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Abstract 

 Applying tools from macroeconometrics and model selection I find strong statistical 

evidence of cointegration, with capital and labour factor productivities trading off against 

each other, while moving positively with intermediate input productivity.  These patterns 

might perhaps be understood in terms of task based technical change in which the reallocation 

of tasks generates cost reducing tradeoffs and links between factor productivity growth rates.   
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I. Introduction 

Simple back of the envelope calculations suggest that if productivity growth is factor 

augmenting, then in recent decades some factors most likely experienced substantially 

negative rates of productivity growth in the US.  Consider the two-factor constant returns to 

scale capital-labour production function Y(t) = F(AK(t)K(t),AL(t)L(t)).  Price taking firms set 

the ratio of labour to capital marginal products equal to the wage-rental ratio: ALF2/AKF1 = 

W/R, where Fj denotes the partial derivative with respect to the jth argument.  Differentiating 

this first order condition with respect to time, we have 
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where σ denotes the elasticity of substitution and we use g(x) here and later to denote the 

growth rate of x.  With perfect competition the elasticity of output with respect to factor j 

equals its income share θj, and so total factor productivity growth, calculated as g(TFP)   = 

g(Y) - θKg(K) - θLg(L), will equal 
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Combining the two equations we get expressions for factor augmenting productivity growth 

for each factor:1 
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Other than σ, all of the objects on the right-hand sides of (I.3) are directly observable 

in growth accounts data.  Thus, one can use (I.3) to calculate the values of σ consistent with 

positive factor augmenting productivity growth for both factors.  Table 1 below presents such 

calculations for private sector data in the BEA’s US KLEMS growth accounts for 1987-2021.  

For both g(AK) and g(AL) to be on average positive over the 34 years an elasticity of 

substitution greater than 1.38 is needed.  Dividing the sample into two, we see that with 

productivity growth falling and the growth of the capital labour ratio relative to that of the 

wage rental ratio rising over time, an elasticity of substitution greater than 1.72 is needed in 

recent years.  Unless the elasticity of substitution is quite large, there is simply too much 

capital-labour substitution relative to the change in the wage-rental ratio to be consistent with 

 
1The unidentified Cobb-Douglas case with σ = 1 is ruled out by the fact that aggregate g(K/L) is a 

multiple of g(W/R) (Table 1 below) and evidence on time trends in industry factor shares given in Section II. 
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Table 1:  Values of σ Consistent with g(AK) ≥ 0 and g(AL) ≥ 0 (US KLEMS private sector data) 

 g(K/L) g(W/R) θL g(TFP) σ 

1987-2021 
1987-2004 
2004-2021 

.017 

.022 

.013 

.009 

.013 

.004 

.59 

.62 

.57 

.0058 

.0084 

.0032 

> 1.38 
> 1.25 
> 1.72 

   Note:  Calculated using (I.3) and private sector data from BEA US KLEMS.  Growth rates of aggregate capital 
and labour are income share weighted averages of sub-categories, reflecting the relative marginal products of those 
sub-groups.  Growth of wage-rental ratio calculated as growth of nominal income less weighted real factors, i.e. 
payments per factor adjusted for changing composition. 

both low productivity growth and positive factor augmenting technical change in all factors. 

Unfortunately, most estimates of σ lie well below 1.  Gechart et al (2022) in a meta 

study of 3186 estimates of the elasticity of substitution in 121 studies find that ¾ lie below 1.  

They argue there is substantial evidence of publication bias as smaller point estimates are 

associated with smaller standard errors.  Multiple alternative corrections for publication bias 

all lead them to a similar point estimate of the elasticity of about .5.  In a narrower study of 

2419 estimates in 77 studies of the US economy, Knoblach, Roessler & Zwerschke (2020) 

find a mean estimate of .54 for the aggregate economy and, after correcting for systematic 

biases arising from the use of particular techniques highlighted in Monte-Carlos by León-

Ledesma, McAdam & Willman (2010, 2015), conclude plausible values lie between .45 and 

.87.  Thus, notwithstanding rare estimates greater than or equal to 1.4, and even fewer greater 

than 1.7 (Figure 3 Gechart et al 2022, Figure 1 Knoblach et al 2020), the preponderance of 

evidence suggests the elasticity of capital-labour substitution is below 1, and well below 1 if 

corrections are made for publication and methodological bias. 

  One obvious resolution of this puzzle is to conclude that there is systematic under-

statement of productivity growth due, say, to mismeasurement of output growth in services, as 

was emphasized by Griliches (1994).  However, to lower the 2004-2021 restriction on σ 

needed for universally positive factor productivity growth to the 1.25 needed for 1987-2004 

would require a quadrupling of productivity growth in the later period from .032 to .0128.  

Similarly, satisfying the non-negativity constraints with an elasticity of substitution of .5 

would require total factor productivity growth of .0191 in 1987-2004 & .0120 in 2004-2021, 

with these figures rising to .0300 & .0216, respectively, if σ equals .75.  Such large 

adjustments for mismeasurement seem implausible, as persuasively argued for post-millenium 

data by Byrne, Fernald & Reinsdorf (2016) and Syverson (2017).   
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 Seemingly negative factor augmenting productivity growth is, however, a natural 

consequence of task based technical change.  Following the model of Acemoglu & Restrepo 

(2018), consider the CES production function across tasks with elasticity of substitution σ, 

factor augmenting productivity parameters aK and aL, and factor task measures αK and αL  

, and    where)()(
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and where we assume that the effective supply of each input is efficiently divided equally 

across the tasks it performs.  In this framework, if the increase in the range of tasks performed 

by one factor is associated with a decline in the tasks performed by the other, measured factor 

augmenting productivities will be negatively related, with an increase in one necessarily 

giving rise to a decline in the other.  In particular, with an elasticity of substitution less than 

one technical innovation which increases the range of tasks performed by capital (αK) at the 

expense of those performed by labour (αL) will appear as a measured decline in capital 

productivity AK and increase in labour productivity AL, as seen in (I.4) above and noted in 

Aghion, Jones & Jones (2019).  Given the low elasticity of substitution across tasks, when a 

fixed amount of capital is spread across more tasks it becomes less productive per unit, with 

opposite effects for labour.    

This paper explores these issues using tools from macroeconometrics and model 

selection to test whether measured factor augmenting productivities are cointegrated and 

examine the degree to which their evolution can be explained by movements along vs shifts 

of those cointegration frontiers.  Across a variety of potential production structures statistical 

tests consistently reject a vector autoregression (VAR) framework in favour of a vector error 

correction (VEC) model of cointegration, wherein factor augmenting productivities are linked 

and tradeoff against each other.  This result extends to models which restrict elasticities of 

substitution to be greater than 1 and have positive average rates of productivity growth for all 

factors, although likelihoods select in favour models with elasticities of substitution less than 

1, whose results consequently receive the most attention.   
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For linked cointegrated movements of factor productivity to be interpretable as task 

based reallocations implemented by profit maximizing firms, such movements should 

increase total factor productivity.  I find that the estimated slope of the cointegration frontier 

for the highest likelihood models are such that this is the case.  However, the contribution to 

aggregate productivity growth of movements along the cointegration frontier is less clear.  In 

the highest ranked model, with a low elasticity of substitution between intermediates and a 

capital-labour aggregate, it accounts for only ⅙, or at most ⅓, of total factor productivity 

growth, whereas in the second ranked model, with a high elasticity of substitution between 

between the two, it can account for all of productivity growth.  Thus, the data strongly support 

the notion that there are large linked movements in measured factor productivities which 

motivate cost reducing factor substitution and can be interpreted as task based tradeoffs, the 

α’s of (I.4).  Somewhat less definitively, they indicate, in the horserace to the highest 

likelihood, that the majority of total factor productivity growth is actually accounted for by 

what appears to be true underlying factor augmenting productivity, the a’s of (I.4).  Factor 

substitution is largely determined by task based technical change, while productivity growth 

may be largely determined by a more traditional model of technical change. 

 This paper is not the first to note the difficulty of reconciling observed factor 

substitution and productivity growth rates with non-negative factor augmenting productivity 

growth.  Bils, Kaymak & Wu (forthcoming) argue that a radical revision of beliefs on the 

elasticity of substitution between workers of different schooling levels to a number in excess 

of 4 is needed to reconcile observed changes in relative factor supplies and returns if one 

disallows a decline in the absolute efficiency of any group.  Muck (2017) using recent EU 

data estimates an elasticity of capital-labour substitution of about .7 and finds opposite 

positive and negative factor augmenting growth in labour and capital, respectively, of about 3 

percent per annum.  As already noted above, Aghion, Jones & Jones (2019) point out that task 

gains by capital would appear as declines in capital augmenting productivity if the elasticity 

of substitution is less than one.  This paper builds on this prior work by establishing 

statistically the links between negative factor augmenting productivity growth in one factor 

and positive growth in another brought about by cointegrating relationships and decomposing 

observed changes into plausible cost reducing movements along cointegration frontiers and 

outward movements of those frontiers. 
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 While the competition between humans and machines in the performance of tasks has 

been apparent to the public since at least the Luddites of the early 18th century, the modern 

formal economic conceptualization can be traced to the seminal paper of Zeira (1998), with 

further development in Acemoglu & Autor (2011) and foundation in a model of directed 

technical change in Acemoglu & Restrepo (2018).  Microdata evidence given in Autor, Levy 

& Murnane (2003) and Spitz-Oener (2006) established its empirical importance in the 

determination of labour demand, wages and inequality, with further support found, e.g., in 

Autor & Dorn (2013) and Acemoglu & Restrepo (2020).  This paper adopts a panel data 

macro-econometrics perspective and argues that cointegration and large linked positive and 

negative movements of factor productivities are suggestive of the importance of task based 

technical change in recent decades.  While cointegrated relationships need not only come 

from the reallocation of tasks, the task based model does provide a natural explanation of 

observed tradeoffs between labour and capital.  At the same time, as shown by economic 

history and formalized and emphasized by Acemoglu & Restrepo (2018), the allocation of 

tasks need not be zero sum, and the acquisition of tasks by one factor often creates new tasks 

for others.  I find this most clearly and surprisingly in the form of a positive relationship 

between the cointegrated productivities (interpretable as transformations of task measures) of 

intermediate inputs with those of primary factors of production. 

 Estimating elasticities of substitution and rates of factor augmenting productivity 

growth is more than challenging.  Diamond, McFadden & Rodriguez (1978), as well as Sato 

(1977), famously showed that if one only assumes the existence of a constant returns to scale 

production function and observable marginal products, the elasticity of substitution and bias 

of factor augmenting technical change cannot both be identified from observational data.   

This is most obvious in (I.1) earlier, where observed growth rates of K/L and W/R can be 

reconciled with different combinations of σ and the growth of AK/AL.  Identification requires 

additional assumptions, and most approaches to estimating the elasticity of substitution 

explicity or implicitly restrict the nature and bias of factor augmenting technical change, 

allowing for substantive biases (León-Ledesma, McAdam & Willman 2010, 2015).  However, 

for production functions with trend stationary inputs and factor augmenting parameters, 

Klump, McAdam & Willman (2007, 2012) , buttressed by Monte Carlos in León-Ledesma, 

McAdam & Willman (2010), show that the assumptions of a non-linear CES structure and 
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specific trend stationary functional forms for the relationship between factor augmenting 

productivity and time, as well as systems estimation using both first order optimality 

conditions and the level of non-linear CES output with normalization at points of interest, are 

in combination enough to yield credible identification of both elasticities and factor 

augmenting productivity growth.  This levels approach, however, is not useful when total 

factor productivity, factor ratios and and factor augmenting productivity are difference 

stationary, as suggested by the data, invalidating the levels analysis used in those papers and, 

for example, Muck's (2017) work noted above. 

 This paper bases its estimates on differenced data with systems estimation based upon 

the derivatives of cost minimization conditions and total factor productivity with respect to 

time.  Estimating equations for discrete differences are identical to those for continuous time, 

with the exception that average factor shares take the place of instantaneous factor shares, a 

substitution that can be motivated as a second order approximation to arbitrary production 

functions with constant elasticities within the range of the sample data.  The complex non-

linear structure of the global CES in differences, however, is not used.  Factor augmenting 

productivity growth is estimated with unrestricted year and industry fixed effects within a 

VAR or VEC structure.  The VAR model is tested against the VEC alternative agnostically 

assuming a variety of factor nesting and grouping structures and restrictions on elasticities of 

substitution to be greater or less than 1.  Across this universe of potential models, the data 

always reject the VAR model in favour of the cointegrated VEC structure, while indicating 

that they are difference stationary.2   

 Absent any of the standard restrictions, this paper "solves" the Diamond et al/Sato 

identification problem by showing how systems estimation in differences closely resembles a 

structural VAR, and then adopting the standard structural VAR assumption of assuming the 

zero mean (factor augmenting) shocks are orthogonal to each other.  Identification is achieved 

by matching, as closely as possible, the unrestricted covariance matrix of relative factor input 

and total factor productivity growth rates by passing the orthogonal shocks through the 

structural model.  I find that a production structure with a capital and labour value added 

aggregator separable from intermediates provides the highest likelihoods.  Point estimates of 

 
2Monte Carlos in the on-line appendix show that standard cointegration tests when evaluated using their 

asymptotic distribution have very large positive size distortions, so wild bootstraps under the null of no or lower 
order cointegration, which in Monte Carlos show more accurate finite sample rejection rates, are used in all tests. 
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the capital-labour elasticity of substitution are around ½, consistent with the values suggested 

by Gechart et al (2022) and Knoblach, Roessler & Zwerschke (2020) from their meta studies.  

 The heroic assumption of a diagonal covariance matrix is not left unexamined and its 

impact on results is repeatedly (locally) stress tested.  Having identified elasticities assuming 

a diagonal shock structure, I then take them as known and reestimate all the key parameters of 

the model, including the cointegration structure, allowing for an unrestricted covariance 

structure to the shocks.  Parameter estimates and conclusions regarding movements along and 

shifts of cointegration frontiers are very similar.  In implementing inference using a wild 

bootstrap I use two procedures, one which retains the empirical off-diagonal covariance of the 

estimated shocks and the other which constrains it to be zero.  Decisions reached using the 

two methods are again very similar, with rare highlighted exceptions.  The bias of maximum 

likelihood procedures is evaluated using bootstraps with and without off-diagonal covariance 

of shocks, finding almost no impact on substantive conclusions.  These results should not be 

taken as affirming the validity of the diagonal covariance assumption, because estimation 

using an erroneous assumption could bias the covariance structure of the estimated residuals.  

