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Abstract 

I use Monte Carlo simulations, the jackknife and multiple forms of the bootstrap to study 

a comprehensive sample of 1309 instrumental variables regressions in 30 papers published in the 

journals of the American Economic Association.  Monte Carlo simulations based upon published 

regressions show that non-iid error processes in highly leveraged regressions, both prominent 

features of published work, adversely affect the size and power of IV tests, while increasing the 

bias and mean squared error of IV relative to OLS.  Weak instrument pre-tests based upon F-

statistics are found to be largely uninformative of both size and bias.  In published papers IV has 

little power as, despite producing substantively different estimates, it rarely rejects the OLS point 

estimate or the null that OLS is unbiased, while the statistical significance of excluded 

instruments is exaggerated. 

 

 

 
 

*I am grateful to Isaiah Andrews, David Broadstone, Brian Finley and Frank Windmeijer for helpful comments.
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I:  Introduction 

The economics profession is in the midst of a “credibility revolution” (Angrist and 

Pischke 2010) in which careful research design has become firmly established as a necessary 

characteristic of applied work.  A key element in this revolution has been the use of instruments 

to identify causal effects free of the potential biases carried by endogenous ordinary least squares 

regressors.  The growing emphasis on research design has not gone hand in hand, however, with 

equal demands on the quality of inference.  Despite the widespread use of Eicker (1963)-Hinkley 

(1977)-White (1980) heteroskedasticity robust covariance estimates and their clustered 

extensions, the implications of non-iid error processes for the quality of inference, and their 

interaction in this regard with regression and research design, has not received the attention it 

deserves.  Heteroskedastic and correlated errors in highly leveraged regressions produce test 

statistics whose dispersion is typically much greater than believed, exaggerating the statistical 

significance of both 1st and 2nd stage tests, while lowering power to detect meaningful 

alternatives.  Furthermore, the bias of 2SLS relative to OLS rises as predicted second stage 

values are increasingly determined by the realization of a few errors, thereby eliminating much 

of the benefit of IV.  This paper shows that these problems exist in a substantial fraction of 

published work. 

In this paper I use Monte Carlos, the jackknife and multiple forms of the bootstrap to 

study the distribution of coefficients and test statistics in a comprehensive sample of 1309 2SLS 

regressions in 30 papers published in the journals of the American Economic Association.  

Subject to some basic rules regarding methods applied, data and code availability, and 

computational feasibility, I use all papers produced by a keyword search on the AEA website.  I 

maintain, throughout, the exact specification used by authors and their identifying assumption 

that the excluded instruments are orthogonal to the second stage residuals.  When bootstrapping, 

jackknifing or generating residuals for Monte Carlos, I draw samples in a fashion consistent with 

the error dependence within groups of observations and independence across observations 

implied by authors’ standard error calculations.  Thus, this paper is not about point estimates or 
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the validity of fundamental assumptions, but rather concerns itself with the quality of inference 

within the framework laid down by authors themselves. 

Monte Carlos, using the regression design and residuals found in my sample, as well as 

controlled artificial error disturbances with a covariance structure matching that observed in 1st 

and 2nd stage residuals, show how non-iid errors damage the relative quality of inference using 

2SLS.  Non-iid errors weaken 1st stage relations, reducing the bias advantage of 2SLS and 

generating mean squared error that is usually larger than biased OLS.  Non-iid errors also 

increase the probability of spuriously large test statistics when the instruments are irrelevant, 

particularly in highly leveraged regressions and especially in joint tests of coefficients, i.e. 1st 

stage F tests.  Consequently, while 1st stage relations weaken, 1st stage pre-tests become 

uninformative, providing little or no protection against 2SLS size distortions or bias.  2SLS 

standard error estimates become larger and much more volatile, producing null rejection 

probabilities well in excess of the level of the test, while power falls and 2SLS is increasingly 

unable to distinguish between a null of zero and the alternative given by the parameter estimates 

found in published tables. 

Monte Carlos show, however, that the bootstrap allows for 2SLS and OLS inference with 

more accurate size and a much higher ratio of power to size than is achieved using clustered/ 

robust covariance estimates.  Thus, while the bootstrap does not undo the increased bias of 2SLS 

brought on by non-iid errors, it nevertheless allows for improved inference under these 

circumstances.  When published results are examined through the lens of the jackknife and 

bootstrap, a number of weaknesses are revealed.  In published papers, statistical significance 

rests upon a finding of unusually large t-statistics rather than surprising (under the null) 

coefficient estimates.  First stage relations, when re-examined through the jackknife or bootstrap, 

are often insignificant, while jackknifed and bootstrapped Hausman (1978) tests find little 

statistical evidence that OLS is substantively biased, despite large proportional and frequent sign 

differences between OLS and 2SLS point estimates, as 2SLS estimation is found to be so 

inaccurate that 2SLS confidence intervals almost always include OLS point estimates.  Headline 
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results in the third of my sample with the lowest maximum observational leverage do better on 

all metrics, but even here at the .01 and .05 levels on average only .23 and .35 of results when 

bootstrapped or jackknifed reject the null that the instruments are irrelevant and either reject the 

OLS point estimate or the null that it is unbiased.  These results do not validate OLS estimation.  

Rather, they show that the combination of non-iid errors, highly leveraged regression design, and 

the intrinsic inefficiency of 2SLS produce results which, while substantively different from OLS, 

have very little statistical power.  2SLS may be prized for its asymptotic consistency, but in finite 

samples it often allows for very little inference. 

The concern with the quality of inference in 2SLS raised in this paper is not new.  

Sargan, in his seminal 1958 paper, raised the issue of efficiency and the possibility of choosing 

the biased but more accurate OLS estimator, leading later scholars to explore relative efficiency 

in Monte Carlo settings (e.g. Summers 1965, Feldstein 1974).  The current professional emphasis 

on first stage F-statistics as pre-tests originates in Nelson and Startz (1990a, b), who used 

examples to show that size distortions can be substantial when the strength of the first stage 

relationship is weak, and Bound, Jaeger and Baker (1995), who emphasized problems of bias and 

inconsistency with weak instruments.  These papers spurred Staiger and Stock (1997) and Stock 

and Yogo’s (2005) elegant derivation of weak instrument asymptotic distributions and specific 

tests to ensure bounds on the size distortions and bias relative to OLS of 2SLS.  The theoretical 

and Monte Carlo work that motivates this literature is largely iid based, a notable exception 

being Olea & Pflueger (2013), who argue that heteroskedastic error processes weaken 1st stage 

relations and propose a bias test closely related to the 1st stage clustered/robust F-statistic.  This 

paper supports Olea & Pflueger’s insight that non-iid errors effectively weaken 1st stage 

relations, revives concerns regarding the practical efficiency of 2SLS in the context of leverage, 

regression design and the power to produce results significantly different from OLS, shows that 

iid-motivated weak instrument pre-tests perform poorly when misapplied in non-iid settings, and 

highlights the errors induced by finite sample inference using asymptotically valid clustered/ 
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robust covariance estimates in highly leveraged settings, including even the Olea & Pflueger bias 

test. 

The paper proceeds as follows:  After a brief review of notation in Section II, Section III 

describes the rules used to select the sample and its defining characteristics, highlighting the 

presence of high leverage, sensitivity to outliers and non-iid errors.  Section IV presents Monte 

Carlos patterned on the regression design and errors found in my sample, showing how non-iid 

errors worsen inference of all sorts, but especially degrade the ratio of power to size in IV tests 

while raising the bias relative to OLS of 2SLS estimation.  1st stage pre-tests are found to be 

largely uninformative, although the Olea & Pflueger bias test does separate low and high bias in 

over-identified 2SLS regressions with moderate maximal leverage, albeit not with the accuracy 

suggested by asymptotic results.  Section V provides a thumbnail review of jackknife and “pairs” 

and “wild” bootstrap methods.  The resampling of the coefficient distribution is found to provide 

as accurate tail rejection probabilities as the computationally more costly resampling of the t-

statistic distribution, particularly in tests of IV coefficients.  Section VI re-examines the 2SLS 

regressions in my sample using all of the jackknife and bootstrap methods, finding the results 

mentioned above, while Section VII concludes with some suggestions for improved practice.  An 

on-line appendix provides alternative versions of tables and comparisons of the Monte Carlo 

accuracy of different bootstrap methods and outcomes when they are applied to the sample itself. 

All of the results of this research are anonymized.  Thus, no information is provided, in 

the paper, public use files or private conversation, regarding results for particular papers.  

Methodological issues matter more than individual results and studies of this sort rely upon the 

openness and cooperation of current and future authors.  For the sake of transparency, I provide 

complete code that shows how each paper was analysed, but the reader eager to know how a 

particular paper fared will have to execute this code themselves. 

II. Notation and Formulae 

It is useful to begin with some notation and basic formulae, to facilitate the discussion  
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which follows.  With bold lowercase and uppercase letters indicating vectors and matrices, 

respectively, the data generating process is taken as given by: 

, and     )1( vγXπZYuδXYy    

where y is the n x 1 vector of second stage outcomes, Y the n x 1 matrix of endogenous 

regressors, X the n x kX matrix of included exogenous regressors, Z the n x kZ matrix of 

excluded exogenous regressors (instruments), and u and v the n x 1 vectors of second and first 

stage disturbances.  The remaining (Greek) letters are parameters, with β representing the 

parameter of interest.  Although in principal there might be more than one endogenous right-

hand side variable, i.e. Y is n x kY, in practical work this is exceedingly rare (see below) and this 

paper focuses on the common case where kY equals 1. 

