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Abstract

Conservation planning studies typically treat threats as exogenous and evaluate siting
rules from a planner’s perspective. We argue that conservation is often contested, and
develop a sequential land-claim game that models conservation as a dynamic, adversarial
contest between conservationists (“Greens”) and developers (“Farmers”). We explore the
framework in a Claims World that isolates the role of rivalry and leakage, and in a Budget
World that introduces procurement constraints, decomposing outcomes into a Pure Strategy
Effect (PSE)—the intrinsic quality of sites a strategy targets—and a Displacement–Leakage
Effect (DLE)—the spillover gains from displacing developers’ preferred sites when leakage is
incomplete. Our results generate several counterintuitive patterns. First, the link between
threat-weighting and additionality breaks down once developer adaptation is allowed. Sec-
ond, reducing leakage can paradoxically increase misallocation. Third, the textbook ratio-
greedy rule (maximise efficiency) is systematically dominated by the simple value-greedy
rule (maximise environment): we explore this ’knapsack reversal’ more formally and show
how it can produce a ’disappointment gap’ between static (Marxan) planning and dynamic
implementation. We then transport our dynamic contest to a Bolivia-based planning board
constructed from biophysical data and confirm that the qualitative rankings from the simu-
lations carry over, and adversarial outcomes lie well below the static cost-effectiveness upper
bound. Tiny-grid equilibria, formal analysis and robustness exercises in the Appendix show
that these patterns are consistent with best-response logic rather than artefacts of modelling
choices. Together, the results suggest that robust conservation in contested landscapes re-
quires strategies that anticipate adaptation, not just static threats. Replication materials
and code are available via GitHub and archived on Zenodo (DOI: 10.5281/zenodo.17114490).
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1 Introduction

Vital ecosystem services and innumerable species are increasingly threatened by global land-

use change (Ceballos et al., 2015; Tilman et al., 2017; IPBES, 2019; Almond et al., 2022). In

response, more than 190 countries have committed to protecting 30% of the Earth’s land and

ocean by 2030—the “30×30” goal of the Kunming–Montreal Global Biodiversity Framework

agreed in 2022 at the fifteenth Convention on Biological Diversity. Although over 300,000

terrestrial and marine protected areas already safeguard more than 16% of Earth’s landmass

and 8% of its oceans, meeting the 30×30 target will require nearly doubling terrestrial protection

and quadrupling marine protection, demanding an unprecedented acceleration of conservation

efforts.

Targeting these new protections efficiently poses substantial financial and logistical chal-

lenges, and no consensus has emerged on the most effective siting strategies. Early work em-

phasized maximizing conservation value (e.g. species representation) while largely ignoring

heterogeneity in costs and threats (Margules et al., 1988; Faith, 1992). Later studies incorpo-

rated these considerations, with many advocating “hot spot” targeting of high-value, high-risk

sites (e.g. Abbitt et al., 2000; Newburn et al., 2006; Game et al., 2008; Venter et al., 2014;

Allan et al., 2019; Hansen et al., 2020). Others, however, highlighted that more remote sites

of lower ecological quality may be cheaper and therefore more cost-effective to protect (Ando

et al., 1998a; Naidoo et al., 2006; Armsworth et al., 2006). More recently, a line of work has

circled back to biodiversity-first approaches, with Dinerstein et al. (2017, 2020, 2024) arguing

that securing the highest-value ecological sites remains the most reliable strategy.

Empirical studies have likewise produced divergent conclusions. Some document that con-

servation programs in practice follow Hot Spot principles (Balmford et al., 2000; Wünscher

and Engel, 2012; Lu et al., 2023), while others find that protected areas are disproportionately

established in low-threat, remote regions—consistent with cost-minimizing or “location-biased”

siting (Andam et al., 2008; Joppa and Pfaff, 2011; Pfaff et al., 2015; Baldi et al., 2017; Sims,

2014). For example, Dinerstein et al. (2024) show that since 2018 only a small share of newly

protected areas has overlapped with rarity hotspots, underscoring the persistence of location

bias in global conservation expansion.
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In the last two decades, recognition of this tendency toward low-threat siting, combined

with the growing integration of conservation finance with carbon markets, shifted attention

toward the principle of “additionality”—the requirement that conservation outcomes exceed the

“business as usual” (BAU) trajectory of a non-intervention scenario (Wunder, 2015; Delacote

et al., 2024). Additionality has become the dominant evaluation criterion for conservation

programs (Andam et al., 2008; Joppa and Pfaff, 2011). Recent evidence from voluntary carbon

markets suggests that buyers are increasingly rewarding credits that address concerns over weak

baselines and “questionable additionality,” with newer vintages and more robust methodologies

commanding significant price premiums (Forest Trends’ Ecosystem Marketplace, 2023). The

appeal of requiring credible additionality lies in directing scarce resources toward immediate

threats (Engel et al., 2008; Aspelund and Russo, 2023), yet by channeling investments to frontier

lands near agricultural or urban expansion, high additionality often implies sharp socio-economic

and political conflicts.

Thus, across the literature there is little consensus on the most effective targeting strat-

egy. Moreover, most academic work has modeled conservation either as an optimal allocation

problem for a benevolent planner balancing environmental and economic objectives (e.g. Ando

et al., 1998a; Delacote et al., 2024), or as a cooperative framework emphasizing agreements,

compensation, or tradable rights (e.g. Ferraro and Simpson, 2002; Engel et al., 2008). These

perspectives have yielded valuable insights into cost-effectiveness and institutional design, but

they assume away the adversarial dynamics that characterize many real-world conservation

conflicts. Indeed, implementing cooperative agreements is challenging - dual-objective projects

that simultaneously aim to promote equity and human development alongside conservation fre-

quently achieve suboptimal environmental outcomes (Delacote et al., 2014; Amin et al., 2019)

- and political (or physical) conflict around conservation is common around the world. From

Brazil, where conflicts between agribusiness interests and environmental agencies have produced

abrupt swings in Amazon land-use policy depending on which coalition controls Congress and

the presidency (e.g. Fearnside, 2017), to Wisconsin, where the legal battle between conservation-

ists and developers reached the state Supreme Court (Knowles-Nelson Stewardship Program,

2024), land use decision often emerge from political arenas where actors with fundamentally

different priorities struggle over institutional levers of power.

Bolivia offers a further case in point. From the creation of Sajama National Park in the
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1930s to the wave of protected-area expansion following the 1992 Rio Earth Summit, its con-

servation landscape has reflected a continuous tug-of-war between pro-development interests

(agribusiness, extractive industries, infrastructure) and pressures from civil society and inter-

national norms. Protected areas that were once located in remote regions are now increasingly

exposed by new roads, oil exploration, and agricultural shifts. In Section 5 we highlight how our

analytical framework can shed new light on historical trends in Bolivia and on the performance

of alternative conservation strategies on a real, contested landscape.

In this adversarial context, a critical question arises: how do widely-practiced conservation

strategies perform when developers actively respond to conservation pressure? Do threat-based

targeting rules deliver the additionality they promise? Can cost-effectiveness heuristics guide

siting when costs signal rival demand? A small strand of prior work has examined conservation

in explicitly non-cooperative settings: Angelsen (2001) models forest appropriation as a contest

between state and local actors, showing that outcomes hinge on enforcement and developer

responses, while Colyvan et al. (2011) formalize a “conservation game” that demonstrates in-

efficiency at equilibrium without ranking strategies. Both underscore how conflict can drive

outcomes far from the social optimum, but neither provides a systematic comparison of the

siting rules debated in conservation practice.

Our contribution is to build a computational framework for comparing conservation strate-

gies under dynamic, adversarial conditions. We model land allocation as a sequential contest

between conservationists ("Greens") and developers ("Farmers"), where each side follows a fixed

strategy and developers may re-target when blocked. We compare several widely-discussed con-

servation approaches—maximizing environmental value, targeting biodiversity hotspots, block-

ing high-threat development, and maximizing cost-effectiveness—across varying levels of "leak-

age" (the degree to which developers can substitute alternative sites when their preferred projects

are blocked). Farmers, in turn, can pursue a simple profit-maximizing strategy, or a ’strate-

gic’ approach that prioritizes plots that are at higher risk from being claimed by the Greens.

Because Farmers also follow fixed strategies, we can calculate the Farmers’ preferred ’Business

as Usual’ (BAU) trajectory of land use, and directly observe deviations from BAU induced by

Green strategies. Monte Carlo simulations then assess how the Green strategies perform against

both Farmer strategies in terms of conservation outcomes, additionality, and welfare.
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We explore this contest under two institutional variants. In Claims World, teams allocate a

fixed number of "claims" (one claim per plot), isolating the core mechanics of sequential compe-

tition and leakage. In Budget World, teams purchase plots subject to budget constraints, with

prices equal to agricultural values. This introduces an adversarial procurement dimension and

stress-tests whether Claims World insights survive under explicit resource constraints. In both

Worlds the framework isolates two distinct mechanisms: the Pure Strategy Effect (PSE), which

reflects the intrinsic quality of sites a strategy directly targets, and the Displacement–Leakage

Effect (DLE), which captures additional gains when blocking developers BAU plots under imper-

fect leakage. This decomposition clarifies why strategies succeed or fail in ways that aggregate

outcome measures obscure.

This approach differs from the usual game-theoretic focus on deriving equilibrium strate-

gies in closed form: for the dimensionality of our games, full analytic solutions are intractable.

Instead, we run a computational horse race, evaluating how fixed strategies perform when sub-

jected to adversarial pressure and endogenous developer responses. Mechanically, our model

is best viewed as a two-player alternating draft (picking-sequence) game over indivisible plots

(Brams and Kaplan, 2004; Budish and Cantillon, 2012). In Claims World, each side holds a

fixed stock of claims (one claim secures one plot) and the teams take turns selecting remain-

ing plots until their claims are exhausted. In Budget World, the same alternating-pick logic is

combined with procurement constraints: teams purchase plots subject to remaining budgets,

with prices tied to developers’ valuations. Leakage makes this draft-like contest state depen-

dent: when Greens preempt plots that Farmers would have chosen under their business-as-usual

plan, Farmers’ effective future choice set is reduced via claim/budget deductions when leakage is

incomplete. This sequential-draft structure captures the core tension between offensive play (se-

curing intrinsically valuable sites) and defensive play (preempting rival targets), while allowing

the opportunity set to evolve endogenously over play.

Our simulations yield several striking and robust findings. In Claims World, threat-weighting

does not reliably produce additionality once developer re-targeting is endogenised. Under high

leakage, pure threat-chasing (blocking developers’ preferred sites) performs no better than ran-

dom protection, and can even do worse when it diverts effort away from intrinsically valuable

sites. Moreover, reducing leakage can paradoxically increase welfare losses by shifting high-

agricultural-value plots into conservation without commensurate ecological gain. Because de-
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velopers can no longer substitute freely, successful blocking increasingly implies converting plots

that optimally belong in agriculture, even when the environmental gains are modest.

Budget World reveals perhaps our most striking result - we uncover a dynamic knapsack

reversal: once developer re-targeting and adversarial play are modeled explicitly, a simple

value-first rule (‘buy the highest-E sites’) systematically outperforms the canonical ratio-greedy

cost-effectiveness heuristic often used in much of the planning literature as a simplified analogue

of static Marxan-style planning under a passive-developer assumption. When cost signals where

rivals are concentrating, contesting expensive sites is more effective than avoiding them. This

pattern is conceptually related to insights from contest theory and bilevel knapsack models,

where competition is endogenously drawn to attractive opportunities and ‘efficient’ targets can

become overcontested (Kovenock and Roberson, 2010; Pferschy et al., 2021; Fischetti et al.,

2019). However, to our knowledge it has not previously been demonstrated in a two-sided

sequential contest, nor in the context of conservation planning heuristics.

To ground these computational findings, we connect simulation patterns to best-response

logic in tractable polar cases (Appendix A8). At full leakage (L = 1), optimal Green play reduces

to a myopic preempt-or-value rule; at zero leakage (L=0), it becomes an e-first threshold with

a BAU bonus. These limiting results rationalize why threat-chasing erodes as leakage rises and

why value-first rules dominate against strategic developers. We formalize the Budget World

dominance result as Theorem 4.1 (with proof sketch in Appendix A8.9), establishing conditions

under which value-greedy purchasing strictly outperforms ratio-greedy selection. Tiny Grid

equilibrium exercises (Appendix A8.3) demonstrate these are not artifacts of modelling choices

or Farmer heuristics, but reflect robust features of adversarial sequential contests.

Finally, to bring our stylized computational framework to real data, we then exploit our

rich high-resolution maps of ecosystem-service values and agricultural potentials in Bolivia

to construct a hydrologically coherent planning-unit (PU) "board" for the country, compute

PU-level environmental and agricultural scores, and re-run the competition between heuristic

Green strategies facing both naïve and strategic Farmers. This approach also allows us to

further compare our dynamic Budget World outcomes to a static Marxan-style cost-effectiveness

benchmark and demonstrate that the patterns observed in stylised Monte Carlo grids—most

notably the dominance of value-first over ratio-greedy rules and the fragility of pure threat-
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chasing—persist when the contest is played out on a landscape derived from real bio-physical

patterns.

The remainder of the paper proceeds as follows. Section 2 sets up the baseline Claims

World contest, defines leakage, and introduces the Green and Farmer heuristics together with

the PSE/DLE accounting. Section 3 reports the baseline Monte Carlo results across leakage

levels and developer behaviours, covering conservation, additionality, and welfare trajectories.

Section 4 extends the contest to a Budget World with prices equal to agricultural values, states

and discusses Theorem 4.1 on leakage-invariant dominance in Purchased Conservation, and

compares Max Environment to Max Efficiency. Section 5 then turns to Bolivia. Section 5.1

briefly summarises the evolution of the Bolivian protected-area network and its interaction

with agricultural expansion, while Section 5.2 uses the same data to build a Bolivian planning

board, derive PU-level environmental and agricultural scores, run the Green strategy competi-

tions, and compare dynamic Budget World portfolios to a static Marxan-style cost-effectiveness

plan. These exercises show that the qualitative rankings from the simulations carry over to

the Bolivia landscape, and they quantify how far adversarial outcomes sit below the static

upper bound. Section 6 concludes and discusses policy implications and broader lessons for

conservation planning under adversarial dynamics.

Robustness and extensions (correlated values, unequal power, heavy tails, and spatial exter-

nalities) appear in Appendices A2–A6; the formal Budget World setup and theoretical results

are in Appendices A7–A8; Appendix A9 supplements the Bolivian case study with descriptive

statistics and provides additional details of the construction of the Bolivia Board. Replication

materials and links are in Appendix A10.

2 Simulation Framework: Baseline Claims World

In our baseline simulation we explore the outcomes from decisions to conserve or develop land

that are inherently dynamic, iterative, and politically contested, modelled as adversarial com-

petition between conservationists and developers. To capture this complexity, we propose a

Monte Carlo simulation framework that models the behaviour of two teams: the Greens (con-

servationists) and the Farmers (developers) who each follow a fixed strategy. We then compare
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the land use patterns and welfare outcomes resulting from different combinations of Green and

Farmer strategy under different levels of leakage.

The Grid

We begin by randomly populating a grid of land “plots” (grid cells) with two attributes: a

conservation value and an agricultural value. In the game these values are interpreted as the

net present social benefit of conserving or developing a plot, respectively, but more generally

they can represent any value space one believes the two teams are contesting. We assume that

while the intensity of team preferences may differ from the social valuations, the rank ordering

of plots is preserved—farmers prioritize plots in order of agricultural value, conservationists

in order of conservation value. The grid serves as a pragmatic abstraction: it contains no

spatial information, so cells that are distant on the grid may correspond to adjacent plots

in reality, and vice versa. The grid can be initialized to simulate a range of ecological and

geographic scenarios by varying the correlation between conservation and agricultural values.

In our baseline analysis we assume a correlation of zero, but Appendix Sections A2 and A3

explore outcomes under positive (ρ = 0.3) and negative (ρ = −0.3) correlation, respectively.