Rather they should be taken as local to the point estimates, showing that for most factor 

nesting structures and > or < 1 elasticity restrictions there exist elasticity estimates such that 

the empirical covariance of the shocks, while not zero, is rarely of any import to the principal 

conclusions drawn.  These elasticity estimates and production function structures, however, 

run the gamut of priors, and all produce the same conclusion: that factor augmenting 

productivity growth is cointegrated, producing tradeoffs across factors.  As implied by the 

Diamond et al/Sato result, all estimates of elastiticies of substitution based on observational 

data make strong assumptions, either explicitly or implicitly.  This paper similarly makes one, 

drawn from the structural VAR literature, using confirmatory tests that, contingent upon given 

elasticity point estimates, relax the assumption.  Combined with the examination of results for 

a range of production structures and > or < than 1 restrictions on elasticities, this hopefully 

convinces the reader that while belief in the highest likelihood model and its precise point 

estimates requires restrictive articles of faith, the overall conclusions are more ecumenical. 

 The paper proceeds as follows:  Section II describes the data, highlighting its heavy 

tailed and difference stationary distribution, motivating empirical specifications that use the 

multivariate t-distribution on differenced data, i.e. growth rates.  Section III lays out the 
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methodology in what is hopefully a "hands above the table" manner, revealing how, in the 

light of the Diamond, McFadden & Rodgriquez (1978) and Sato (1977) results, standard 

structural VAR assumptions regarding diagonal shocks achieve the miracle of identification, 

and how the wild bootstrap is used to test how binding, practically, these assumptions are in 

the neighbourhood of point estimates, select among models and provide better finite sample 

inference.  Section IV lays out aforementioned results for a model of capital, labour and 

intermediates, with the model with the highest likelihood, in particular, finding that capital 

and labour productivity trade off against each other while varying positively with intermediate 

input productivity.  Section V decomposes productivity growth into movements along the 

cointegration frontier and shifts of that frontier.  While movements along the frontier account 

from most of the gross changes in factor productivity, in the highest ranked model they 

account for at best ⅙, or maybe even ⅓, of (net) total factor productivity growth.  Shifts of the 

frontier fuel the remainder, suggesting that while task based technical change is heavily 

influencing relative factor ratios and returns, more traditional factor augmenting technical 

change may account for the lion’s share of actual TFP growth.  These conclusions consider 

adjustments for bias as estimated by wild and parameteric bootstraps with and without off-

diagonal covariance of shocks.  Section VI concludes with observations on how findings of 

negative productivity growth and cointegration that links difference stationary productivities 

to moving trend stationary frontiers challenge theoretical models of growth, including those 

emphasizing task based technical change.  An on-line appendix provides Monte Carlos for all 

empirical techniques using data generating processes based on the practical sample sizes and 

point estimates found in the paper and theoretical proofs of claims made regarding Taylor 

approximations and consistency. 
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Table 2:  "Statistically Significant" 1987-2021 Industry Trends in ln Factor Income Shares 

(for each factor j and industry i , regression: ln θjit = αji + βjit) 
 # significant average |β| when so 
 capital labour intermediates capital labour intermediates 

level: .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

 43 51 48 50 40 44 .023 .021 .011 .010 .010 .009 

    Notes:  p-values evaluated using heteroskedasticity robust standard errors.  These regressions are designed to 
show that a Cobb-Douglas specification with constant underlying factor shares and measurement error is not 
consistent with the data.  They do not claim to properly identify trends, as with non-unitary elasticities of 
substitution difference stationary data produce spuriously significant time trends in regressions of this sort. 
 

II. The Data and their Characteristics 

 All measures and results reported in this paper pertain to the private sector alone, as I 

drop data for the government sector.  I draw industry x time data on output, inputs and factor 

incomes from the Bureau of Economic Analysis’s KLEMS (capital, labor, energy, materials 

& services) accounts, which provide a consistent series for 61 private sector industries from 

1987 to 2021.3  Several features of the data related to the methods and results of this paper are 

worth noting. 

Kaldor's (1961) stylized fact on the constancy of national income shares has had an 

enduring influence on the profession, leading many to conceptualize production as Cobb-

Douglas, with observed changes in factor income shares dismissed as measurement error.  

This view is not consistent with industry level data.  If production is Cobb-Douglas, factor 

shares should be trend stationary with, moreover, no trend whatsoever.  Table 2 reports the 

number of statistically significant time trends found when regressing the ln of industry factor 

shares on constants and time trends.  As shown, the majority of the 61 industries have 

statistically significant time trends.  These trends are quite substantive with the absolute value 

of the capital, labour and intermediate ln share trends, when statistically significant, averaging  

 
3I use the BEA's KLEMS estimates in preference to those of the BLS, because the latter report instances 

of negative labour and capital income.  The BEA has also produced historical series for 1947-1963 & 1963-
2016, but warns these are of doubtful quality.  The concern seems valid as, for example, “funds, trusts and other 
financial vehicles" show college employment increasing 9 fold between 1997 and 1998 only to fall 99 percent 
between 2006 and 2007.  The EU KLEMS have a disturbingly large number of basic inconsistencies.  Even after 
dropping formerly centrally planned economies and less accurate information on detailed sectors, of 4929 11 
country (Austria, Belgium, Denmark, Germany, Finland, France, Italy, Netherlands, Spain, Sweden, and the UK) 
x 18 major industry x year instances in which the growth of tangible capital and its ICT and non-ICT 
components (as described in Stehrer et al 2019) is provided, the growth of both components is either greater or 
less than the growth of their aggregate in 1306 cases.  That is, technically speaking, impossible.  Turning to the 
relative incomes of different types of workers, in 15444 11 country x 18 private sector industry x year x gender x 
3 age cells, "highly skilled" workers (university graduates) earn 26% less on average than "medium skilled" 
workers (intermediate qualification) in 2490 instances and 28% less on average than "low skilled" workers (no 
formal qualification) in 1911 instances, divided roughly equally between genders and individuals aged less than 
and over 30 (skill definitions as given in Stehrer et al 2019).  This seems unlikely. 
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Table 3: Covariance Matrix and Higher Moments of US KLEMS Growth Rates 
(residuals from regression on year and industry fixed effects) 

 g(TFP) g(K) g(L) g(I) skewness kurtosis 

g(TFP) 
g(K) 
g(L) 
g(I) 

.0015 
-.0002 
.0000 

-.0013 

 
.0012 
.0002 
.0002 

 
 

.0021 

.0014 

 
 
 

.0136 

-0.04 
-0.04 
-0.31 
-0.03 

15.1 
58.2 
14.0 
21.2 

    Note: TFP, K, L, & I = total factor productivity, capital, labor, & intermediate input, respectively. 

2.3, 1.1 and 1.0 percent per annum for the 34 years of the US KLEMS 1987-2021 series.  

These point estimates should not be interpreted as identifying true trends in the data since, 

provided elasticities of substitution differ from 1, unit roots in industry level factor inputs 

could easily produce spuriously "statistically significant" time trends of this sort.  The intent is 

merely to show that the data are totally inconsistent with a Cobb-Douglas view of the world.  

Karabarbounis & Neiman (2013) demonstrate the existence of substantive changes in factor 

shares in national data. 4  Table 2 reinforces that message at the US industry level.  As seen 

below, factor augmenting productivity growth can only be identified if elasticities of 

substitution differ from 1, and Table 2 shows that assumption is not unreasonable. 

 Table 3 reports the covariance and higher moments of the residuals of the regression 

of the ln growth of total factor productivity and factor inputs on year and industry dummies.  

Most salient is the fact that the variance of the growth of intermediate input is an order of 

magnitude greater than that of other factor inputs and TFP growth.  It is hard to dismiss this 

variation as measurement error.  As TFP growth is constructed by subtracting the growth of 

intermediate inputs times their income share (averaging .5) from the growth of gross output, 

were intermediate input variation pure measurement error the covariance of intermediate input 

growth with TFP would be -½ times the variance of intermediate input growth.  In practice 

the covariance is negative, as is the covariance of capital with total factor productivity 

growth,5 but less than ⅒th of the variance of intermediate input.  Thus, the reported variation 

of intermediate input appears for the most part to be real.6  Explaining this through 
 

4Insofar as constancy of factor shares was once true for aggregate US data, Koh, Santaeulàlia-Llopis & 
Zheng (2020) show this can be attributed to the pre-1999 classification of intellectual property products 
investment as a business expense. 

5These negative covariances need not represent measurement error, as total factor productivity growth 
could be contractionary, as found for the aggregate economy by Basu, Fernald & Kimball (2006).  At the partial 
equilibrium industry level, with perfect competition where one percent total factor productivity growth translates 
into a one percent fall in prices, price inelastic demand would be enough to deliver this result. 

6Systematic measurement error in the form of changes in intermediate input "use" due to inventory 
accumulation or decumulation (generating a disconnect between inputs purchased and inputs used in current 
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productivity shocks in a way that does not result in excessive variation of other inputs and 

TFP growth plays a large role in the way the likelihood selects among models below. 

 Table 3 also reports the skewness and kurtosis of the growth of TFP & factor inputs.  

As can be seen, skewness is for the most part minimal, but kurtosis is very much greater than 

the 3 of the normal distribution.  The multivariate t-distribution provides a computationally 

tractable way of modelling distributions with arbitrarily thick tails parameterized by the 

degrees of freedom and results using this distribution, along with those for the multivariate 

normal, are shown below.  As shown in the on-line appendix, parameter estimates using the 

multivariate t are equivalent to weighted versions of those for the multivariate normal, with 

weights inversely related to the degrees of freedom plus the covariance adjusted squared 

observation residuals.7  These systematically underweight outlier observations with large 

residuals, with the underweighting growing as the degrees of freedom falls and the tails of the 

distribution become thicker.  In Monte Carlos in the on-line appendix I find that estimation 

using the outlier resistant multivariate-t provides more reliably accurate rejection probabilities 

for the wild bootstrap cointegration tests used below.  In the sample, point estimates using the 

normal and t are very similar, although the multivariate-t provides a much better fit to the data 

(i.e., higher likelihood).  Perhaps for these reasons, statistical tests based upon the 

multivariate-t provide more consistent and unequivocal results. 

 The KLEMS TFP, capital/labour (K/L) and intermediates/labour (I/L) series feature 

prominently in the analysis below.  Table 4 reports the results of unit root and stationarity 

tests for their lns and ln differences (growth).  Panel unit root tests often have ridiculous size 

distortions in the sample sizes used in this paper, with null rejection probabilities of 0 or 1.00 

at the .05 level for normal or t-distributed error processes, as shown in Monte Carlos in the 

on-line appendix.  Table 4 presents results for tests whose null rejection probabilities I find to 

be close to the nominal .05 level for both normal and thick tailed t-distributed data generating  

 
production), that might conceivably be accompanied by offsetting movements in output and hence not generate a 
large negative covariance with measured TFP growth, does not seem to be an explanation either.  In the KLEMS 
data the residual (net of year and industry fixed effects) variance of non-storable service and energy inputs (.020 
and .046, respectively) is of the same order of magnitude as that of material inputs (.031), while services and 
energy account for an average of 61% of total input costs.  

7With V denoting the covariance matrix of the J-variate normal which divided by an independent chi-
squared variable with τ degrees of freedom produces the J-variate-t, and ^ estimated parameters, the weights are: 

)]ˆ(ˆ)ˆ(ˆ/[)ˆ( 1
ititititJ xβyVβxy   . 

. 
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 Table 4: Stationarity and Unit Root Tests by KLEMS Series 
(p-values or test statistics relative to critical values) 

  ln levels growth rates 
  ln(TFP) ln(K/L) ln(I/L) g(TFP) g(K/L) g(I/L) 

 (A) tests without correction for autocorrelation: 

Hadri 
(H0: stationary) 

FE 
trend 

.000 

.000 
.000 
.000 

.000 

.000 
.000 
.267 

.000 

.000 
.263 
.714 

Harris-Tsavalis 
(H0: has unit root) 

FE 
trend 

.981 

.830 
1.00 
1.00 

.023 

.016 
.000 
.000 

.000 

.000 
.000 
.000 

Im-Pesaran-Shin* 
(H0: has unit root) 

FE 
trend 

1.0 
.97 

0.81 
0.74 

.96 

.98 
3.6 
2.6 

3.0 
2.3 

3.7 
2.7 

 (B) tests with correction for first order autocorrelation 

Im-Pesaran-Shin 
(H0: has unit root) 

FE 
trend 

.280 

.773 
.877 
.998 

.920 

.912 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-Z 
(H0: has unit root) 

FE 
trend 

.216 

.778 
.812 
.999 

.929 

.826 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-L 
(H0: has unit root) 

FE 
trend 

.239 

.771 
.865 
1.00 

.932 

.810 
.000 
.000 

.000 

.000 
.000 
.000 

Notes: (*) Reports test statistic relative to finite sample critical value calculated by IPS; all others report p-value 
based upon asymptotic distribution.  Fisher-Z and -L: using the Z and L summary statistics given in the text.  FE: 
industry and year fixed effects as controls; trend adds industry specific time trends as controls. 
 

processes parameterized by estimates from my sample.  The Hadri (2000) test in panel (A) 

considers the regression yit = rit + controls + error, where rit = rit-1 + uit, and uses the 

Lagrange Multiplier test to test the null that the variance of uit equals 0.  This is a test of the 

null that yit is stationary, with rit equal to an industry i fixed effect, against the null that it 

contains a unit root.  The test statistic allows for heteroskedasticity.  The Harris & Tsavalis 

(HT, 1999) test runs the regression yit = ρyit-1 + controls + error and tests the unit root null ρ = 

1.  The Im, Pesaran & Shin (IPS, 2003) test regresses the change in the variable on its lagged 

value plus controls, g(yit) = ρiyit-1 + controls + error, estimating a separate autoregressive 

parameter ρi for each series in the panel, and uses the mean of their t-statistics to test the null 

that all ρi = 0, i.e. all panels contain a unit root.  While the other tests evaluate the test statistic 

using its asymptotic distribution, IPS used simulation to calculate critical values for a finite 

sample .05 null rejection rate in fixed sample sizes and the table reports the value of the test 

statistic relative to that critical value.   Reported results include industry and year fixed effects 

or industry & year fixed effects plus series specific time trends as controls. 

As seen in Table 4, panel (A), the HT & IPS tests consistently and emphatically reject 

the null that the growth rates of the series contain a unit root, while the Hadri test consistently 
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and emphatically rejects the null that their levels are stationary.  In most cases the same tests 

do not reject the null that the level has a unit root or the difference is stationary.  However, the 

available distributions for these tests do not allow for the possibility that the error process is 

serially correlated and I find, in Monte Carlos in the on-line appendix, that when this is the 

case they frequently have have either 0 or 1.00 rejection rates at the .05 level, making both 

Type I and II errors highly likely.   

