@ isp-primary
(in M). A primary decomposition of (a submodule) Q in M is a representation @ as an
intersection

Q = min:;LQi (3)
of primary submodules dfl. If, moreover,

(1) the i :=) tm(Qj) are all distinct, and
(2) none of the componen@@; can be omitted from the intersection, thatis.j Q; C
Qi (I<i <n),

then the primary decomposition (3) is said toitredundant. Such an irredundant primary
decomposition always exists for any given proper submo@utd M = A%, where A =
Cln, &] (see, for instance, Eisenbud, 1995). In fact there also exist algorithms to find them
out using Gobner bases (see Eisentmidl., 1992).

If p e Cln, £], thenp can be expressed @s= ap+ai& +- - -+angN € C[y][£], where
ao, ..., an € C[n] anday # 0. Then they-content of p, denoted byC,(p), is defined to

be the ideal generated lay, . . ., ay. From Gauss’s lemma (see for instance, Reid, 1995),
it follows that if p andq are polynomials irC[#, £], then

whereC, (p)C, (q) denotes the product of the ide&s(p) andC,(q), that is, it is the set
of all finite sums}; abj, with eacha; € C,(p) and eacty € C,(q). In the sequel A
always refers to the rin@[n, £]. Given an ideal in A, the n-content of theideal | is

Cp(1) = Upe1 Cy(p).

If I andJ are ideals such thdt C J, then clearlyC, (1) c C,(J). Also, for any ideall ,
using (4), it can be seen that

Cn(t(l ) C t(cn(l ).

Finally, we give the notion of the determinantal ideal of a given submoRut AY.
First of all, given a submodulg of AY, it can be generated by a finite number, gapf
elements ind" (since A" is Noetherian). ThuR can be represented bya wmatrix with
entries inA, where theg rows (as elements ofl") generateR. For the definition of the
(wth’) determinantal ideal, we require thgat> w, and this can be arranged, for instance,
by augmenting the matrix with zero rows. Consider nowttiedeterminantal ideal of this
matrix, that is, the ideal generated by the determinants af allw minors of the matrix.
Then it can be seen that this ideal, denoted pyR), depends only on the submoduie
and not on the choice of the generators above. Given a submieaflel", 1,,(R) is called
thedeterminantal ideal of R.

TAIthough we do not need it in this article, in general, one speaks ditthéeterminantal ideal of a submodule
R of AW
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5. Main result

First we will prove the following useful result about the support of the Fourier transform
(only in the spatial variable) of trajectories that satisfy a single scalar PDE, which will be
used in proving our main result (Theorem 5.2).

LEMMA 5.1 If p € C[n, £] andw € W; is such thaDpw = 0 and(w, ¢) = 0 for all
¢ € D(R?) with supfp) C R x (—o0, 0), then

1 .
suppw) C <2—m [V(C,(p)N |R]) x [0, 00),

wherew € D’'(R?) denotes th&ourier transform of w in the spatial direction, defined by

(W, ¥ ® ) = (F[(w)(@], ¥) for ¢ € DR), ¢ € DR). 5)

Proof. Let then-content ofp be generated by € C[n]. Thusp = api, wherep; =
ag+af +---+anéN, ao, ..., an € Cln], with C,(p1) = (1). We have

Dpw = Dpl(Daw) = Dplw:l_ = O,

wherew; := Daw € W, has zero past, that igw1, ) = 0 for all ¢ € D(R?) with
supfe) C R x (—o0, 0).
First we will show thatw, = 0. We have

Ve () Lt tan () (L) 0y =0
g )rrtal o) 5™ Wlox ) \at) ¥1=

Thus for allp € D(R) we obtain

9 NEAYR] LAYNEAY o
ao<ax>(tw1)(<p)+ 1<ax> (tatw1>(<p)+~-~+aN<8X> L(at) w1 | (p) =0.

Upon Fourier transformation we get

. . a\N
ag(2riy) F [(tw1) (¢)] +~--+aN(2my)f[<t (E) wl) (cp)} =0. (6)

From (6), we obtain that the Fourier transformwef in the spatial direction, namelyz,
satisfies

o S (N __
a(2riy)ws + al(27”y)aw1 + -+ an(2riy) (ﬁ) wi = 0.
Applying the uniqueness theorem of Holmgren (see Theorem 5.3.1 on page 125 of
Hormander, 1969), with2 := C{(x,t) e R? | an(27ix) = 0}, & € C(12) defined by

d : (x,t) — —t andxg any point inf2 N (R x {0}), we have

SUPH@T) C [(x, t) € R? | an(27ix) =0, t > o]

TBy the approximation lemma (see, for instance Exercise 11 on page 56 of Carroll, 1969), it follows that (5)
defines a distribution oR2.
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real zeros of ay(2Tte®)
\ support of wi

Y

FIG. 2. The support ofv7.