Both plot values can be viewed as comprehensive measures that embed dynamic externali-

ties and other intrinsic characteristics affecting their suitability for conservation or development,

and we assume the same rank ordering for private values. For example, while global protected

areas have been shown to reduce forest loss on average (Yang et al., 2021), their effectiveness is

highly heterogeneous (Leverington et al., 2010; Joppa and Pfaff, 2011; Geldmann et al., 2019;

Duncanson et al., 2023; Delacote et al., 2024). In our framework, such heterogeneity is incorpo-

rated directly into the conservation value assigned to each plot. A negative correlation between

agricultural and environmental values can therefore represent contexts where it is legally or

institutionally more difficult to secure conservation outcomes on land with high development

potential.

2.1 Claims and Rounds

In Claims World, after the grid is populated, a fixed number of claims—equal to the number of

grid cells—are divided between the two teams. One claim secures one plot and in each round
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the teams then take turns spending their claims to secure plots. Mechanically, then, Claims

World is an alternating draft (picking sequence) over indivisible plots: teams take turns selecting

remaining plots until claims are exhausted. By varying the number of rounds (for a grid size

of 100 the maximum number of rounds is 50), we can adjust the granularity of the game. In

our baseline we allow for 50 rounds in which each team spends at most one claim per round.

However, it is possible to allow each team to claim a different number of plots per round by

varying the allocation of claims and the number of rounds, thereby simulating relative differences

in economic or political power. For example in the Appendix section A4 we explore outcomes

under an unequal division of power in which Farmers are initially allocated 70% of the claims.

We define the Farmer’s "business-as-usual" "BAU set" to be the static benchmark or reference

point set of plots that Farmers would claim given the Farmer’s unconstrained preferences before

the game starts. Since the Farmer BAU set is perfectly known at the beginning of the game, it

can be used to calculate additionality and leakage, as explained below.

Leakage

Synthesizing evidence across land-intensive interventions, Searchinger et al. (2018) estimate

displacement (or ’leakage’) rates in the range of 20–50% of conserved area toward alternative

locations when land is removed from the feasible development set. Complementing this global

perspective, spatial panel estimates for reforestation in the Brazilian Amazon find that approx-

imately 10-15% of reforested area is offset by displaced deforestation in surrounding regions

(Silva and Nunes, 2025).

To explore the sensitivity of conservation outcomes to different extents of leakage, we define

leakage in the simulation as the extent to which Farmers are able to re-target their develop-

ment activity when a preferred “business-as-usual” (BAU) plot is pre-emptively claimed by the

Greens. At one extreme, 100% leakage implies that Farmers can fully substitute toward alterna-

tive plots—either within or outside their original BAU set—so that conservation in one location

is offset by development elsewhere. At the other extreme, 0% leakage implies that blocking a

BAU plot permanently reduces the total number of plots that can ultimately be allocated to

agriculture.

We functionally introduce alternative leakage scenarios by reducing the Farmers’ remaining

claims at varying rates when the Greens claim plots that the Farmers would have targeted
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under their preferred BAU land-use pattern. Thus, when leakage levels are 100% there are

no deductions and Farmers can spend all their initial claims; if a plot that the Farmers would

prefer is captured by the Greens, the Farmers simply claim an alternative plot. On the other

end of the continuum, with 0% leakage, one Farmer BAU plot lost to the Greens translates to

a one-claim deduction of any remaining unspent Farmer claims. In between, for example with

25% leakage, every four BAU plots claimed by the Greens result in a loss of one unspent Farmer

claim. We examine leakage levels of 100%, 75%, 50%, 25%, and 0%.

Game Play

In our simulations, each team may adopt one of several strategies that are outlined below in

sections 2.2.2 and 2.2.3. Farmer strategies include Naïve Profit Maximiser and Strategic Profit

Maximiser and their strategy determines a fixed preferred BAU set of plots that is determined

at the start of play. Green strategies include Max Environment, Block Farmers (Maximize

Additionality), Hot Spot, Maximize Difference, and Random. On each grid, we simulate every

possible combination of Green and Farmer strategies across different levels of leakage. This

experiment is repeated 500 times with a new randomly generated grid in each repetition.

Game Conclusion

The game concludes when both teams have exhausted their claims. If leakage<100% any

remaining unclaimed plots are automatically assigned to the Greens in the last round and we

then compute several outcomes: (a) the final total conservation score (the sum of environmental

values for plots held by the Greens); (b) the final degree of additionality achieved by the Greens

(the difference between their actual conservation score and the score they would have obtained

had the Farmers claimed all their BAU plots); and (c) the final percentage total welfare loss

(from the deviation of the final land use pattern from the social welfare–maximizing allocation).

In order to visually differentiate the mechanisms through which strategy and leakage interact

we report both the final average outcome scores for every strategy and leakage combination and

the dynamic trajectories that the outcomes follow throughout the game.

The assignment of unclaimed plots to Conservation only in the last round is done not

because this timing is ‘realistic’ but rather because we want to clearly distinguish between

conservation gains from the strategy and leakage combination itself (what we call the Pure
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Strategy effect, defined below), and conservation gains from the residual left-over plots (what

we call the Displacement-Leakage effect, also defined below), which are determined by different

mechanisms. More specifically, at different levels of leakage the set of available plots to choose

from at any given point changes, so different strategies can lead to different dynamic trajectories.

By allocating all the residual unclaimed plots in the last round we can visually separate this

more subtle Pure Strategy mechanism from the more mechanical Displacement-Leakage increase

in final Conservation score from residual unclaimed plots, which may also be different across

different strategies. Thus, we credit DLE at the end purely as an accounting device so that

PSE and DLE are visually separable. Final totals are invariant to this choice. Additionality

exhibits no end-round jump because residual plots are almost never in the Farmer BAU set.

2.2 Formal Setup (Baseline Claims World)

The baseline game, which we now describe more formally, is mechanically an alternating draft

(picking sequence) over indivisible plots, where teams take turns selecting remaining plots until

claims are exhausted. We first generate a 10× 10 grid of plots, each with a randomly assigned

environmental value and an agricultural value.

Let P represent the set of land plots, where P = {pi}, with N = 100 plots indexed by

i = 1, . . . , N . Each plot pi is associated with two values:

ei : the environmental value of plot pi, where ei ≥ 0

ai : the agricultural value of plot pi, where ai ≥ 0

The two land attributes, ei and ai, are initialized using a bivariate random number generation

process designed to create two values whose correlation can be determined by the user to

simulate various underlying ecosystems. Specifically, each pair of land attributes (ei, ai) is

drawn from a Gaussian copula:

(ze, za) ∼ N

0,

1 ρ

ρ 1




where ze and za are standard normal variables, and ρ denotes the latent correlation parameter

in the bivariate normal used to generate the Gaussian copula. These are then transformed into
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uniform variables: ue = Φ(ze) and ua = Φ(za), where Φ(·) denotes the cumulative distribution

function (CDF) of the standard normal distribution, mapping each z to u ∈ [0, 1]. Finally, ue

and ua are linearly rescaled to the interval [0.1, 10.0] to produce:

ei = 0.1 + 9.9 · ue

ai = 0.1 + 9.9 · ua

This procedure ensures that the marginal distributions of ei and ai are uniform on [0.1, 10.0]

and induces dependence through a Gaussian copula with latent correlation parameter ρ. Because

the transformations are monotone, the resulting rank dependence is a deterministic function of

ρ; in particular, the implied Spearman rank correlation is

ρS = 6
π

arcsin
(

ρ

2

)

(and Kendall’s τ = 2
π arcsin(ρ)). Appendix A5 shows that our results are robust to heavy–tailed

environmental draws.

It is important to note that the choice of a grid structure is purely practical — there is no

spatial information in the grid. The framework can map to any geographical arrangement or

size distribution of plots. We consider the values to be the net present value, including any

dynamic externalities, if the plot were protected (for the environmental value) or developed

(for the agricultural value), and we assume that the rank ordering of values also encodes the

multidimensional concerns of each team that drive their siting preferences.

Guided by the observed sequential evolution of agricultural land and protected areas (for

example depicted in Figure 1), we simulate the dynamic decisions of two ‘teams’, the Farmers

and the Greens, competing over a set number of periods to claim plots of land for agriculture

or conservation.

Let Tf and Tg represent the two teams, Farmers and Greens, respectively. Each team T ∈

{Tf , Tg} has an initial allocation of claims CT , where: Cf + Cg = 100, i.e. the total number

of plots. By varying the allocation of claims between the Greens and Farmers, we simulate

differing degrees of political power.

The simulation runs for R rounds. In each round r, Farmers (team Tf ) move first, followed
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by Greens (team Tg). The "Farmers move first" convention is the more conservative test of the

value-greedy Green strategy Max Environment; tiny-grid tests (Appendix A8.3) illustrate that

letting Greens move first gives it a slight advantage by allowing it to secure the top-value plot

unopposed, though this advantage dissipates rapidly as grid size increases.

Let Cr
T denote the number of claims team T can use in round r. If the game is played over

R rounds, then:

Cr
T = CT /R

where CT is the total number of claims allocated to team T . For example, if R = 50, both

teams claim 1 plot per round, and if R = 25, they claim 2 plots per round.

Let Sr
f ⊂ P and Sr

g ⊂ P denote the sets of plots claimed by Farmers and Greens in round

r, respectively. The total set of plots claimed by each team after round r is:

S≤r
f =

r⋃
k=1

Sk
f and S≤r

g =
r⋃

k=1
Sk

g

A plot pi can only be claimed once, so S≤r
f ∩ S≤r

g = ∅ ∀r.

2.2.1 Leakage

Let SBAU
f represent the set of plots that the Farmers would claim under the ‘business as usual’

(BAU) scenario if they were allowed to use all their claims without any interference from the

Greens. During the game, if the Greens claim a plot that is part of the Farmers’ BAU set SBAU
f ,

then the Farmers must deviate from their business-as-usual desired trajectory. If conservation

efforts face 100% leakage, then the Farmers can simply claim an alternative plot elsewhere in

the grid that may or may not be in SBAU
f . Thus in the baseline case when there is 100% leakage,

both teams spend all their initial claims, resulting in all plots P = {pi} being allocated by the

end of the game.

We then vary the degree of leakage, denoted as Leakage ∈ [0, 1] by reducing the Farmers’

remaining unspent claims proportionally for every plot pi ∈ SBAU
f claimed by Greens, such that

for example:
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• For Leakage = 0.5, Farmers lose 1 unspent claim for every 2 plots in SBAU
f claimed by

Greens.

• For Leakage = 0.0, Farmers lose 1 unspent claim for every 1 plot in SBAU
f claimed by

Greens.

The game concludes when both teams have exhausted their claims, or when no further plots

are eligible for claim. If Leakage < 100% and the Greens have claimed plots in the Farmers’

BAU set, there may be some residual unclaimed plots at the end of the game, pi /∈ (SR
f ∪ SR

g )

and these are automatically assigned to the Greens in the final round.

2.2.2 Farmer Strategies

Farmers choose plots following two possible simulated strategies:

1. Naïve Profit Maximizer: Farmers claim plots based solely on the highest agricultural

value, ignoring the environmental value:

Sr
f = max (ai).

2. Strategic Profit Maximizer: Farmers recognize that the Greens may want to claim

good agricultural plots if they are also environmentally valuable, so they may choose plots

with slightly lower agricultural value but higher environmental value to pre-empt likely

Green targets. Formally, let τ ∈ (0, 1) denote the anticipated Green claim share (baseline

τ = Cg/N). Farmers rank all plots by environmental value in descending order and treat

the top ⌈τN⌉ plots—those most likely to be chosen by a value-greedy Green rule—as the

“risky” set Rτ . In each round they claim the available plot with the highest ai within Rτ ;

once Rτ is exhausted they continue by descending ai in the remaining “safe” set Rc
τ .

Sr
f =


max(arisky

i ) if |arisky
i | ≠ 0,

max(asafe
i ) if |arisky

i | = 0.

This stylized behavior has clear parallels in empirical settings where landowners antici-

pate conservation interventions and adjust accordingly. For example, studies of the U.S.
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Endangered Species Act document preemptive timber harvests or habitat destruction to

avoid regulatory restrictions (Lueck and Michael, 2003; Langpap and Wu, 2017).

2.2.3 Conservation Strategies

In each round, Greens evaluate each available plot and choose the plot that maximizes a weighted

function of ei and ai:

Sr
g = max f(eα

i , aβ
i )

where coefficients α and β are respective weights of the conservation and agricultural scores

that correspond to different alternative strategies as described below.

1. Max Environment (value-greedy strategy) Conservationists claim plots with the

highest environmental scores. This corresponds to: α = 1 and β = 0:

Sr
g = max(ei).

2. Block Farmers (threat-greedy strategy) Conservationists claim plots with the high-

est agricultural scores to block farmers from claiming them. This corresponds to α = 0

and β = 1:

Sr
g = max(ai).

3. Hot Spot (product-greedy strategy) Conservationists claim plots with both high

environmental scores and high agricultural scores. The default is α = 1 and β = 1:

Sr
g = max(ei × ai).

4. Maximize Difference (net social benefit strategy) Conservationists claim plots

where the difference between environmental and agricultural values is greatest:

Sr
g = max(ei − ai).
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5. Random Protection: Conservationists claim plots at random:

Sr
g = rand(ei).

2.2.4 Baseline Outcomes

We then conduct a comparative statics analysis by running Monte Carlo simulations in which

a grid is populated with environmental and agricultural scores according to the specified pa-

rameters. Each farmer strategy is run against all Green strategies on the same grid, ensuring

comparability. This is repeated 500 times, with the grid randomly repopulated each time, and

the average of the following outcomes is recorded.

1. Final Conservation Score. The final conservation score is the sum of the environmental

values in the plots claimed by the Greens during the game, plus any remaining unclaimed

plots at the end that are left undeveloped:

Conservation ScoreGreen =
∑

pi∈S≤R
g

ei +
∑

pi /∈(SR
g ∪SR

f
)

ei.

Let SBAU
f ⊂ P denote the Farmer BAU set defined on the initial grid. Given this BAU

pattern, let SBAU
g ⊂ P be the set of plots the Greens would hold if Farmers were allowed to

claim all plots in SBAU
f without interference. Final conservation can then be decomposed

as the sum of the Pure Strategy Effect (PSE) and the Displacement–Leakage Effect (DLE),

Cfinal = PSE + DLE.

(a) Pure Strategy Effect (PSE) — the inherent quality of the conservation targets

selected by the strategy:

PSE =
∑

pi∈S≤R
g

ei.

(b) Displacement–Leakage Effect (DLE) — the additional conservation benefit re-
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alized due to effective targeting of Farmer BAU plots under incomplete leakage:

DLE =
∑

pi /∈
(

S≤R
g ∪S≤R

f

) ei.

Residual plots are credited at the end of the game purely as an accounting device to

separate strategy-driven dynamics from mechanical residual gains. Because residual plots

are, for all practical purposes, almost never part of SBAU
f , this convention produces an

end-of-game “jump” in conservation (through DLE) but not in additionality. Final totals

are invariant to when these residuals are credited; the convention simply clarifies how the

two mechanisms operate visually in Figures 1–6.

2. Additionality. Additionality is measured as the actual conservation score achieved by

the Greens minus the conservation score they would have obtained had the Farmers been

allowed to claim all their BAU plots:

ConservationBAU =
∑

pi∈SBAU
g

ei,

ConservationActual =
∑

pi∈S≤R
g

ei +
∑

pi /∈(SR
g ∪SR

f
)

ei,

Additionality = ConservationActual − ConservationBAU .

3. Total Welfare Loss. The total welfare loss (%) is the percentage decline from the

maximum total welfare that could be achieved to the actual welfare realized:

Wmax =
∑

pi∈P

max(ei, ai), Wactual =
∑

pi∈Sf

ai +
∑

pi∈Sg

ei,

Welfare Loss(%) = 100 · Wmax −Wactual

Wmax
.