 To address the issue of autocorrelation, panel (B) of Table 4 uses tests that control for 

serial correlation and in Monte Carlos in the on-line appendix produce null rejection 

probabilities reasonably close to the nominal .05 level.  These are the IPS test with the lagged 

value of g(yit) as a right-hand side control, evaluating the test statistic using its asymptotic 

distribution, and Fisher-type tests that combine the p-values (pi) of Dickey & Fuller (1979) 

unit root tests with controls for serial correlation for each of the N industries.  The Fisher 

summary statistics are Z =  
 

N

i ipN
1

½ )(1  &  


N

i ii ppL
1

)1/ln( , where 1 is the 

inverse cumulative standard normal.  As can be seen in panel (B), at all reasonable statistical 

levels all three tests unambiguously reject the null of a unit root for the growth rates of the 

three series and equally unambiguously do not reject the unit root null for the ln series 

themselves.  Further below I also use Johansen's (1995) cointegration sequential testing 

procedure that allows rejection of the null of unit roots in favour of the conclusion that the ln 

levels of the series are stationary.  Across a dozen models, estimated with normal or t-

distributions, this never occurs.  In their totality, these results support the notion that the ln 

series contain a unit root process and are difference (growth) stationary.8  I treat them as such 

in the remainder of the paper. 

 
8The on-line appendix provides results for Table 4 using tests not reported here whose null rejection 

probabilities in Monte Carlos differ markedly from nominal value.  These universally reject the null that the ln 
series are stationary and the differenced (growth) series have a unit root.  Unit root tests that have empirical null 
rejection probabilities well above nominal value reject the null of a unit root in the ln series in a few instances, 
while the Hadri test with a homoskedastic covariance estimate rejects the stationary null for the differenced 
series less frequently than is found using the heteroskedasticity consistent covariance estimate in Table 4, more 
strongly suggesting that the data are difference stationary. 
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III. Methods 

a. Framework 

 Our starting point is a homogenous of degree one (constant returns to scale) 

production function for gross output Qit in industry i at time t as a function of J inputs X1it ... 

XJit and their corresponding factor augmenting productivity parameters A1it ... AJit: 

),...,,()1.III( JJ2211 itititititit
i

it XAXAXAFQ  . 

While the production function iF  may vary by industry, all changes through time are 

restricted to factor inputs and productivity parameters.  With perfect competition, where 

factor income shares equal the elasticity of output with respect to each input, total factor 

productivity growth for each industry, calculated as the growth of real output minus the factor 

income share (θjit) weighted growth of inputs Xjit,  j =1 ... J, will equal: 

)()()2.III(
J

1
jit

j
jitit AgTFPg 



  . 

Cost-minimizing price-taking firms set ratios of marginal products equal to ratios of 

economy-wide factor prices p1t ... pJt: 
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where i
jF  denotes the partial derivative of iF  with respect to its jth argument and we use the 

homogeneity of degree zero of marginal products to re-express these in terms of effective 

factor use (AjXj) relative to that of the "numeraire" factor J.   

 Differentiating (III.3 with respect to time gives 
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Rearranging (III.4) and stacking it on top of (III.2), in matrix and vector form we have: 
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, 

where g(Xjit/XJit) and g(pjt/pJt) denote the J-1 x 1 vectors of growth rates of relative inputs and 

factor prices, g(Ajit) the J x 1 vector of growth rates of factor augmenting technical change, Eit 

the J-1 x J-1 matrix with jkth element ξjk - ξJk, θit the J x 1 vector of factor income shares, IJ-1 
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the J-1 identity matrix, iJ-1 & 0J-1 J-1 x 1 vectors of ones and zeros, respectively, and we 

define the compact notation g(yjit), Bit, and Cit for use later.   

 The elements of 1
itE are interrelated, as jitkitkjjk  / , so the matrix should not be 

estimated as (J-1)2 independent parameters.  I simplify the analysis by assuming that the 

production function has a nested structure, allowing the expression of 1
itE as a function of a 

limited number of elasticity parameters and factor shares.  Thus, in the three factor model 

estimated in this paper one might have 

))),,(()6.III( 332211 itititititit
ii

it XAXAXAGFQ  , 

where Gi is a constant returns to scale (X1,X2) aggregator, and 1
itE is given by 
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where σ is the elasticity of substitution between A1itX1it and A2itX2it and η the elasticity of 

substitution between A3itX3it and the aggregate Gi.9  One such production function is the nested 

CES:10  

1

1

33

1

1
1

22

1

11 })(])(){[()8.III( 
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
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
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







ititititititit XAXAXAQ . 

In the empirical implementation I assume that elasticities are constant across the range of the 

data, which could be motivated with a CES structure such as (III.8), but I do not exploit the 

non-linear structure of the CES in estimating differences between discrete time periods, as 

explained further below. 

I model factor augmenting technical change using vector autoregression (VAR) and 

vector error correction (VEC) specifications: 

,)()()()III.9b(

)()()III.9a(

11

1

ititjitjitjit

ititjitjit

AAA

AA

εηηlnβαΓgg

εηηΓgg








 

were g(Ajit) and ln(Ajit) denote the J x 1 vectors of  j = 1 ... J growth rates and levels of factor 

augmenting productivity, Г the J x J matrix of coefficients on lagged values of g(Ajit), ηt and 

ηi J x 1 vectors of fixed effects (dummies) for each industry i and time period t, εit the J x 1 

vector of iid shocks drawn from the multivariate normal or multivariate-t distribution with 

 
9Once the number of factors is greater than 2, there are many definitions of the term elasticity (see Duffy, 

Papageorgiou & Perez-Sebastian 2004 for a summary).  Throughout I use the term elasticity in the sense of the 
percentage change in the equilibrium use of two factors or factor aggregates for a percentage change in their 
relative price. 

10We may think of the usual constants as being absorbed into the industry factor augmenting parameters. 
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diagonal covariance matrix V(εit),11 and α and β J x M matrices of coefficients, where M < J.  

The assumption of a diagonal covariance matrix forms the basis of identification and is stress 

tested using ancilliary estimates and wild bootstraps that allow correlations between shocks, 

as explained further below.  The β define cointegrating frontiers itjitA clnβ   )( 1 that tie the 

Jx1 non-stationary vector ln(Ajit-1) to the trend stationary Mx1 vector cit, while the α indicate 

the adjustment process back to the frontiers following a temporary deviation where 

MitjitA 0clnβ   )( 1 .  The industry dummies for each factor make the estimates invariant 

with respect to the starting values chosen for the indices of factor productivity Aji0 & the 

associated implicit values of ci0 and the time dummies account for economy-wide movements 

of cit, while also serving as control functions that ensure consistency despite the endogeneity 

of factor prices, as discussed further below.  Of course, the industry and time dummies for 

each factor also account for simple mean industry and year differences in productivity growth.  

Section V later presents interpretations and decompositions of cointegrated factor augmenting 

productivity growth, but for now we concentrate on foundational details of identification and 

testing and (in Section IV) the presentation of results. 

b. The Miracle of Identification 

 This paper accepts the assumptions of constant returns to scale and perfect 

competition which underlie KLEMS total factor productivity databases.12  This sidesteps 

many of the issues in production function estimation, as the elasticity of output with respect to 

each factor is given by the known values of θit.  There is still, however, the obvious 

endogeneity of the growth rates of relative factor prices, g(pjt/pJt), on the right-hand side in 

(III.5), as well as the question of how, in the light of the Diamond el al/Sato results, 

identification of both elasticities of substitution and rates of factor augmenting technical 

change is achieved.  In the interest of transparency, this section explores these issues. 

 I begin by clarifying why I do not exploit restrictions for discrete changes implied by 

particular production functional forms.  The formulae in (III.5) and (III.7), derived through 

differentiation, are for instantaneous rates of change for arbitrary constant returns to scale 

production functions.  For changes across discrete time periods, where the growth rates in the 

 
11For the multivariate-t, equal to the distribution of a multivariate normal divided by an independent chi-

squared variable, second moments may not exist.  By its "covariance matrix", in the above I mean that of the 
multivariate normal on which it is based. 

12As the methods used here are in themselves already unfamiliar and complex, the additional data and 
methods needed to relax these assumptions are best left to further work. 
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formulae represent discrete ln changes, as in g(Qit) = ln(Qit/Qit-1), they are generally incorrect.  

Thus, for example, if the production function is literally CES then with total factor 

productivity in the US KLEMS calculated as the growth of output minus the average factor 

income share weighted growth of factor inputs, for discrete time data we have: 

.2/)(    where),()()()()10.III( 1 itititjititjitititit AXQgTFPg θθθgθgθ  

However, using a second order Taylor series approximation in lns (i.e. translog) of the CES, 

or for that matter any twice continuously differentiable production function, and a first order 

Taylor series approximation of factor income shares, it is shown in the on-line appendix that 

for discrete time: 

,2/)(    where),()()()()11.III( 1
1

11112 TS
it

TS
it

TS
itjit

TS
itjit

TS
it

TS
itit AXQgTFPg  θθθgθgθ  

and the superscripts TS1 and TS2 indicate first and second order Taylor series approximations 

as functions of the lns of effective factor inputs.  Similarly, the on-line appendix shows that 

for a second order approximation in lns of the first order optimization conditions (III.3) for 

any nested production function of the form (III.6) with constant elasticities of substitution σ 

and η through the range of the data, the line )/( Jitjit XXg  )/( J
1

tjtit ppgE  

)(],[ 1J1J
1

1J
1

jititit AgiiEIE 



   in (III.5) holds for discrete changes, provided we calculate 

the elements of 1
itE  in (III.7) using the average of first order approximations of relative factor 

income shares.  In sum, with the use of observed average factor income shares in place of 

instantaneous income shares, for discrete time (III.5) and (III.7) are correct up to second order 

approximations of the production function and first order optimization conditions and first 

order approximations of factor income shares.  Further adjustments for specific functional 

forms rely upon inaccuracies due to higher order terms whose empirical relevance is hard to 

motivate and whose role in identification is not easily understood.  Assuming that the 

covariance matrix of factor augmenting shocks is diagonal, as done in this paper, is a 

transparent assumption whose role in identification is easily understood, while the local 

impact of apparent departures from this assumption in the data on key results can be 

evaluated, as shown below. 

 Next, it is important to recognize that estimation of the model described by (III.5) and 

(III.7) intrinsicially involves model selection.  If V is the covariance matrix of the factor 

augmenting productivity shocks, then from (III.5) we see that the covariance matrix of the 

vector of dependent variables in observation it is given by itit CVC  .  When either of the 
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elasticities σ or η in (III.7) equals 1, Cit is singular and the determinant of the covariance 

matrix 0.  Thus, the ln likelihood of the model approaches - ∞ as the point estimates of 

elasticities approach 1, for the simple reason that at such values there is no way to explain 

variation in factor ratios based upon variation in factor augmenting parameters.13  As noted 

above, observed changes in factor input shares rule out elasticities of substitution equal to 1, 

so in practice this is not an unreasonable a priori restriction.  It does, however, preclude the 

possibility of consistency of maximum likelihood estimation, as the parameter space is 

effectively a non-convex set.  The solution is to restrict the space for each parameter to lie 

above or below 1, treating each such restriction as a separate model.  For (III.5) and (III.7), 

for example, we would estimate four models, based upon whether each of σ and η lies in [0,1) 

or (1,∞).  Different ways of nesting the factors of production, selecting which two factors 

appear in the Gi aggregator in (III.6), also constitute alternative models.  Non-nested model 

selection techniques, reviewed further below, then need to be used to select the model, as 

determined by both the nesting structure and parameter restrictions, most supported by the 

data.  This is actually a positive (if computationally costly) feature of the methodology, as the 

estimation of a variety of nesting structures and elasticity restrictions (> or < 1) allows readers 

to examine results for their preferred model while also seeing the degree to which the data 

distinguish between modelling structures. 

 Turning to the details of identification, it is useful to reexpress the estimating 

equations in a manner that replaces the latent and unobserved growth rates and levels of factor 

productivity, g(Ajit) and ln(Ajit), with parameters & observables.  Using the compact notation 

given in (III.5), we have  
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For the VAR or VEC models of (III.9a) and (III.9b), (III.5) can then be operationalized as one 

of two estimating equations: 

 
13Consider for example the Cobb-Douglas production function, Qit = (A1itX1it)α(A2itX2it)1-α, where X1it/X2it = 

(p2t/p1t)α/(1-α), i.e. does not depend on A1it or A2it. 
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The term [ηi +αβ' ln(Aji0)] shows that the initial levels of the productivity indices Aji0 don't 

matter, as their estimated effects are simply offset in the estimated J x 1 vectors of individual 

industry dummies ηi, without changing the predicted values of  g(yjit) in (III.13b) or g(Ajit) in 

(III.9b).  To simplify matters, we set these initial indices equal to 1, so that ln(Aji0) = 0J. 

 Consider now, for the sake of exposition, the case where all factor income shares on 

the right hand side of the estimating equations are constant, θjit =  θj for all factors j, so that in 

(III.5) Eit = E, Cit = C and Bit = B for all it.  The VAR model in (III.13a) is then given by: 
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where .~&,)/()/(~,
~

1J1
1

J
1

iittjttjtt pppp CηηCηBgCCΓBgηCCΓΓ  
   In (III.14) we 

see, first, that as the growth of factor prices on the right hand side is constant across i for each 

t, any such effects are captured in the factor x year fixed effects and hence it plays no role 

whatsoever in identification (i.e the residuals would be the same were it removed from the 

equation) and its endogeneity is irrelevant.  Its sole role is, conditional on the estimates of the 

elasticities in B & C produced by other variation, to adjust for the impact of changing factor 

prices on factor allocations, thereby allowing a correct computation of underlying rates of 

factor augmenting technical change g(Ajit).  Second, we see that first order auto-correlation 

and industry and year means play no role in identifying the elasticities in E (which determines 

B and C) because for any non-singular value of E there are alternate values of it ηηΓ &,  such 

that it ηηΓ ~&~,
~

 are unchanged. 

 Third, barring the error term, (III.14) is a nonstructural VAR or OLS system of 

seemingly unrelated equations.  With normal errors the ln likelihood of such a system is 

maximized by setting coefficient estimates equal to their OLS values and setting the 

covariance estimate equal to the empirical covariance of the OLS residuals.  Not surprisingly, 

given the points already made, with normal errors, the maximum likelihood structural model 

produces exactly the same predicted values, and then tries to match the covariance matrix of 

the resulting residuals as closely as possible using CCV  .  Fourth, if the covariance matrix V 
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of the factor augmenting productivity shocks ε is unrestricted, the model is unidentified as 

different combinations of the elements of V and σ and η (in C) produce the same 

matrix CCV  .  If, however, V is made to be diagonal, then the values of σ and η, along with 

the nesting structure, will determine how well the matrix CCV matches the covariance 

structure of the dependent variables.  This is the standard assumption made in structural 

vector auto-regression models to achieve identification of structural parameters. 