The nuisance variables X and their associated parameters are of no substantive interest, 

so I use ~ to denote the residuals from the projection on X and characterize everything in terms of 

these residuals.  For example, with ^ denoting estimated and predicted values, the important first 

and second stage coefficient estimates are given by: 

.ˆ
~~̂

      where,~~̂
)

~̂~̂
(ˆ   and   

~~~~
ˆ)2( 1

2 πZYyYYYYZ)ZZ(π 1  
sls  

To avoid any confusion, it is also worth spelling out that in referring to “homoskedastic” or 

“default” covariance estimates below I mean 

,ˆ)
~̂~̂

()ˆ(V   and   ˆ
~~

)ˆV()3( 21
2

2
uslsv    YY)ZZ(π 1  

where 2ˆv  and 2ˆu  equal the sum of the first and second stage squared residuals divided by n 

minus the k right hand side variables, while in the case of "heteroskedastic" or “clustered/robust” 

covariance estimates I mean: 

,)
~̂~̂

/(
~̂

ˆˆ
~̂

)ˆ(V   and  )
~~

(
~

ˆˆ
~

)
~~

()ˆ(V )4( 2
2

11 YYYuuYZZZvvZZZπ iii
Ii

iiii
Ii

i  






 cc sls  

where i denotes the group of clustered observations (or individual observations when merely 

robust) and subscripted i the rows of a matrix or vector associated with that group, I the set of all 

such groupings, v̂  and û  the first and second stage residuals, c a finite sample adjustment (e.g. 

n/(n-k) in the robust case), and I make use of the fact that the inner-product of Y is a scalar.   
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III. The Sample 

 My sample is based upon a search on www.aeaweb.org using the keyword "instrument" 

covering the American Economic Review and American Economic Journals which at the time 

yielded papers up through the July 2016 issue of the AER.  I dropped papers that: 

(a) did not provide public use data files and Stata do-file code; 
(b) used non-linear methods or non-standard covariance estimates; 
(c) provided incomplete data or non-reproducible regressions. 

I had prior experience with Stata and among papers that provide data only five make use of other 

software.  Conventional linear two stage least squares with either the default or clustered/robust 

covariance estimate is the overwhelmingly dominant approach in this literature, so I dropped 

exceedingly rare deviations.  This consisted of (only) four papers that used non-linear IV 

methods, uniquely clustered on two variables or used auto-correlation consistent standard errors, 

as well as a handful of GMM regressions in two papers whose 2SLS regressions are otherwise 

included in the sample.  There is little to be learnt from a handful of specifications, and 

clustered/robust linear IV is, virtually without exception, the industry practice. 

 My search yielded 22 papers that indicated that users should apply to third parties for the 

confidential data necessary to reproduce the analysis.  As the delay and likelihood of success in 

such applications is indeterminate, I dropped these papers from my sample.  Sample sizes in half 

of these papers are within the mid-range observed in my analysis, as detailed below.  I only 

examined IV regressions that appear in tables, as this allowed me to use coefficients, standard 

errors and supplementary information like sample sizes and test statistics to identify, interpret 

and verify the relevant parts of authors’ code.  Cleaning of the sample based upon the criteria 

described above produced 1400 2SLS regressions in 32 papers.  Only 41 of these, however, 

contain more than one endogenous right hand side variable.  As 41 regressions are insufficient to 

draw meaningful conclusions, I further restricted the analysis to regressions with only one 

endogenous variable.  Sample sizes in one paper were in the millions in 90 percent of the IV  
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Table I:  Characteristics of the Sample 

30 papers 1309 2SLS regressions 

average number of # of 2SLS 
regressions observations clusters/observations 

excluded 
instruments 

covariance 
estimate 

9    
9 
7  
5 

   2-10 
 11-26 
 35-72 
 98-286 

8 
7 
6 
9 

     40 - 180 
   300 - 900 
 1.4K - 2.4K 
    8K - 210K 

14   
11 

5 

   20 - 90 
 100 - 850 
  1K - 210K 

1083  
92 

134 
 

1 
2-5 
6-60 

105 
992 
212 

 default 
 clustered 
 robust 

   Notes:  K = thousand; M = million; cl/observations = clusters where authors cluster, otherwise observations. 

regressions, with 70 to 250 regressors.  I lacked the computer resources to execute the full 

analysis for this paper and dropped it as well.1 

 The final sample is listed in the on-line appendix and consists of 30 papers, 15 appearing 

in the AER and 15 in other AEA journals.  27 of these provide JEL codes, and of these all but 

one reference public, health, labor or development/growth (codes H, I, J and O).  Although 

instrumental variables regressions are central to the argument in all of these papers, with the 

keyword “instrument” appearing in either the abstract or the title, the actual number of IV 

regressions varies greatly, as shown in Table I.  While 5 papers present 98 to 286 IV regressions, 

9 have only between 2 to 10.2  As there is a great deal of similarity within papers in regression 

design, in presenting averages in tables and text below unless otherwise noted I always take the 

average across papers of the within paper average.  Consequently, each paper carries an equal 

weight in determining summary results.  Of the 1309 IV regressions in these papers, 1083 are 

exactly identified by one excluded instrument and 226 (in 12 papers) are over-identified (Table 

I).  Over-identification magnifies size distortions in first stage tests, as shown below.  

 Turning to statistical inference, all but one of the papers in my sample use the robust 

covariance matrix or its multi-observation cluster extension.  Sample sizes are generally large, 

                                                 
1A single run of the IV regressions for this paper requires 2.5 hours of computing time, and executing all of 

the simulations and analysis for the paper would require roughly 250K such runs, plus additional calculations.  
Despite the large sample sizes, the regressions in this paper have only about 2000 clusters, putting them in the range 
observed in the remaining sample.  In a similar vein, I dropped two regressions in one paper with more than 10 
million observations (but only 166 clusters).  As these are not central to the paper and appear as an exploration of 
"mechanisms", I kept the paper and its other regressions in the sample. 

2These are in the published papers themselves, as I do not code or use results presented in on-line appendices.  
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with 7 papers showing an average of 300 to 900 observations per 2SLS regression and another 

15 having between 1.4 and 210 thousand.  However, the number of statistically independent data 

groupings, as indicated by authors’ clustering decisions, is often much smaller. 14 papers have 

on average only between 20 and 90 clusters or observations (when not clustered) per 2SLS 

regression, while another 11 have between 100 and 850.  Most tables report the number of 

observations, but the regression specific number of clusters is only ever given in 6 of the 25 

papers which cluster.  Although the maximum possible number of clusters can be inferred from 

the text in another 15 papers, the actual number of clusters often falls far below this limit in 

specific regressions.  The R2 found in regressing the paper average number of clusters on the 

paper average number of observations is only .04, while the partial R2 from regressing within 

paper variation in the number of clusters on within paper variation in the number of observations 

is .02, so reported information on the number of observations provides almost no information on 

between or within paper variation in the number of independent units used to construct standard 

error estimates.3  Future authors might consider reporting the number of clusters in each 

regression specification. 

 While the focus of this paper is 2SLS, rather than the substantive results of the sample, at 

the request of reviewers I separate out headline results in the analysis below.  I define a headline 

2SLS result as one noted in the abstract, introduction or conclusion and select the estimating 

equations noted in the text as the "preferred specifications", given precedence by authors based 

upon the strength of the first stage, sample size, or fewer data caveats, or whose estimates are 

used in analysis elsewhere in the paper.  I rule out results associated with "robustness checks" 

and "mechanisms", as well as, where numerous effects are mentioned in the introduction and 

                                                 
3Turning to the 22 papers with confidential data mentioned earlier, the average number of observations per 

regression in these ranges from a minimum of 1500 to a maximum of 1.7 million.  Half of these papers have average 
sample sizes that lie between the minimum and 73rd percentiles of my 30 paper sample.  19 of the 22 papers cluster 
and information in the text allows the maximum number of clusters to be inferred for 10 of these.  It has a min of 70, 
median of 420 and max of 10K, which lie below the 36th, 84th and 100th percentiles of the 25 papers which cluster in 
my sample.  In sum, sample sizes in such papers are often not extraordinarily large, and for half of these lie within 
the mid-range of my sample, as noted above. 
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conclusion, those presented in the last page or two of a paper. 4  Altogether I code 61 headline 

results (listed in the on-line appendix), with 17 papers having one, 10 two or three, and the 

remaining 3 four to eight (authors often look at multiple outcomes).  Results below are given in 

terms of the cross-paper average of the within paper average for headline results, so that each 

paper carries equal weight.  Headline results tend to be statistically more significant and have 

stronger first stages.  While in the average paper .56 of 2SLS coefficients are significant at the 

.05 level and the average first stage F is 151, for headline results these figures are .79 and 259, 

respectively.5  Despite the larger Fs, headline results share the leverage characteristics of the full 

sample (see below), and hence their p-values share a similar proportionate sensitivity to 

alternative inference methods, usefully reinforcing arguments presented in this paper. 

 The defining characteristic of my sample is the extraordinary sensitivity of reported 

results to outliers.  Figure I graphs the maximum and minimum p-values that can be found by 

deleting one cluster or observation in each 2SLS regression against the authors’ p-value for that 

instrumented coefficient.6  With the removal of just one cluster or observation, in the average 

paper .39 of reported .05 significant 2SLS results can be rendered insignificant at that level, with 
                                                 

4In the case of 3 papers, the authors critique a standard specification, generally showing how the first stage or 
2SLS coefficient can be rendered insignificant with a change of specification.  In these cases I use the statistically 
stronger standard specification as the "headline result".   

5In some cases authors emphasize results which are not .05 significant either to argue there are "no effects" or 
because the strong first stage makes the point estimates preferable to those with lower p-values. 

6I use authors’ methods to calculate p-values and where authors cluster, I delete clusters, otherwise I delete 
individual observations.  All averages reported in the paragraph above, as elsewhere in the paper, refer to the 