Throughout, we use the term welfare to denote the total value of plots assigned to their

preferred use, measured by
∑

i max(ei, ai) at the social optimum and by realized assignments

in the simulations. To the extent that ei and ai represent full social values, any misallocation

corresponds to a deviation from maximum social welfare. More generally, welfare loss can be

read as an efficiency loss within whatever value space one believes the teams are contesting.
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2.3 On Heuristics vs. Equilibrium.

Our objective is to conduct a computational comparison of widely discussed conservation strate-

gies and to provide a theoretical interpretation of the results. To establish generality and aid

interpretation, Appendix A8 characterizes best-response logic in tractable limiting cases and

compares the heuristic strategies with exact equilibria on tiny-grid games. These analyses ratio-

nalize and validate the strategy rankings reported in Sections 3 and 4—for example, the erosion

of threat-chasing as L ↑ 1 and the dominance of value-first rules against strategic develop-

ers—showing that the heuristic comparisons capture essential features of sequential adversarial

dynamics rather than artifacts of the computational framework.

3 Baseline Claims World Simulation Results

Our baseline Monte Carlo simulation results compare all Green–Farmer strategy combinations

across leakage levels when claims are initially split evenly and corr(e, a) = 0. Appendix A10 pro-

vides an interactive browser version of the game; Appendix A2 reports the positive-correlation

case (ρ = 0.3); Appendix A3 reports the negative-correlation case (weak legal enforcement);

and Appendix A4 reports the unequal-power case (more Farmer claims).

3.1 Conservation outcomes of Green strategies

We first examine the total conservation achieved (sum of environmental values in conserved

plots). The figures show both final outcomes as well as the dynamic trajectories and Table A1.1

in Appendix A1 reports exact final conservation scores, decomposed into the Pure Strategy Effect

(PSE) and the Displacement–Leakage Effect (DLE), for the three primary Green strategies

against the two Farmer strategies at leakage levels of 0%, 50%, and 100%.

Naïve Farmers

Figure 1(a) shows final scores for all five Green strategies (with shading to indicate 95% con-

fidence intervals) and Figure 1(b) plot dynamic trajectories for the three primary strategies
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against Naïve Farmers.

(a) Final Conservation Scores (b) Dynamic Trajectories

Figure 1: Claims World: Green Strategies and Naïve Farmers — Conservation Scores

As leakage falls, Farmers lose the ability to replace BAU plots captured by Greens, and

residual unclaimed plots at the end are assigned to conservation; final conservation therefore rises

(though additionality need not, since residual plots are rarely in the BAU set; see Section 3.2).

In Figure 1(b), this appears as strategy-specific trajectories (PSE) with differing last-round

“jumps” (DLE).

Against Naïve Farmers, Hot Spot attains the highest final conservation at all leakage levels;

Max Environment is second except at the very lowest leakage. The trajectories clarify why:

Max Environment delivers higher PSE early by focusing solely on environmental value. Hot

Spot initially sacrifices some PSE to block development on high-agricultural/high-environmental

plots, but later reaps gains by securing sites otherwise lost to development; by the final rounds,

its PSE surpasses Max Environment, with DLE adding a smaller extra margin.

A subtle but informative pattern is that Hot Spot’s PSE is lower under 0% leakage than

under higher leakage. Because Hot Spot weights agriculture and environment equally, greater

earlier leakage allows Farmers to remove higher-agricultural plots from the choice set, leav-

ing a later pool with higher average environmental value; under zero leakage, the remaining

high-agricultural plots can draw Hot Spot away from better environmental options, yielding a

nonlinear PSE response to leakage. Even so, Hot Spot’s final conservation is highest at lower

leakage because DLE is larger when more plots remain unclaimed at the end.

By contrast, Block Farmers (pure threat-targeting) yields the lowest final conservation for

all but the lowest leakage. At 0% leakage it can exceed Max Environment in the final score,

but this advantage is entirely mechanical (DLE): Farmers cannot substitute for lost BAU plots.
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Its PSE is consistently below that of Max Environment.

These patterns underscore that ultimate success depends on both components: the feasibil-

ity of protecting land Greens deliberately claim (PSE) versus the effectiveness of suppressing

developer re-targeting (DLE). The end-of-game “jumps” in Figure 1(b) reflect our accounting

convention (residual plots credited at once) rather than a behavioral shift. In realistic settings

where achieving zero leakage is difficult, PSE will typically matter more than DLE. In the 100%

leakage limit, Block Farmers performs no better than Random when corr(e, a) = 0.

Strategic Farmers

Figure 2(a) shows final scores for all five Green strategies (with shading to indicate 95% con-

fidence intervals) and Figure 2(b) plot dynamic trajectories for the three primary strategies

against Strategic Farmers .

(a) Final Conservation Scores (b) Dynamic Trajectories

Figure 2: Claims World: Green Strategies and Strategic Farmers — Conservation Scores

Strategic Farmers move some effort from purely highest-agricultural plots toward high-

environmental plots that are at risk of being claimed, deferring safer high-agricultural/low-

environmental plots to later rounds. With this behavior, the ranking reverses: Max Environ-

ment strictly dominates in final conservation across leakage levels (Table A1.1; Figure 2(a) ).

Block Farmers is strictly dominated by all other strategies (including Random). Figure 2(b)

shows the mechanism: when Farmers also target many high-environmental plots, any deviation

by Greens from an environment-first rule risks losing those to development. Max Environment

thus achieves the strongest PSE and, because the Farmer BAU set contains more environmen-

tally valuable plots, a larger DLE than alternatives.
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3.2 Additionality of Green strategies

We next consider additionality: the realized conservation minus the conservation Greens would

obtain if Farmers could claim all BAU plots.

Naïve Farmers

Figures 3(a) and 3(b) present final additionality for all five Green strategies (by leakage) and

trajectories for the three primary strategies playing against Naïve Farmers.

(a) Final Total Additionality (b) Dynamic Trajectories

Figure 3: Claims World: Green Strategies and Naïve Farmers — Additionality

Final additionality mirrors final conservation because the BAU benchmark is strategy-

invariant. Under high leakage, Block Farmers achieves essentially no additionality, highlighting

that threat-weighting and additionality are not interchangeable. Trajectories are highly nonlin-

ear: additionality only increases when Greens capture a Farmer BAU plot; residual end-of-game

plots are almost never BAU, so (unlike conservation) there is no last-round jump.

Leakage is decisive: at higher leakage, later developer re-targeting erodes early gains, and

in the 100% leakage limit Block Farmers additionality does no better than Random.

Strategic Farmers

Figures 4(a) and 4(b) present final additionality for all five Green strategies (by leakage) and

trajectories for the three primary strategies playing against Strategic Farmers.
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(a) Final Total Additionality (b) Dynamic Trajectories

Figure 4: Claims World: Green Strategies and Strategic Farmers — Additionality

With Strategic Farmers, levels of additionality are higher than with Naïve Farmers because

their BAU sets include more high-environmental plots. Max Environment strictly dominates

at all leakage levels, followed by Hot Spot. Block Farmers is strictly dominated by a wide

margin. Even though Block Farmers and Hot Spot are both threat-weighted, they do not

necessarily yield greater additionality; indeed, the threat-blind Max Environment often secures

higher additionality when developers behave strategically.

Synthesis: Claims World Conservation and Additionality

Three general observations emerge. First, despite appearing ex ante to maximize additionality,

Block Farmers performs poorly: with uncorrelated e and a and iterative play, it often diverts

effort to low-environmental plots; under high leakage, Naïve Farmers simply re-target to next-

best agricultural plots (sometimes with high e), and Strategic Farmers explicitly chase high-e

plots, further undermining measured additionality. Second, the mechanism is endogenous re-

targeting: once a preferred plot is blocked, developers reallocate, so “threat” is not fixed but

adapts to conservation actions. Third, while Hot Spot and Max Environment are the best

performers overall, their relative advantage depends on developer behavior: Max Environment

dominates against Strategic Farmers (higher PSE and often higher DLE), whereas Hot Spot can

edge ahead against Naïve Farmers.

Furthermore, in Appendix A8.3 we show that the relative performance of the Green strategies

is not an artifact of the specific Farmer heuristics we have chosen. Exact tiny-grid equilibria

confirm the ranking and show that in Claims World Hot Spot most closely approximates the

equilibrium Green response on larger grids, with Max Environment next best, and Block Farmers
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collapsing.

3.3 Social Welfare Outcomes of Green Strategies

Finally, we examine overall social welfare outcomes - the shortfall from the maximum attainable

total score when each plot is assigned to its highest-value use. Welfare loss occurs from mis-

allocation, whenever Greens claim (’flip’) a plot that optimally should be agriculture, or when

Farmers flip a plot that should optimally be conserved; the difference between the two values

determines the magnitude of the misallocation.

Naïve Farmers

Figures 5(a)–5(b) present the final outcomes and dynamic trajectories of Welfare Loss for Green

strategies playing against Naïve Farmers.

(a) Final Social Welfare Loss (%) (b) Dynamic Trajectories

Figure 5: Claims World: Green Strategies and Naïve Farmers — Social Welfare Loss (%)

The patterns show that across leakage levels Max Environment yields the lowest welfare

loss, with Hot Spot a close second; Block Farmers exhibits much higher losses. Reduced leakage

modestly lowers Block Farmers’ welfare costs (expected, as some unclaimed plots optimally

belong in conservation), but produces a counterintuitive pattern for the others: welfare loss

rises for Max Environment and is U-shaped for Hot Spot. The logic is visible in the dynamic

trajectories: as the game progresses, strategies that successfully flip more Farmer BAU plots

face a greater remaining opportunity set of plots that are disproportionately of high-Agricultural

value, increasing the odds that any new Green claim ’flips’ a plot and increases welfare loss
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(PSE). Then, DLE can further increase losses when residual low-e/high-a plots are forced into

conservation at the end. Overall these strategies display greater misallocation at lower levels of

leakage.

Strategic Farmers

Figures 6(a)–6(b) present the final outcomes and dynamic trajectories of Welfare Loss for Green

strategies playing against Strategic Farmers.

(a) Final Social Welfare Loss (%) (b) Dynamic Trajectories

Figure 6: Claims World: Green Strategies and Strategic Farmers — Social Welfare Loss (%)

Note: Shaded bands on static panels indicate 95% bootstrap confidence intervals for the mean across Monte

Carlo replications.

Against Strategic Farmers, Max Environment again strictly dominates (lowest welfare loss)

and Block Farmers is worst at all leakage levels. Hot Spot exhibits pronounced nonlinearities:

early rounds flip plots with small |a − e| (low loss), but as the pool shifts to larger gaps and

higher agricultural values, losses accelerate—especially when lower leakage prevents Farmers

from reclaiming such plots late in the game. With strategic Farmer behavior the pattern of

lower leakage levels raising (via both PSE and DLE channels) late-stage misallocation, and

thus welfare loss, is even more striking.

Overall, across both Farmer behaviors, Max Environment and Hot Spot incur the lowest

welfare losses, but paradoxically these losses typically increase (welfare worsens) as leakage falls

due to misallocation via both shifting opportunity sets (PSE) and higher agriculturally-weighted

residual sets (DLE). Block Farmers consistently performs poorly, with only limited mitigation

as leakage declines.
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4 Budget World

In the sections above we have used a stylized, analytically transparent “Claims World” to isolate

the role of rivalry, highlighting how leakage, threat-weighting, and strategic behaviour shape

conservation outcomes in an adversarial framework. In this section we extend the contest to

a “Budget World” in which both Farmers and Greens purchase plots subject to fixed initial

budgets and plot-specific costs (agricultural values ai), preserving the adversarial contest while

introducing an alternative, continuous rather than discrete, allocation mechanism for procure-

ment to isolate the informational channel by which prices proxy for rival demand.

The formal set-up of Budget World is outlined in Appendix A7 and follows intuitively the

logic developed in Claims World, with one key change: the price of each plot is set equal to

the Farmers’ valuation, ai. As in Claims World, in our baseline Budget World analysis environ-

mental and agricultural values are independent draws, so the price faced by Greens is perfectly

informative about the Farmers’ payoff but, absent correlation, uninformative about Greens’ own

payoff. This two-space structure—where rival payoffs are orthogonal rather than shared—differs

from standard one-space contest and interdiction/knapsack settings. More generally, Budget

World studies contests in which each item has a value for the planner and a value for a rival,

and prices are (weakly) increasing in the rival’s value; our conservation application is a stark

special case, with price literally equal to the Farmers’ value and insensitive to Greens’ valuation

except through whatever correlation happens to exist between them.

To run the Budget World competition we calculate the amount required to purchase the

whole grid and then split that amount into a Farmer budget B0
f and a Green budget B0

g (the

default split is 50–50). Each team then takes turns purchasing a plot subject to their remaining

budget. Each round increments when one or both teams makes a purchase, so the total rounds

are endogenous and often exceed 50 because some cycles are one-sided purchases. If Greens

purchase a Farmer-BAU plot pi, Farmer’s remaining budget is reduced by a fraction of the

price (agricultural value ai) of the plot, with the fraction given by the level of leakage as in

Claims World.

Farmer strategies in the Budget World closely follow those in the Claims World:
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1. Naïve budgeter: purchase the highest-ai plot feasible within B0
f .

2. Strategic budgeter: identify “risky” plots, defined as those that would be chosen by

a Green Max-E strategy under B0
g ; purchase risky plots in descending ai, then purchase

safe high-ai plots.

Likewise, Green strategies in the Budget World closely follow those in the Claims World:

1. Max Environment: The value-greedy strategy: in each round the Greens purchase the

single affordable plot with the highest environmental value ei (the greedy rule).

2. Hot Spot: The product-greedy strategy: the Greens target plots with the highest product

ei × ai.

3. Block Farmers: The threat-greedy strategy: the Greens purchase the affordable plot

with the highest agricultural value ai.

In addition, the move to Budget World allows us to explore a possible fourth strategy:

4. Max Efficiency: The ratio-greedy strategy: the Greens purchase the plot with the

highest ratio ri = ei/ai (the ratio-greedy heuristic solution to a budget-constrained maxi-

mization of environmental value).

The accounting logic in Budget World parallels that of Claims World but adapts to budget-

based play. We distinguish Purchased Conservation (PC)—the analogue of the Pure Strategy

Effect (PSE)—from the Displacement–Leakage Effect (DLE), which captures the additional

conservation value of plots that remain undeveloped when Green purchases reduce Farmers’

effective capacity to complete their BAU plans. DLE is reported only under budget-parity

(s = 0.5), where residual plots represent displaced Farmer opportunities rather than unequal

initial resources. Dynamic trajectories for PC therefore show no end-of-game jump, while final

conservation and, under parity, final welfare can exhibit a discrete increase in the last round

when residual plots are credited. This convention mirrors the Claims World treatment and

ensures that PSE/PC dynamics are visually separable from mechanically induced DLE effects.

We calculate Additionality on an event basis: it increases by ei when Greens purchase a Farmer

BAU plot and decreases by ei when Farmers purchase a plot that Greens would have purchased
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under BAU. Similarly, we distinguish between Welfare Loss from purchased plots only and final

Welfare Loss (in the budget-parity case only) that includes DLE effects.

4.1 Budget World Results and Discussion

Extending the adversarial contest from Claims World, the baseline that isolates the role of ri-

valry, to Budget World, which introduces the element of procurement under constraints, confirms

the robustness of the central mechanisms and contributes important new insights by allowing

us to explore the relative performance of Max Efficiency in an adversarial framework.

Budget World: Conservation outcomes

Figures 7–8 demonstrate that the core Claims World findings carry through unchanged. Threat-

weighting and conservation do not coincide: Hot Spot strategies deliver higher (purchased)

additionality against Naïve farmers by capturing BAU plots, but collapse against strategic

farmers, while Max Environment consistently dominates on long-run conservation outcomes.

Likewise, strategic behavior by Farmers sharpens relative performance differences. A parallel

set of tiny–grid equilibria (Appendix A8.3) for Budget World shows that Max Environment in-

creasingly outperforms the ratio–greedy Max Efficiency rule as dimensionality grows, confirming

that the dominance result reported in our main Monte Carlo simulations is not an artifact of

weak Farmer behavior but persists even against optimizing Farmers.