 To summarize, with constant income shares as regressors and normal shocks the VAR 

model of this paper is basically a structural VAR, whose predicted values are exactly the same 

as those of the non-structural VAR and whose structural parameters (the elasticities) are 

identified by the assumption of orthogonal shocks, with the added twist that goodness of fit to 

the unrestricted non-structural covariance matrix is not only used to estimate structural 

parameters within models, but also to select amongst different models.  The only fly in the 

ointment, not yet mentioned, is that with constant income shares for each nesting structure 

there are actually pairs of values of σ, on opposite sides of 1, matched with identical η that 

generate the same CCV  and hence match the data equally well! 

 Factor income shares, however, are not constant, and hence Cit and Eit are not 

constant.  Consequently, it is possible to distinguish between equivalent model pairs by the 

way in which both the covariance of the dependent variables ( itit CVC  ) and the predicted 

values (based on iittittjtitititit pp ηCηCgByΓCC &,)/(, J1
1

1 

 ) vary with income shares.  As 

shown later, mean income shares do most of the heavy lifting, finding that the nesting 

structure with a capital-labour value added aggregator (and paired values of σ on opposite 

sides of 1) matches the unrestricted covariance of the dependent variables quite closely 

despite the diagonal restriction on V.  The response to variation in θjit then selects among the 

possible > or < 1 elasticity restrictions.  With t-distributed errors or VEC cointegration, point 

estimates of the structural model do depend upon the covariance structure of errors, even with 

constant factor shares, and hence do not exactly match familiar non-structural OLS, VAR & 

VEC counterparts, so it is no longer the case that all of the identification of models & 

elasticities comes from matching the non-structural covariance structure with the structural 

CCV  .  But the intuition given above carries through, as evidenced by the fact that the point 

estimates of elasticities and rankings of models in those frameworks are very similar to those 

found using the normal VAR structural model with constant factor shares, as shown below. 
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With variation in factor shares and, hence, in Bit, it is no longer the case that point 

estimates & residuals are exactly the same whether or not the growth of factor prices is 

included in the regression.  However, with year fixed effects it is still the case that g(pjt/pJt), 

which varies by year but not by industry, does not impede consistency, as I prove 

theoretically using a simple example in the on-line appendix,14 and plays no role in 

identifying elasticities.  As further evidence of this, I find, as reported below, that elasticity 

estimates are virtually identical when the growth of factor prices is removed from the 

estimating equations.   

Endogeneity bias may also arise from the use of factor shares as (non-linear) regressors.  

As changes in factor shares are influenced by the shocks εit, current levels of factor shares 

used as regressors are ever so slightly correlated with these shocks.  Monte Carlos in the on-

line appendix based upon the parameter estimates below show these miniscule correlations do 

not inhibit standard root-N convergence (& N super convergence for cointegration 

parameters) to the point where mean squared error is trivially small.  Moreover, as has already 

been noted, in practice below identification of elasticity values and hence average rates of 

factor augmenting productivity growth mostly comes from the way in which the modelling 

nesting structure interacts with mean factor shares.  Endogeneity bias aside, there is also the 

fact that fixed effects in autoregressive models bias the estimates of autoregression and other 

parameters (Nickell 1981), while maximum likelihood estimation is, in any case, not 

unbiased.  To address such concerns, I use wild and parameteric bootstraps to estimate 

potential bias and evaluate its impact on different models. 

 While the assumption of a diagonal V is the basis of identification, the degree to 

which the restriction is, from a practical standpoint, binding can be assessed.  Below, having 

estimated values of σ and η within each model nesting and parameter restriction structure, I 

then take these as known and reestimate all other parameters of the model allowing V to have 

an unrestricted structure.  I find the principal results change very little.  When calculating 

covariance estimates or testing null hypotheses, I implement two wild bootstraps: one which 

 
14To be clear, I show that asymptotically the derivatives of the likelihood equal zero at the true parameter 

values, i.e. the estimates can be consistent.  Actual consistency requires that the likelihood is globally concave 
and converge there, which an examination of the equations indicates can be met with various conditions on the 
moments of the exogenous variables and data.  Rather than gain asymptotic credibility by selecting among 
conditions of this sort, I adopt the more practical finite sample approach of using detailed grid searches for each 
of the models below to confirm that the likelihood is indeed single peaked.  
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imposes a diagonal covariance structure and another that retains the off-diagonal covariance 

found in the estimated productivity shock residuals.  Again, with rare exceptions (highlighted 

below), results are virtually identical.  Similarly, in evaluating bias I use wild & parametric 

bootstraps with both the empirical diagonal and off-diagonal covariance of errors.  While 

results differ numerically, they rarely differ meaningfully, as substantive evaluations of model 

results are largely unchanged.  These stress tests do not prove that the underlying covariance 

of the factor augmenting productivity shocks is diagonal.  They do show, however, that there 

exist reasonable elasticity estimates that produce estimated factor augmenting shocks that are, 

practically speaking, all but diagonal.  In addition to the above, in the tables below I of course 

also report the off-diagonal correlation of estimated shocks for the reader to see. 

c. Statistical Inference and Model Selection 

 The statistical distribution of parameters estimated in the VEC model described in 

(III.9b) is complicated by the presence of regressors in the cointegrating equation that are 

non-stationary with infinite asymptotic variance.  Existing results depend upon the 

specification and vary on a case by case basis (see Johansen 1995), are asymptotic, and have 

huge size distortions in my sample sizes, as shown in Monte Carlos in the on-line appendix.  

Furthermore, the model presented above is non-standard in that it includes the estimation of 

additional parameters in 1ˆ 
itE  and, in an effort to be true to the heavy tails of the data, the t-

distribution.  I bypass developing further case by case asymptotic theory of dubious finite 

sample validity by using wild bootstraps to evaluate the finite sample distribution of 

coefficient estimates and test statistics.  These wild bootstraps allow for departures from the 

assumption of a diagonal covariance error structure, as well as misspecification of the 

functional form of the error distribution.  Monte Carlos in the on-line appendix find that these 

procedures, when used with t-distribution estimation which limits the influence of outliers, 

yield finite sample null rejection probabilities that are very much closer to nominal value than 

those provided by asymptotic theory. 

 To be more specific, having estimated the parameters of a multi-equation model using 

maximum likelihood techniques, I multiply the estimated factor augmenting shocks by -1 or 

+1 with a 50/50 probability, use these to create new predicted values in (III.13), and 

reestimate the model.  This procedure is repeated 200 times and the distribution of 

coefficients or likelihood ratios used to evaluate the same statistics for the original sample.  I 
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allow for two error structures.  In the first, I impose the assumption of a diagonal covariance 

used in the identification of 1ˆ 
itE by multiplying each shock by an individually drawn ±1 

random variable.  In the second, I multiply the entire J x 1 vector of factor augmenting shocks 

for an industry x year observation by a common ±1 random variable.  This preserves any off-

diagonal correlation.  When juxtaposed against each other, the two methods allow the reader 

to evaluate the practical importance of the assumption of a diagonal covariance structure in 

the neighbourhood of the parameter point estimates.  The use of estimated shocks, moreover, 

allows the error distribution to deviate from the normal or t- specified in the likelihood.  Thus, 

reported statistical tests are under the null that the estimated model is generally true, but 

possibly misspecified in constraining the covariance of the errors to be zero and restricting 

these to the normal or t-distribution.   

 Johansen (1995) proposes testing the existence and degree of cointegration using a 

sequence of tests that compare the likelihood of the rank M < J cointegration model with that 

of the full rank J cointegration model.  In each case the test is the null of cointegration rank 

equal to M against the alternative of cointegration rank greater than M, and the test procedure 

begins by testing M = 0 (VAR), continuing up through the integers until it fails to reject a 

particular level of M.  If the test rejects M = J - 1, then cointegration is taken to be of full rank 

J, which is equivalent to saying that the data are, in fact, trend and not difference stationary.  I 

perform this sequence of tests by, in each case, comparing the test statistic for the sample with 

the distribution produced by a wild bootstrap where the data generating process is based upon 

the point estimates of the tested null and the shocks or vectors of shocks are multiplied by 

independent ±1 variables in the manner described above.  This helps identify cases where the 

alternative hypothesis "looks better" than the restricted model not because the restrictions of 

the model are unwarranted, but because it misspecifies the error process.  One might not, for 

example, want to reject the VAR model in favour of the VEC framework just because the 

VAR error process is incorrectly specified when there is actually no cointegration of any sort. 

 As noted above, choosing among different multi-factor nesting structures and 

elasticity restrictions (> or < 1) involves comparing non-nested models.  In such 

circumstances, economists often use the Akaike information criterion (AIC), motivated by the 

Kullback-Leibler information criterion (KLIC), which is the difference between the 

expectation of the ln-likelihood for the true model minus that of the misspecified model.  The 
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AIC is non-statistical, selecting the model with the lowest value of -2*lnL +2k, where k is the 

number of estimated parameters, no matter how close the nearest competitor.  Vuong (1989), 

however, provides a more statistically grounded procedure. 

 Vuong (1989) considers the case of choosing between two, possibly both incorrect, 

models whose pseudo-parameters converge to fixed values as the sample size increases.  With 

ln Lij denoting the ln-likelihood of observation i under model j and n the number of 

observations, Vuong shows that the test statistic  
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asymptotically has a standard normal distribution under the null that the two models have the 

same KLIC and almost surely converges to +∞ or -∞ as models 1 or 0, respectively, have the 

lower KLIC.  For competing non-nested models with the same number of parameters, as is 

always the case below, models selected on Vuong's criterion always meet the AIC, but 

Vuong's approach also identifies cases where differences based upon the AIC are not 

statistically meaningful. 

 Simulating the finite sample distribution of Vuong's test statistic is difficult, as the null 

does not require that either model be correct.  I calculate the distribution using the wild 

bootstrap data generating processes described above based upon the parameter estimates and 

shocks of the lower ranked model and use it to construct a "p-value" of the test statistic.  This 

p-value indicates the probability a Vuong difference greater than or equal to that observed in 

the sample would arise if the only (possible) misspecification in model 0 is with regards to the 

functional form of the error process and (when the bootstrap does not impose a diagonal 

covariance) the covariance of the shocks.  I find that models that are ranked low by 

differences in ln likelihoods or Vuong's test statistic are, when evaluated using the wild 

bootstrap, sometimes observationally equivalent to the very best.  While Vuong's asymptotic 

theory chooses whichever model has the lowest KLIC divergence, using the wild bootstrap to 

evaluate his test statistic tries to avoid decisions that are driven by misspecifications of the 

error process rather than fundamental misspecifications of the range of the elasticity of 

substitution (< or > 1) or the factor nesting structure. 
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IV. Results 

 This section estimates the model described above using the BEA KLEMS industry-

level capital (K), labour (L) and intermediate input (I) data for 1987-2021. As noted earlier, I 

assume that gross output for industry i at time t is characterized by the nested production 

function ]),,([ 332211 itititititit
ii

it XAXAXAGFQ  , with Fi and Gi constant returns to scale 

aggregators with elasticities of substitution within the range of the data of σ between inputs 1 

and 2 and η between input 3 and the aggregator of 1 and 2, respectively.  Convex parameter 

spaces are created by restricting σ and η to be greater or less than 1.  In total, there are 12 non-

nested models of the data generating process depending upon which of K, L or I is factor 3 

and the elasticity restrictions.  To identify which model is being discussed, I use the notation 

((K,L)σ>1,I)η<1, wherein the parentheses indicate the nested factor groupings, the superscripted 

Greek letters the associated local elasticities of substitution within those groupings, and the 

inequalities relative to 1 the parameter restrictions. 

 Table 5 begins by providing insight into what identifies the highest likelihood model 

by, following the discussion in section III, providing results for the VAR normal framework 

with factor shares set artificially to their mean values, so that the horse race is completely 

reduced to one of matching the residual covariance of the data, given in the top line of the 

table.  As noted in section II, in the KLEMS data the residual volatility of the growth of 

intermediate input is an order of magnitude greater than that of other factors and total factor 

productivity.  This induces a high residual volatility in g(I/L).  The challenge faced by the 

models is to explain this volatility without inducing residual error into the capital labour ratio 

and total factor productivity.  The ((K,L),I) nesting isolates intermediate input from capital 

and labour, allowing the model to match the volatility of intermediate input without affecting 

the volatility of g(K/L), as seen in Table 5.  The other frameworks, in trying to match the 

volatility of g(I/L), end up polluting and exaggerating the volatility of g(K/L), as well as its 

covariance with g(I/L) and g(TFP).   

 Table 5 shows that despite the restriction of a diagonal covariance matrix for factor 

augmenting shocks, with mean income shares as regressors the ((K,L),I) nesting can very 

closely match the unconstrained residual covariance structure of the data given in the top row.  

However, with mean income shares, for every η there are pairs of σ on opposite sides of 1 
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Table 5: Residual Covariance Matrix of Normal VAR Models against that of the Data 

 ln L σ η var 
K/L 

var 
I/L 

var 
TFP 

cov 
K/L,I/L 

cov 
K/L,TFP 

cov 
I/L,TFP 

ln L σ η 

data:    .0028 .0126 .0015 .0007 -.0003 -.0013    

models: setting factor shares equal to mean values with actual factor shares 

1: ((K,L)σ<1I)η <1 
2: ((K, L)σ <1I)η>1 
3: ((K,L)σ>1I)η<1 
4: ((K,L)σ>1I)η>1 
5: ((I,L)σ<1K)η<1 
6: ((I,L)σ<1K)η>1 
7: ((I,L)σ>1K)η<1 
8: ((I,L)σ>1K)η>1 
9: ((K,I)σ<1L)η<1 
10: ((K,I)σ<1L)η>1 
11: ((K,I)σ>1L)η<1 
12: ((K,I)σ>1L)η>1 

8259 
8385 
8259 
8385 
7756 
7433 
7853 
7489 
7665 
7561 
7737 
7561 

.573 

.589 
1.46 
1.42 
.000 
.000 
2.04 
2.37 
.000 
.132 
1.71 
2.48 

.000 
2.46 
.000 
2.46 
.413 
1.55 
.293 
1.64 
.124 
1.68 
.033 
1.68 

.0028 

.0028 

.0028 

.0028 

.0068 

.0091 

.0075 

.0104 

.0077 

.0106 

.0082 

.0106 

.0093 

.0130 

.0093 

.0130 

.0101 

.0106 

.0126 

.0126 

.0086 

.0080 

.0091 

.0080 

.0023 

.0015 

.0023 

.0015 

.0025 

.0021 

.0018 

.0016 

.0022 

.0021 

.0017 

.0021 

.0006 

.0012 

.0006 

.0012 

.0042 

.0057 

.0054 

.0072 

.0025 

.0023 

.0017 

.0023 

-.0002 
-.0001 
-.0002 
-.0001 
-.0014 
.0013 

-.0014 
.0010 
.0006 

-.0028 
.0010 

-.0028 

-.0013 
-.0013 
-.0013 
-.0013 
-.0026 
.0009 

-.0025 
.0005 

-.0017 
-.0009 
-.0015 
-.0009 

7915 
7863 
7646 
7860 
7638 
7123 
7078 
7401 
7606 
6447 
7199 
7192 

.430 

.425 
1.58 
1.56 
.000 
.000 
2.18 
2.45 
.000 
.000 
1.86 
2.27 

.000 
2.59 
.000 
2.53 
.234 
1.77 
.000 
1.69 
.120 
2.07 
.000 
1.93 

 Notes:  Residual covariance matrix of the data and structural models is net of first order vector auto-regression lags 
and industry and year fixed effects, in the latter case for underlying factor augmenting technical change. 

with identical likelihoods, as noted earlier and seen in the table.15  Selection across these 

variants depends upon variation in factor income shares.  Here the data favour more extreme 

elasticities of substitution than are used to match mean moments, as estimated elasticities 

almost always fall and rise when restricted to be < 1 or > 1, respectively.  With actual shares 

model 1 (σ<1,η<1) has a higher likelihood than other variants of the ((K,L),I) nesting 

structure, although model 2 (σ<1, η>1), which has the highest likelihood with mean shares, is 

a close second. 