(see Fig. 2). lfay is a constants£ 0), then we obtainv; = 0 and sow; = 0, and we are

done. Ifay is not a constant then there existk a< N such that(ax, ay) = 1, that is, the
greatest common divisor @ anday is 1. Each half-line irf2 N (R x [0, co)) carries

a solution of the differential equation with polynomial coefficients andis the sum of

these. We prove our claim for each of these summands, because each of these has support
on the corresponding half-line. By means of a translation, we may assume that the half-line

is {0} x [0, 00). Let T € (0, 00). Thenw; is a distribution of finite order iR x (=T, T).

Applying Theorem 2.3.5 (Brmander, 1990, p. 47), it follows that there exist distributions
T1,..., Ty € D'(R), with Ty # 0 such that

J j
- d
=Y (5) ser ™

=AY
in the stripR x (=T, T). Then it can be seen that su@p|—T,1)) C [0, T), since
suppwi) C R x [0, 00). From (7), we have

J
wy = Z 2rixy) ®T;
i1

iNR x (=T, T). SinceDp, w; = 0, we have

9 J
O (55) vi=0

and soDp, (1x ® Ty) = 0, where1, denotes the regular distribution corresponding to the
constant function taking value 1 everywhere. But now we can drop all the terfdg,in
which contain%, leaving a linear ordinary differential operator, sBy,, in only t with
constant coefficients. Owing to our assumption @@t an) = 1, we obtain thapg # 0.
From the fact thaDp,(1x ® Tj) = 0inR x (=T, T), we haveDp, Ty = 0in (=T, T).
SinceT; is zero in(—T, 0), it follows thatT; = 0in (=T, T) (this follows from Theorem
8.6.8 on page 312 of étmander (1990) applied tpg). Sow; = 0inR x (=T, T). But

we recall that the choice &f was abitrary. Hencew; = 0 and finallyw; = 0.
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Finally, we observe that sinde;w (= w1) is zero, upon Fourier transformation in the
spatial variable, we get(2riy)w = 0, and so

suppw) C {y € R | a(2riy) =0} x R.
But we know thatw|(_«, 0)xr = 0 and so
suppgw) C {y € R|a(2riy) = 0} x [0, 00).
Consequently, sugp) C % [V(Cy(p) NIR] x [0, 00), and this completes the proof.

REMARK This result is analogous to the observation that if a tempered distributiod’
satisfies a PDE corresponding to a polynonpighen the support of its Fourier transform is
contained in the intersection of the variety of the polynorpialith the imaginary axes. Of
course, in the case o¥;, since we have a tempered profile only in the spatial direction, we
get a result that is not quite symmetric with respect to the indeterminates in the polynomial.

We now give our main result. The proof is similar to the proof of Theorem 2.3 of
Shankar (1999), in which it is determined when a given submodule is Willems with respect
to the space of tempered distributiord®, In the following theorem, we characterize
the submodules that are Willems with respect to the sp&geof distributions that are
temperecbnly in the spatial direction.

THEOREM5.2 LetR be a submodule oft" such that the correspondings-behaviour,
By, (R), istime controllable. LeR = N} _;Q; be an irredundant primary decomposition
of R, whereQ; is pj -primary in A". Let r ¢ be the integer satisfying X ro < r for
which

Q) Vpi)N(iRxC)£¢,foralli €{1,...,ro},and

@) V(N gyapi ) VAR X ©) =1
Then® (Byy, (R)) = N;2,Qi . In particular,R is Willems with respect tWVs iff ro =r.
Proof. Let us denoteﬂirolei by Ro. Then Rg is independent of the primary
decomposition oR. Indeed, letl be the idean _, o+1Pi - Thenl is an ideal such that
Il Ccpi,i =ro+1,...,r and thatis not contained in the othgr. (This is because if
ﬂir —rot1Pi CPi forsomei € {1,...,r o}, then we would have

¥£Vp)NGiRxC)CV (m{:r0+lpi ) N (R x C) = ¢,
acontradiction!) Consider the ascending chain of submodules
R:HCR:1)C....