(a) Final (incl. DLE) Conserva-
tion

(b) Purchased Conservation (c) Dynamic Trajectories

Figure 7: Budget World Green Strategies and Naïve Farmers: Conservation Scores
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(a) Final (incl. DLE) Conserva-
tion

(b) Purchased Conservation (c) Dynamic Trajectories

Figure 8: Budget World Green Strategies and Strategic Farmers: Conservation Scores

The Budget World decomposition helps to sharpen the distinction between purchased con-

servation (PC) and displacement/leakage effects (DLE). As in Claims World, DLE captures

the indirect gains that occur when Farmer budget burn prevents BAU purchases. This decom-

position makes clear that strategies can appear successful only because of residual crediting:

for example, Hot Spot appears competitive against Naïve farmers in final conservation, but its

advantage disappears in purchased outcomes.

Most importantly, Budget World allows us to introduce the Max Efficiency strategy, denoted

by the turquoise lines above in Figures 7–8. One of the most striking and counter-intuitive

findings of the paper is that Max Environment always outperforms Max Efficiency on purchased

outcomes. Across 500 replications at each leakage level, Max Environment beats Max Efficiency

in essentially 100% of cases, with a mean gap of 20–30 units of e. Moreover, in our simulations

the PC gap is approximately invariant to leakage: the two strategies’ PC curves are nearly

parallel across all L, indicating that the advantage is driven by the statewise selection effect at

disagreements rather than by residual crediting. This overturns the textbook knapsack heuristic

that prioritizes e/a, and highlights a more general lesson: when cost is also a signal of rival

demand, contesting expensive items is strictly better than avoiding them.

We formalize the core selection effect below. Theorem 4.1 shows that, under mild condi-

tions, the value-greedy rule weakly dominates any alternative Green rule on expected Purchased

Conservation (PC). In our simulations the resulting PC gaps are also nearly constant across L

(the curves are close to parallel), consistent with the statewise selection mechanism rather than

residual crediting; full proof is in Appendix A8.9.

Theorem 4.1 (PC dominance under nonnegative association (abbreviated; pointwise in leak-
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age)). Assume budget parity (s = 0.5). Let (ei, ai) be i.i.d. with continuous marginals and

nonnegative association (e.g., TP2/MTP2; independence e ⊥ a is the zero-association case).

Suppose the Farmer’s removal hazard is weakly increasing in an observable signal that is strictly

increasing in a (covering both naïve rank-by-a and Strategic high-a targeting).

For each fixed leakage level L ∈ [0, 1], the value-greedy rule Genv that, in each round, pur-

chases the affordable plot with the highest e weakly dominates any alternative Green rule G

on expected Purchased Conservation (PC), with strict inequality whenever G defers the current

max–e affordable plot with positive probability. Because PC excludes the residual DLE crediting

term, leakage does not enter the statewise selection argument: Lemma A8.8 holds for any L

conditional on the state. The only channel through which leakage can influence PC is indirectly,

through the evolution of budgets and hence the distribution of future opportunity sets; under

“thick budgets” this indirect channel is asymptotically negligible, yielding global dominance for

each fixed L (Theorem A8.9).

Proof sketch. Couple Genv and G on the same instance and Farmer path. At the first disagree-

ment Genv takes k = arg max e while G takes j with ej < ek. With hazards increasing in an

a-signal and nonnegative E–A association, k has (weakly) higher removal risk than j, so either

k is lost before G returns (a PC loss) or G eventually buys k, leaving a gap of ek − ej > 0.

Budget feedback terms vanish under thick budgets; under maxi ai/Bg → 0, the budget–feedback

remainder is asymptotically negligible, so the cumulative one–step gains yield expected-PC dom-

inance in the limit. Since PC excludes the residual DLE crediting term, L does not enter the

conditional one–step gain; any dependence of PC on L operates only through leakage-induced

shifts in the state path, which vanish asymptotically under thick budgets. See Theorem A8.9

for the coupling and Proposition A8.11 for comparative statics. □

In Appendix A8 we provide a formal statement and proof sketch of this leakage-invariant

dominance that, with a constructive counterexample and tiny grid equilibrium exercises, place

the Budget World result on firm theoretical ground: the simulations are not simply numerical

artifacts, but the manifestation of a deeper game-theoretic mechanism. Furthermore, although

our conservation application emphasises that ecological and agricultural values may be weakly

correlated in practice, the Budget World dominance result does not rely on this feature. The-

orem 4.1 only assumes i.i.d. (ei, ai) with continuous marginals and non-negative association,
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and our robustness exercises with positive/negative correlation preserve the MaxE > Max-

Eff hierarchy. Taken together, these results demonstrate that the Claims World insights are

not artifacts of stylization, but robust features of adversarial conservation contests, and that

efficiency-weighted heuristics do not necessarily outperform simpler value-maximizing rules in

dynamic, strategic environments.

4.1.1 Budget World: Welfare Loss outcomes

Figures 9–10 confirm the welfare paradox observed in Claims World, persists Budget World: we

observe that for some Green strategies welfare losses rise as leakage falls.

(a) Final (incl. DLE) Welfare
Loss (%)

(b) Purchased Welfare Loss (%) (c) Dynamic Trajectories

Figure 9: Budget World Green Strategies and Naïve Farmers: Social Welfare Loss (%)

(a) Final (incl. DLE) Welfare
Loss (%)

(b) Purchased Welfare Loss (%) (c) Dynamic Trajectories

Figure 10: Budget World Green Strategies and Strategic Farmers: Social Welfare Loss (%)
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5 Empirical Case Study: Conservation Strategies in Bolivia

Bolivia provides an insightful case study of the dynamic and contested nature of conservation

decisions. With an extraordinary level of biodiversity and significant pressure for economic

development, the history of Bolivian conservation efforts illustrate the trade-offs and strategic

interactions that our dynamic adversarial framework addresses. Starting with the first national

park in 1939, the land area under Protected Areas (PAs) status in Bolivia has gradually in-

creased to 35.4 million hectares today, 32% of the national territory. Appendix section A9

provides short history of protected areas in Bolivia and describes the construction of our high-

resolution country-wide dataset of the potential annual dollar values per hectare (USD/ha/year)

from both conservation and agriculture (Andersen et al., 2023, 2024). First, in section 5.1 we

construct a time series (in 5-year increments) of the relative environmental and agricultural

quality and extent of land newly converted to both protected and developed areas, allowing us

to examine historical patterns in land allocation through the lens of our theoretical framework.

Second, in section 5.2 we depart from stylized grids and partition Bolivia into 390 hydrologically

coherent Planning Units (PUs), calculating an environmental and agricultural score for each

PU. This allows us to explore how our Green heuristic strategies perform when development

and conservation values reflect patterns from real bio-physical data.

5.1 Conservation and agricultural expansion in Bolivia

The computational framework presented in this paper points to empirically novel summary

statistics that may be informative. In particular, by comparing the average agricultural and

environmental values of developed and protected land, we reveal shifts in Bolivian conservation

practice over time, and by plotting time trends we can relate these shifts to periods of increased

and decreased development pressure. Appendix section A9 provides short history of protected

areas in Bolivia and describes the construction of the dataset. Our high resolution time series

land use data combined with the potential conservation and agricultural values described in

section A9.2 allows us to examine patterns in land allocation through the lens of our theoretical

framework. Specifically, Figure 12 consolidates data on both the growth of agricultural and

protected areas and their relative quality in terms of potential output and conservation, respec-
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tively, in 5-year increments. The area of new land allocated to Protected Areas is indicated by

the height of upward bars, while new land allocated to Agriculture is shown by the downward

bars. Each bar has both green and brown shades to indicate the average conservation and

agricultural potential, respectively, of the newly allocated land - darker shades represent higher

average values and lighter shades represent lower average values. For example, figure 12 shows

that in 1986–1990 almost 4 million ha was allocated to Protected Area status, and just over 1

million ha was converted to agricultural land.

Figure 11: Bolivian GDP per capita, 1950–2019
(constant 2017 USD adjusted for cost of living)

Figure 12: Agricultural & Conservation Potentials and Area of New Land allocated to Agricul-
ture and Conservation, 5-year increments

Comparing the potential agricultural values (shades of brown) in Figure 12 we can see that

the land allocated to agriculture is a darker brown (higher potential) than that allocated to

conservation. Comparing the potential conservation values (shades of green) we see that the

average conservation value of land allocated for Protected Area status is much higher (darker)
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than that allocated to agriculture. For example, the period 1986–1990 shows patterns where

newly protected areas had high conservation values while agricultural expansion targeted high

agricultural-value land with lower conservation value—a pattern consistent with each side pur-

suing their respective values. Throughout the sample period, agricultural expansion consistently

targets high agricultural-potential land that tends to have lower conservation value—a pattern

consistent with profit maximization. The patterns in conservation targeting appear more varied.

Figure 11 shows the evolution of GDP per capita over the same period. Comparing this with

Figure 12 we can observe that the timing of protected area expansion correlates notably with

economic cycles: major expansions coincide with economic downturns (late 1980s, 2019–2023)

when extractive pressure decreases and international conservation funding may be relatively

more influential.

The characteristics of newly protected land also show interesting temporal variation. Early

protected areas (pre-1995) were predominantly in regions of very high conservation value. Dur-

ing the economic boom of 2001–2005, newly protected areas appeared more frequently near

agricultural frontiers—a pattern consistent with threat-based targeting. This can be observed

in Supplementary video A9.2 where new Protected Areas during this period often appear within

areas of existing agricultural expansion. From 2006 onwards, the pattern shifts back toward

high conservation value areas, though with more variation.

The documented failure of Protected Area status at Laguna Concepción to prevent agri-

cultural encroachment (see section A9) illustrates how enforcement challenges may create a

negative correlation between agricultural pressure and realized conservation outcomes. Ap-

pendix section A3 explores how such enforcement weakness might affect strategy performance

in our simulations.

In sum, the patterns observed in Bolivia—high conservation value targeting during most

periods, shifts toward threat-based targeting during economic booms, and challenges with en-

forcement at high-agricultural-value sites— illustrate a real-world context for considering our

simulation results and underscore how viewing conservation through the lens of contested, se-

quential decisions can reveal patterns obscured by aggregate statistics. The correlation between

conservation expansion and economic downturns, the apparent shifts in targeting approaches

over time, and the vulnerability of high-agricultural-value sites like Laguna Concepción all be-
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come visible when agricultural and environmental values are examined jointly. The exercise

illustrates how our framework provides a structured vocabulary to help interpret the complex

dynamics of conservation practice.

5.2 Bridging the gap from theory to landscape: conservation strategies on a

Bolivian ’board’

In section 5.1 we used our high resolution estimates of agricultural and environmental potential

descriptively to characterise how historical protected areas and agricultural expansion have been

sited over time.To test whether the analytical results from the computational simulations hold

on a real landscape, we now use this data to transplant our Budget World contest onto the

actual geography of Bolivia, moving the analysis from a stylized grid to a board characterized

by realistic heterogeneity that reflects patterns from real bio-physical data.

5.2.1 Building a Bolivian planning board

We begin by aggregating the Bolivian land value pixels into a tractable but ecologically mean-

ingful set of planning units (PUs). We use the nested HydroBASINS units for South America

and clip them to Bolivia, selecting level–7 basins and splitting a handful of very large units

with level–8 subdivisions. This yields hydrologically coherent PUs whose sizes range from a

few hundred to a few tens of thousands of square kilometres. Using hydrological basins serves

two purposes: first, it respects ecological boundaries; watershed integrity is often the minimum

viable unit for conservation. Second, it introduces a realistic distributional and correlational

structure to the ’grid.’ We then remove tiny sliver units, PUs with no agricultural potential (no

valid pixels in the agricultural raster), and one additional PU with very low environmental and

agricultural scores (to ensure an even number of PUs), leaving a final board of J = 390 playable

basins. The resulting Bolivian PUs are shown in Figure 13(a), overlayed with the 2024 extent

of actual Protected Areas.

For each PU we then compute the mean environmental value and mean agricultural value

(the µ scores), together with a set of “tail” statistics that capture how much of the PU lies in

the national top deciles of the pixel–level distributions (90th, 95th and 99th percentiles). These
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are combined into composite scores S
(e)
j and S

(a)
j that summarise, respectively, each basin’s

conservation attractiveness and agricultural opportunity cost on a unit–free [0, 1] scale (formal

definitions are provided in Appendix A9.3):

• Environmental Value (S
(e)
j ): We utilize the pixel-level ecosystem service valuation from

Andersen et al. (2024). To aggregate this to the basin level, we compute a composite score

that weights the mean value (µ(e)
j ) and a set of “Tail-Averaged Percentile Scores” (TAPS)

that capture the density of high-value pixels (90th, 95th, and 99th national percentiles).

This ensures that basins containing small but intense “hotspots” of biodiversity are ranked

highly, even if their average value is moderate.

• Agricultural Price (S
(a)
j ): Similarly, we derive an agricultural score based on the po-

tential net revenue maps from Andersen et al. (2023).

Both scores are normalized to a [0, 1] scale based on their percentile ranks among all PUs,

standardizing the “cost” of a PU as a measure of its opportunity cost relative to the national

average. Thus we move the analysis from a stylized grid to a board characterized by realistic

heterogeneity: environmental values are heavy-tailed, agricultural values follow complex soil

and transport gradients, and the two values are positively correlated (with ρ = .29). The

distribution of agricultural and environmental values is displayed in Figures 13(b) and 13(c).

(a) PUs with PAs (b) Agricultural Values
Heatmap

(c) Environmental Values
Heatmap

Figure 13: Bolivian PU board with 2024 Protected Areas and Heatmaps
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We then run the Budget World contest on the fixed Bolivia board, simulating the competition

between our Green strategies against both Naïve and Strategic developers across the full range

of leakage parameters. As the Bolivia board is a single set of values, we obtain deterministic

results.

The Bolivia board results for Claims World contests in Figures 14 - 17 closely mirror the

main Monte Carlo patterns, despite being generated on a single, fixed landscape with realistic

value distributions rather than on i.i.d. synthetic grids.

(a) Final Outcomes (incl. DLE) (b) Dynamic Trajectories

Figure 14: Claims World on a Bolivian Board with Naïve Farmers: Conservation Scores

(a) Final Outcomes (incl. DLE) (b) Dynamic Trajectories

Figure 15: Claims World on a Bolivian Board with Strategic Farmers: Conservation Scores
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(a) Final Outcomes (incl. DLE) (b) Dynamic Trajectories

Figure 16: Claims World on a Bolivian Board with Naïve Farmers: Welfare Loss (%)

(a) Final Outcomes (incl. DLE) (b) Dynamic Trajectories

Figure 17: Claims World on a Bolivian Board with Strategic Farmers: Welfare Loss (%)

Claims World conservation outcomes on the Bolivia board show the same qualitative ranking

of Green strategies we observe from the more stylized Monte Carlos (Figures 1 - 2 and Figures

5 - 6). Against Naïve Farmers (Figure 14), Hot Spot attains the highest final conservation

score at all leakage levels, with Max Environment second and Block Farmers consistently worst.

The dynamic trajectories in Figure 15(b) reveal the now-familiar mechanism: Max Environ-

ment initially produces the steepest Pure Strategy Effect (PSE), as it always takes the highest

environmental-value basin, but Hot Spot gradually catches up and overtakes it as leakage falls,

because it repeatedly secures high-e, high-a basins that would otherwise be developed. The

end-of-game jumps again reflect Displacement–Leakage Effects (DLE) from residual unclaimed

basins; as on the Monte Carlo grids, Hot Spot’s final advantage over Max Environment comes

primarily through larger DLE when leakage is low, not because it targets uniformly better sites

throughout the game.