 Table 6 presents the ln-likelihoods using actual factor shares of the vector 

autoregression (VAR) and vector error correction with rank one or two cointegration (VEC1 

& VEC2) models, as in (III.9a) and (III.9b) earlier above, assuming the factor augmenting 

shocks are multivariate normal or t with diagonal covariance matrix.16  The listing of models 

follows that of Table 5, with those with the highest and second highest likelihoods across all 

specifications conveniently designated as models 1 and 2, respectively.  In all models the 

likelihood with the t distribution is consistently 1700 to 2400 ln points higher than with the 

normal and point estimates of the t degrees of freedom (given later in Table 7) are close to 2, 

 
15When the paired value with σ  < 1 hits the non-negativity constraint, the paired model has a lower 

likelihood and modifies the value of η, as occurs with the ((I,L),K) and ((K,I),L) nesting structures in the table.  

16As the models are non-linear, in addition to maximizing using Newton's method I concentrate the 
likelihoods as functions of σ and η, or these plus the t- degrees of freedom, and conduct detailed grid searches 
(10k or 16k points), finding that the likelihood is single peaked for each of the 72 models examined in the table.  
Grid searches do not guarantee uniqueness of the maximum, especially as concentrating the ln-likelihood for the 
t-distribution in this case involves solving non-linear systems, but these results are at least encouraging.  
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Table 6: Results by Nesting Structure x Quadrant Model  
(A) ln likelihoods & bootstrap p-values of cointegration rank tests H0: rank = r vs H1: rank > r  

 normal t - distribution normal distribution t - distribution 
Model VAR VEC1 VEC2 VAR VEC1 VEC2 r = 0 r = 1 r = 2 r = 0 r = 1 r = 2 

1: ((K,L)σ<1I)η<1 
2: ((K, L)σ <1I)η>1 
3: ((K,L)σ>1I)η<1 
4: ((K,L)σ>1I)η>1 
5: ((I,L)σ<1K)η<1 
6: ((I,L)σ<1K)η>1 
7: ((I,L)σ>1K)η<1 
8: ((I,L)σ>1K)η>1 
9: ((K,I)σ<1L)η<1 
10: ((K,I)σ<1L)η>1 
11: ((K,I)σ>1L)η<1 
12: ((K,I)σ>1L)η>1 

7915 
7863 
7646 
7860 
7638 
7123 
7078 
7401 
7606 
6447 
7199 
7192 

7983 
7925 
7696 
7920 
7730 
7213 
7169 
7481 
7698 
6526 
7275 
7270 

8020 
7968 
7732 
7964 
7769 
7242 
7225 
7527 
7735 
6584 
7328 
7327 

9781 
9701 
9553 
9604 
9571 
9151 
9184 
9243 
9562 
8865 
9347 
9109 

9837 
9760 
9589 
9657 
9642 
9212 
9263 
9302 
9631 
8914 
9391 
9159 

9867 
9786 
9619 
9687 
9673 
9237 
9292 
9336 
9662 
8944 
9428 
9198 

.015/.050 

.005/.055 

.080/.165 

.010/.040 

.000/.000 

.000/.010 

.000/.000 

.000/.000 

.000/.000 

.025/.085 

.020/.080 

.000/.025 

.395/.260 

.320/.275 

.250/.145 

.310/.270 

.425/.055 

.710/.120 

.070/.005 

.215/.015 

.450/.180 

.220/.040 

.140/.010 

.120/.035 

.885/.875 

.915/.925 

.860/.845 

.980/.970 

.900/.650 

.955/.150 

.925/.425 
1.00/.595 
.945/.665 
1.00/.435 
.975/.670 
1.00/.685 

.000/.000 

.000/.000 

.000/.010 

.000/.010 

.000/.000 

.000/.000 

.000/.000 

.000/.005 

.000/.000 

.000/.010 

.000/.010 

.000/.005 

.070/.050 

.125/.115 

.020/.020 

.165/.175 

.076/.010 

.115/.045 

.186/.135 

.035/.040 

.075/.025 

.075/.141 

.040/.072 

.020/.040 

.635/.550 

.640/.565 

.583/.510 

.950/.889 

.920/.645 

.860/.442 

.912/.596 

.975/.700 

.930/.563 

.950/.558 

.934/.688 

.990/.720 

(B) elasticities and factor augmenting productivity growth estimates 

 normal VAR normal VEC1 normal VEC2 t - VAR t-distribution VEC1 t - VEC2 

 σ η σ η σ η σ η σ η g(AK) g(AL) g(AI) σ η 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

.430 

.425 
1.58 
1.56 
.000 
.000 
2.18 
2.45 
.000 
.000 
1.86 
2.27 

.000 
2.59 
.000 
2.53 
.234 
1.77 
.000 
1.69 
.120 
2.07 
.000 
1.93 

.419 

.419 
1.59 
1.56 
.000 
.000 
2.17 
2.43 
.000 
.000 
1.86 
2.25 

.000 
2.61 
.000 
2.53 
.229 
1.78 
.000 
1.69 
.113 
2.05 
.000 
1.93 

.418 

.420 
1.59 
1.56 
.000 
.000 
2.18 
2.45 
.000 
.000 
1.86 
2.27 

.000 
2.59 
.000 
2.53 
.232 
1.77 
.000 
1.70 
.112 
2.06 
.000 
1.93 

.436 

.475 
1.55 
1.53 
.000 
.000 
2.10 
2.33 
.000 
.015 
1.83 
2.20 

.000 
2.45 
.000 
2.44 
.196 
1.68 
.076 
1.66 
.140 
1.95 
.000 
1.89 

.425 (.013/.008) 

.469 (.015/.008) 
1.56 (.007/.007) 
1.52 (.008/.007) 
.000 (.009/.000) 
.000 (.000/.000) 
2.10 (.010/.013) 
2.32 (.011/.014) 
.000 (.000/.000) 
.001 (.000/.016) 
1.82 (.010/.009) 
2.19 (.011/.015) 

.000 (.003/.000) 
2.46 (.013/.018) 
.000 (.000/.000) 
2.43 (.011/.018) 
.194 (.028/.011) 
1.68 (.009/.010) 
.062 (.100/.013) 
1.65 (.010/.012) 
.134 (.027/.009) 
1.94 (.010/.012) 
.000 (.039/.002) 
1.89 (.010/.011) 

-.010 (.000/.000) 
-.013 (.000/.000) 
.013 (.000/.000) 
.012 (.000/.000) 

-.006 (.000/.000) 
.008 (.000/.000) 

-.005 (.000/.000) 
.008 (.000/.000) 

-.005 (.000/.000) 
-.000 (.000/.000) 
.001 (.000/.000) 
.005 (.000/.000) 

.017 (.000/.000) 
. 016 (.000/.000) 
.001 (.000/.000) 

-.001 (.000/.000) 
.014 (.000/.000) 
.009 (.000/.000) 
.007 (.000/.000) 
.003 (.000/.000) 
.014 (.000/.000) 
.002 (.000/.000) 
.014 (.000/.000) 
.002 (.000/.000) 

-.000 (.000/.000) 
. 002 (.000/.000) 
-.000 (.000/.000) 
.002 (.000/.000) 

-.000 (.000/.000) 
-.004 (.000/.000) 
.005 (.000/.000) 
.001 (.000/.000) 

-.001 (.000/.000) 
.005 (.000/.000) 

-.004 (.000/.000) 
.003 (.000/.000) 

.423 

.467 
1.56 
1.53 
.000 
.000 
2.10 
2.34 
.000 
.000 
1.83 
2.20 

.000 
2.45 
.000 
2.44 
.191 
1.68 
.067 
1.66 
.129 
1.95 
.000 
1.90 

  Notes  VAR & VEC models as in (III.9) above.  VECr = VEC model with rank r cointegration.  Wild bootstrap p-values in panel (A) and standard errors (s.e) in 
parentheses in panel (B) are with diagonal covariance dgp/with unrestricted covariance dgp, as described in the text.  g(Ai) = economy-wide average rates calculated by 
weighting industry rates by their share of factor’s total income, with s.e. calculated using the delta method & the bootstrapped covariance matrix of parameter estimates. 
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i.e. the errors are very non-normal with fat tails and at best no higher than second moments.  

However, point estimates of the elasticities σ and η vary little between the normal, t, VAR, 

VEC1 and VEC2 specifications.  Given the data, these completely determine rates of factor 

augmenting productivity growth through (III.12) above, which consequently do not differ 

much across specifications.  Average economy-wide rates are given for the t-distribution 

VEC1 model.  In 7 of 12 models substantially positive factor augmenting productivity growth 

in one factor is offset by substantially negative productivity growth in another.  In top ranked 

models 1 and 2, the tradeoff is concentrated in labour and capital, as average intermediate 

input productivity growth is near zero. 

The right hand side of panel (A) in Table 6 reports p-values for Johansen's sequential 

testing procedure described in section III, which proceeds up through the integers until one is 

unable to reject the null of rank r cointegration at the test's nominal level.  As explained 

earlier, as specifics differ from Johansen's test and Monte Carlos in the on-line appendix 

anyway show enormous finite sample size distortions when using asymptotic distributions in 

panels of this size, p-values are based on the wild bootstrap with 200 draws from its 

distribution.17  The first bootstrap number in each p-value pair multiplies each factor 

augmenting shock by an independent ±1, imposing the assumption of a diagonal covariance 

matrix used in estimation, while the second number multiplies each industry x time triplet of 

factor augmenting shocks by a common ±1, retaining the non-zero covariance of the shocks 

present in the residuals.  Monte Carlos in the on-line appendix find that the wild bootstrap 

performs erratically when the likelihood is normal, but is relatively reliable and consistent 

when the errors are fat tailed t-distributed and the likelihood evaluated using the t-distribution 

(which underweights outliers).  Using both diagonal and unrestricted (correlated) shocks with 

both diagonal and unrestricted bootstrap procedures, i.e. with each bootstrap alternately 

correctly or incorrectly specifying the underlying data generating process, I find that with the 

t-distribution a nominal cutoff of .01 (i.e. a p-value ≤ .01) consistently ensures no more than a 

.051 empirical null rejection probability in all eventualities. 

 
17When sampling a distribution an exact p-value (relative to the distribution) is given by p = (G + 

u(T+1))/(N+1), where N represents the number of draws, G the number of greater outcomes, T the number of tied 
outcomes & u is uniformly distributed on (0,1) (see Jockel 1986 & the online appendix of Young 2019).  Given 
the large number of potential outcomes in my large sample, ties are not an issue, while in many tests G is 0.  To 
make the latter clearer, throughout the paper I calculate p-values as G/N, so that such p-values are reported as 
.000, rather than using a u to add a random number between .000 and .005 to every p-value.  Rare likelihoods 
that do not converge are dropped (i.e. N is sometimes less than 200), so not every p-value is a multiple of .005. 
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With the .01 cutoff in mind, we see in Table 6 that with t-likelihoods the two wild 

bootstrap error data generating processes produce the same decisions at the .05 empirical level 

as, despite a few borderline .01 p-values, they always reject the rank 0 VAR model in favour 

of rank > 0 cointegration and accept the rank 1 cointegration VEC1 model in preference to 

higher rank cointegration.  This is especially clear for top ranked models 1 and 2, but even 

models 3, 4, 8, 10 & 12, which do not find strongly negative productivity growth for any 

factor in the lower panel of the table, have t-distribution results which favour rejecting the 

VAR framework in favour of VEC1 at the .05 empirical level.  With universally large p-

values for the rank 2 cointegration test, no model rejects rank 2 cointegration in favour of 

rank 3, which would imply the absence of unit roots. 

  Table 7 gives estimates of degrees of freedom, cointegration parameters β & α and 

off-diagonal shock correlations for the 12 forms of the t-distribution VEC1 model.  Panel (A) 

presents results using the baseline procedure of assuming a diagonal covariance matrix for the 

factor augmenting shocks so that σ and η are identified and estimated, as reported in Table 6, 

while panel (B) takes the values of σ and η as known at the values found in panel (A) and 

estimates the remaining parameters allowing for off-diagonal correlations between the shocks.  

While off-diagonal shock correlations are assumed to be zero in the likelihood of panel (A), 

their empirical values can be calculated using the residuals for either procedure,18 as is done 

in the table.  Comparing panels (A) and (B) we see that for top ranked models 1 and 2, where 

the correlations between residuals are small, given the point estimates of σ and η the 

assumption of a diagonal covariance matrix has very little impact on the cointegration 

parameter estimates.  In lower-likelihood ranked models with larger off-diagonal correlations, 

the impact can be greater, although mostly when the β cointegration parameters are estimated 

with imprecision using the assumption of a diagonal covariance matrix.  Outside of 7 

instances in models 3, 10 & 11, all point estimates of β and α parameters in panel (A) lie in 

the 95 percent confidence interval of those estimated in panel (B), and outside of 8 instances 

in the same three models, all point estimates of the same in panel (B) lie in the 95 percent 

confidence interval of those estimated in panel (A).  Thus, conditional on the estimates of σ 

and η, in most cases point estimates of the cointegration parameters under different 

assumptions regarding the diagonality of shocks are statistically indistinguishable. 
 