Then this chain stabilizes to the submodm?é’lei , and this submodule is therefore
independent of the primary decomposition.

Part 1. We first show that th&Vs;-behaviour ofRg equals that oR. AsR C Ry, it suffices
to show that

By, (R) C By, (Ro). 8
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Clearly w1 = 0 belongs to the/Vs-behaviour ofR. If (8) is not true, then there exists a
wy € Byy, (R) and ay € Ro \ R such thatD, w, # 0.

SinceByy, (R) is time controllable, there exists a trajectarye By, (R) that patches
up wi andws along the time direction. If necessary, by shifting beforehand, we can
ensure thaD, w # 0. But for everyp € (R : x), we have

Dp(DX'LU) = Dpxw = 0,

and so it follows from Lemma 5.1 that

supi D, w) C (% [V(C,(p) miR]) x R.

Since this is true for each € (R : x), we obtain
suppD,w) C <ﬁ [VC,(R:x)N |R]) x R. 9)
AsR=n{_,Qi,(R: x) =N _,(Qi : x),and asy is in every one oR1, ..., Qr, and
not in at least one of the oth€; , it follows thate((R : x)) is equal to the intersection of a
subset (sayi ., k € {1, ..., K}) of pr o1, ..., pr (Qj ispi -primary). Thus it follows that
Cy (NE_1piy) = Cy(x((R: 1)) C t(Cy(R: )

and so
V(C,(R: x)) = V((Cy(R: x))) C V (Cy (NE_ypi ) C V (c,7 (m{ st )) .

Consequently, from (9), we obtain

suppD, w) C (% [v (c,7 (m{ T )) n iR]) % R.
But by assumption,
V(N s gi1pi ) N AR x ©) =,
This implies that
supp(@) co

and soD, w = 0. Consequently, we obtaid, w = 0, in contradiction to the assumption
above.

Part 2. Now we show thaRg is the largest submodule of" with the samé\s-behaviour
as that oR. So let

x=[x1 - xw]
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be any element ol \ Rg, and consider the exact sequence

0— A/Ro: x) -2 AY/Ro > A"/(Ro + (x)) —> O,

where the morphism?, above maps the class @fto the class ofp - x, andx is the
canonical surjection. Sindg is an injectiveA-module (see for instance Theorem 3 on
page 305 of Palamodov, 1970), it follows that the sequence

0 — Homy(AY/(Ro + (x)), C*) — Homy(AY/Rg, C*)

2% Homa(A/(Ro : %), C®) —> 0

is exact. Observe that the above sequence is, by Malgfange

0 — Bo(Ro+ (X)) —> B (Ro) 2 Be((Ro: 1)) —> 0.

AsRp = mir 2,Qi, x isnotin at least one of thes@ , so thatV (Rp : x) is the union of
some of theV (p1), ..., V(pr,). From the proof of Theorem 2.2 on page 1823 of Shankar
(2001), it follows that the union of these varieties of theis contained in the variety
of Iw(Ro), where lw(Rg) denotes thewth) determinantal ideal oRg; namely, we have

Ui 25V (pi) C V(Iw(Ro)).

Each of the varietie¥ (p1), ..., V (pr,) intersectsR x C, and hence so does the variety
of (Ro : x). Let (xo, to) be some point in this intersection. Consider the smooth function
wo : (X, 1) > D00 in Hom4(A/(Ro : x), C™), that is theC>-behaviour of the
ideal (Rp : x). Asthe spatial coordinate afxo, tg), namelyxo, is purely imaginary, it
follows thatwg belongs ta/Vs. From the last part of the proof of Theorem 2.3 on page 371
of Shankar (1999))wg is the image of an element in th@*°-behaviour ofRg, which
is of the formu(x, t)e!*D-0.0)) where the components af are polynomials. Thus,
in fact, wg is the image of an element in th&;-behaviour ofR, that is an element in
Homy4 (A"/Rp, Ws). By exactness of the sequence above, it then follows that this element
in the W;-behaviour ofRg cannot be in théV;-behaviour ofRg + (x ). This proves that
Ro is Willems with respect taV;. O