With Strategic Farmers (Figure 16) the ranking reverses exactly as in the synthetic grids:
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Max Environment now strictly dominates Hot Spot in final conservation at all leakage levels,

while Block Farmers collapses. The dynamic trajectories in Figure 16(b) show that once Farmers

actively seek high-environmental basins, any deviation from a pure e-first rule allows them to

capture contested PUs that Hot Spot or Block Farmers neglect. This echoes the main text result

that value-first play becomes essential when developers behave strategically: the BAU sets of

Strategic Farmers are more heavily loaded with high-e PUs, so Max Environment benefits both

in PSE and in the DLE that accrues when those BAU plots are successfully blocked.

Figures 16 and 17 report welfare losses on the Bolivia board mirror the patterns from the

Monte Carlos (Figures 5 and 6). Against Naïve Farmers, Max Environment and Hot Spot incur

the lowest welfare losses across leakage levels, while Block Farmers produces much larger losses.

A striking feature, which parallels the Monte Carlo results, is that welfare loss for Max Environ-

ment and Hot Spot increases as leakage falls: the opportunity set gradually tilts toward high-a

sites, so successful blocking implies flipping more plots that optimally belong to agriculture.

With Strategic Farmers, welfare losses are higher in level, but the ranking is unchanged: Max

Environment is always best, Hot Spot intermediate, and Block Farmers worst. The welfare

paradox persists on the real landscape: stronger leakage control can raise misallocation costs by

forcing high-agricultural-value basins into conservation without commensurate ecological gains.

Budget World results on the Bolivia board for conservation and welfare (Figures 18 - 19)

likewise confirm the robustness of the main simulation findings (the remaining results on addi-

tionality are similarly consistent with the Monte Carlos but not presented here as the patterns

are identical to those for Conservation).

(a) Final Outcomes (incl. DLE) (b) Dynamic Trajectories

Figure 18: Budget World on a Bolivian Board with Naïve Farmers: Conservation Scores
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(a) Final (incl. DLE) Conservation (b) Dynamic Trajectories

Figure 19: Budget World on a Bolivian Board with Strategic Farmers: Conservation Scores

In Budget World, against Naïve Farmers, Hotspot_budget achieves the highest final con-

servation at most leakage levels, with MaxE_budget close behind; both substantially outper-

form Block_budget and MaxEfficiency_budget. The dynamic trajectories again show that

Hotspot_budget’s apparent edge comes largely from DLE when leakage is low: its Purchased

Conservation (PC) path is only slightly above that of MaxE_budget, and the gap in final

outcomes is driven by the residual crediting of undeveloped basins. Against Strategic Farm-

ers, the pattern aligns even more tightly with the stylized Budget World Monte Carlo re-

sults: MaxE_budget clearly dominates on conservation, MaxEfficiency_budget is uniformly

inferior, and Block_budget performs poorly. The PC curves for MaxE_budget and MaxEffi-

ciency_budget are nearly parallel across leakage, with a roughly constant gap, reproducing on

the Bolivia board the leakage-invariant selection effect highlighted in Theorem 4.1.

Figures 20 and 21 show the spatial distribution of the chosen PUs by MaxE_budget and

Hot Spot_budget against both Naïve and Strategic Farmers.

(a) against Naïve Farmers (b) against Strategic Farmers

Figure 20: Budget World Max Environment Strategy Conserved PUs (leakage=100%)
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(a) against Naïve Farmers (b) against Strategic Farmers

Figure 21: Budget World Hot Spot Strategy Conserved PUs (leakage=100%)

Overall, then, the Bolivia board behaves as a realistic instantiation of the stylized games.

Despite heavy-tailed environmental scores, spatial clustering of high-value basins, and positive

but imperfect correlation between S(e) and S(a), the core comparative statics are unchanged:

Block Farmers performs badly; Hot Spot can edge ahead against naïve developers but collapses

against strategic ones; and the value-greedy Max Environment strategy remains the most reli-

able performer on both conservation and welfare, particularly when developers are strategic. In

Budget World, the simple MaxE_budget rule continues to dominate the canonical ratio-greedy

MaxEfficiency_budget rule even on this real landscape.

5.2.2 Green Strategies and Marxan planning

Many practical conservation planning exercises today are built around static optimization tools,

most notably Marxan (Ball et al., 2009; Watts et al., 2009) which solve static target-based

reserve design problems under a non-reactive (passive-developer) assumption. These systems

formalize the planner’s problem as a “minimum set problem”: selecting a subset of planning

units that meets ecological representation targets at the lowest possible cost (Ando et al., 1998b).

Acquisition costs are treated as frictional constraints to be minimized, and threats are generally

treated as exogenous probabilities. The resulting “optimal” portfolio assumes that selecting

a site for protection removes it from the market without triggering a strategic response from

developers. This logic has been adopted globally, with ratio-based cost-effectiveness heuristics

used to design reserve networks in over 100 countries as of 2009 (Watts et al., 2009).
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In applied settings, a common simplified analogue is a static cost-effectiveness ranking that

prioritizes planning units by benefit–cost ratios—essentially a static “ratio-greedy” strategy.

However, our computational adversarial simulations found that the “Ratio-Greedy” heuristic

(Max Efficiency) is systematically dominated by “Value-Greedy” rules when costs act as sig-

nals of rival demand. To test whether this “Knapsack Reversal” holds on a real landscape,

we first calculate the outcome of a widely used static cost-effectiveness heuristic. To align the

static benchmark with our outcome metric (total ecological value purchased under a fixed bud-

get), we therefore use a knapsack-form static planner problem (rather than Marxan’s canonical

minimum-set target formulation); the common element is the static, non-reactive assumption.

Specifically, we provide the Green agent with a budget BG and allow them to purchase PUs

unopposed, solving:

max
xj∈{0,1}

∑
j

S
(e)
j xj s.t.

∑
j

S
(a)
j xj ≤ BG.

We implement this via the greedy algorithm, selecting PUs in descending order of their

benefit-cost ratio (S(e)
j /S

(a)
j ). We refer to this as a Marxan-style static benchmark because the

heuristic mirrors the non-reactive, budget-constrained site-selection logic common in systematic

conservation planning. As a robustness check, we also solve the passive-developer static portfolio

exactly as a 0–1 integer linear program (ILP) and get nearly identical results: both select 209

units, with an overlap of 208 units (Jaccard similarity = 0.9905). The ILP solution differs by

a single swap and increases total purchased ecological value by ≈ 0.02%. Hence all qualitative

conclusions are unchanged.

We then run the Budget World contest on the fixed Bolivia board, simulating the competition

between our Green strategies against both Naïve and Strategic developers across the full range

of leakage parameters. The results, presented in Figures 22 and mapped out in figure 23, yield

two striking and related insights regarding the performance of Marxan conservation strategies

in a real-world contested environment.
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(a) Purchased Conservation and
Naïve Farmers

(b) Purchased Conservation and
Strategic Farmers

Figure 22: Budget World on a Bolivian Board: Final Purchased Conservation

(a) Static Marxan-style (b) Dynamic Max Efficiency
Naïve

(c) Dynamic Max Efficiency
Strategic

Figure 23: Static Marxan-style Benchmark and Dynamic Max Efficiency Conserved PUs
(Budget World, leakage=100%)

First, we observe a significant gap between the Static Marxan-style Benchmark (red dashed

line) and the realized outcomes of the Max Efficiency strategy (cyan line) under dynamic adver-

sarial play. Across all leakage levels, the static plan overestimates realized conservation value

by approximately 15–20%. This quantifies what we term the “disappointment gap”—a dynamic

dimension of the broader ‘implementation gap’ (Knight et al., 2008)—where a planner using

standard static tools to optimize a portfolio will systematically underperform expectations be-

cause the efficiency heuristic targets low-cost sites that are rarely contested, while failing to

secure the high-value sites that developers actively target.

Second, the simulations confirm that the “Knapsack Reversal” identified in our stylized
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models is robust to real-world geography. The simple Max Environment strategy (green line)

consistently outperforms the Max Efficiency strategy (cyan line) in Purchased Conservation

(PC). Even on a jagged, heterogeneous map where costs and values are correlated, the strategy

of contesting high-value sites ("Value-Greedy") secures a superior portfolio to the strategy of

seeking bargains ("Ratio-Greedy").

6 Discussion

What are the most effective conservation strategies for achieving environmental objectives in

adversarial settings? Most studies evaluate strategies from a planner’s perspective, treating

threats as exogenous. The limited non-cooperative work to date (e.g. Angelsen, 2001; Colyvan

et al., 2011) highlights that conflict leads to suboptimal outcomes but offers little guidance on

which siting rules perform best. Our contribution fills this gap by comparing widely-practised

conservation strategies in a computational framework where developers actively respond to

conservation pressure.

A central innovation of our framework is to decompose the performance of each strategy

into two analytically distinct components: the Pure Strategy Effect (PSE), reflecting the in-

trinsic quality of the plots chosen by a strategy, and the Displacement–Leakage Effect (DLE),

reflecting the gains from displacing developers’ preferred sites when leakage is incomplete. This

decomposition shows that strategies that appear effective in aggregate may achieve their gains

in very different ways, with important implications for how robust those gains are under dif-

ferent institutional conditions. We explore these effects in two ’Worlds’: in Claims World we

abstract from cost to isolate the implications of rivalry, and in Budget World we introduce a

continuous procurement mechanism under budget constraints.

Our simulations yield several striking and robust findings. In Claims World, the direct

link between threat-weighting and additionality—so central in planner-world models—breaks

down once developer behaviour is endogenised. In our decomposition, the PSE of threat-

targeting is often weak, and when leakage is high and developers can re-target freely, the DLE

evaporates, leaving little more than random conservation. Strategies such as Block Farmers

therefore perform poorly, even though they appear to have high additionality when threats are
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treated as fixed.

The PSE/DLE decomposition also sheds light on a surprising paradox: reducing leakage

does not uniformly improve outcomes. On the contrary, it can increase welfare losses, as high-

development-value plots are shifted into conservation without commensurate ecological gain.

At lower levels of leakage, the PSE of Hot Spot and Max Environment tilts the opportunity set

toward contested high-a plots, increasing the chance of misallocation in later rounds. Reduced

leakage may also boost DLE, but by forcing agriculturally valuable residual plots into conserva-

tion this mechanism can simultaneously raise welfare costs. These patterns appear robust across

both Claims and Budget Worlds, and in our Bolivia case study we show that they translate

closely onto the organically constructed Bolivia board, where agricultural and environmental

values are derived from real bio-physical data.

Crucially, the relative ranking of strategies depends on developer behaviour. Against naïve

profit maximisers, Hot Spot targeting can secure higher final conservation scores, but against

strategic developers Max Environment dominates in both conservation and welfare terms. The

decomposition again clarifies why: Hot Spot’s advantage comes primarily from DLE—it extracts

value by blocking developers in a few high-risk frontiers—whereas Max Environment derives

its strength from consistently high PSE, selecting intrinsically valuable sites across the board.

The attractiveness of strategies that focus squarely on ecological value thus emerges as a central

lesson of the analysis, particularly once we allow for adaptive developers.

Budget World analysis confirms the robustness of the patterns from Claims World and

reveals our most striking result: a dynamic “Knapsack Reversal.” We find that the standard

cost-effectiveness heuristic—maximise environmental value per dollar (e/a)—is systematically

dominated by the simple value-greedy rule (e). Intuitively, the ratio-greedy rule economises by

buying cheap “bargains” that are rarely contested. However, in this two-space setting where

prices signal rival demand, avoiding expensive plots implies retreating from the contest. Value-

greedy rules succeed because they contest the high-a region where developers concentrate. We

formalize this in Theorem 4.1: under non-negative e–a association, value-first procurement

weakly dominates cost-effectiveness heuristics on purchased conservation. This suggests that

static Marxan-style portfolios may systematically disappoint in adversarial settings because

they optimize for a landscape that does not react.
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Crucially, the ’Knapsack Reversal’ and the dominance of value-greedy rules are not artifacts

of the computational framework, but reflect fundamental properties of the adversarial game

structure confirmed by our formal analysis. More generally, our simulation patterns are con-

sistent with best-response logic in tractable limiting cases (Appendix A8). When developers

can freely re-target (L→ 1), blocking confers no dynamic benefit and the Green best reply

reduces to a myopic preempt-or-value rule, under which pure threat-chasing collapses toward

random performance. Heuristically, this equilibrium strategy can be interpreted as “Maximise

Environment, except when the plot about to be claimed by developers also has the highest

environmental value among the remaining opportunities”—in other words, Maximise Environ-

ment with judicious use of Hot Spot. When re-targeting is limited (L < 1), the Green objective

acquires a “business-as-usual” (BAU) bonus for plots that developers would otherwise take,

yielding a balanced e-first threshold rule: focus on ecological value, but with a limited tilt

toward genuinely contested high-e, high-a sites.

These insights are validated by our empirical case study. By transplanting the contest

to a planning board derived from Bolivian biophysical data—characterized by heavy-tailed

environmental distributions and spatially correlated values—we confirm that these patterns

are not artifacts of stylized grids. The simulation reveals a quantifiable gap between the static

Marxan benchmark and realized dynamic outcomes. Even on this complex real-world landscape,

the Knapsack Reversal holds: dynamic value-greedy strategies outperform the ratio-greedy

heuristic, and the robustness of Max Environment against strategic developers persists.

Conceptually, the paper thus adds a new piece to the theory of adversarial allocation: in

two-space contests where assets carry one value for a planner and another for a rival, and prices

track the rival’s value, rules that defer expensive high-value items in favour of cheap “bargains”

are dominated on purchased outcomes. Our Budget World knapsack reversal is therefore best

viewed as a more general mechanism that applies whenever cost doubles as a signal of rival

demand. Conservation provides a particularly transparent instance of this structure, because

ecological and development values are naturally distinct, but the same logic applies in any

setting where social and rival values live in separate spaces - for example, where social housing

funds seek to acquire high-opportunity properties and the planner’s social value of long-run

affordability is largely decoupled from the market price, but prices are set by private developers’

returns. In such settings, our analysis suggests that value-first procurement rules that contest
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expensive, high rival-value assets may outperform cost-effectiveness heuristics that chase cheap

bargains, whenever budgets are deployed against an active rival.

The policy implications are clear. Conservation and green finance initiatives should be

cautious about relying too narrowly on threat-based additionality metrics or cost-effectiveness

mandates, which risk fragility in the face of market adaptation. Robust conservation requires

strategies that anticipate adaptation, not just static threats. A balanced portfolio—investing

not only in high-threat frontier lands but also in ecologically irreplaceable sites—generates more

durable conservation gains and prevents the strategic erosion of environmental value.
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Appendix

This Appendix includes a range of robustness and heterogeneity analyses as well as some

formal theoretical results and background material for our Bolivian vignette. Specifically A2

examines positive correlation between agricultural and environmental values; A3 simulates

weak legal enforcement via negative correlation; and A4 explores unequal political power by

allocating more claims to Farmers. Appendix A5 considers heavy–tailed environmental draws,

creating rare but extremely high–value “superstar” plots. Appendix A6 introduces an explicit

spatial structure (S1) with paired plots generating spillovers in e, and shows in Appendix A6.1

how this embeds in a more general graph-based spillover model (S2).

Appendix A7 formally sets up the Budget World. Appendix A8 presents our core theoretical

results. Appendix A8.1 connects the simulation patterns to equilibrium logic in tractable polar

cases: at L = 1 (full re-targeting) optimal play reduces to a myopic preempt-or-value rule; at

L = 0 (no re-targeting) the Green objective acquires a BAU “bonus,” yielding an e-first

threshold policy. Building on this, in Appendix sections A8.2 - A8.2.4 we establish our most

striking theoretical and simulation result: in Budget World the textbook ratio-greedy e/a rule

is systematically dominated by the simple e-maximizing rule, across all leakage levels and

against both Naïve and Strategic Farmers. This leakage-invariant dominance reverses standard

knapsack logic and provides a general principle for adversarial procurement. Appendix A8.3

presents a series of Tiny Grid equilibrium exercises that validate the core results.