18I follow t-distribution maximum likelihood estimation and calculate the covariance matrix of the 
residuals using the weights described earlier above. 
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Table 7: t - VEC1 Parameter Estimates & Shock Correlation 

 dof βL βI αK αL αI ρKL ρKI ρLI 

 (A) estimating σ and η (likelihood assumes diagonal covariance matrix of shocks) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

2.05 (.024)
2.06 (.023)
1.94 (.022)
2.11 (.025)
1.93 (.022)
1.79 (.019)
1.85 (.021)
1.88 (.020)
1.93 (.021)
1.73 (.019)
1.88 (.022)
1.88 (.020)

1.23 (.219)
.533 (.230)
.957 (.290)
1.28 (10.9)
1.66 (.284)

-8.76 (3.38)
 .071 (.127)
8.92 (337)
1.24 (.220)

-.147 (.114)
-2.53 (.538)
.898 (25.3)

-.994 (.219)
2.73 (.944)

-1.75 (.389)
-9.84 (84.5)
-1.02 (.221)
4.49 (2.12)
1.76 (.319)
-20.9 (717)
-.827 (.184)
.674 (.129)

-2.73 (.753)
-17.5 (196)

-.026 (.006)
-.009 (.005)
-.007 (.005)
-.002 (.003)
-.024 (.005)
-.007 (.004)
-.022 (.005)
-.003 (.003)
-.022 (.005)
-.050 (.008)
-.012 (.007)
-.000 (.001)

-.014 (.004)
-.006 (.003)
-.011 (.004)
.001 (.002)

-.014 (.003)
.006 (.003)

-.002 (.004)
-.000 (.001)
-.020 (.004)
.004 (.005)
.008 (.003)

-.001 (.001)

.013 (.004) 
-.014 (.003) 
.018 (.005) 
.006 (.004) 
.015 (.004) 

-.002 (.001) 
-.021 (.003) 
.003 (.003) 
.019 (.005) 

-.011 (.004) 
.005 (.002) 
.003 (.006) 

.147 (.028)

.175 (.024)

.230 (.022)

.206 (.020)

.398 (.026)
-.350 (.025)
-.208 (.022)
.477 (.024)
.411 (.027)

-.340 (.026)
-.310 (.027)
.566 (.023)

-.074 (.026)
-.006 (.026)
-.108 (.023)
.100 (.024)

-.194 (.027)
.344 (.027)
.293 (.025)

-.211 (.025)
-.053 (.027)
.168 (.028)
.191 (.027)
.043 (.028)

-.146 (.026)
.039 (.025)

-.096 (.029)
.066 (.021)

-.104 (.026)
-.034 (.028)
.183 (.021)
.086 (.021)

-.230 (.025)
.412 (.021)
.237 (.026)

-.174 (.019)

 (B taking σ and η as given at values estimated above (likelihood allows unrestricted covariance matrix of shocks)

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

2.08 (.024)
2.09 (.025)
1.97 (.024)
2.15 (.025)
2.08 (.025)
2.00 (.024)
1.96 (.023)
2.13 (.026)
2.09 (.025)
1.92 (.021)
1.99 (.023)
2.15 (.026)

1.06 (.241)
.495 (.261)
1.30 (18.1)
1.11 (.486)
1.43 (.452)
-8.68 (102)
 .153 (.185)
7.66 (58.0)
1.13 (.360)

-.129 (.133)
-1.44 (.245)
.445 (2.37)

-1.00 (.252)
3.58 (1.45)
-6.90 (100)
-6.54 (2.15)
-1.14 (.348)
3.42 (60.4)
1.96 (.570)
-26.4 (228)
-1.19 (.303)
.333 (.148)

-.429 (.266)
-5.41 (17.8)

-.027 (.006)
-.007 (.004)
.002 (.001)

-.004 (.003)
-.025 (.006)
-.007 (.005)
-.020 (.006)
-.002 (.004)
-.021 (.006)
-.056 (.009)
-.041 (.010)
-.003 (.003)

-.013 (.004)
-.004 (.003)
-.002 (.002)
.001 (.002)

-.013 (.003)
.006 (.005)

-.002 (.005)
-.000 (.001)
-.017 (.005)
.008 (.007)
.013 (.004)

-.003 (.003)

.013 (.004) 
-.013 (.003) 
.007 (.005) 
.010 (.003) 
.016 (.004) 

-.002 (.002) 
-.020 (.004) 
.002 (.004) 
.020 (.005) 

-.008 (.004) 
.003 (.004) 
.012 (.007) 

.214 (.008)

.248 (.007)

.325 (.007)

.294 (.008)

.547 (.006)
-.472 (.007)
-.261 (.008)
.622 (.006)
.558 (.005)

-.424 (.008)
-.391 (.008)
.724 (.004)

-.113 (.007)
-.004 (.009)
-.174 (.008)
.157 (.009)

-.273 (.007)
.463 (.007)
.378 (.007)

-.260 (.008)
-.115 (.007)
.178 (.008)
.250 (.009)
.026 (.009)

-.206 (.008)
.061 (.008)

-.153 (.008)
.103 (.009)

-.175 (.008)
-.083 (.008)
.241 (.009)
.070 (.009)

-.315 (.008)
.515 (.006)
.297 (.008)

-.212 (.009)

   Notes:  Standard errors (in parentheses) calculated using the wild bootstrap with diagonal covariance (A) and 
unconstrained covariance (B), following the assumptions of the estimation procedures.  Standard errors for panel (A) 
calculated using a wild bootstrap with unconstrained covariance are similar and are given in the on-line appendix. 

 The signs and magnitudes of the parameters β defining the cointegrating frontier 

)( jitAlnβ = cit and α governing the adjustment process to deviations from that frontier have no 

independent meaning as they would all change if instead of normalizing βK to 1, as is donein 

Table 7, we were instead to normalize it to, e.g, -½.  Only relative signs and magnitudes 

matter.  When factors share the same sign in β, then from )( jitAlnβ  = cit we see that 

movements along the frontier involve tradeoffs between measured factor augmenting 

productivities, whereas when they differ in sign movements along the frontier involve 

complementary changes in factor augmenting productivity.  As seen in the table, with the 

exception of models 6, 10 & 11 with lower likelihoods (Table 6), the cointegration frontiers 

generally involve tradeoffs between measured capital and labour productivity, with βL > 0.  

Model 1 (and ⅔ of all models) shows complementarities between capital and intermediate 

inputs with βI < 0, but second ranked model 2 actually finds tradeoffs between all three 

factors with βK, βL & βI all > 0. 
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Table 8: Wild & Parametric Bootstrap Estimates of Bias in t - VEC1 Model 

(mean difference between point estimates and parameters of dgp in 200 samples) 
 σ η βL βI αK αL αI σ η βL βI αK αL αI 

 (A) wild imposing diagonal covariance (B) wild allowing unrestricted covariance 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

-.064 
-.099 
.117 
.119 
.000 
.000 
.139 
.120 
.000 

-.001 
.046 
.078 

.000 

.080 

.000 

.082 
-.049 
.021 

-.049 
.053 

-.011 
.046 
.002 
.103 

.012 
-.048 
.015 

-.571 
-.076 
.723 

-.123 
9.534 

.003 
-.079 
.454 

-1.244 

-.065 
.354 

-.092 
7.246 
-.063 
.095 
.107 

-18.411 
-.092 
-.065 
.448 

22.625 

-.009 
-.004 
-.005 
-.002 
-.007 
-.002 
-.006 
-.002 
-.007 
-.019 
-.010 
-.001 

-.006 
-.001 
-.005 
-.000 
-.005 
.004 

-.002 
-.000 
-.004 
-.000 
.004 

-.000 

.006 
-.003 
.009 
.005 
.005 

-.001 
-.004 
.003 
.006 

-.002 
.003 
.005 

.038 

.043 
-.058 
-.062 
.000 
.000 

-.066 
-.085 
.000 
.075 

-.047 
-.072 

-.000 
.002 

-.000 
-.072 
.031 
.000 

-.001 
-.057 
.011 

-.075 
.001 

-.083 

.107 

.085 

.051 
1.575 

.270 
-.357 
-.058 

21.719 
.174 

-.079 
-.162 
1.179 

-.206 
.727 

-.328 
-11.181 

-.261 
.985 
.101 

-40.881 
-.182 
.045 
.289 

-.415 

-.008 
-.004 
-.006 
-.001 
-.007 
-.005 
-.008 
-.002 
-.006 
-.021 
-.008 
-.001 

-.006 
-.001 
-.004 
-.000 
-.005 
.005 

-.000 
-.001 
-.008 
.006 
.004 

-.001 

.006 
-.002 
.005 
.001 
.005 

-.002 
-.007 
.002 
.007 

-.004 
.003 
.001 

 (C) parametric imposing diagonal covariance (D) parametric allowing unrestricted covariance 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

-.001 
.000 

-.002 
.000 
.009 
.010 

-.000 
-.001 
.011 
.008 

-.003 
.001 

.011 
-.001 
.009 

-.004 
.001 
.000 
.002 

-.000 
.006 

-.001 
.008 
.001 

.029 

.018 

.012 

.140 

.032 

.498 
-.019 

-1.408 
.039 

-.017 
-.072 
.267 

-.046 
.320 

-.176 
-.506 
-.039 
-.082 
.027 

3.784 
-.030 
.004 
.025 

-3.054 

-.003 
-.001 
-.002 
-.001 
-.003 
-.001 
-.003 
-.001 
-.003 
-.006 
-.003 
-.000 

-.003 
-.000 
-.001 
-.000 
-.002 
.002 

-.000 
-.000 
-.002 
.000 
.001 

-.000 

.002 
-.001 
.003 
.001 
.002 

-.000 
-.002 
.001 
.002 

-.001 
.001 
.001 

.055 

.069 
-.082 
-.086 
.000 
.013 

-.166 
-.148 
.003 
.209 

-.120 
-.120 

.000 
-.025 
.000 

-.108 
.062 

-.027 
.053 

-.079 
.018 

-.135 
.023 

-.120 

.013 

.060 

.041 

.201 

.193 
-.109 
.076 

-3.387 
.037 
.030 

-.830 
.180 

-.097 
.552 

-.320 
-2.978 
-.102 
.340 
.002 

9.312 
-.027 
.154 

-.484 
13.860 

-.004 
-.001 
-.001 
-.000 
-.003 
-.001 
-.002 
-.000 
-.002 
-.006 
-.002 
-.000 

-.002 
.000 

-.001 
-.000 
-.001 
.001 
.002 

-.000 
-.003 
.003 

-.000 
-.000 

.002 

.000 

.001 
-.000 
.001 

-.000 
-.003 
.000 
.002 
.002 
.000 

-.000 
   Notes: dgps based upon point estimates of models and wild bootstrap ±1 transformations of estimated residuals or 
parametric bootstrap residuals drawn from the t-distribution with degrees of freedom estimated in the models.   

 Table 8 turns to a general consideration of bias.  As argued above, given the use of 

year fixed effects, endogenous factor prices play no meaningful role in identification.  To 

illustrate this, when the 72 VAR & VEC, normal & t- models of Table 6 are reestimated with 

the growth of factor prices removed from the estimating equations, the mean of the 144 

elasticity estimates changes only slightly, from 1.0533 to 1.0541, with a correlation of .9999 

between the two sets of estimates.  There remains, however, the issue of the bias introduced 

by individual fixed effects in short panel data (Nickell 1981), the bias due to the failure to 

account for the off-diagonal correlation of shocks (notwithstanding the sample specific results 

of Table 7), and the more general possibility of bias in maximum likelihood estimation.  To 

this end, Table 8 reports the bias found in 200 sample draws from dgps based upon the point 

estimates of the models with either wild bootstrap disturbances formed by ±1 transformations 

of estimated residuals or parameteric bootstrap disturbances drawn from the t-distribution 

with the degrees of freedom estimated in the models.  The covariance matrix of shocks is 
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either constrained to be diagonal or is unrestricted, following the covariance structure found 

in the estimated residuals.  The parameteric bootstrap eliminates bias due to misspecification 

of the error distribution and provides a narrower estimate of bias due to short panel fixed 

effects and maximum likelihood estimation alone, which might be of interest to some readers. 

 As seen in Table 8, while bias generally appears small, particularly in highest ranked 

model 1, there are some spectacular outliers, most notably the estimates of the cointegrating 

parameters βL and βI in models 4, 8 & 12 and, to a lesser extent, 6 & 11.  In these cases, 

however, the parameters are estimated with a great deal of imprecision in the first place 

(Table 6), making such differences both statistically less meaningful and less reliably 

estimated with the computationally affordable 200 sample draws.  More generally, the 

absolute value of bias tends to be greater when the disturbances are correlated rather than 

diagonal and are wild transformations of the empirical residuals rather than parametrically 

drawn from the exact distribution specified in the likelihood.19  Despite their varying signs & 

magnitudes, section V further below finds that, with the exception of model 4, adjustment for 

these estimates of bias does not substantively affect conclusions regarding the contribution of 

movements along the cointegration frontier to aggregate productivity growth.   