average across papers of the within paper average measure. 

Figure I: Sensitivity of P-Values to Outliers (Instrumented 2SLS Coefficients)

0.00 0.20 0.40 0.60 0.80 1.00

paper's p-value

0.0

0.2

0.4

0.6

0.8

1.0

(a) delete-one max & min p-values

10 100 1000 10000 100000 1000000

number of clusters/observations

0

0.2

0.4

0.6

0.8

1

(b) max - min delete-one p-values
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number of clusters/observations

0

0.2

0.4

0.6

0.8
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(d) max - min delete-two p-values
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paper's p-value
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(c) delete-two max & min p-values

Notes:  Solid circles = headline results, plus marks = other results.  Panels (a) and (c), above and below 45 degree line are delete-one/two max and min, respectively.
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the average p-value when such changes occur rising from .028 to .158.  With the deletion of two 

observations (panel c), in the average paper no less7 than .58 of .05 significant IV results can be 

rendered insignificant.  When statistical significance is changed in this manner, .62 of formerly 

.05 significant results have a delete-two maximum p-value in excess of .10, while their average 

p-value rises to .252.  Conversely, it must be noted that in the average paper .37 and .57 of .05  

insignificant IV results can be rendered .05 significant with the removal of one or two clusters or 

observations, respectively.  Headline results are equally sensitive, with .38 of .05 significant 

results delete-one sensitive and .49 delete-two sensitive, with average p-values in the latter case 

rising from .022 to .342 with .90 of p-values moving above .1.  As panels a and c show, changes 

can be extraordinary, with p-values moving from close to 0 to near 1.0, and vice-versa.  Not 

surprisingly, the gap between maximum and minimum delete-one and -two IV p-values is 

decreasing in the number of clusters or observations, as shown in panels b and d of the figure, 

but very large max-min gaps remain common even with 1000s of clusters and observations. 

In my sample the F-statistics authors use to assure readers of the strength of the 1st  

stage relation are also very sensitive to outliers.  Figure II graphs the ratio of the minimum 

clustered/robust F-statistic found by deleting one or two clusters or observations to the full 

sample F (panels a and b) and the ratio of the full sample F to the maximum delete-one or -two F 

                                                 
7“No less” because computation costs prevent me from calculating all possible delete-two combinations.  

Instead, I delete the cluster/observation with the maximum or minimum delete-one p-value and then calculate the 
maximum or minimum found by deleting one of the remaining clusters/observations. 
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(d) actual / delete two maximum

Figure II:  Proportional Change of First Stage F with Removal of One or Two Clusters or Observations
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Notes:  Solid circles = headline results, plus marks = other results.
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(panels c and d).  With the removal of just one or two observations, the average paper F can be 

lowered to .71 and .57 of its original value, respectively, or increased to the point that the 

original value is just .68 or .55, respectively, of the new delete-one or -two F.  Headline results 

again show a similar sensitivity, with the average F falling to .73 and .59 of its original value 

with the deletion of one or two clusters/observations, and increasing so that the original value is 

just .69 or .56 of the new delete-one or -two F.  As shown in the figure, substantial sensitivity is 

found in samples with thousands, if not hundreds of thousands, of observations/clusters. 

Sample sensitivity of p-values and F-statistics reflects a concentration of “leverage” in a 

few clusters and observations.  Consider the generic OLS regression of a vector y on a matrix of 

regressors X.  The change in the estimated coefficient for a particular regressor x brought about 

by the deletion of the vector of observations i is given by: 

xxεx iii
~~/~ˆˆ)5( ~    

where x~ is the vector of residuals of x projected on the other regressors, ix~ the i elements 

thereof, and iε


 the vector of residuals for observations i calculated using the delete-i coefficient 

estimates.  Clustered/robust covariance estimates are of course given by: 

2)~~/(~ˆˆ~)6( xxxεεx
i

iiii c  

where the iε̂ are the estimated residuals for observations i.  Define xxxx ii
~~/~~   as the group i 

share of “coefficient leverage”.8  When leverage is concentrated in a few observations, both OLS 

coefficient and cl/robust standard error estimates will be heavily influenced by the realizations of 

the errors for those observations and hence potentially sensitive to their exclusion.9  These OLS 

equations obviously have relevance for the IV first stage, but also for the instrumented estimates 

since (2) and (4) earlier can be re-expressed as functions of OLS coefficients 

                                                 
8So called since leverage is typically defined as the diagonal elements of the hat matrix H = X(XʹX)-1Xʹ 

formed using all regressors, while the measure described above is the equivalent for the partitioned regression on x~. 
9One might usefully contrast the cl/robust covariance estimate in (6) above, which in estimating the 

covariance between the regressors and residuals uses a leverage share weighted average of the estimated residuals, 
with the homoskedastic covariance estimate )~~/(ˆˆ)( 1 xxεε  kN , where each residual receives equal weight. 
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Table II:  Coefficient Leverage & Delete-One or -Two Sensitivity 

 all 2SLS results headline 2SLS results 
 grouped by leverage grouped by leverage 
 

all 30 
papers 10 low 10 med 10 high 

all 30 
papers 10 low 10 med 10 high 

(a) maximum shares of instrument leverage )
~~

/
~~

( ZZZZ ii   
one cluster/observation 

two clusters/observations 
.18 
.27 

.05 

.08 
.15 
.27 

.33 

.46 
.17 
.26 

.04 

.07 
.14 
.25 

.33 

.46 

(b) share of .05 significant results sensitive to deletion of one or two clusters/observations 
one cluster/observation 

two clusters/observations 
.39 
.58 

.16 

.28 
.46 
.65 

.57 

.84 
.38 
.49 

.22 

.22 
.42 
.42 

.54 

.88 

(c) max delete-one or -two p-value when .05 significance is delete-one or -two sensitive 
one cluster/observation 

two clusters/observations 
.16 
.25 

.09 

.12 
.17 
.29 

.20 

.34 
.23 
.34 

.08 

.14 
.16 
.40 

.33 

.37 

(d) maximum shares of instrument leverage without covariates 
one cluster/observation 

two clusters/observations 
.20 
.30 

.04 

.07 
.18 
.30 

.38 

.53 
.19 
.29 

.04 

.07 
.18 
.29 

.35 

.50 

      Notes:  Reported figures are the average across papers of the within paper average measure.  Maximum 
shares refer to the largest share of one or two clusters or observations (when not clustered).  Low, med(ium), & 
high refer to papers grouped by the average maximum leverage of a single cluster/observation in all regressions 
or headline results.  In overidentified equations, leverage shares are the average of those of the Z variables. 

,
)ˆ)

~~
(ˆ(

ˆ~
ˆˆ

~ˆ

)ˆ(V    and    
ˆ)

~~
(ˆ
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where ZY
β ~~ˆ  and Zy

β ~~
ˆ are the OLS first stage and reduced form coefficient estimates derived from 

regressing the endogenous variable Y and dependent variable y on the excluded instruments Z 

(with the included instruments X partialed out).   

 Table II summarizes the maximum coefficient leverage shares of the excluded 

instruments in my sample.  In the average paper one cluster or observation on average accounts 

for .18 of the residual (to other regressors) variation of these instruments and two clusters/ 

observations account for .27.  The concentration of leverage is very similar in headline results 

which as already noted share a similar sensitivity to outliers as the average regression in their 

paper.  Dividing the sample into thirds based upon each paper’s average maximum leverage 

share, in “low” leverage papers this accounts for only .05 of total residual instrument variation, 

while across “high” leverage papers it averages .33 of instrument variation, reaching an 

extraordinary high of .70 in the average 2SLS regression of one paper.  In the low leverage  
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Table III: Tests of Normality, Cluster Correlation and Heteroskedasticity 

(average across 30 papers of fraction of regressions rejecting the null)  

 
Y on Z, X 
(1st stage) 

y on Z, X 
(reduced form) 

 all results headline results all results headline results 

 .01 .05 .01 .05 .01 .05 .01 .05 

 normally distributed residuals .802 .826 .767 .778 .805 .878 .803 .914 

 no cluster fixed effects .839 .880 .870 .870 .849 .895 .792 .885 

 homoskedastic (Koenker 1981)  .733 .802 .722 .800 .641 .703 .589 .649 

 homoskedastic (Wooldridge 2013)  .736 .802 .722 .800 .667 .719 .622 .657 

    Notes: .01/.05 = level of the test.  Cluster fixed effects only calculated for papers which cluster.  Where authors 
weight I use the weights to remove the known heteroskedasticity in the residuals before running the tests. 

sample, on average only .16 and .28 of .05 significant results can be rendered insignificant with 

the deletion of one or two clusters or observations, and the changes in p-values when such 

significance changes occur are very small, with the average rising to only .09 and .12.  In 

contrast, in the high leverage sample .57 and .84 of .05 significant results are delete-one or -two 

sensitive, with the average p-value in such circumstances rising to .20 and .34, respectively.  A 

similar association between leverage and the sensitivity of p-values is found in headline results.  

High maximum leverage is a consequence of the values the instruments take on, and not of 

conditioning on the included instruments X, as leverage shares removing all such covariates 

other than the constant term from the regression are if anything slightly higher (panel d).  For this 

reason, maximal leverage is quite similar across 2SLS specifications in a given paper, be they 

headline results or other regressions. 

 The second defining characteristic of my sample is the deviation of the residuals from the 

iid normal ideal.  As shown in Table III, using Stata’s test of normality based upon skewness and 

kurtosis, in the average paper more than 80% of the OLS regressions which make up the 2SLS 

point estimates reject the null that the residuals are normal.  In equations which cluster, cluster 

fixed effects are also found to be significant more than 80% of the time.  In close to ½ of these 

regressions the authors’ original specification includes cluster fixed effects, but it is unlikely that 

the cluster correlation of residuals is limited to a simple mean effect; a view apparently shared by 
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authors, as they cluster standard errors despite including cluster fixed effects.  Tests of 

homoskedasticity involving the regression of squared residuals on the authors’ right-hand side 

variables using the test statistics and distributions suggested by Koenker (1981) and Wooldridge 

(2013) reject the homoskedastic null between ⅔ and ⅘ of the time.  Headline results share 

similar residual characteristics to those found elsewhere in the papers.  The appeal to “average 