Appendix A9 provides supplemental material on the history of protected areas in Bolivia and

data construction for our empirical vignette. Finally, to facilitate replication and teaching we

provide code and links to two publicly available tools in Appendix A10, including (1) a Monte

Carlo simulator with documentation for replicating results and exploring alternative

strategies; and (2) an interactive browser-based game where users can play as either team

against fixed strategies played by the computer.
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Table A1.1: Conservation Scores Under Different Strategies and Leakage Levels:
The Pure Strategy and Displacement-Leakage Effects

Leakage Pure Displacement- Final
Farmer Green Level Strategy Leakage Conservation
Strategy Strategy (%) Effect Effect Score

naive Max Environment 0 337 17 354
naive Max Environment 50 333 6 339
naive Max Environment 100 331 0 331

naive Block Farmers 0 252 126 378
naive Block Farmers 50 252 60 312
naive Block Farmers 100 252 0 252

naive Hot Spot 0 344 63 408
naive Hot Spot 50 354 29 383
naive Hot Spot 100 361 0 361

strategic Max Environment 0 301 34 336
strategic Max Environment 50 294 12 306
strategic Max Environment 100 290 0 290

strategic Block Farmers 0 142 7 148
strategic Block Farmers 50 142 3 144
strategic Block Farmers 100 142 0 142

strategic Hot Spot 0 237 22 259
strategic Hot Spot 50 241 11 252
strategic Hot Spot 100 244 0 244
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A1 Claims World Baseline Conservation Achieved

A2 Positive Correlation between Agricultural and Conserva-

tion Values

Our case study of Bolivia suggests that agricultural and conservation potentials in practice

may be positively correlated. Thus, below we plot the dynamic trajectories of outcome

variables for different combinations of strategies when the grid is initialized with a positive

correlation of 0.30 between Conservation values and Agricultural values (500 replications and

50 rounds).

Overall, with a positive correlation between agricultural and environmental values, we observe

that conservation scores tend to be lower across all strategies, but the additionality scores of

the Hot Spot and Block Farmers strategies tend to be slightly higher. The dynamic trajectory

patterns are broadly similar, with the Conservation values of the Hot Spot Pure Strategy effect

slightly stronger than in the zero correlation case.

(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A2.1: Conservation Scores for ρ = 0.3
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(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A2.2: Additionality for for ρ = 0.3

(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A2.3: Social Welfare Loss(%) for for ρ = 0.3
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A3 Negative Correlation between Agricultural and Conserva-

tion Values

Our case study of Bolivia suggested that enforcement of protected status may be more

challenging in areas under high threat of development, as illustrated by the experience of

Laguna Concepción. In order to simulate this relationship we initialize the grid with a

negative correlation between Agricultural and Environmental values - in those plots most

desirable to the Farmers, realized Environmental values are lower due to increased difficulty of

enforcement. Note that this approach explicitly differentiates between the effectiveness of

leakage control (the Displacement-Leakage effect), which is still explored in the simulation by

allowing for different levels of leakage, and a Pure Strategy effect when protection effectiveness

is systematically reduced in Green claimed land of high agricultural value.

Thus, below we plot the dynamic trajectories of outcome variables for different combinations

of strategies when the grid is initialized with a negative correlation of -0.30 between

Conservation values and Agricultural values (500 replications and 50 rounds). Overall, with a

negative correlation between agricultural and environmental values, the dynamic trajectory

patterns are broadly similar, with the Conservation values of the Max Environment Pure

Strategy effect slightly stronger than in the zero correlation case.

(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A3.1: Conservation Scores for ρ = -0.3
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(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A3.2: Additionality for for ρ = -0.3

(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A3.3: Social Welfare Loss(%) for for ρ = -0.3
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A4 Political Allocation in Favour of Farmers

Here we allocate 70% of the initial claims to the Farmers, exploring how the different Green

strategies perform when conservation faces an economic or political disadvantage.

We present the dynamic trajectory paths below, and the final score is represented by the

outcome in round 50. Since in the political allocation considered the Farmers will have excess

claims and spend those to claim additional plots in the last round (while the Greens are

allocated any remaining unclaimed plots), then in this scenario there are significant last-round

adjustments to the final score across all three outcomes considered.

(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A4.1: Conservation Scores for Political Allocation to Farmers = 70%

(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A4.2: Additionality for Political Allocation to Farmers = 70%
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(a) Green Strategies and Naïve Farmers (b) Green Strategies and Strategic Farmers

Figure A4.3: Social Welfare Loss(%) for Political Allocation to Farmers = 70%
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A5 Heavy–tailed draws for environmental values

As a final robustness check we relax the assumption that environmental and agricultural

values are uniformly distributed on [0.1, 10]. Instead, we generate environmental values e from

a Pareto distribution with shape parameter αe ∈ [1.5, 2.0], rescaled to [0.1, 10]. This produces

a heavy–tailed distribution with a small number of extremely high–value plots. Agricultural

values a are kept on the baseline uniform [0.1, 10] scale, so that the heavy tails apply only to

e. The joint ranks of e and a are correlated via a t–copula with degrees of freedom ν = 4,

allowing for tail dependence. Formally, if U ∼ Uniform(0, 1) then

e = F −1
Pareto,αe

(U), a ∼ U [0.1, 10],

with e and a linked through the copula. We then rescale e to the [0.1, 10] support for

comparability with the baseline.

Results are displayed in figures A5.1 and A5.2. Heavy–tailed draws make conservation

outcomes hinge on a few “superstar” plots, increasing sampling variability across replications

and hence widening confidence intervals. Against naïve developers, Max–Environment benefits

by consistently targeting the superstars that developers ignore. Against strategic developers,

both Max–Environment and Hot–Spot converge on the same superstars, narrowing the gap

between them. Despite these differences in level and dispersion, the leakage–dependent

comparative statics and the overall ranking of strategies remain unchanged.

(a) Final Conservation with heavy tailed e-
values

(b) Dynamic trajectories with heavy tailed e-
values

Figure A5.1: Conservation with Heavy Tailed e Values: Green Strategies and Naïve Farmers
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(a) Final Conservation with heavy tailed e-
values

(b) Dynamic trajectories with heavy tailed e-
values

Figure A5.2: Conservation with Heavy Tailed e Values: Green Strategies and Strategic Farmers
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A6 Spatial robustness: S1 version

As a further robustness exercise, we introduce a simple spatial spillovers framework into the

Claims World that we label S1. At the start of each simulation we randomly pair plots, but

the links remain hidden until one member of a pair is claimed. When a plot is claimed by the

Greens, its partner’s environmental value is increased by a fixed amount (a “connectivity

bonus”); when a plot is claimed by the Farmers, its partner’s environmental value is decreased

by the same amount (a “fragmentation penalty”). These adjustments change the effective

rank ordering of the remaining available plots and therefore feed back into subsequent choices.

We implement the exercise with m = 50 disjoint pairs (i.e. all 100 plots linked) and

bump/penalty magnitudes up to 2.0 on the [0.1, 10.0] value scale. Results for both static final

outcomes and dynamic trajectories are displayed in figures A6.1 and A6.2. As expected, this

shifts realized conservation levels because effective values are altered during play, generally

increasing final conservation scores across all Green strategies. However, across leakage values

the qualitative patterns of performance by strategy—both in static outcomes and in dynamic

trajectories—remain visually very similar to the baseline. We therefore interpret this exercise

as a strong stress test that introduces within-game path dependence without overturning our

main results.

(a) Final Conservation with spatial effects (b) Dynamic trajectories with spatial effects

Figure A6.1: Conservation with Spatially Linked Plots: Green Strategies and Naïve Farmers



63

(a) Final Conservation with spatial effects (b) Dynamic trajectories with spatial effects

Figure A6.2: Conservation with Spatially Linked Plots: Green Strategies and Strategic Farmers



64

A6.1 Spatial Externalities on a Graph (S2): Setup, Equivalence to S1, and

Why It Favors Max–Environment

This appendix formalizes a graph–based spatial externality variant (“S2”) that allows

spillovers to accumulate over multiple neighbors. We (i) define the environment; (ii) show that

the S1 “paired shocks” case is a special case of S2; and (iii) establish that under mild

assumptions S2 systematically advantages value–first conservation (Max–Environment) over

threat–weighted rules by creating complementarities from clustering. Throughout, we keep the

Claims World timing and accounting from the main text—including the PSE/DLE

decomposition that credits residual plots at the end to visually separate displacement from

direct strategy effects.

A6.1.1 S2: Graph–based spillovers

Let P = {1, . . . , N} denote plots. Let W = (Wij) be a nonnegative, symmetric adjacency

matrix on P with Wii = 0. For transparency we take W to be row–normalized (each row sums

to ki or to 1; both conventions are covered below).

The effective environmental value of plot i after some claims have been made is

(1) eeff
i (Sg, Sf ) = ei + ηG

∑
j∈Sg

Wij − ηF

∑
j∈Sf

Wij ,

with ηG, ηF ≥ 0. The Green team’s purchased/claimed component of conservation (our PSE◦)

is the sum of base values on Green–claimed plots,

PSE◦(Sg) =
∑
i∈Sg

ei,

and we define the Spatial Externality Effect (SEE) on the same claimed set as

SEE(Sg, Sf ) =
∑
i∈Sg

{
eeff

i (Sg, Sf )− ei
}

= ηG

∑
i∈Sg

∑
j∈Sg

Wij − ηF

∑
i∈Sg

∑
j∈Sf

Wij .

As in the body of the paper, the Displacement–Leakage Effect (DLE) credits the residual
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unclaimed plots at the end (mechanical, leakage–driven). Hence the exact identity

(2) Final Conservation = PSE◦(Sg)︸ ︷︷ ︸
strategy on base e

+ SEE(Sg, Sf )︸ ︷︷ ︸
spatial spillovers on claimed

+ DLE(Residual)︸ ︷︷ ︸
mechanical residual credit

,

which mirrors our PSE/DLE convention while making spatial gains visible and additive.1

A6.1.2 S1 ⊂ S2: Equivalence under a perfect matching

Lemma A6.1 (S1 is the k=1 special case of S2). Suppose W encodes a disjoint union of

pairs: for each i there exists a unique m(i) with Wi,m(i) = Wm(i),i = 1 and Wij = 0 otherwise

(no self–loops; no other edges). If B1 applies a λG boost to a partner’s e when the first of a

pair is claimed by Greens and a λF penalty when claimed by Farmers, then (1) coincides with

B1 upon setting ηG = λG and ηF = λF (for unnormalized W ). Under row–normalization the

same equivalence holds since degrees are ki = 1 for all i.

Proof. With disjoint pairs,
∑

j∈Sg
Wij (resp. Sf ) equals 1 iff m(i) ∈ Sg (resp. Sf ); otherwise 0.

Substituting into (1) reproduces the S1 update rule.

Why S2 favors clustering and, therefore, Max–Environment

Define the set function on Green claims

(3) F (Sg; Sf ) =
∑
i∈Sg

ei + ηG

∑
i∈Sg

∑
j∈Sg

Wij − ηF

∑
i∈Sg

∑
j∈Sf

Wij ,

so that PSE◦ + SEE = F (Sg; Sf ).

Proposition A6.2 (Monotonicity and supermodularity). If Wij ≥ 0 and ηG ≥ 0, F (· ; Sf ) is

(i) monotone in Sg and (ii) supermodular in Sg (increasing differences). Equivalently, the

marginal gain from adding i,

∆i(Sg; Sf ) = ei + ηG

∑
j∈Sg

Wij − ηF

∑
j∈Sf

Wij ,

1We keep residual crediting at the final round so that PSE/SEE dynamics remain visually separable from
DLE, exactly as in the main text.
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is (weakly) larger when evaluated at larger Green clusters Sg. In particular, with ηF = 0 (or

holding Sf fixed) the gain from adding a plot rises with the mass of nearby Green claims.

Proof. Monotonicity is immediate since all terms added by enlarging Sg are nonnegative when

ηG ≥ 0. Supermodularity follows because the cross term
∑

i

∑
j Wij1{i ∈ Sg}1{j ∈ Sg} is

quadratic with positive cross–partials in the Green indicators; e enters additively.

The proposition formalizes a connectivity dividend: as a Green cluster grows, nearby plots

become incrementally more attractive, independently of agricultural values a. This has two

immediate implications for the strategy ranking considered in the paper:

Corollary A6.3 (B2 tilts the playing field toward Max–Environment). Assume (A1) W is

exogenous and independent of (e, a); (A2) corr(e, a) = 0 (as in the baseline);3 (A3) leakage is

not zero (so displacement is imperfect, consistent with Section 2.2.4). Then, among the fixed

heuristics studied in the body of the paper, S2 strictly increases the relative advantage of

Max–Environment over Hot Spot and Block Farmers in expected PSE◦ + SEE, and the

gap grows in ηG and in average degree k̄ of W .

Proof sketch. The myopic one–step gain under S2 is

∆i(Sg; Sf ) = ei + ηG
∑

j∈Sg
Wij − ηF

∑
j∈Sf

Wij , which does not depend on ai. Under

(A1)–(A2), any rule that adds a positive weight on ai (e.g. Hot Spot or Block Farmers)

misranks alternatives relative to ∆i with probability one, lowering the expected one–step gain.

Supermodularity then amplifies early misrankings: when a heuristic is pulled away from

high–e seeds, subsequent
∑

j∈Sg
Wij terms are smaller, compounding the shortfall. By

contrast, Max–Environment is aligned with the ei part of ∆i and (via supermodularity)

naturally “rolls” along the Green frontier, harvesting the connectivity dividend. Increasing ηG

or k̄ raises the slope of these complementarities, magnifying the relative advantage.

Remarks. (i) When leakage tends to one (L→ 1), the BAU displacement channel shuts

down and the Green best response in the non–spatial game reduces to a preempt–or–value rule

(Appendix A6), which already disfavors pure threat–chasing; S2’s spatial complementarity

further shifts weight toward the value component. (ii) If the links in W are hidden from
3The paper reports the ρ ̸= 0 cases separately; the same logic applies while the a weight ceases to be pure

noise.
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players (“unobserved” S2), SEE remains an ex post accounting gain but does not influence

choices ex ante; in that knife–edge case S2 behaves more like S1 with random pairing.4

Comparative statics and calibration to S1

To compare S1 and S2 on a common scale, let k̄ denote the average degree of W . If S1 uses

shocks λG, λF on disjoint pairs, then a convenient calibration for row–normalized S2 is

ηG ≈ k̄ λG, ηF ≈ k̄ λF ,

so that the per–neighbor increment in eeff matches the B1 shock. Under this mapping,

• S1 with M disjoint pairs corresponds to S2 on a graph where each plot has degree

k ∈ {0, 1} (a partial matching).

• As degree increases (k ≥ 2), S2 creates multi–neighbor accumulation that S1 cannot

replicate. The connectivity dividend (and thus the tilt toward value–first play) rises in

ηG and in k̄.

Take–away for the reader

S2 embeds a simple economic force: clustering by Greens creates value on neighbors

(supermodularity), whereas weighting by agricultural threat does not. Because the one–step

gain ∆i is orthogonal to ai under (A1)–(A2), heuristics that put positive weight on ai are

systematically misaligned with the spatial objective and underperform relative to

Max–Environment—and the shortfall grows with the strength and scope of spillovers. This

is precisely why we use S1 (dyadic spillovers) for robustness: it is a conservative stress that is

less favorable to Max–Environment than the more realistic multi–neighbor S2.

4See Section 2 for the non–spatial nature of the grid in the baseline setup; S2 is introduced purely as a
robustness lens, not as a claim about geographic adjacency in the main simulations.
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A7 Budget World: Formal Set Up

A7.1 Budgets

Let {(ei, ai)}Ni=1 denote the environmental and agricultural values of N = n2 plots. The price

of each plot equals its agricultural value: Price(pi) = ai.

Farmer and Green budgets are calibrated as shares of the total agricultural value:

B0
f = s

N∑
i=1

ai, B0
g = (1− s)

N∑
i=1

ai,

where s ∈ (0, 1) is the Farmer’s share. In the baseline case s = 0.5, the two sides together can

purchase the entire grid under full leakage.