 Table 9 considers selection across the 12 models using Vuong's test statistic and 

bootstrapped p-values.  Panel (A) compares model 1 against the remaining models, while 

panel (B) compares model 2 against the remaining models.  Based upon the asymptotic 

standard normal distribution of Vuong's test statistic, all of the t-distributed models select in 

favour of model 1 in one-sided tests at the .05 level.  The table also provides wild 

bootstrapped "p-values", which calculate the probability of a Vuong statistic greater than that 

found in the sample using the point estimates and estimated shocks of the alternative (to 

model 1 or 2) model given on each row as the dgp.  Two p-values are given, using either a 

diagonal or empirical covariance of the shocks.  While both p-values are almost always 0 (i.e. 

in the bootstrap simulations no instance of a test statistic greater than that reported was found 

using the model of each row as the dgp), this is the one place where there is a substantive 

difference between the results given by the two dgps.  Allowing for a non-diagonal 

covariance between the shocks, we see that misspecification of the model (i.e. the assumption 

of independent shocks) makes it highly probable that model 1 would be selected in preference 

 
19The sum of absolute values of the 84 biases in each panel are: (A) 64, (B) 82, (C) 11, & (D) 35. 
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Table 9: Vuong's Test Statistic and Wild Bootstrap P-Values 

 test statistic wild bootstrap p-values 

 normal distribution t - distribution normal distribution t - distribution 

 VAR VEC1 VAR VEC1 VAR VEC1 VAR VEC1 

(A) model 1 vs remaining models as nulls 
1: ((K,L)σ<1I)η<1 
2: ((K, L)σ <1I)η>1 
3: ((K,L)σ>1I)η<1 
4: ((K,L)σ>1I)η>1 
5: ((I,L)σ<1K)η<1 
6: ((I,L)σ<1K)η>1 
7: ((I,L)σ>1K)η<1 
8: ((I,L)σ>1K)η>1 
9: ((K,I)σ<1L)η<1 
10: ((K,I)σ<1L)η>1 
11: ((K,I)σ>1L)η<1 
12: ((K,I)σ>1L)η>1 

0.5 
2.1 
0.6 

 4.5 
 6.2 
 7.0 
 4.5 
 5.0 
 7.6 
3.7 

 5.0 

0.6 
2.3 
0.7 

 4.2 
 6.2 
 6.6 
 4.4 
 4.8 
 7.3 
3.7 

 5.0 

1.8 
5.5 
3.9 

 9.1 
12.9 
13.5 
10.7 
 9.6 

16.5 
 8.9 

12.3 

1.7 
5.7 
3.9 

 8.7 
12.6 
12.4 
10.5 
 9.1 

16.4 
 9.0 

12.3 

.000/.000 

.000/.000 

.000/.000 

.000/.765 

.000/.000 

.000/.000 

.000/.000 

.005/.760 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.700 

.000/.000 

.000/.000 

.000/.000 

.000/.730 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.415 

.000/.000 

.000/.000 

.000/.000 

.000/.670 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.265 

.000/.000 

.000/.000 

.000/.000 

.000/.605 

.000/.000 

.000/.000 

.000/.000 

(B) model 2 vs remaining models as nulls 

1: ((K,L)σ<1I)η<1 
2: ((K, L)σ <1I)η>1 
3: ((K,L)σ>1I)η<1 
4: ((K,L)σ>1I)η>1 
5: ((I,L)σ<1K)η<1 
6: ((I,L)σ<1K)η>1 
7: ((I,L)σ>1K)η<1 
8: ((I,L)σ>1K)η>1 
9: ((K,I)σ<1L)η<1 
10: ((K,I)σ<1L)η>1 
11: ((K,I)σ>1L)η<1 
12: ((K,I)σ>1L)η>1 

-0.5 
 

2.4 
0.0 
1.9 

 5.1 
6.1 

 3.8 
2.2 

 7.1 
3.2 

 4.5 

-0.6 
 

2.4 
0.0 
1.6 

 5.1 
5.9 

 3.7 
2.0 

 6.9 
3.2 

 4.6 

-1.8 
 

3.6 
2.2 
2.5 
9.2 

 10.1 
9.2 

 2.7 
13.9 
 6.3 

11.4 

-1.7 
 

3.9 
2.3 
2.2 
8.6 

  9.7 
8.6 

 2.4 
14.0 
 6.4 

11.2 

.000/.000 
 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.010 

.000/.000 

.000/.000 

.000/.000 

.000/.010 

.000/.000 
 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 
 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

000/.000 
 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

.000/.000 

   Notes:  Wild bootstraps p-values based upon diagonal covariance/unrestricted covariance use the data 
generating process of the alternative model listed in each row. 

to model 5 or 9 (where also σ < 1 & η < 1) when the latter model is the true dgp.  However, 

despite their different nesting structure, models 5 and 9 have almost identical estimates of the 

cointegration parameters β and α rates (Table 7) and similar patterns of negative capital, 

positive labour and zero intermediates factor augmenting productivity growth (Table 6) as 

model 1.  Moreover, this ambiguity does not arise when the models are compared to second 

ranked model 2, where the p-value of getting a Vuong difference greater than or equal to that 

found in the sample is zero under the null of the row model dgp regardless of the covariance 

structure of shocks. 

 The top rows of panels (A) and (B) in Table 9 highlight the difference between the 

nulls underlying Vuong's test and the bootstrap tests given in the table.  In panel (A) we see 

that if model 2 is the true dgp the bootstrapped probability of the recorded Vuong statistic in 

favour of model 1 is 0, leading to the conclusion that model 2 is not the true dgp.  In panel (B) 
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we see that the bootstrapped probability of a Vuong statistic greater than or equal to the 

negative values found against model 2 when model 1 is the true dgp is also 0.  That is, the 

sample test statistic should be much more negative (favour model 1 more strongly) and we 

can conclude that model 1 is not the true dgp either.  The asymptotically normal distribution 

of Vuong's test statistic gives the probability of the estimated difference between models 1 

and 2 if they have the same Kullback-Leibler distance from the true underlying data 

generating process, without requiring either model to be correct.  Here in a one-sided test at 

the .05 asymptotic level and using t-likelihoods we conclude that model 1's Kullback-Leibler 

divergence from the true dgp is less than that of model 2.  In combination, these results 

remind us that while model 1 may be the best approximation to the true dgp, none of the 

models presented here are likely to be precisely true. 

V. Shifts of and Movements along the Cointegration Frontier 

 The t - distribution VEC1 cointegrating coefficients β implicitly define a frontier 

)( jitAlnβ = cit linking the non-stationary ln(Ajit) to the trend stationary cit.  This naturally 

invites a decomposition of changes in ln(Ajit) into components stemming from movements 

along a given frontier, that is for a given value of cit, and those associated with a shift of that 

frontier, i.e. changes or trends in cit.  To provide a clarifying example, this section first revisits 

the model of task based technical change noted in the introduction, before presenting 

techniques that provide, or at least bound, such decompositions.  

 Consider the three factor nested CES production function where, with αjit denoting the 

measure of tasks performed by factor j and ajit factor augmenting productivity, and assuming 

that factor inputs are divided evenly across their tasks, we have 
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Task based technical change might be viewed as positing a restriction linking the number of 

tasks (including those yet to be invented) available to each input.  Expressing this restriction 

in terms of elasticity based monotonic transformations, we might have  

0),,()V.3( )1/(1
3

)1/(1
2

)1/(1
1    itititT  

or log-linearizing 

cititit 








)ln(
1

1
)ln(

1

1
)ln(

1

1
 )V.4( 332211 








 , 

so that using (V.2) we see that 

.)()()V.5( itjitjit cacA  lnβlnβ  

Changes in the number of tasks αjit performed by each factor that leave the left-hand side of 

(V.4) unchanged are movements along the task frontier T and, similarly, movements along the 

cointegration frontier, leaving the value of )( jitAlnβ and cit unchanged.  I refer to these below 

as “linked” productivity changes which generate “movements along the frontier”.  Changes in 

underlying true factor augmenting productivity ajit appear as changing values of )( jitAlnβ .  I 

refer to these below as “unlinked” or “shifts of the frontier”. 

 Returning to empirics, to measure shifts of the frontier Johansen (1995) advocates 

projecting estimated time trends in an error correction model on the adjustment factors α.  

Following his suggestion, for our model, where estimated time trends are fixed effects, we 

might decompose as follows 

,ˆ&)(ˆ  :or  for  where
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


  

after which, as the projections of the year fixed effects on α are quite volatile, a summary 

Johansen-type measure of the trends in cit can be arrived at by projecting the negative of these 

on a constant and time  
tgaγ JJt  ˆ)V.7( . 

The logic of Johansen's suggestion is that mean effects that are "balanced" across α do not 

generate any subsequent adjustment and hence can be interpreted as changes consistent with a 

shift of the frontier. 

The problem with this approach is that it is univariate, i.e. assumes that there are no 

components in η which are correlated with α but not associated with a trend in cit and whose 

exclusion, therefore, biases the estimated values.  Since both α and η estimate fundamental 
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directions of productivity growth, this assumption is problematic.  In practice, as shown 

below, in my data Johansen’s approach generates estimated trends which are multiples of 

observed movements of )( jitAlnβ , suggestive of omitted variable bias with common 

innovative forces determining the vectors α and η.  

An alternative “proof is in the pudding” approach, intimated by the last sentence, is to 

simply look at trends in )( jitAlnβ at the industry level or )( jtAlnβ at the economy-wide level, 

i.e. run the regressions: 

tgaAtgaA OOjtOOijit (economy))(   &   (industry))()V.8(  lnβlnβ , 

where aO and aOi are constants and industry fixed effects and the gO estimates of observed 

trends.  gO(industry) corresponds most closely to gJ , as the latter is based on unweighted 

estimates of ηt, but I also present results gO(economy) for ln(Ajt) calculated as the factor 

income share weighted sum of industry growth rates, as this corresponds more closely to 

other measures examined further below.  If cit is trending at some common rate gO, over long 

periods of time )( jitAlnβ  should be trending at that rate as well. 

 Table 10 reports the estimated growth rates of cit which, with βK set equal to 1, are 

normalized in units of capital augmenting productivity growth.  As seen in panel (A), the 

Johansen-type growth rates are generally larger, and in fact often 1 or 2 orders of magnitude 

larger, than observed empirical trends in )( jitAlnβ .  While the α adjustment process of the 

cointegration model allows for some divergence between the growth rates of cit and )( jitAlnβ  

over periods of time, the gaps implied by the differing growth estimates in Table 10 are 

utterly implausible.  For model 1, for example, the 4.1 percent gap between gJ and 

gO(industry) suggests an average industry change in )( jitAlnβ  - cit of -1.39 from the 

beginning to the end of the sample.  With α for that model equal to (-.026,-.014,.013) & β to 

(1,1.23,-.994) (Table 7), this would imply upward pressure on )( jitAlnβ  of .078 per annum by 

2021, an enormous acceleration relative to the .005 mean growth observed during the sample 

period.  The factor income share weighted economy wide index )( jtAlnβ for model 1 has a 

fairly steady mean growth rate of .011, which has no obvious tendency to accelerate, as seen 

in Figure I.  These results favour an omitted variable bias interpretation of the gJ estimates. 

Estimates of gO in panel (B) of Table 10 taking σ and η as known and allowing an 

unconstrained covariance of shocks are for the most part similar to those based upon  
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Table 10: Time Trends of Industry Cointegration Frontiers by Estimation Method & Model 

 
(A) estimating σ and η 

(assuming diagonal covariance of shocks) 
(B) σ and η known = estimated values 

(allowing covariance of shocks) 

 gJ gO(industry) gO(economy) gJ gO(industry) gO(economy) 

1: ((K,L)σ<1I)η<1 
2: ((K, L)σ <1I)η>1 
3: ((K,L)σ>1I)η<1 
4: ((K,L)σ>1I)η>1 
5: ((I,L)σ<1K)η<1 
6: ((I,L)σ<1K)η>1 
7: ((I,L)σ>1K)η<1 
8: ((I,L)σ>1K)η>1 
9: ((K,I)σ<1L)η<1 
10: ((K,I)σ<1L)η>1 
11: ((K,I)σ>1L)η<1 
12: ((K,I)σ>1L)η>1 

.046 (.001) 

.015 (.003) 

.038 (.007) 
-.222 (.017) 
.044 (.002) 

-.456 (.025) 
.001 (.001) 

-.730 (.058) 
.030 (.000) 
.004 (.000) 

-.225 (.007) 
-.127 (.017) 

.005 (.000) 
-.002 (.000) 
.018 (.000) 

-.002 (.000) 
.012 (.000) 

-.083 (.003) 
.002 (.000) 
.038 (.004) 
.009 (.000) 
.001 (.000) 

-.020 (.001) 
-.040 (.014) 

.011 (.000) 
-.000 (.000) 
.016 (.000) 

-.010 (.000) 
.017 (.000) 

-.090 (.003) 
.004 (.000) 
.004 (.002) 
.013 (.000) 
.004 (.000) 

-.023 (.001) 
-.048 (.013) 

.043 (.000) 

.021 (.000) 

.282 (.001) 
-.197 (.000) 
.038 (.000) 

-.444 (.003) 
.002 (.000) 

-.944 (.000) 
.027 (.000) 
.001 (.000) 

-.088 (.000) 
-.065 (.000) 

.002 (.000) 
-.001 (.000) 
.016 (.000) 
.005 (.000) 
.008 (.000) 

-.078 (.001) 
.004 (.000) 
.028 (.000) 
.007 (.000) 

-.001 (.000) 
-.013 (.000) 
-.006 (.000) 

.008 (.000) 

.001 (.000) 

.017 (.000) 
-.003 (.000) 
.013 (.000) 

-.084 (.001) 
.006 (.000) 

-.003 (.000) 
.012 (.000) 
.002 (.000) 

-.017 (.000) 
-.010 (.000) 

(C) by adjustment of (A) for bootstrap estimate of bias 

 diagonal wild unconstrained wild diagonal parametric unconstrained parametric 

 gO(ind) gO(econ) gO(ind) gO(econ) gO(ind) gO(econ) gO(ind) gO(econ) 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

.004 
-.005 
.021 

-.016 
.012 

-.088 
.003 
.010 
.009 
.002 

-.024 
-.115 

.010 
-.002 
.017 

-.029 
.018 

-.095 
.004 
.008 
.013 
.005 

-.027 
-.135 

.004 
-.004 
.017 
.018 
.009 

-.076 
.002 

-.032 
.006 
.001 

-.017 
-.042 

.009 
-.002 
.015 
.016 
.013 

-.082 
.004 
.005 
.010 
.003 

-.020 
-.045 

.004 
-.003 
.018 

-.001 
.011 

-.088 
.002 
.041 
.008 
.001 

-.019 
-.032 

.010 
-.001 
.015 

-.009 
.016 

-.094 
.004 
.003 
.012 
.004 

-.022 
-.039 

.005 
-.003 
.017 
.003 
.010 

-.081 
.001 
.048 
.008 

-.001 
-.012 
-.076 

.011 
-.001 
.015 

-.003 
.014 

-.088 
.003 
.006 
.012 
.002 

-.014 
-.084 

   Notes:  Standard errors in () are estimated using the delta method and the wild bootstrap distribution of estimated 
parameters, retaining the empirical covariance of shocks in panel (B) while imposing a diagonal covariance in panel 
(A) (standard error estimates retaining the empirical covariance of shocks are the same or smaller). In instances 
where bias estimates suggest a slightly negative σ or η, they are set equal to 0. 
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estimated σ and η and diagonal shocks.  In the case of model 1, they indicate slightly lower 

mean growth rates of .002 and .008 at the industry and economy-wide level.  The gO trends 

for second ranked model 2, however, are all but 0 in both estimation frameworks and levels of 

aggregation, with that model’s gO(economy) index of panel (A) graphed in Figure I as well.  

As shown in panel (C), adjustments of the parameters of panel (A) for bias using the four 

different bias estimates of Table 8 have, for the most part, little substantive impact on 

estimated trends, or the lack thereof.  The exceptions are models 4, 8 & 12 where, as seen 

earlier in Tables 7 & 8, both standard errors and bias estimates are large.  These models have 

the largest estimates (in absolute value) of gO trends in panel (A) and, depending upon which 

bias estimate is chosen, such trends can be made to disappear or reverse in sign. 