treatment effects” so often used to motivate the interpretation of coefficients necessarily implies 

heteroskedastic residuals whose variance is correlated with extreme values of the regressors,10 

and public use data provide plenty of evidence that such correlations exist.   

 Concentrated leverage and heteroskedasticity together undermine the quality of statistical  

inference in a given sample, the subject and focus of this paper.  With concentrated leverage and 

heteroskedastic errors, coefficients and cl/robust standard errors are heavily determined by the 

realization of a few residuals, making them unusually volatile and conferring on the regression 

extremely small sample characteristics.  This produces rejection probabilities well above nominal 

value when standard finite sample N - k or C (# of clusters) - 1 degrees of freedom adjustments 

for the volatility of variance estimates are used.  In the specific context of 2SLS, first stage 

relations weaken and the bias advantage of 2SLS deteriorates as estimated coefficients are 

affected by the realization of a few residuals which are correlated with the second stage.  Large 

first stage test statistics become more likely and consequently 1st stage pre-tests become 

uninformative.  Section IV below uses Monte Carlos to show how the combination of leverage 

and heteroskedasticity undermine 2SLS, while Section V shows that the bootstrap allows for 

more accurate inference.  In the analysis of the sample in Section VI, I find that deviations 

between bootstrap & jackknife results and those found using conventional techniques are 

concentrated in papers and regressions with high leverage and evidence of heteroskedasticity, 

while 2SLS estimates are statistically all but indistinguishable from OLS results in high leverage 

papers. 

                                                 
10As a simple example, let Yi = (π+πi)zi = πzi + πizi = πzi + ui, while yi = (β+βi)Yi = βYi + βi(π+πi)zi = βYi + vi, 

where πi and βi are mean zero random variables that are independent of zi. 
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IV. Monte Carlos: 2SLS in IID & Non-IID Settings 

This section explores how leverage and clustered heteroskedastic disturbances affect 

2SLS using Monte Carlos based on the practical regressions that appear in my sample.  I use two 

sets of Monte Carlos, one based upon artificial errors, and another based upon the actual 

residuals of my sample.  The former allow for a controlled presentation of how leverage and 

heteroskedasticity interact to undermine 2SLS, while the latter provide a measure of how these 

forces play out in the sample itself.  For all simulations, I estimate the sample's 2SLS system and 

then use these point estimates as the parameters of a Monte Carlo data generating function: 

vγXπZYuδXYy

vγXπZYuδXYy





ˆˆ   ,ˆˆ   :Carlo Monte    

ˆˆˆ   ,ˆˆˆ   :Estimation)8(

iv

iv




 

The methods differ in the manner in which the new errors [u,v] are created. 

In the case of simulations with artificial errors, I calculate the Cholesky decomposition 

CCʹ of the covariance matrix V of ]ˆ,ˆ[ vu  and generate [u,v] = [ε1,ε2]Cʹ, where ε1 & ε2 are 

independent random variables drawn from standardized distributions (i.e. demeaned and divided 

by their standard deviation).  I use six data generating processes for the observation specific 

values (εi) of ε1 & ε2: 

  9.1. iid standard normal 
  9.2. heteroskedastic standard normal, where εi = hiηi, η ~ iid standard normal 
  9.3. heteroskedastic clustered standard normal, where εi = hi(ηi+ ηc)/2

½, η ~ iid standard normal 
  9.4. iid standardized chi2 
  9.5. heteroskedastic standardized chi2, where εi = hiηi, η ~ iid standardized chi2 
  9.6. heteroskedastic clustered standardized chi2, where εi = hi(ηi+ ηc)/2

½, η ~ iid standardized chi2 

To produce heteroskedastic residuals, I use h equal to the sample standardized value of the first 

element z in Z.  As noted earlier, heteroskedastic effects of this kind arise naturally when there is 

heterogeneity in the effects of z on Y and Y on y.  In modelling unaccounted for intracluster 

correlation, there is little point in using simple cluster random effects, as more than half of 

clustered regressions have cluster fixed effects.  Instead, I model the cluster effect as 

representing iid cluster level draws in the heterogeneity of the impact of z on Y and Y on y, with 

the independent cluster (ηc) and observation specific (ηi) components carrying equal weight.  
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Sample standardizing z and dividing by √2 with clustered errors ensures that the covariance 

matrix of the disturbances remains unchanged across the six data generating processes.  To allow 

for non-normality, I use standardized chi2 errors, which range from -.7 to infinity and are 

decidedly skewed and non-normal.  Results using these errors, however, are similar to those 

found in the normally based simulations and are consigned to the on-line appendix.  When 

simulations where OLS is unbiased are called for, the off-diagonal elements of V are set to 0.  

Such simulations are noted as having “uncorrelated errors”, as opposed to the “correlated errors” 

of the baseline analysis. 

 To more closely mimic the actual errors in my sample, I estimate residuals using delete-i 

coefficient estimates  

 iiiiiiiiiiii γXπZYvδXYyu ~~~~ ˆˆand  ˆˆ)10(  
iv  

where ~i indicates coefficient estimates excluding cluster i (or an individual observation when 

the regression is not clustered).  These "jackknifed" residual pairs ],[ vu


 are then transformed to 

generate the [u,v] added to predicted values based upon the full sample coefficient estimates (as 

in (8) earlier), creating three different distributions of errors 

  11.1. iid - jackknifed residual pairs multiplied by a 50/50 iid draw from ±1 at the observation 
level and randomly shuffled across observations 

  11.2. heteroskedastic - jackknifed residual pairs multiplied by a 50/50 iid draw from ±1 at the 
observation level, but not shuffled 

  11.3. heteroskedastic & clustered - jackknifed residual pairs multiplied by a 50/50 iid draw from 
±1 at the cluster level and not shuffled 

Where uncorrelated errors are desired, the same procedures are followed, but with the ],[ vu


 

residual pairs multiplied by independent ±1 random variables. 

 As shown in the on-line appendix, use of 11.1-11.3 to generate Monte Carlo data, when 

tested on artificial data produced by the data generating processes described in 9.1-9.6, produces 

results which mimic the patterns produced by these data generating processes.  In contrast, 

applying 11.1-11.3 using the estimated full sample residuals ]ˆ,ˆ[ vu , which are shrunken towards 

zero in high leverage observations, produces results which bear no resemblance to those produced 

by 9.1-9.6.  That said, it must be borne in mind that jackknifed residuals are not true errors and I 



 17 

find (on-line appendix) that the results produced by such residuals fail to match the full 

deterioration of outcomes that actually occurs in the most highly leveraged papers using 9.1-9.6.   

(a) Inference and Bias 

 Table IV below begins by reporting null rejection probabilities at the .01 and .05 levels.  

"H0 = βdgp" tests the null that the underlying parameter equals the β value used in the data 

generating process (8), while "H0 = 0" tests the incorrect null that it equals 0.  I run 1000 Monte 

Carlo simulations for each data generating process for each of the 1309 equations and, as usual, 

report cross paper averages of within paper average rejection rates.  Our main interest lies in 

correlated 1st and 2nd stage errors, but I also report results with uncorrelated errors, where OLS is 

unbiased and functions properly, to allow a clearer understanding of which features are unique to 

IV.  Results with "actual" errors show less extreme outcomes, particularly in high leverage 

papers, than those with artificial errors (where all of the heteroskedasticity stems from the 

heterogeneous effects of the instruments), but the patterns are very much the same.11  This is 

repeated in all subsequent tables and not commented on further. 

 As shown in the table, heteroskedasticity raises the probability of a Type I error in 

medium and high leverage regressions well above nominal level, while lowering the power to 

reject the incorrect null of 0 across the board.  The increased likelihood of a Type I error emerges 

from the fact that standard errors become more volatile, producing more dispersed t-statistics, 

while the degrees of freedom used to evaluate the distribution remain constant.12  Headline 

results, despite their stronger first stages, have similar Type I error probabilities.  As the OLS 

results with uncorrelated errors show, the growing probability of a Type I error brought about by 

the interaction between heteroskedasticity and leverage is not unique to IV, and hence it should 

                                                 
11Although, as already noted, jacknifed errors do not reproduce the extreme average outcomes found in high 

leveraged papers when the underlying data generating process is that of the artificial simulations (on-line appendix). 
12The average ratio of the 95th percentile of the absolute IV coefficient estimate deviation from βdgp divided 

by the mean of the standard error estimate falls from 2.0 with iid normal errors (1.8 with iid "actual") to 1.2 with 
heteroskedastic & clustered normal errors (1.6 with "actual"), so standard errors rise more than the dispersion of 
coefficient estimates.  The fraction of t-statistics exceeding the .01 & .05 critical values rises because the volatility 
of the standard error estimate increases, with the ln of its standard deviation increasing an average of 6.0 (in ln 
terms!) with normal errors (1.4 with "actual") in the movement from iid to heteroskedastic & clustered errors. 
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Table IV:  Average Null Rejection Probabilities at the .01 & .05 Levels 
(1000 Monte Carlo simulations for each of 1309 equations) 

 H0 = βdgp H0 = 0 
 all low medium high all all low medium high all 
 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

(a) correlated errors (all results) 
 2SLS OLS 2SLS OLS 

iid normal 
h normal 

h cl normal 

.029 

.069 

.069 

.077 

.126 

.123 

.011 

.012 

.010 

.049 

.045 

.040 

.036 

.052 

.054 

.082 

.106 

.106 

.039 

.142 

.143 

.101 

.226 

.224 

.718 

.528 

.439 

.782 

.613 

.535 

.461 

.276 

.182 

.590 

.375 

.272 

.578 

.372 

.256 

.694 

.457 

.333 

.285 

.132 

.107 

.440 

.249 

.212 

.519 

.324 

.183 

.636 

.418 

.271 

.579 

.430 

.379 

.682 

.534 

.488 

iid "actual" 
h "actual" 

h cl "actual" 

.025 

.035 

.037 

.072 

.085 

.085 

.014 

.010 

.012 

.051 

.046 

.047 

.021 

.042 

.044 

.064 

.092 

.094 

.039 

.053 

.056 

.101 

.117 

.115 

.693 

.678 

.668 

.771 

.752 

.747 

.432 

.409 

.297 

.553 

.539 

.446 

.585 

.583 

.478 

.702 

.708 

.634 

.231 

.207 

.158 

.362 

.349 

.307 

.481 

.436 

.255 

.594 

.559 

.395 

.525 

.491 

.483 

.623 

.593 

.589 

(b) correlated errors (headline results) 
                  2SLS OLS 2SLS OLS 

iid normal 
h normal 

h cl normal 

.023 

.060 

.062 

.072 

.118 

.117 

.008 

.009 

.007 

.045 

.044 

.039 

.023 

.037 

.044 

.075 

.096 

.099 

.038 

.136 

.136 

.097 

.214 

.213 

.728 

.520 

.424 

.788 

.606 

.520 

.566 

.348 

.229 

.701 

.455 

.333 

.630 

.387 

.284 

.754 

.483 

.372 

.528 

.277 

.223 

.677 

.404 

.349 

.541 

.379 

.179 

.672 

.478 

.278 

.610 

.444 

.374 

.699 

.552 

.495 

iid "actual" 