Farmer Strategies

Farmer strategies mirror the Claims World:

1. Naïve budgeter: purchase the highest-ai plots until budget is exhausted.

2. Strategic budgeter: identify “risky” plots (those targeted under a Green Max

Environment strategy with B0
g) and prioritize them in descending ai, then fill remaining

budget with high-ai “safe” plots.

A7.2 Green Strategies

Greens may adopt four strategies:

1. Max Environment: purchase the affordable plot with highest ei.

2. Hot Spot: purchase the affordable plot maximizing ei · ai.

3. Block Farmers: purchase the affordable plot with highest ai.
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4. Max Efficiency (ratio-greedy): purchase the affordable plot maximizing ri = ei/ai.

This is the standard cost-effectiveness heuristic widely used in conservation planning (a

greedy solution to the 0–1 knapsack problem).5

A7.3 Gameplay and Leakage

Teams alternate purchases until neither can afford additional plots. If Greens capture a

Farmer-BAU plot pi, the Farmer’s budget is reduced by

Bf ← Bf − (1− L)ai,

where L ∈ [0, 1] denotes leakage. At L = 1 no budget is burned; at L = 0 the full value of the

blocked plot is lost.

Outcome Metrics

We distinguish between direct purchases and residual gains:

• Purchased Conservation (PC): PC =
∑

pi∈Sg
ei.

• Displacement–Leakage Effect (DLE): DLE =
∑

pi∈Residual ei, credited only in

budget-parity cases (s = 0.5) when residuals reflect displaced Farmer BAU plots.

• Final Conservation: Cfinal = PC + DLE.

• Welfare Loss: decline from the maximum attainable welfare, reported separately for

purchased outcomes and (under parity) final outcomes including DLE.

• Event Additionality: increases by ei when Greens purchase a Farmer-BAU plot, and

decreases by ei when Farmers purchase a Green-BAU plot.

5In the fractional relaxation of the knapsack, the optimal solution is to select all items with ei/ai > λ∗ for
some threshold λ∗. The ratio-greedy rule mirrors this structure while remaining heuristic in the 0–1 case.
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A8 Theory Addendum: Equilibrium Structure and Budget-

World Dominance

This addendum connects the simulation patterns in the baseline Claims World (Section 2) and

the Budget World (Section 4) to tractable best–response logic in polar cases and to exact

tiny–grid equilibria that benchmark our heuristics against optimizing developers. Closed–form

equilibria remain elusive due to state dimensionality; our contribution is to establish

transparent limiting cases, show how they rationalize the simulation rankings, and verify them

on small grids. Code and results are available from the authors.

A8.1 Claims World: polar leakage cases

Full leakage (L = 1): a myopic preempt–or–value rule.

Proposition A8.1 (Claims World, L = 1). Suppose leakage is full (L = 1) and Farmers play

the naïve Profit Maximizer (Section 2.2.2). Then: (i) the Green value function satisfies

Vg(A) = max
i∈A

{
ei + Vg

(
A \ {i, j(A \ {i})}

)}
,

where j(s) = arg maxi∈s ai is the Farmer’s threatened plot; (ii) a Green best reply is

preempt–or–value: pick j(s) if ej(s) > Esafe(s), else pick the highest–e safe plot; and (iii)

(naïve Farmer, preempt–or–value) is a Markov–perfect equilibrium.

Remark A8.2 (Strategy ranking as L ↑ 1). With corr(e, a) = 0, ranking by a is independent of

e, so pure threat–chasing (Block Farmers) samples e almost at random and is dominated

by Max Environment on PSE, consistent with our figures and tables.

Zero leakage (L = 0): a threshold rule with a BAU bonus.

Proposition A8.3 (Claims World, L = 0). With L = 0 and naïve Farmers, a Green best

reply at state s selects

i⋆ ∈ arg max
i∈A(s)

{
ei + θs · 1{ i ∈ SBAU

f (s) }
}

,
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where θs is the expected e on the marginal residual plot. In words: protect by e, with a BAU

“bonus” θs for threatened plots.

Corollary A8.4 (Intermediate leakage). For L ∈ (0, 1) the BAU bonus scales as (1− L)θs, so

the hotspot tilt shrinks smoothly to zero as L ↑ 1.

Lemma A8.5 (Strategic Farmers). If Farmer BAU plots are stochastically larger in e (our

Strategic Farmer), the threshold rule collapses to Max Environment: the BAU indicator

and e move together, so the bonus does not overturn e–maximization.

A8.2 Budget World: efficiency rules and dominance

We study Purchased Conservation (PC), which strips out the residual-crediting channel

through which leakage primarily affects total conservation. In the full dynamic game the

purchased set can still vary with L via Farmer budget burn, but under thick budgets this

feedback is second-order; the selection effect that drives the Max Environment > Max

Efficiency comparison is therefore essentially independent of L. Farmer removal hazards are

assumed weakly increasing in a signal strictly increasing in a (covering both naïve rank–by–a

and Strategic high–a targeting). Items are i.i.d. (ei, ai) with continuous marginals; unless

stated we assume a nonnegative association structure (MTP2/TP2).

A8.2.1 General dominance on Purchased Conservation.

Simulation results (Section 4.1) show that Max Environment systematically outperforms

Max Efficiency on purchased conservation (PC) across all leakage levels and against both

naïve and Strategic Farmers. Figure A8.1 zooms in on the head-to-head comparison between

these two rules, plotting PC against leakage with 95% confidence bands. The dominance of

Max Environment is visually clear and essentially leakage-invariant. Table A8.1 reports

win-rates and PC gaps across 500 replications per leakage level for each Farmer type,

corroborating the near-universal dominance observed in the plots.
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(a) naïve Farmer (b) Strategic Farmer

Figure A8.1: Budget World head-to-head Purchased Conservation (PC) vs. leakage for naïve and
Strategic Farmers. Max Environment (green) strictly dominates Max Efficiency (teal) in
essentially all replications; curves are nearly parallel across leakage, indicating a selection effect
that is independent of L. Shaded bands: ±95% across 500 replications.

Table A8.1: Budget World: Max Environment vs. Max
Efficiency on PC

Farmer L Wins Win-rate Mean gap P10 P90

naïve 0.0 500/500 1.000 28.9 16.4 42.2
0.5 500/500 1.000 25.4 12.5 38.4
1.0 498/500 0.996 19.1 7.7 30.5

Strategic 0.0 500/500 1.000 28.4 18.7 39.2
0.5 500/500 1.000 29.4 18.4 41.3
1.0 500/500 1.000 29.9 19.1 40.7

PC gap = PC(MaxEnv)−PC(MaxEff). P10/P90 denote the 10th/90th per-
centiles of the PC gap distribution across replications. Entries are computed
from 500 replications at each leakage level. See Theorem A8.9 for the formal
statement.
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A8.2.2 Constructive counterexample.

Proposition A8.6 (Counterexample in Budget World). Under budget parity, there exist

instances and leakage levels L for which Max Efficiency (ratio–greedy e/a) yields strictly

lower final conservation than Max Environment (value–greedy e), hence is not a best

response.

Constructive example. Consider three plots with (e, a) values (9, 9), (8, 8), (7, 1), parity

budgets B0
g = B0

f = 9, and naïve Farmers. Ratios are 1, 1, 7. If Greens play Max Efficiency,

they take (7, 1), the Farmer buys (9, 9), and Greens then get (8, 8): final conservation = 15. If

Greens play Max Environment, they first take (9, 9), burning (1− L) · 9 of Farmer budget;

the Farmer’s remaining budget is B′
f = 9L, so for L < 8/9 the Farmer cannot afford (8, 8),

which Greens then secure, yielding final conservation = 17 > 15.

Remark A8.7. This mechanism extends whenever a high–(e, a) hotspot lies in Farmer BAU:

ratio–greedy avoids it on cost grounds and forfeits both the hotspot and, for L < 1, the

budget–burn benefit.

A8.2.3 Theory: one–step lemma and asymptotic dominance.

Lemma A8.8 (One–step PC dominance of e–greedy). Fix any state in Budget World. Let

k = arg max e among the affordable plots and let a Green rule G (possibly history–dependent)

select j ̸= k with ej < ek. Under nonnegative E–A association (MTP2/TP2 suffices) and a

Farmer removal hazard weakly increasing in an a–signal, the expected shortfall in PC at the

next Green selection time from deferring k is strictly positive:

E[∆PC | defer k] = E[1{k is removed before G returns} · ek] + E[ek − ej ] > 0.

This one–step comparison is independent of residual crediting: since PC excludes the DLE

term, the conditional shortfall above is identical for all L ∈ [0, 1] given the state. Leakage can

affect PC only indirectly by shifting the future distribution of states (budgets and hence

opportunity sets), which is addressed in the global result under thick budgets.

Theorem A8.9 (Asymptotic PC dominance under nonnegative association (pointwise in
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leakage)). Consider Budget World with budget parity. Let (ei, ai) be i.i.d. with continuous

marginals and MTP2 dependence. Suppose maxi ai/Bg → 0 as N →∞ (“thick budgets”), and

Farmer hazards are weakly increasing in the a–signal. Then, for any L ∈ [0, 1],

lim inf
N→∞

{
E[PC(MaxEnv)]− E[PC(G)]

}
≥ 0

for any alternative Green rule G, with strict inequality whenever G defers the current max–e

item with positive probability. The dominance conclusion is pointwise in leakage: it holds for

each fixed L ∈ [0, 1]. Moreover, since PC excludes the residual DLE crediting term, the

statewise one–step comparison underlying the proof is the same for all L; any dependence of

PC on L operates only through leakage-induced shifts in the state path, which are

asymptotically negligible under thick budgets.

Sketch. Sum the one–step gains from Lemma A8.8 along the play. The only correction is a

budget–feedback remainder from ak ̸= aj at disagreements (future affordability sets differ).

Under maxi ai/Bg → 0, this remainder is op(1), so expected cumulative one–step gains

dominate in the limit. Since PC excludes the residual DLE crediting term, L does not enter

the conditional one–step gain; any dependence of PC on L operates only through

leakage-induced shifts in the state path, which vanish asymptotically under thick budgets.

Remark A8.10 (Finite grids and budget feedback). In small or tight–budget instances a single

very high–e, very high–a purchase can crowd out many medium–e purchases, so local gains

need not globalize at finite N . Exact tiny–grid equilibria show this knife–edge: on 2× 2 the

mean PC gap E[PC(MaxEnv)− PC(MaxEff)] is negative across ρ; on 3× 3 it is positive

and grows with ρ (see Subsection A8.3 and Table A8.3).

A8.2.4 Comparative statics in the dependence parameter.

Proposition A8.11 (Monotone comparative statics). Let (E, A) be generated by a

one–parameter family {Cθ}θ∈[−1,1] (e.g. a Gaussian copula) that is increasing in the

supermodular order. Define

∆(θ) = E[PC(MaxEnv)− PC(MaxEff)] .
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Under the assumptions of Theorem A8.9, ∆(θ) is (weakly) increasing in θ, with

limθ→−1 ∆(θ) = 0 and ∆(θ) ≥ 0 for θ ≥ 0 asymptotically.

Empirical alignment. In our 10× 10 simulations the PC gap is large and essentially flat in

L (leakage–invariant); in tiny grids the mean gaps match the comparative statics: negative on

2× 2, positive and growing with ρ on 3× 3.

A8.3 Tiny–grid equilibrium enumeration

We compute exact equilibria on 2× 2 and 3× 3 in Budget World (PC only) and on 2× 2,

3× 3, 4× 4 in Claims World, benchmarking heuristics against the equilibrium Green strategy

against Farmers playing their equilibrium optimizing strategy. The results in Tables A8.2 and

A8.3 confirm that the strategy rankings observed in the Monte Carlo simulations are

structural rather than heuristic artifacts. In Claims World, equilibrium Green play behaves as

an e–first rule with a discrete BAU bonus: empirically, the Hot Spot heuristic (e× a) most

closely matches equilibrium outcomes, while Max Environment, Block Farmers, and

ratio–greedy rules diverge with grid size. In Budget World, where agricultural value ai also

determines price, equilibrium behavior converges toward the value–greedy (Max

Environment) rule.

Across both Worlds, first–move effects diminish rapidly with dimension, and the dominance of

value–first play on Purchased Conservation is monotone in the e–a correlation ρ. These

small-grid equilibria therefore validate the broader simulation results and clarify the transition

from adversarial siting (where threat-weighting aids performance) to adversarial procurement

(where cost weighting becomes detrimental).
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Table A8.2: Tiny–grid equilibrium benchmarks (Claims World, by correlation ρ)

Grid ρ MaxEnv Hot Spot Block Farmers Ratio First–move agree

2× 2

−0.8 421/2000
(0.30 ± 0.80)

1103/2000
(1.76 ± 2.40)

1953/2000
(5.53 ± 2.81)

668/2000
(0.58 ± 1.14)

912/2000 (45.6%)

−0.4 406/2000
(0.36 ± 0.96)

850/2000
(0.94 ± 2.11)

1760/2000
(4.31 ± 3.52)

1024/2000
(1.32 ± 1.86)

1052/2000 (52.6%)

0.0 342/2000
(0.34 ± 1.02)

775/2000
(0.60 ± 1.77)

1606/2000
(3.29 ± 3.42)

1165/2000
(1.82 ± 2.24)

1141/2000 (57.0%)

+0.4 265/2000
(0.25 ± 0.84)

635/2000
(0.28 ± 1.35)

1364/2000
(2.18 ± 2.97)

1401/2000
(2.42 ± 2.47)

1317/2000 (65.8%)

+0.8 117/2000
(0.08 ± 0.45)

441/2000
(0.12 ± 0.77)

943/2000
(0.85 ± 1.64)

1598/2000
(2.79 ± 2.49)

1599/2000 (80.0%)

3× 3

−0.8 1331/2000
(1.62 ± 1.87)

1138/2000
(1.25 ± 2.10)

1990/2000
(9.47 ± 3.75)

1386/2000
(1.80 ± 2.01)

278/2000 (13.9%)

−0.4 1524/2000
(2.88 ± 2.61)

1005/2000
(0.71 ± 2.06)

1944/2000
(8.16 ± 4.61)

1732/2000
(4.38 ± 3.21)

415/2000 (20.8%)

0.0 1501/2000
(2.89 ± 2.65)

958/2000
(0.44 ± 2.02)

1865/2000
(6.73 ± 4.83)

1897/2000
(6.07 ± 3.38)

607/2000 (30.3%)

+0.4 1380/2000
(2.25 ± 2.44)

864/2000
(0.20 ± 1.87)

1748/2000
(4.89 ± 4.42)

1957/2000
(7.29 ± 3.36)

950/2000 (47.5%)

+0.8 931/2000
(0.92 ± 1.52)

825/2000
(0.07 ± 1.20)

1620/2000
(2.37 ± 2.89)

1991/2000
(7.66 ± 3.06)

1333/2000 (66.6%)

4× 4

−0.8 1757/2000
(3.17 ± 2.45)

1613/2000
(3.16 ± 3.30)

2000/2000
(20.01 ± 4.84)

1770/2000
(3.34 ± 2.59)

118/2000 (5.9%)

−0.4 1905/2000
(5.79 ± 3.22)

1243/2000
(1.15 ± 3.08)

1997/2000
(16.77 ± 6.66)

1956/2000
(8.24 ± 4.11)

273/2000 (13.7%)

0.0 1894/2000
(5.61 ± 3.12)

994/2000
(0.05 ± 2.96)

1960/2000
(13.24 ± 6.71)

1988/2000
(11.45 ± 4.43)

494/2000 (24.7%)

+0.4 1868/2000
(4.61 ± 2.86)

869/2000
(−0.39 ± 2.52)

1881/2000
(9.63 ± 6.18)

1999/2000
(14.05 ± 4.10)

801/2000 (40.1%)

+0.8 1671/2000
(2.28 ± 2.00)

921/2000
(−0.24 ± 1.77)

1784/2000
(4.85 ± 4.07)

2000/2000
(15.58 ± 3.60)

1236/2000 (61.8%)