REMARK We note that we made the assumption tigt,_(R) is time controllable. Such

a corresponding assumption is not present in Theorem 2.3 of Shankar (1999). Indeed, it
is certainly desirable to have a test for the Willems-ness of a submodule purely in terms
of R, that is, purely in terms of algebraic computations wihHowewer, in the case of

the spaceéV, we suspect this task to be a formidable one, if at all possible. The reason
is that there is no simple relation available between the support of the Fourier transform
(in the spatial direction) ofv and the algebraic properties of the polynomgasuch that

Dpw = 0. This relation lies at the very core of Theorem 2.3 in Shankar (1999), where
indeed owing to the choice of the space, nandIl§R"), an elegant such relation exists. In

our case, for the spadé’s, arelation exists, provided we assume thahas, for instance,

past equal to zero. (This is precisely the content of Lemma 5.1 above.) Because of this

THe observed that Hom(AY/R, W) ~ By,,(R). See Malgrange (1963).



230 A. J. SASANE

lacuna in the knowledge of algebraic-analytic results, one makes the assumption of time
controllability with respect tdV,. Of course, an algebraic test &ithat characterizes the
property of time controllability of the corresponding behaviour with respedt/towill

yield purely algebraic assumptions in the theorem above. However, an algebraicRest on
characterizing timecontrollability is presently not known and it is an open problem (see
Sasane, 2003).

EXAMPLES

(1) LetR = (1 + n). Then theW;-behaviour given byR is zero, and so it is trivially
time controllable. Clearly witlQ; := R, it follows thatR = Q1 is an irredundant
primary decomposition oR, with Q being 1 =) (n + 1)-primary in A. Since
V() N((R x C) = (-1 x C)N (iR x C) = @, R is not Willems with respect to
Ws. We haveR(Byy, (R)) (being an empty intersection) is equalio = A.

(2) LetR={[ &£ —n? —n ]). Thenthe corresponding’s-behaviourByy, (R), isthe

w1 ] € W2 such that
w2

o (a\| @
ot \ax) |"*7 ax™?

First of all we will show that

set of allw = [

Kl
By, (R) = {w € V\{f | there exists anl € W, such thatw = [i _8)((&)2} I} .
at dIX

From Theorem 2.2 it follows that there existslgre Ws such that

== _I
w1 = .

Let us definavy o to be[(,;r’—t — (a%)z] lo. Then we have

s | o\ 2, _|2 9 \?
ox 207 ot " \ax) |ax " ot \ax/) |™"

Consequently

%(wz —w20) =0,
and so from Lemma 2.5 (Cotroneo & Sasane, 2002), it follows that there exists a
T € D'(R) such thatw = wy o + 1x ® T, whereik denotes the regular distribution
corresponding to the constant function taking value 1 everywhereSletD’(R)
such thatS = T that is,Sis a primitive of T (that such a primitive exists follows
for instance from the fundamental principle Bf(R)). Define

l =lo+1x® SeWs.
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We have
B
—| =

a(I+ ® 9 8|
—_— 1 = — = w1,
aX 0X 0 X axo !

and

w2=w2,0+1X®T
IE 9 \?]
at aX
T 9 \?]
T ot X
_[a (a7,
T ot X '
Now from Theorem 4.1 in Sasane (2003), it follows tHaiy_ (R) is time
controllable.

It can be checked that witQ; = R, R Q1 is an irredundant primary
decomposition oR, with Q1 being 1 =) O-primary in.A2. Thus

9 3\?
|0+[ﬁ_<a_x) ](lx®s)

(lo+1x®9

V(p) N (R x C) =C?>N (iR x C) = iR x C # -

Thusro =r =1, and consequentR is Willems with respect toV;.
LetR= ([ n+D(E—n? —(+Dn ]). Inlight of the previous example, it is
easy to see that

. 0
By, (R) = {w € WSZ | there exists anl € W, such that (5 + 1> w

z[——_(—)H

Hence from Theorem 4.1 in Sasane (2003), it follows tBat, (R) is time
controllable.

It can be checked that ifQ; [&€-n* -n]) and Q2
([n+1 0],[0 n+1]) thenR = Q1 N Qy is an irredundant primary
decomposition ofR, with Q; being 1 =) O-primary in A%, and Q2 (p» =)
(n + 1)-primary in.A2. Thus

V(p) N(RxC) =C?>N (IR x C) =iR x C # ¢
while
V(p2) N (IR x C) = (=1 x C) N (iR x C) = ¢.

Thusrg =1 < 2 = r, and consequentlR is not Willems with respect tdVs. In
fact, we haveR(Byy, (R)) = Qz.
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