h "actual" 

h cl "actual" 

.021 

.038 

.046 

.070 

.089 

.092 

.007 

.009 

.010 

.043 

.045 

.042 

.023 

.057 

.062 

.076 

.116 

.120 

.031 

.049 

.067 

.088 

.106 

.114 

.698 

.691 

.708 

.780 

.752 

.769 

.537 

.518 

.404 

.661 

.660 

.573 

.633 

.604 

.489 

.761 

.764 

.689 

.458 

.473 

.431 

.582 

.612 

.577 

.521 

.479 

.293 

.641 

.604 

.453 

.560 

.550 

.570 

.649 

.630 

.644 

(c) uncorrelated errors (all results) 

 OLS 2SLS OLS 2SLS 

iid normal 
h normal 

h cl normal 

.012 

.068 

.078 

.053 

.140 

.155 

.010 

.013 

.017 

.048 

.055 

.064 

.013 

.048 

.056 

.056 

.121 

.132 

.013 

.143 

.161 

.055 

.245 

.268 

.018 

.054 

.053 

.063 

.107 

.103 

.830 

.648 

.570 

.874 

.727 

.665 

.947 

.850 

.749 

.963 

.895 

.816 

.740 

.542 

.500 

.812 

.646 

.612 

.802 

.552 

.460 

.848 

.640 

.567 

.472 

.295 

.200 

.594 

.394 

.290 

iid "actual" 
h "actual" 

h cl "actual" 

.017 

.042 

.056 

.058 

.103 

.123 

.025 

.031 

.027 

.066 

.078 

.075 

.012 

.035 

.040 

.052 

.096 

.102 

.013 

.061 

.101 

.057 

.134 

.193 

.017 

.028 

.026 

.058 

.076 

.071 

.832 

.797 

.740 

.875 

.851 

.815 

.949 

.922 

.893 

.965 

.944 

.920 

.732 

.684 

.638 

.805 

.772 

.753 

.814 

.786 

.689 

.855 

.836 

.772 

.449 

.429 

.337 

.566 

.552 

.468 

  Notes:  Correlated and uncorrelated refer to the relation between 1st and 2nd stage residuals; h and cl refer to heteroskedastic and clustered data generating 
processes as described in 9.1-9.3 and 11.1-11.3; low, medium and high leverage divide the sample based upon maximum Z leverage (Table II). 
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not be surprising that IV pre-tests based upon the strength of the 1st stage do not guarantee 

accurate size, as already seen in the similarity between all and headline results in the table and 

explored more formally further below.  Power to reject a false null falls as the standard error 

estimate grows in response to the increased volatility of coefficient estimates, and this decline 

appears to be more severe, both proportionately and in absolute terms, in IV, which has less 

power to begin with.  The bottom right-hand corner of the table shows that with uncorrelated 

errors IV is an inefficient low-powered substitute for OLS.  In contrast, when errors are 

correlated OLS provides misleadingly precise estimates of biased values, producing gross size 

distortions.  To be sure, these lead to increased power to reject the incorrect null of zero effects, 

but this is unlikely to be the balance between size and power practitioners are seeking. 

 Table V below reports Monte Carlo estimates of the average truncated ln proportional 

OLS bias and relative 2SLS to OLS bias and mean squared error.  With normal disturbances only 

the first kZ–kY finite sample moments of 2SLS estimates exist (see Kinal 1980 and citations 

therein).  Consequently, in these simulations moments do not exist for most of my sample, which 

is only exactly identified.  However, the moments of the truncated distributions always exist.  

The table reports moments of estimated coefficients whose absolute value is less than 1000 or 10 

times the absolute value of the parameter β of the data generating process.  Similar truncation 

might arise if extreme estimates are dismissed on the grounds of being economically implausible.   

 As shown in panel (a) of the table, while the bias of OLS does not move meaningfully 

with the error process, heteroskedastic and clustered errors reduce the bias advantage of 2SLS, 

especially in high leverage papers.13  With heteroskedastic errors and high leverage, 1st stage 

predicted values are heavily influenced by the realization of a few errors that are correlated with 

2nd stage disturbances and much of the finite sample bias advantage of 2SLS is lost. Practitioners 

whose central concern is bias might want to avoid highly leveraged regression specifications.   

                                                 
13Although the effects are not monotonic in the broad categories used in the table, regression analysis (on-line 

appendix) finds that the increase in relative bias with heteroskedastic errors (normal, chi2 or "actual" and at various 
levels of truncation) is positively and at the .05 level significantly associated with maximum leverage. 
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 Table V:  Ln Truncated OLS Bias & Relative 2SLS to OLS Bias & Mean Squared Error 

(correlated errors, 1000 Monte Carlo simulations for each of 1309 equations) 

||*1000|ˆ| dgp   ||*10|ˆ| dgp   

OLS 
bias 

relative 
bias 

   
relative 

mse 
OLS 
bias 

relative 
bias 

   
relative 

mse 
all all low medium high all all all low medium high all 

 (a) all results 

iid normal
h normal

h cl normal

-0.5 
-0.5 
-0.5 

-3.5 
-2.1 
-1.2 

-4.2 
-2.9 
-2.0 

-2.5 
-1.6 
-1.3 

-3.8 
-1.7 
-0.2 

-0.3 
1.9 
3.3 

-0.5 
-0.6 
-0.6 

-3.5 
-2.4 
-1.7 

-4.2 
-3.3 
-2.5 

-2.5 
-1.9 
-1.4 

-3.8 
-2.0 
-1.2 

-0.6 
0.5 
1.2 

iid "actual"
h "actual"

h cl "actual"

-0.4 
-0.4 
-0.4 

-3.3 
-3.0 
-2.1 

-3.9 
-3.8 
-3.0 

-2.1 
-2.0 
-1.6 

-3.8 
-3.1 
-1.8 

0.1 
0.4 
1.3 

-0.4 
-0.5 
-0.5 

-3.4 
-3.0 
-2.3 

-4.0 
-3.9 
-3.1 

-2.3 
-2.1 
-1.8 

-3.9 
-3.1 
-2.2 

-0.5 
-0.3 
0.3 

 (b) headline results 

iid normal
h normal

h cl normal

-0.7 
-0.8 
-0.8 

-3.8 
-2.2 
-1.2 

-4.3 
-3.2 
-2.2 

-3.4 
-1.6 
-1.2 

-3.7 
-1.8 
-0.3 

-0.8 
1.7 
3.2 

-0.7 
-0.8 
-0.8 

-3.8 
-2.5 
-1.8 

-4.3 
-3.3 
-2.8 

-3.4 
-2.0 
-1.5 

-3.7 
-2.2 
-1.1 

-0.9 
0.2 
1.1 

iid "actual"
h "actual"

h cl "actual"

-0.5 
-0.6 
-0.6 

-3.8 
-3.4 
-2.6 

-4.2 
-4.0 
-3.2 

-3.3 
-2.7 
-2.3 

-3.8 
-3.6 
-2.3 

-0.7 
-0.4 
0.4 

-0.5 
-0.6 
-0.6 

-3.9 
-3.5 
-2.5 

-4.4 
-4.0 
-3.0 

-3.4 
-2.7 
-2.3 

-3.9 
-3.6 
-2.3 

-1.0 
-0.7 
-0.1 

  Notes:  Calculated using coefficient estimates whose absolute value is less than 1000 or 10 times the absolute value of 
the parameter β of the data generating process.  Low, medium and high refer to papers or headline results by leverage 
group, as in Table II.  Bias and mse around the parameter β of the data generating process.  OLS bias = ln(|OLS bias/β|), 
relative bias = ln(|IV bias|/|OLS bias|), relative mse = ln(IV mse/OLS mse).  Reported figures are the average across 
papers of the within paper average.  

Those who consider second moments will note that, because of its intrinsic inefficiency, the 

decline in 2SLS' bias advantage eventually leads to a mean squared error that on average is 

substantially greater than OLS.  This problem is ameliorated with greater truncation, but even 

with truncation to within 10 times the magnitude of the parameter of the data generating process, 

2SLS still has higher average mse in 26 and 19 of 30 papers with artificial and "actual" 

heteroskedastic clustered errors, respectively.  Inference using precise but biased OLS estimates 

seems nonsensical (Table IV), but arguably so is decision-making that does not take into account 

the volatility and potential bias of IV.  Headline results, in panel (b), have somewhat smaller 

relative bias, but suffer the same deterioration with heteroskedastic errors, resulting in average 

mse error that with truncation to within 10 times the magnitude of the underlying parameter is 

still greater than OLS in 23 and 14 of papers with artificial and "actual" heteroskedastic clustered 
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errors, respectively.  The formal analysis below shows that stronger first stage Fs improve 

relative bias, but by no means within the bounds implied by asymptotic theory. 

(b) First stage Pre-Tests and F-tests 

Following the influential work of Nelson and Startz (1990a,b) and Bound, Jaeger and 

Baker (1995), which identified the problems of size, bias and inconsistency associated with a 

weak 1st stage relation, all of the papers in my sample try to assure the reader that the 

relationship between the excluded instruments and right-hand side endogenous variable is strong 

and results are often singled out based upon the strength of the 1st stage.  Twenty-one papers 

explicitly report 1st stage F statistics in at least some tables, with the remainder using 

coefficients, standard errors, p-values and graphs to make their case.  The reporting of 1st stage 

F-statistics is, in particular, motivated by Staiger and Stock’s (1997) derivation of the weak 

instrument asymptotic distribution of the 2SLS estimator in an iid world and, on the basis of this, 

Stock and Yogo’s (2005) development of weak instrument pre-tests using the first stage F-

statistic to guarantee no more than a .05 probability that 2SLS has size under the null or 

proportional bias relative to OLS greater than specified levels.  In this section I show that in non-

iid settings these tests are largely uninformative.  Clustered/robust modifications work somewhat 

better, but only when maximal leverage is low. 

 Tables VI and VII apply Stock and Yogo’s weak instrument pre-tests to each of the 1000 

draws for each IV regression from each of the normal and "actual" data generating processes 

described earlier.  I divide regressions based upon whether or not they reject the weak instrument 

null (H0) in favour of the strong instrument alternative (H1) and report the fraction of regressions 

so classified which, based upon the entire Monte Carlo distribution, have rejection probabilities 

of true nulls or bias greater than the indicated bound.14  I also report (in parentheses) the 

maximum fraction of H1 observations violating the bounds that would be consistent with the test  

                                                 
14That is, each individual data draw is classified into H0 or H1 based upon its 1st stage F statistic, but the size 

or bias characteristics of a particular regression specification are evaluated using the combined distribution from 
1000 draws.  I follow Stock & Yogo's theory using the asymptotic chi2 distribution to calculate p-values (Stock & 
Yogo 2005, pp. 83-84, 88).  Results using the t-distribution in the on-line appendix are similar.   
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  Table VI:  Fraction of Regressions with Null Rejection Probabilities Greater than Size Bound 
in Specifications that Don’t (H0) and Do (H1) Reject the Stock & Yogo Weak Instrument Null 

(1000 simulations for each error process in 1277 IV regressions) 

(A) default IV coefficient covariance estimate, default F used as Stock and Yogo test statistic 

 size = .10 size = .15 size = .20 size = .25 
 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

iid normal 
iid "actual" 

.126 

.085 
.000 (.022) 
.003 (.028) 

.094 

.058 
.000 (.013) 
.002 (.017) 

.067 

.036 
.000 (.010) 
.002 (.013) 

.053 

.040 
.000 (.009) 
.002 (.011) 

 (B) cl/robust IV coefficient covariance estimate with 

 default F used as test statistic cl/robust F used as test statistic 
 size = .10 size = .25 size = .10 size = .25 
 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

iid normal 
h normal 

h cl normal 

.258 

.425 

.415 

.267 (.022) 

.268 (.020) 

.449 (.019) 

.058 

.042 

.050 

.009 (.009) 

.061 (.011) 

.083 (.011) 

.247 

.394 

.470 

.270 (.019) 

.247 (.041) 

.383 (.101) 

.063 

.045 

.055 

.009 (.008) 

.062 (.018) 

.094 (.037) 

iid "actual" 
h "actual" 

h cl "actual" 

.251 

.254 

.316 

.269 (.028) 

.389 (.026) 

.385 (.026) 

.036 

.091 

.094 

.011 (.011) 

.045 (.012) 

.099 (.012) 

.236 

.244 

.349 

.275 (.022) 

.398 (.028) 

.378 (.060) 

.041 

.098 

.128 

.011 (.010) 

.043 (.012) 

.084 (.025) 