Regarding movements along the frontier, an appeal to cost minimizing behaviour 

provides a means of identifying these, or at least bounding their contribution.  As noted in the 

introduction, firms will only implement new production techniques that generate linked 

changes in factor productivities (movements along the frontier) if these lower costs, i.e. raise 

total factor productivity.  Similarly, firms will only implement new production techniques that 

do not link individual factor productivities (shifts of the frontier) if they generate positive 

factor augmenting productivity growth for the individual factors.  Put differently, barring 

large sustained macro-level shocks, neither a substantial negative contribution of linked 

changes in productivity to total factor productivity growth nor substantial negative growth of 

unlinked individual factor productivities is plausible. 

 The logic given above suggests the following calculation: given estimated mean factor 

augmenting growth rates g(AK), g(AL), & g(AI), select movements g*(AK), g*(AL), & g*(AI) 

along the cointegration frontier that maximize cointegrated TFP growth subject to inequality 

constraints on individual, un-linked, rates of productivity growth, i.e. 

,)()(&,)()(,)()(

  ,0)()()(  :subject to

)()()(Max)V.9(
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where -δ is the maximum negative rate of residual un-linked individual factor productivity 

growth allowed.  This calculation provides a logical check on the estimated cointegration 

parameters β, since when the maximum is negative, or a large δ is required to make it 

positive, the tradeoffs implied by the coefficients cannot reasonably be interpreted as profit 
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maximizing.  Simultaneously, it provides an upper bound on the maximum contribution of 

movements along the frontier to aggregate productivity growth and, as will be seen, with 

additional constraints some sense of the forms that unlinked productivity growth might have 

taken as well.   

 The calculation in (V.9) should not and can not be implemented at the industry level. 

First, the β coefficients are calculated off of the entire sample, not attuned to heterogeneity 

across industries, and hence incapable of producing reasonable results on an industry by 

industry basis.  Estimates of β at the industry level are hopelessly inaccurate, as standard error 

estimates for economy-wide average β are already quite large (Table 7).  Second, average 

1987-2021 TFP growth in 20 of the 61 US KLEMS industries is, in any case, negative, 

implying that the maximand can only be greater than 0 if -δ for individual factors is less than 

0.  For these reasons, instead of solving (V.9) at the industry level I calculate the maximand 

for the aggregate economy, reporting actions consistent with economy-wide estimates of β 

that at the economy-wide level are on average consistent with cost reducing positive 

productivity growth. 

 TFP growth in the aggregate economy is the Domar weighted sum of individual 

industry gross output productivity growth, which can be re-expressed as: 


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and where Xjit & Xjt denote industry & economy wide use of factor j, Pit output prices and Pjt 

input prices.  The economy-wide g(Ajt), estimates of which are reported earlier in Table 6 & 

Figure I and used in the estimation of gO(economy) in Table 9, are the factor income share 

weighted sum of individual industry factor augmenting growth rates.  The Domar factor 

income shares, PjtXjt/GDP, on average sum to about 1.8.  Average annual values of both are 

used as the g(Aj) and θj in maximizing (V.9).  

 Table 11 reports the maximand of (V.9) for different values of the lower bound on un-

linked productivity growth -δ.  In panel (A) using the baseline estimates where σ and η are 

identified assuming diagonal shocks, with the non-negativity constraint -δ = 0, the maximum 

for models 3, 5 & 6 is negative, while that for model 2 is undefined as no values of g*(Aj) 
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Table 11: Maximum TFP Growth Associated with Movements Along Cointegration Frontier  

by Lower Bound on Residual Factor Augmenting Growth & Model 

 
(A) estimating σ and η 

(diagonal covariance of shocks) 
(B) taking σ and η as given 

(unconstrained covariance of shocks) 

 -δ: 0 -.0001 -.001 -.01 0 -.0001 -.001 -.01 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

.0010 
... 

-.0004 
.0052 

-.0004 
-.0004 
.0044 
.0046 
.0003 
.0045 
.0001 
.0037 

.0012 

.0056 
-.0002 
.0053 

-.0003 
-.0002 
.0045 
.0048 
.0004 
.0046 
.0002 
.0038 

.0024 

.0061 

.0014 

.0063 

.0009 

.0012 

.0051 

.0072 

.0016 

.0057 

.0009 

.0048 

.0146 

.0107 

.0174 

.0171 

.0124 

.0160 

.0114 

.0204 

.0132 

.0168 

.0087 

.0147 

.0022 

.0053 
-.0014 
.0056 
.0000 

-.0001 
.0038 
.0050 
.0008 
.0051 

-.0013 
.0044 

.0024 

.0054 
-.0010 
.0058 
.0001 
.0000 
.0038 
.0053 
.0010 
.0053 

-.0011 
.0045 

.0036 

.0060 

.0024 

.0069 

.0013 

.0014 

.0044 

.0072 

.0023 

.0065 

.0002 

.0056 

.0165 

.0117 

.0208 

.0184 

.0133 

.0156 

.0097 

.0187 

.0156 

.0188 

.0137 

.0167 

 (C) by adjustment of (A) for boostrap estimate of bias 

 diagonal wild unconstrained wild diagonal parametric unconstrained parametric 

-δ: 0 -.001 0 -.001 0 -.001 0 -.001 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

.0012 
... 

-.0008 
.0047 

-.0004 
-.0003 
.0041 
.0032 
.0003 
.0041 
.0001 
.0033 

.0025 

.0065 

.0009 

.0058 

.0008 

.0013 

.0048 

.0059 

.0016 

.0053 

.0009 

.0044 

.0017 
... 

-.0002 
.0003 
.0002 

-.0002 
.0045 
.0050 
.0014 
.0046 
.0004 
.0037 

.0031 

.0068 

.0015 

.0014 

.0014 

.0014 

.0052 

.0072 

.0027 

.0058 

.0012 

.0048 

.0012 
... 

-.0004 
.0052 

-.0004 
-.0004 
.0044 
.0047 
.0006 
.0045 
.0002 
.0038 

.0026 

.0063 

.0013 

.0064 

.0009 

.0012 

.0051 

.0073 

.0018 

.0057 

.0010 

.0049 

.0011 
... 

-.0001 
.0056 

-.0003 
-.0004 
.0047 
.0045 
.0006 
.0051 
.0004 
.0038 

.0024 

.0063 

.0015 

.0068 

.0010 

.0012 

.0055 

.0072 

.0019 

.0064 

.0013 

.0048 

   Notes:  Standard error estimates, based upon the delta method using the wild bootstrap covariance matrix of 
coefficient estimates, in panel (B) are all .0000 and in panel(A) are mostly .0000, with a few .0001 or .0002, using 
the wild bootstrap based upon diagonal covariance or unrestricted covariance. In instances where bias estimates 
suggest a slightly negative σ or η, they are set equal to 0. 

satisfy all four constraints in (V.9).  However, with a miniscule -.0001 ln lower bound, 

cumulatively equivalent to a tiny negative .34 of one percent decline over the 1987-2021 

period, model 2’s estimates can satisfy the constraints with, in fact, a maximum average TFP 

growth rate from movements along the frontier equal to .0056, just shy of the .0058 annual 

TFP growth experienced in the aggregate private sector economy during this period.  This is 

not surprising, as the trends in cit for model 2 are 0 (Table 10), so that all of factor augmenting 

growth is taking place on a single level curve of )( jtAlnβ .  With a still small -.001 lower 

bound, all models can satisfy the constraints with positive TFP growth, indicating that the 

point estimates of cointegration parameters are consistent with profit maximizing behaviour,  
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Table 12: Model 1 1987-2021 g*(TFP) Maximizing Movements Along Cointegration Frontier  
by Type of Un-linked Factor Augmenting Productivity Growth  

 movements along cointegration frontier un-linked productivity growth 

 g*(AK) g*(AL) g*(AI) g*(TFP) 
g(AK) -
g*(AK) 

g(AL) -
g*(AL) 

g(AI) -
g*(AI) 

g(TFP) - 
g*(TFP) 

Solow neutral 
Harrod neutral 
Hicks neutral 

all factor neutral 

-.0212 
-.0101 
-.0151 
-.0191 

.0169 

.0079 

.0119 

.0079 

-.0004 
-.0004 
-.0004 
-.0094 

.0010 

.0002 

.0006 
-.0112 

.0112 
-.0000 
.0050 
.0090 

-.0000 
.0091 
.0050 
.0090 

-.0000 
-.0000 
-.0000 
.0090 

.0047 

.0056 

.0052 

.0170 
   Notes: g*(TFP) & g(TFP) are calculated by multiplying the annual factor augmenting growth rates by annual 
Domar factor weights PjtXjt/GDPt which sum to 1 for capital and labour but 1.8 including intermediates.  g*(Aj) is set 
at the average level for all years.  Because g(Aj)-g*(Aj) is larger in years when θj is larger, the contribution of Hicks 
neutral productivity growth to TFP growth is greater than the average rate of Hicks neutral productivity growth. 

 while with an overgenerous -.01 lowerbound, equivalent to a maximum 34 percent decline 

over the sample period, maximum TFP growth along the cointegration frontier in all models 

is well above the aggregate for the private sector economy.   

Stress tests of the headline results in Table 11 have very modest effects on results.  

Panel (B), which takes σ and η as equal to the values in panel (A) but otherwise uses an 

unrestricted covariance matrix of shocks in estimating the β parameters, by and large finds 

similar patterns across models.  The most notable change is that the maximum contribution of 

movements along the frontier to TFP growth in model 1 with -δ = 0 rises to .022, or a little 

over ⅓ of aggregate TFP growth.  Adjustments in panel (C) of the parameter estimates in 

panel (A) using various estimates of bias have virtually no effect outside of model 4, where 

the contribution can be made equal to virtually all or none of aggregate TFP growth, 

depending upon the adjustment.  For other models, and most notably models 6, 8, 11 & 12 

where bias estimates were large (Table 8), the effect is substantively minimal, as models 

consistently indicate either a maximand equal to most of or only a small fraction of aggregate 

TFP growth.  The maximand in (V.9) depends on constraints determined by the σ,η, & β 

parameters together and outside of model 4 adjustments for bias largely cancel out. 

 Table 12 concludes by zeroing in on model 1, with the highest likelihood, showing the 

patterns of factor augmenting productivity growth consistent with positive productivity 

growth from linked cointegrated movements and greater than or equal to 0 (-δ=0) residual 

non-linked productivity growth.  In the top line of the table we find that the maximand of 

(V.9) is actually one with Solow neutral unlinked factor augmenting growth.  The second line 

of the table solves (V.9) with the additional restriction that un-linked productivity growth is 

Harrod neutral, i.e. solely labour augmenting.  The maximand is still positive, but truly 
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minimal, showing only .02 of one percent annual productivity gains from cointegrated 

changes.  The third line considers a Hicks neutral restriction, with equal rates of capital and 

labour unlinked productivity growth, and finds the maximand is positive and equal to .0006 

per annum.  Finally, the fourth line imposes the constraint that all three unlinked productivity 

growth rates be equal and finds the maximand, at -.0112, to be negative and roughly twice the 

.058 magnitude of aggregate realized productivity growth.  This possibility is clearly ruled 

out.  These calculations, and those in Table 11, are by construction all consistent with the 

actual outward shift of )( jtAlnβ , as (V.9) imposes the constraint βKg*(AK) + βLg*(AL) + 

βIg*(AI) = 0.  Consequently, similar Table 12 calculations for model 2 are pointless as the 

rates of unlinked productivity growth in all scenarios are negligible, with movements along 

the frontier accounting for almost all of TFP growth.  

To summarize, model 1 finds that the majority of gross (positive or negative) 

movements of factor productivity growth are associated with movements along the 

cointegration frontier, but the net gain from these was modest, accounting for at most ⅙, or 

when stress tested perhaps as much as ⅓, of aggregate productivity growth, with unlinked 

productivity growth accounting for the remainder and generating a 1.1 percent annual 

outward shift (in units of capital productivity) of the cointegration frontier.  Second ranked 

model 2, however, finds that movements along the frontier essentially accounted for all of 

both factor augmenting productivity and TFP growth. 
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VI. Conclusion 

 Figure II graphs the cumulative ln factor augmenting productivity indices for the VAR 

t-distribution versions of top ranked models 1 and 2 earlier above.  These indices show a 

secular decline in capital productivity since 1987 that is only halted or slowed by the financial 

crisis of 2008.  Through the lens of early growth models (e.g. Solow 1962), this decline is a 

sign of growing investment inefficiency, an inefficiency stopped by post-financial crisis 

capital stringency.  Given the length (2 decades) and depth (40 percent) of the decline, this 

interpretation seems highly dubious. 

An alternative explanation of Figure II is that the decline in capital productivity is 

intrinsically linked to the rise in labour productivity in the same figure, both being part and 

parcel of a change in production relationships which, when aggregated together, improves 

total factor productivity and hence is implemented by cost minimizing firms.  Statistically, 

this is confirmed by the rejection of the VAR model in favour of a rank 1 cointegration VEC 

framework.  Theoretically, a model of task reallocation can motivate these linkages and 

rationalize the observed trends as depicting the growing allocation of tasks to capital at the 

expense of those performed by labour since, with elasticities of substitution less than 1, a 

factor’s productivity declines (increases) as it is spread across more (fewer) tasks.  Within this 

framework, the post-2008 flattening of both the capital and labour productivity curves is a 

sign of the enduring negative impact of the financial crisis, which has slowed down the rate at 

which firms are making productivity and cost-improving tradeoffs in production relationships. 

 The implications of cointegration for the modelling and study of productivity 

potentially go much deeper than the simple linking of productivities.  Cointegration binds the 

non-stationary elements of ln factor productivity to a stationary, possibly trend stationary, 

variable, itjit cA  )(lnβ .  Thus, while the forces moving the linked values of )( jitAln are non-
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stationary, generating non-stationary TFP and factor input ratios, the forces changing the 

linking restriction are stationary.  In the analysis above, model 2 shows no trend in )( jitAlnβ , 

and movements along the cointegration frontier account for all of productivity growth & 

hence, if one will allow, all technical change.  However, in the case of model 1, with the 

highest likelihood, )( jitAlnβ  is trending upward at about 1 percent per annum, with 

movements along the cointegration frontier accounting for at most ⅙ of economy-wide total 

factor productivity growth, and consequently a strong indication of positive trends in cit and 

non-cointegration linked productivity growth.  This suggests the existence of two processes of 

innovation with different statistical properties, one based upon tradeoffs between factor 

productivities with unit roots and another which relaxes those tradeoffs and is trend 

stationary.  Models such as task based innovation which motivate observed constraints 

between the elements of )( jitAln that identify cointegration coefficients in the data, must in 

turn be informed or restricted by the finding of cointegration, which suggests that any forces 

relaxing those constraints have quite different stochastic properties.  
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