Cells report wins/trials (EQ beats the heuristic playing against the equilibrium Farmer strategy) stacked over
the mean Green payoff gap (EQ − heuristic) with its s.d. “Ratio” is the ratio–greedy rule (e/a). Reps: 2,000
per ρ (seed 321).
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Table A8.3: Tiny–grid equilibrium benchmarks (Budget World, by
correlation ρ)

Grid ρ
EQ vs
MaxEnv

EQ vs
MaxEff

EQ vs
Hot Spot

EQ vs
Block Farmers

MaxEnv
vs MaxEff

2× 2

−0.8 389/2000
(1.49 ± 3.84)

443/2000
(0.63 ± 1.78)

1483/2000
(9.49 ± 8.35)

1892/2000
(18.49 ± 9.09)

271/2000
(−0.86 ± 3.82)

−0.4 672/2000
(2.58 ± 4.59)

616/2000
(1.17 ± 2.58)

1435/2000
(8.11 ± 7.59)

1813/2000
(15.50 ± 9.34)

361/2000
(−1.42 ± 5.05)

0.0 857/2000
(2.86 ± 4.62)

746/2000
(1.48 ± 2.96)

1413/2000
(6.76 ± 6.85)

1727/2000
(12.72 ± 9.29)

418/2000
(−1.38 ± 5.36)

+0.4 1009/2000
(3.05 ± 4.38)

869/2000
(1.90 ± 3.29)

1379/2000
(5.58 ± 6.00)

1587/2000
(9.22 ± 8.17)

510/2000
(−1.16 ± 5.39)

+0.8 1134/2000
(3.02 ± 4.04)

1044/2000
(2.18 ± 3.24)

1308/2000
(4.04 ± 4.65)

1417/2000
(5.40 ± 5.66)

638/2000
(−0.85 ± 4.99)

3× 3

−0.8 1304/2000
(5.52 ± 6.96)

1489/2000
(6.81 ± 7.68)

1831/2000
(17.73 ± 13.34)

2000/2000
(39.15 ± 13.53)

712/2000
(1.29 ± 6.12)

−0.4 1410/2000
(5.63 ± 6.43)

1630/2000
(7.10 ± 6.85)

1810/2000
(15.14 ± 11.72)

1998/2000
(33.65 ± 12.92)

897/2000
(1.46 ± 6.91)

0.0 1443/2000
(5.65 ± 6.28)

1690/2000
(7.44 ± 6.69)

1780/2000
(12.72 ± 10.05)

1982/2000
(27.84 ± 12.03)

1016/2000
(1.79 ± 7.37)

+0.4 1511/2000
(5.55 ± 5.79)

1756/2000
(7.35 ± 6.07)

1766/2000
(10.27 ± 8.43)

1957/2000
(20.49 ± 10.99)

1119/2000
(1.80 ± 7.17)

+0.8 1578/2000
(4.43 ± 4.43)

1781/2000
(6.50 ± 5.22)

1753/2000
(6.81 ± 5.74)

1917/2000
(10.62 ± 6.94)

1197/2000
(2.07 ± 6.26)

Cells report wins/trials (number of replications in which the equilibrium (EQ) Green strategy outper-
forms the heuristic playing against the equilibrium Farmer strategy) stacked over the mean Purchased
Conservation (PC) gap (EQ − heuristic) with its s.d. Positive values favor EQ. “Ratio” denotes the
ratio–greedy rule (e/a). Reps: 2,000 per ρ (seed 321). PC is leakage–invariant.
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A9 Supplement to Empirical Exercise on Bolivia

A9.1 A short history of protected areas in Bolivia

Bolivia provides an insightful case study of the dynamic and contested nature of conservation

decisions. With an extraordinary level of biodiversity and significant pressure for economic

development, the history of Bolivian conservation efforts illustrate well the trade-offs and

strategic interactions that our simulated framework addresses. Protected Areas (PAs) in

Bolivia span national, state, and municipal jurisdictions, varying widely in size, purpose, and

effectiveness, but have in common a restriction on the type and extent of development that

may take place. As illustrated in figure A9.1(b), since 1939 the total land area under

Protected Area status has gradually increased from zero to 35.4 million hectares, 32% of the

national territory6. Figure A9.1 reveals that PA expansion in Bolivia has proceeded at least 3

times faster than agropastoral expansion since 1985 (30 million hectares for conservation

versus 8 million hectares for agropastoral expansion).

(a) Cumulative Anthropogenic Land Use (b) Cumulative Protected Areas

Figure A9.1: Cumulative Land Use in Bolivia, 1930–2023

Formal conservation efforts began in 1939 with the creation of Sajama National Park to

protect the endangered Polylepis forests around Bolivia’s highest peak. Shortly thereafter, in

1942, the Tuni Condoriri National Park was established to safeguard critical water supplies for

El Alto and La Paz. However, conservation activity remained sparse until the mid-1960s,

when protected areas such as TIPNIS, Manuripi, and Eduardo Avaroa were established,

6Bolivia is among 35 countries in the world that have already reached the 30x30 goal of the CBD.
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marking the first substantial extension of Bolivia’s protected lands into regions with

significant biodiversity value.

The late 1980s and 1990s constituted a “golden age” of Bolivian conservation, fueled largely

by international funding through mechanisms like the pioneering 1987 Debt-for-Nature swap

and extensive international support from NGOs. Major protected areas established during

this period—including Amboró, Madidi, Carrasco, and Kaa-Iya del Gran Chaco—targeted

regions with exceptionally high environmental values but often lower immediate agricultural

threats, consistent with a strategy focused primarily on maximizing environmental benefits.

By contrast, the economic expansion from the early 2000s through around 2015 significantly

reshaped conservation dynamics. Protected area establishment slowed markedly during this

period due to greater economic incentives for agricultural and extractive development. At the

same time, the new PAs that were established were often placed within or near the

agricultural frontier, as is apparent in the Supplementary video A9.2 and as we illustrate

below in figure 12, where we see that the agricultural potential of newly protected areas in the

early 2000s is relatively high. The Laguna Concepción State-Level Wildlife Reserve,

established in 2002, is a good example. Laguna Concepción is a natural lagoon designated a

Ramsar Site, recognizing it as a wetland of international importance, but it is located in the

center of Bolivia’s Santa Cruz State near the heart of agricultural expansion in the country.

Despite its Protected Area status, conservation of the Laguna has been a struggle, with

significant agricultural and livestock encroachment by Mennonite colonies into the western

and northern sectors, threatening the fragile ecosystem (Navia, 2022).

Following the economic downturn of the late 2010s and the subsequent pandemic crisis

(2020–2023), Bolivia again intensified conservation efforts, rapidly designating new protected

areas—particularly at the municipal level; the year 2019 saw the establishment of more than

4.2 million hectares of newly Protected Areas and the pandemic crisis of 2020–2023 coincided

with the creation of 2.4 million hectares of primarily municipal protected areas.

Supplementary video A9.2 shows the dynamic expansion of agricultural land and Protected

Areas from 1985 to 2024. Figures A9.3(a) and A9.3(b) show the average potential

conservation and potential agricultural values of the land newly allocated to either agriculture

or conservation (via Protected Area status), respectively, for each year from 1985 to 2023.
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Figure A9.2: Supplementary Video: Dynamic expansion of Agricultural and Protected Area
Land, 1985–2024
(Click the button to view the video).

(a) New Agricultural Land, by year (b) New Protected Areas, by year

Figure A9.3: Potential Agricultural & Conservation Values of New Agricultural and Protected
Land, (annual USD per ha)

A9.2 Data

In order to map the expansion of Protected Areas in Bolivia to our theoretical Green

conservation strategies we combine annual (1985–2023) pixel-level land use data from

Mapbiomas MapBiomas Bolivia Project (2024) and a detailed geo-referenced database of all

Protected Areas in Bolivia, including type and year of establishment from SDSN Bolivia

(SDSN Bolivia, 2025). A times series of Bolivian GDP per capita is from Our World in Data

(Our World in Data, 2025).

In order to estimate the potential conservation values of land areas either designated as

Protected Areas or put into agricultural production we take advantage of a high-resolution

map of the value of ecosystem services from Andersen et al. (2024). The map, reproduced in

figure A9.4(b), is expressed in potential annual dollar values per hectare (USD/ha/year) from

the benefits of conservation, including provisioning values (timber, non-timber forest products,

hunting and fishing, water), regulation values (biodiversity conservation, carbon sequestration,

local climate regulation, pollination, and water treatment), and cultural values (tourism and

recreation). Conservation values range from the lowest in the arid region of the southwestern

https://www.dropbox.com/scl/fi/z1v9lvcbtm26c586tl29h/AP_MosaicAgro.mp4?rlkey=y3x4atm88rldq8z9z9ywxrz9j&dl=0
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Bolivian Altiplano, to the highest in the dense Amazon jungle in the north and the

biodiversity-rich mountainous valley regions between the highlands and the lowlands.

In order to estimate the Agricultural value of land we generate estimates of net agricultural

potential per hectare, presented in figure A9.4(a), following the methodology from Andersen

et al. (2023). Agricultural potential varies greatly across Bolivia due to differences in

topography, soil quality, and climate, with the most profitable regions being those with

climates appropriate for the production of high value crops, like fruits and berries7. To

generate the map, we use detailed pixel-level geographical data on slope, soil quality,

precipitation, and temperature distribution to develop a high-resolution Production Cost

Factor. Combining this with information on the most common crop (or livestock), average

yields, and prices in each municipality to generate pixel-level estimates of agricultural

potential8.

(a) Potential Agricultural Values (b) Potential Conservation Values

Figure A9.4: Potential Agricultural & Conservation values (annual USD per ha)

7In practice, the private profitability of agriculture depends not only on agricultural potential but also on
local infrastructure and proximity to markets, which are not reflected in these numbers. Nevertheless, the map
provides an estimate of relative agricultural values.

8While the original map in Andersen et al. (2023) uses information on Protected Area status and infrastructure
such as distance to roads to generate the Production Cost Factor estimates, for our purposes we have produced
estimates that use only geo-physical conditions
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A9.3 Aggregating pixel values to planning units

Let Bolivia be discretised into raster pixels indexed by i = 1, . . . , I. For each pixel i we

observe:

• ei: annual environmental value in USD per hectare per year (ecosystem services), and

• ai: potential net annual agricultural value (proportional to USD per hectare per year).

Let planning units (PUs) be indexed by j = 1, . . . , J , and let Ij denote the set of pixels whose

centres fall inside PU j.

Step 1: National pixel–level percentiles

We first construct national reference distributions for environmental and agricultural values

across all land pixels. Let

{ei}Ii=1, {ai}Ii=1

denote the full sets of pixel–level values. Define the qth percentiles

P (e)
q and P (a)

q for q ∈ {90, 95, 99}

as the 90th, 95th and 99th percentiles of the distributions {ei} and {ai}, respectively. These

thresholds identify pixels in the upper tails of the national environmental and agricultural

value distributions.

Step 2: PU–level means and tail fractions

For each PU j, we compute simple averages (the µ scores):

(4) µ
(e)
j = 1

|Ij |
∑
i∈Ij

ei, µ
(a)
j = 1

|Ij |
∑
i∈Ij

ai,

which capture the typical environmental and agricultural value of a hectare in PU j.



83

To characterise how much of each PU lies in the upper tails of the national distributions, we

define tail fractions. For environmental value:

(5) f
(e)
j (q) =

#
{

i ∈ Ij : ei ≥ P
(e)
q

}
|Ij |

, q ∈ {90, 95, 99},

and analogously for agricultural value:

(6) f
(a)
j (q) =

#
{

i ∈ Ij : ai ≥ P
(a)
q

}
|Ij |

, q ∈ {90, 95, 99}.

Thus f
(e)
j (95), for example, is the fraction of PU j’s area lying in the top 5% of environmental

values nationally.

Step 3: Tail–Averaged Percentile Scores (TAPS)

To combine the information on how high and how widespread extreme values are within a PU,

we construct simple Tail–Averaged Percentile Scores (TAPS). For environmental values:

(7) TAPS(e)
j (90) = 90·f (e)

j (90), TAPS(e)
j (95) = 95·f (e)

j (95), TAPS(e)
j (99) = 99·f (e)

j (99).

and similarly for agricultural values:

(8)

TAPS(a)
j (90) = 90 · f (a)

j (90), TAPS(a)
j (95) = 95 · f (a)

j (95), TAPS(a)
j (99) = 99 · f (a)

j (99).

These scores give more weight to pixels in higher percentiles and to PUs where such pixels

occupy a larger share of the area.

Step 4: Percentile ranks across PUs

Because the raw means µj and TAPS are on different scales, we normalise them by converting

each into a percentile rank across PUs. Let F
(e)
µ denote the empirical distribution of {µ(e)

j }Jj=1.

We define

(9) M
(e)
j = F (e)

µ

(
µ

(e)
j

)
,
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so that M
(e)
j ∈ [0, 1] is the percentile rank of PU j’s mean environmental value among all PUs.

We similarly define percentile ranks for the environmental TAPS:

(10) T
(e,90)
j , T

(e,95)
j , T

(e,99)
j

as the percentile ranks of TAPS(e)
j (90), TAPS(e)

j (95) and TAPS(e)
j (99) across j. We construct

analogous quantities

M
(a)
j , T

(a,90)
j , T

(a,95)
j , T

(a,99)
j

for agriculture. In all cases, higher values indicate a PU that is better ranked relative to other

PUs on that dimension.

Step 5: Composite environmental and agricultural scores

Finally, we combine the percentile–ranked components into single composite environmental

and agricultural scores for each PU. For environmental value, we define:

(11) S
(e)
j = 0.40 M

(e)
j + 0.25 T

(e,90)
j + 0.20 T

(e,95)
j + 0.15

(
T

(e,99)
j

)1.5
,

where the weights put slightly more emphasis on average environmental quality and the broad

high tail (90–95th percentile), while the exponent on T
(e,99)
j gives additional, but

non–dominant, credit to PUs containing exceptional extreme–tail areas.

We define the composite agricultural score analogously:

(12) S
(a)
j = 0.40 M

(a)
j + 0.25 T

(a,90)
j + 0.20 T

(a,95)
j + 0.15

(
T

(a,99)
j

)1.5
.

By construction, S
(e)
j , S

(a)
j ∈ [0, 1], and they summarise, respectively, each PU’s conservation

attractiveness and agricultural opportunity cost. These composite scores are the quantities

used as “environmental value” and “price” in the static knapsack problem and in the dynamic

adversarial games.
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A10 Replication Code and Supplementary Interactive Game

In addition to the robustness exercises presented above, we provide open replication materials

to support transparency, reproducibility, and teaching applications.

First, we provide a standalone Python simulator, archived with a permanent DOI, together

with a detailed User Manual:

• GitHub repository:

https://github.com/dmweinhold/Conservation_Strategy_Simulation

• Zenodo archive: https://doi.org/10.5281/zenodo.17114490

The simulator can be used to reproduce all results reported in the paper and allows users to

modify parameters such as the number of replications, correlation structure, allocation rules,

and leakage rates.

Second, an interactive browser version of the Conservation Strategy Game, where users can

play as either team against fixed strategies played by the computer, is available at:

https://dmweinhold.github.io/Conservation-Strategy-Game-Page/

Python Simulator & User Manual
https://github.com/dmweinhold/
Conservation_Strategy_Simulation

Interactive Browser Game
https://dmweinhold.github.io/
Conservation-Strategy-Game-Page/

Figure A10.1: QR codes linking to replication materials. The left panel links to the full simulator
and documentation; the right panel links to the interactive browser game.

https://github.com/dmweinhold/Conservation_Strategy_Simulation
https://doi.org/10.5281/zenodo.17114490
https://dmweinhold.github.io/Conservation-Strategy-Game-Page/
https://github.com/dmweinhold/Conservation_Strategy_Simulation
https://github.com/dmweinhold/Conservation_Strategy_Simulation
https://dmweinhold.github.io/Conservation-Strategy-Game-Page/
https://dmweinhold.github.io/Conservation-Strategy-Game-Page/
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