   Notes:  Regressions for which Stock & Yogo (2005) provide critical values; max = maximum share of the 
sample in H1 with size greater than bound consistent with the test itself having size .05; IV Type I error rates 
based upon 1000 Monte Carlo simulations per regression, with coefficient significance evaluated using the normal 
distribution (following Stock & Yogo).  Results using the t-distribution (on line appendix) are very similar.  

having its theoretical nominal size of no greater than .05.15  With critical values dependent upon 

the number of instruments and endogenous regressors, Stock and Yogo provide size critical 

values for 1277 of the 1309 regressions in my sample, but bias critical values for only 134 of the 

226 over-identified regressions, where the finite sample first moment can be taken as existing. 

 Table VI begins by using the default covariance estimate to evaluate both the F-statistic 

and coefficient significance when the data generating process is consistent with Stock and 

Yogo’s iid-based theory.16  In this context, the test performs remarkably well.  Only a miniscule 

share of the regressions which reject the weak instrument null H0 in favour of the strong 

                                                 
15Let N0 and N1 denote the known number of regressions classified under H0 and H1, respectively, and W0, 

W1, S0 and S1 the unknown number of regressions with weak and strong instruments in each group, with W1 = 
α(W0+W1) and S0 = (1-p)(S0+S1), where α ≤ .05 and p denote size and power.  Then W1/N1 = (α/(1-α))(N0-S0)/N1, 
which, for given N0 & N1, is maximized when p = 1 and α = .05, with W1/N1 = (1/19)(N0/N1).  The relative number 
of regressions in the N0 and N1 groups for each test in the table can be calculated by inverting this equation. 

16As the number of papers with any results classified in H0 or H1 varies substantially as one moves down the 
columns or across the rows of the table, here and in Tables VII & VIII below I depart from the practice of reporting 
averages across papers of within paper averages, and simply weight each simulation regression equally.  These 



 23 

 
Table VII:  Fraction of Regressions with Relative Bias Greater than Bias Bound in 
Specifications that Don’t and Do Reject the Stock & Yogo Weak Instrument Null  

(1000 simulations for each error process in 134 over-identified IV regressions) 

 default F used as test statistic cl/robust F used as test statistic 

 bias = .05 bias = .30 bias = .05 bias = .30 

 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

iid normal 
h normal 

h cl normal 

.988 

.992 

.995 

.153 (.162) 

.216 (.137) 

.869 (.114) 

.668 

.768 

.833 

.043 (.068) 

.415 (.025) 

.762 (.023) 

.991 

.984 

.972 

.174 (.155) 

.649 (.032) 

.944 (.034) 

.655 

.546 

.970 

.248 (.030) 

.528 (.006) 

.759 (.007) 

iid "actual" 
h "actual" 

h cl "actual" 

.971 

.961 

.966 

.139 (.181) 

.116 (.178) 

.671 (.193) 

.705 

.580 

.589 

.040 (.084) 

.176 (.067) 

.402 (.069) 

.989 

.983 

.966 

.172 (.157) 

.105 (.163) 

.604 (.252) 

.725 

.625 

.615 

.273 (.033) 

.181 (.052) 

.396 (.054) 

   Notes:  Unless otherwise noted, as in Table VI above.  Bias calculated using the full (not truncated) 
distribution, as with normal errors the first moment exists when the regression is over-identified.   

alternative H1 have Type I error rates greater than the desired bound.  Outside of this ideal 

environment, however, the test rapidly becomes uninformative.  When the cl/robust covariance 

estimate is used to evaluate coefficient significance the test still provides some protection against 

large size distortions with iid errors, but otherwise the fraction of regressions with Type I error 

probabilities greater than the specified level in H1 regressions is often greater than that found in 

H0 and always much larger than the maximum consistent with the test itself having a nominal 

size of .05.  Use of the clustered/robust 1st stage F-statistic as the test-statistic, an ad-hoc 

adjustment of Stock and Yogo’s iid-based theory generally implemented by users,17 provides no 

improvement whatsoever.  Stock and Yogo’s bias test, as shown in Table VII, performs 

noticeably better, but still quite poorly.  In non-iid settings the fraction of regressions with IV to 

OLS relative bias greater than the specified amount in H1 is always lower than in the H0 sample, 

but, at levels ranging from ⅓ to .9 with heteroskedastic clustered errors, too high to either be 

consistent with the test having .05 size or provide much comfort to users.  The misapplication of 

                                                                                                                                                              
tables only report results for a subset of size and bias bounds.  Results for all bounds, leverage groups and including 
chi2 errors are in the on-line appendix. 

17Ten of the papers in my sample that report F-statistics make direct reference to the work of Stock and his 
co-authors.  All of these report clustered/robust measures, although two report default F-statistics as well.  This ad 
hoc adjustment may have been motivated by the Stata command ivreg2, which reports the Kleibergen-Paap F 
(identical to the cl/robust F with one endogenous variable) and compares it to Stock & Yogo's critical values. 
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Stock & Yogo’s iid based test in non-iid settings does not yield useful results.18 

 Olea and Pflueger (2013), noting that the widespread application of Stock & Yogo’s test 

in non-iid settings is not justified by theory, undertake the challenging task of extending the test 

to non-iid environments, deriving critical values for the null hypothesis that the IV Nagar bias is 

smaller than a “worst-case” benchmark.  The Nagar bias is that of an approximating distribution 

based on a third-order Taylor series expansion of the asymptotic distribution, while the worst-

case benchmark equals the OLS bias in the case of iid errors.  The test statistic is related to the 

clustered/robust 1st stage F-statistic, but the calculation of sample dependent degrees of freedom 

for the test is computationally costly and impractical for the many simulations underlying the 

table which follows.  Olea and Pflueger note, however, that conservative degrees of freedom can 

be estimated using only the eigenvalues of the robust 1st stage F-statistic, and I make use of this 

approach along with the table of critical values they provide.  These conservative degrees of 

freedom should lower the probability of a Type-I error, i.e. classifying as H1 a regression with a 

relative bias greater than the desired level, below the .05 size of the test. 

 Table VIII applies Olea & Pflueger’s test to the Monte Carlo sample.  As before, I divide 

regressions by whether or not they reject the weak instrument null and report the fraction of 

regressions in each group where the relative bias of IV to OLS, as estimated from the Monte 

Carlo distribution, exceeds the acceptable bound.  In fairness, this relative bias is not the object 

of the test, which concerns asymptotic bias relative to a worst case IV-approximation bench-

mark, but I would argue it is the object of interest to users, who use 2SLS in order to avoid OLS 

bias.  As shown in the table, for over-identified regressions in low and medium leverage papers 

bias levels in regressions which reject H0 in favour of H1 are generally much lower, although 

they sometimes exceed the maximum bound consistent with the test having no more than a .05  

                                                 
18Results for the size test broken down by paper leverage (in the on-line appendix) do not find it to be 

informative in low, medium or high leverage sub-samples.  Results for the bias test cannot be meaningfully broken 
down by leverage group.  The 134 regressions for which Stock & Yogo provide bias bounds only cover one high 
leverage paper and three low leverage papers, and in the latter almost all observations, but for those from one 
regression, exceed the test bounds. 
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  Table VIII:  Fraction of Regressions with Relative Bias Greater than Bias Bound  
in Specifications that Don’t and Do Reject the Olea & Pflueger Weak Instrument Null  

(1000 simulations for each error process) 

 bias = .05 bias = .10 bias = .20 bias = ⅓ 
 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

 172 over-identified IV regressions in 8 low and medium leverage papers 

iid normal 
h. normal 

h. cl. normal 

.939 

.907 

.938 

.040 (.249) 

.240 (.391) 

.432 (.698) 

.861 

.907 

.894 

.045 (.226) 

.182 (.266) 

.258 (.376) 

.815 

.871 

.880 

.033 (.196) 

.183 (.204) 

.264 (.242) 

.587 

.650 

.767 

.041 (.146) 

.194 (.177) 

.235 (.199) 

iid "actual" 
h "actual" 

h cl "actual" 

.930 

.877 

.899 

.074 (.251) 

.093 (.334) 

.219 (.381) 

.876 

.879 

.886 

.001 (.229) 

.044 (.242) 

.135 (.258) 

.799 

.729 

.736 

.001 (.199) 

.043 (.210) 

.071 (.211) 

.648 

.538 

.543 

.002 (.169) 

.062 (.181) 

.071 (.181) 

 52 over-identified regressions in 4 high leverage papers 

iid normal 
h. normal 

h. cl. normal 

.000 

.969 

.985 

.197 (.024) 

.206 (.050) 

.906 (.908) 

.000 

.878 

.978 

.118 (.012) 

.207 (.036) 

.842 (.376) 

.000 

.839 

.968 

.000 (.005) 

.191 (.026) 

.847 (.198) 

.000 

.865 

.899 

.000 (.003) 

.219 (.021) 

.843 (.147) 

iid "actual" 
h "actual" 

h cl "actual" 

.000 

.485 

.528 

.083 (.023) 

.162 (.034) 

.480 (.246) 

.000 

.197 

.485 

.070 (.011) 

.074 (.027) 

.471 (.111) 

.000 

.000 

.326 

.064 (.006) 

.026 (.017) 

.365 (.049) 

.000 

.000 

.305 

.041 (.004) 

.024 (.012) 

.277 (.037) 

   Notes:  As in Table VI above. 

probability of Type-I error.19  In highly leveraged regressions, however, the test performs rather 

poorly, as with heteroskedastic clustered errors bias levels in H1 regressions are always as high 

as in those which cannot reject the weak instrument null H0.
20 

 Table IX reports Monte Carlo estimates of Type I error probabilities in 1st stage F-tests 

using default and clustered/robust covariance estimates.  As expected, null rejection probabilities 

with default covariance estimates are close to nominal level with iid disturbances, but explode 

with non-iid errors.  Clustered/robust covariance estimates provide better results, especially in 

low leverage papers, but rejection rates are very high in medium and high leverage papers, 

particularly in over-identified equations.  Type I errors appear to increase when more than one 

coefficient is tested, which the table shows by comparing the average rejection probability of  

                                                 
19With chi2 errors (see the on-line appendix) this is actually the case for all bias bounds with non-iid errors. 
20Olea & Pflueger also provide critical values for exactly identified equations, as the Nagar bias always exists 

even if the first moment does not.  Applying these and comparing relative 2SLS to OLS bias in the truncated 
distributions in the on-line appendix, I find the test performs worse in this sample.  Although bias levels in H1 are 
generally lower than in the H0 group in low and medium leverage papers, in all leverage groups and for all error 
processes they are multiples of the limit consistent with the test having a maximum .05 Type-I error rate. 
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Table IX:  Average Rejection Rates of True Nulls at the .05 Level in 1st Stage Tests 
(1000 Monte Carlo simulations for each of 1309 equations) 

clustered/robust 
default 

low leverage medium leverage high leverage 

kZ > 1 kZ > 1 kZ > 1 kZ > 1 
 

all 
coef joint 

all 
coef joint 

all 
coef joint 

all 
coef joint 

iid normal 
h normal 

h cl normal 

.051 

.404 

.595 

.050 

.253 

.355 

.050 

.463 

.652 

.056 

.062 

.066 

.057 

.061 

.064 

.061 

.070 

.068 

.149 

.132 

.133 

.071 

.053 

.054 

.235 

.149 

.144 

.134 

.281 

.308 

.111 

.156 

.199 

.355 

.481 

.500 

iid "actual" 
h "actual" 

h cl "actual" 

.054 

.196 

.372 

.051 

.138 

.232 

.056 

.223 

.390 

.056 

.057 

.061 

.057 

.066 

.074 

.059 

.070 

.075 

.132 

.208 

.211 

.065 

.084 

.083 

.203 

.273 

.276 

.124 

.203 

.226 

.101 

.136 

.136 

.342 

.359 

.397 

  Notes:  Reported figures are averages of paper average rejection rates; kZ > 1 = average across 3 low, 5 medium 
and 4 high leverage papers in equations with more than 1 excluded instrument; coef = test of individual coefficients 
on excluded instruments; joint = joint test of all excluded instruments. 

coefficient level (t) tests of the excluded instruments in over-identified equations with the much 

higher rejection rates found in the joint (F) tests of these instruments.21  In the asymptotic world 

that forms the foundation of Olea & Pflueger’s results, clustered/robust covariance estimates 

should allow for exact inference.  As shown by Table IX, in the finite sample highly-leveraged 

world of published papers this is very far from the case, and problems of inaccurate inference 

appear to be compounded in higher dimensional tests, making large clustered/robust 1st stage Fs 

much more likely than suggested by asymptotic theory.  This probably renders the Olea/Pflueger 

test less informative than it might otherwise be. 

V. Improved Finite Sample Inference Using the JackKnife and Bootstrap 

 This section shows that the jackknife and bootstrap provide improved finite sample 

inference, with rejection probabilities closer to nominal level and greater relative power than 

found using standard clustered/robust covariance estimates and their associated degrees of 

                                                 
21Intuition for this may lie in the fact that the familiar F-statistic actually equals 1/k times the maximum 

squared t-statistic that can be found by searching over all possible linear combinations w of the estimated 
coefficients, that is wVwβwβVβ w

1 ˆ/)ˆ(Maxˆˆˆ 211   kk .  In the test of a single coefficient, the clustered/robust 
covariance estimate may be biased and have a volatility greater than nominal degrees of freedom, but a joint test 
involves a search across all possible combinations of this bias and volatility to generate maximal test statistics, 
producing tail probabilities that are more distorted away from iid-based nominal values than the tests of the 
individual coefficients. 
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freedom.  These methods are often evaluated based upon their asymptotic properties, but their 

usefulness lies in their superior finite sample performance, which is often unrelated to asymptotic 

results.  I begin by describing the methods and then use Monte Carlos to establish their finite 

sample benefits. 

 (a) The JackKnife 

 The jackknife covariance estimate based on the full sample ( β̂ ) and m delete-i ( i~β̂ ) 

coefficient values is given by: 

11 )()(
1

)ˆˆˆˆ(
1

)12(  


  XXXεεXXXββ)(ββ ii
i

ii
i

i~i~



m

m

m

m
 

where the iε


 are the delete-i residuals for observations i (as in (10) earlier), and where, for 

expositional purposes, in the second expression I substitute using the formula for the delete-i 

change in coefficient estimates in the OLS regression on variables X.  The jackknife was shown 

by Hinkley (1977) to be asymptotically robust to arbitrary heteroskedasticity.  For OLS, its use 

of delete-i residuals rather than the estimated residuals is equivalent to the "hc3" finite sample 

correction of the standard cl/robust covariance estimate (MacKinnon and White 1985). 

(b) The Bootstrap 

 I use two forms of the bootstrap, the non-parametric “pairs” resampling of the data and 

the parametric “wild” bootstrap transformation of residuals.  Conventional econometrics uses 

assumptions and asymptotic theorems to infer the distribution of a statistic f calculated from a 

sample with empirical distribution F1 drawn from an infinite parent population with distribution 

F0, which can be described as f(F1|F0).  In contrast, the resampling bootstrap estimates the 

distribution of f(F1|F0) by drawing random samples F2 from the population distribution F1 and 

observing the distribution of f(F2|F1) (Hall 1992).  If f is a smooth function of the sample, then 

asymptotically the bootstrapped distribution converges to the true distribution (Lehmann and  

Romano 2005), as, intuitively, the outcomes observed when sampling F2 from an infinite sample 

F1 approach those arrived at from sampling F1 from the actual population F0. 
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 The resampling bootstrap described above is fully nonparametric, as the only assumption 

is that the sample can be divided into groups that are independent draws from the population 

distribution.22  From a regression perspective, however, the samples are “pairs” of dependent 

outcomes and regressors and, as such, the estimated distribution of the test statistic is that with 

both stochastic residuals and regressors.  The “wild” bootstrap imposes parametric structure and 

uses transformations of the residuals to mimic a more traditional resampling of stochastic 

residuals alone.  For example, in the regression model iiii vY  xz βxβz , to calculate the 

distribution of coefficients and test statistics under the null that 0βz   one estimates the 

restricted equation iii vY ˆˆ  xβx , then generates artificial data iii
wild

i vY ˆˆ  xβx  , where ηi is a 

50/50 iid observation or cluster level draw from the pair (-1,1), and finally runs wild
iY  on zi and 

xi.  The initial estimation of the parametric data generating process can involve imposing the 

null, as just done, or not, the transformations ηi can be symmetric or asymmetric, and can involve 

the actual or delete-i residuals.  In Monte Carlo studies reported in the on-line appendix I find 

that a failure to impose the null results in rejection probabilities well above nominal level and 

asymmetric transformations provide no advantages, even when the data generating process for 

the residuals vi is decidedly asymmetric.  Imposing the null eliminates the negative influence of 

leverage on estimated residuals, allows for more accurate inference than the use of delete-i 

residuals alone, and is the method used in the remainder of the paper.  Full details on how I 

impose the null for each separate test and how this improves the accuracy of inference using the 

method are provided in the on-line appendix. 

 For both the pairs resampling and wild transformations bootstraps I draw inferences using 

two methods, one based upon the distribution of bootstrapped test statistics (the bootstrap-t) and 

another based upon the distribution of bootstrapped coefficients (the bootstrap-c).  To illustrate 

with the case of the resampling bootstrap, one can test whether the estimate β1 based on the 

sample F1 is different from 0 by looking at the distribution of the Wald-statistics for the test that 

                                                 
22Thus, in implementing the method, I follow the assumptions implicit in the authors’ covariance calculation 

methods:  resampling clusters where they cluster and resampling observations where they do not. 
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the estimates β2 based on the sample F2 drawn from F1 are different from β1 (the known 

parameter value for the data generating process), computing the probability  

)()()()()()()13( 1
1

1112
1

212 0ββV0ββββVββ   iii  

where β1 is the vector of coefficients estimated using the original sample F1, 
i
2β  the vector of 

coefficients estimated in the ith draw of sample F2 from F1, and )( 1βV  and )( 2
iβV  their respective 

clustered/robust covariance estimates.  In the case of a single coefficient, this reduces to 

calculating the distribution of the squared t-statistic, i.e. the probability: 
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where ̂ is the estimated standard error of the coefficient.  This method, which requires 

calculating an iteration by iteration covariance or standard error estimate, is the bootstrap-t.  

Alternatively, one can use the distribution of the bootstrapped coefficients to compute a common 

covariance estimate, calculating the probability: 
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where ))(( 2
iF βV  denotes the covariance matrix of i

2β  calculated using the empirical bootstrapped 

distribution of the coefficients.  In the case of an individual coefficient, the common variance in 

the denominator on both sides cancels and the method reduces to calculating the probability: 
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which is simply the tail probability of the squared coefficient deviation from the null hypothesis.  

This method is the bootstrap-c.  The frequency with which the inequalities in (13) - (14)' occur 

forms the basis of the calculation of the p-value in each test. 

 From the point of view of asymptotic theory, the bootstrap-t is considered superior, but in 

practical application it has its weaknesses.  Hall (1992) showed that while coverage error in a 

symmetric hypothesis test of a single coefficient of the resampling bootstrap-t converges to zero 

at a rate O(n-2), the coverage error of the bootstrap-c converges at a rate of only O(n-1), i.e. no 

better than the convergence of asymptotic normal approximations.  The intuition for this, as 

presented by Hall, lies in the fact that the bootstrap-t estimates an asymptotically pivotal 

distribution, one that does not depend upon unknowns, while the bootstrap-c estimates an 
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asymptotically non-pivotal distribution, one that depends upon the estimated variance.  As the 

sample expands to infinity, the bootstrap-c continues to make estimates of this parameter, which 

results in greater error and slower convergence of rejection probabilities to nominal value.  This 

argument, however, as recognized by Hall himself (1992, p. 167), rests upon covariance 

estimates being sufficiently accurate so that the distribution of the test statistic is actually pivotal.  

Hall’s concern is particularly relevant in the context of using asymptotically valid clustered/ 

robust covariance estimates in highly leveraged finite samples.  I find (below) that the bootstrap-

c performs at least as well as the bootstrap-t in tests of IV coefficients and is by no means very 

much worse in tests of OLS coefficients.23 

 “Publication bias” argues in favour of comparing results using the bootstrap-c to those 

found using the -t in a study such as this.  If results are selected for publication on the basis of 

statistical significance, they will have unusual t-statistics, regardless of whether the null is true or 

false.  However, to the degree the distribution of the standard error is independent of the 

distribution of coefficient estimates, spuriously large t-statistics will not be perfectly correlated 

with spuriously large point estimates and significance rates using the bootstrap-c will be 

substantially lower than those found using the -t.  This is precisely the pattern I find in the 

analysis of my sample below.  Significant published IV results do not have unusually large 

coefficient values under the null, but they do have unusually large t-statistics, and hence appear 

systematically more significant when analyzed using the bootstrap-t, despite the fact that the 

bootstrap-c and -t have similar size and power in Monte Carlos, as shown shortly below. 

 (c) Monte Carlos 

 Table X below presents a Monte Carlo analysis of the different methods using the normal 

and "actual" error data generating processes described in 9.1 - 9.3 and 11.1 - 11.3 earlier (results 

                                                 
23Similarly, I find that the bias corrected and accelerated bootstrap, which is another asymptotic refinement, 

performs very poorly in finite samples (on-line appendix).  An asymptotic result I do find to be relevant is Hall's 
(1992) argument that, because they minimize the influence of skewness, symmetric tests (such as those described in 
(13) and (14) above) converge to nominal size at twice the rate of asymmetric equal tailed tests.  In finite sample 
Monte Carlos (on-line appendix) I find that asymmetric tests are less accurate than symmetric tests. 
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Table X:  Improved Finite Sample Inference Using the JackKnife & Bootstrap 
(average within paper rejection rates at .01 and .05 levels, 10 Monte Carlos for each of 1309 equations) 

 tests of true nulls tests of false nulls 

 pairs bootstrap wild bootstrap pairs bootstrap wild bootstrap 
 
clustered/ 

robust 
jackknife c t c t 

clustered/ 
robust 

jackknife c t c t 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

 IV coefficients (correlated 1st and 2nd stage errors): H0 = βdgp or 0 

iid normal 
h normal 

h cl normal 

.028 

.069 

.070 

.081 

.126 

.124 

.018 

.024 

.023 

.050 

.061 

.048 

.009 

.011 

.009 

.042 

.048 

.041 

.021 

.025 

.025 

.065 

.063 

.059 

.009 

.015 

.013 

.046 

.051 

.049 

.011 

.016 

.015 

.052 

.058 

.055 

.455 

.263 

.190 

.588 

.364 

.273 

.391 

.202 

.127 

.518 

.284 

.186 

.312 

.181 

.102 

.482 

.270 

.177 

.384 

.182 

.121 

.544 

.270 

.184 

.257 

.156 

.100 

.434 

.245 

.174 

.376 

.218 

.137 

.551 

.323 

.228 

iid "actual" 
h "actual" 

h cl "actual" 

.025 

.034 

.035 

.073 

.081 

.083 

.014 

.012 

.014 

.044 

.040 

.039 

.007 

.005 

.004 

.035 

.035 

.032 

.019 

.022 

.024 

.060 

.063 

.064 

.007 

.010 

.009 

.042 

.049 

.045 

.011 

.014 

.015 

.050 

.059 

.057 

.428 

.407 

.293 

.551 

.535 

.444 

.370 

.339 

.226 

.485 

.453 

.350 

.311 

.274 

.157 

.447 

.416 

.294 

.355 

.322 

.228 

.495 

.470 

.375 

.263 

.226 

.139 

.425 

.380 

.303 

.362 

.342 

.273 

.520 

.501 

.424 

 1st Stage F-tests (correlated errors): H0 = πdgp or 0 

iid normal 
h normal 

h cl normal 

.051 

.085 

.091 

.119 

.162 

.171 

.023 

.034 

.030 

.073 

.081 

.078 

.008 

.020 

.023 

.054 

.081 

.088 

.017 

.015 

.012 

.065 

.059 

.056 

.010 

.018 

.023 

.053 

.072 

.076 

.012 

.017 

.017 

.056 

.065 

.065 

.925 

.759 

.647 

.950 

.825 

.729 

.894 

.693 

.562 

.933 

.772 

.658 

.848 

.688 

.571 

.924 

.787 

.680 

.855 

.547 

.434 

.912 

.655 

.551 

.833 

.699 

.576 

.915 

.790 

.683 

.858 

.668 

.540 

.921 

.758 

.636 

iid "actual" 
h "actual" 

h cl "actual" 

.040 

.081 

.084 

.105 

.160 

.162 

.018 

.029 

.032 

.054 

.075 

.078 

.009 

.011 

.015 

.041 

.056 

.066 

.015 

.017 

.018 

.051 

.064 

.062 

.008 

.017 

.020 

.042 

.067 

.067 

.009 

.016 

.015 

.044 

.066 

.063 

.880 

.857 

.766 

.924 

.910 

.846 

.837 

.778 

.666 

.897 

.855 

.766 

.795 

.738 

.621 

.879 

.853 

.777 

.806 

.718 

.588 

.873 

.820 

.724 

.791 

.751 

.617 

.882 

.854 

.767 

.816 

.754 

.613 

.889 

.856 

.755 

 Hausman tests: H0 = (βiv = βols) 
 (uncorrelated errors) (correlated errors) 

iid normal 
h normal 

h cl normal 

.021 

.065 

.076 

.071 

.145 

.157 

.008 

.011 

.008 

.036 

.047 

.029 

.005 

.006 

.003 

.030 

.036 

.025 

.008 

.007 

.005 

.041 

.035 

.025 

.006 

.013 

.011 

.044 

.051 

.050 

.010 

.014 

.020 

.050 

.068 

.070 

.373 

.268 

.210 

.493 

.378 

.316 

.255 

.153 

.098 

.373 

.211 

.147 

.216 

.147 

.089 

.354 

.216 

.139 

.262 

.146 

.085 

.405 

.202 

.138 

.266 

.158 

.103 

.408 

.242 

.178 

.306 

.191 

.135 

.450 

.279 

.219 

iid "actual" 
h "actual" 

h cl "actual" 

.023 

.039 

.049 

.073 

.100 

.111 

.006 

.007 

.008 

.030 

.032 

.033 

.003 

.003 

.003 

.024 

.028 

.024 

.007 

.007 

.007 

.040 

.041 

.037 

.024 

.021 

.021 

.050 

.051 

.052 

.013 

.021 

.022 

.052 

.068 

.075 

.375 

.335 

.278 

.484 

.454 

.405 

.266 

.211 

.139 

.364 

.315 

.240 

.221 

.186 

.097 

.346 

.297 

.204 

.258 

.205 

.134 

.377 

.323 

.260 

.211 

.171 

.127 

.318 

.272 

.232 

.314 

.260 

.218 

.441 

.387 

.350 

     Notes:  Average across 30 papers of the within paper average rejection rate.   Bootstrap-t methods use clustered/robust covariance estimates.   

 

 



 32 

using chi2 errors show similar patterns and are given in the on-line appendix).  As calculation of 

the jackknife and bootstrap (with 1000 draws per instance) is very costly, I only evaluate 10 

realizations of each data generating process for each of the 1309 equations.  With 13090 p-values 

per data generating process, this still allows evaluation of average size and power.  For 

comparison, I also report results for cl/robust methods using the same 13090 realizations of 

data.24  For conventional 2SLS tests of 2nd stage instrumented coefficients and 1st stage F-tests I 

see whether empirical rejection probabilities of true nulls are close to nominal level by testing 

whether the parameters equal those of the data generating process, which are the coefficient 

estimates of the original authors' estimates, and get some sense of power by testing the false null 

that they equal zero.  For Hausman (1978) tests of the bias of OLS coefficient estimates, the 

equivalent tests involve data generating processes with uncorrelated and correlated errors, 

respectively, as these are the circumstances in which the null of no OLS bias is true or false.25  

 Three patterns are readily apparent in Table X.  First, the jackknife and all forms of the 

bootstrap provide Type I error rates much closer to nominal value than cl/robust methods, while 

raising the ratio of power to Type I errors.  Results given in the on-line appendix show that the 

improvement in Type I error rates brought about by the use of the jackknife and bootstrap are 

concentrated in medium and high leverage papers, while in low leverage papers these methods 

are as accurate as cl/robust inference.  Second, as noted earlier, the bootstrap-c is at least as 

accurate, and often more so, as the -t in tests of IV coefficients and is by no means systematically 

worse in other tests.  Third, as can be seen in Table X, no matter which method is used, there is a 

                                                 
24Comparing IV rejection rates for conventional cl/robust methods using 13090 iterations in the upper left-

hand corner of Table X with the same using 1309000 iterations in upper left-hand corner of Table IV, one sees that 
using 10 vs 1000 iterations has very little effect on averages.  The on-line appendix shows that this is true for all of 
the conventional cl/robust rejection rates reported in Table X.  10 iterations per equation for 1309 equations yields 
reasonably accurate estimates of the average and relative performance of the different methods. 

25I use Hausman's test based upon the cl/robust significance of the coefficient on the 1st stage residuals 
entered into the 2nd stage OLS regression.  The test of the difference between the IV and OLS 2nd stage coefficients, 
which is equivalent with homoskedastic variance estimates, cannot be properly adapted to non-iid circumstances as 
the cl/robust IV variance estimate is not always larger than the corresponding OLS estimate.  When performed using 
homoskedastic variance estimates, I find it has large size distortions and poor power (see the on-line appendix). 
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very substantial decline in power with non-iid error processes.  This must be borne in mind when 

evaluating results for the actual sample further below. 

 While the bootstraps may provide improvement over inference using cl/robust covariance 

estimates, it is important to note that they are not immune to weak instrument problems.  Dufour 

(1997) showed that for a confidence interval to have a probability 1-α of covering the true 

parameter value whose range is unbounded when the model is locally almost unidentified, it 

must have a probability of at least 1-α of delivering an unbounded confidence interval.  While 

confidence intervals with the wild bootstrap when the null is imposed may be unbounded 

(Davidson and MacKinnon 2008), it is unclear whether they attain the required 1-α probability.  

Moreover, if confidence intervals are almost surely bounded, as is the case for the jackknife and 

pairs bootstrap, asymptotically the null rejection probability for some true parameter value will 

be 1.0!  However, if extraordinary parameter values are ruled out on a priori grounds, i.e. the 

parameter range is bounded, such pathologies need not arise (e.g., see Gleser & Hwang 1987).  

Such truncation of considered values also eliminates much of the mean squared error 

disadvantages of 2SLS, as suggested earlier in Table V. 

VI:  Application of the Jackknife and Bootstrap to the Sample Itself 

 This section applies the jackknife and bootstrap to the sample itself, separately reporting 

on all published and only headline results.  Headline results share the same instruments and 

hence maximum leverage shares of all published results (Table II earlier) and consequently 

evince similar Type I error rates in simulation (e.g. Table IV earlier).  While headline results 

have higher first and second stage significance rates to begin with, in all tables that follow the 

proportional reduction in their statistical significance through the application of alternative 

inference methods is very similar to that found for all published results.  As headline results are 

of particular interest to readers, further detail by leverage group is given for these.  The same 

detail and patterns for all published results in the sample can be found in the on-line appendix.   



 34 

 
Table XI:  Significance of 2SLS Coefficients 

(average across papers of the fraction of coefficients rejecting the null of 0) 

 headline results 

 

all 
results all low medium high 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

authors’ methods 
clustered/robust 
jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.365 

.339 

.250 

.160 

.247 

.115 

.346 

.558 

.531 

.401 

.340 

.453 

.337 

.535 

.522 

.463 

.382 

.243 

.308 

.231 

.512 

.788 

.768 

.537 

.520 

.599 

.444 

.719 

.617 

.567 

.517 

.333 

.367 

.300 

.667 

.867 

.867 

.767 

.767 

.767 

.700 

.967 

.604 

.504 

.367 

.367 

.217 

.379 

.517 

.754 

.721 

.467 

.467 

.442 

.504 

.688 

.344 

.319 

.262 

.029 

.340 

.014 

.351 

.742 

.717 

.376 

.326 

.588 

.129 

.502 

    Notes:  Low/medium/high refer to papers divided by maximum leverage, as described in Table II earlier; 
bootstrap-t implemented using the clustered/robust covariance estimate; wild bootstrap using restricted efficient 
residuals; bootstrap p-values evaluated using 2000 draws. 

Table XI begins by evaluating the statistical significance of the coefficients of 

instrumented right-hand side variables.  In the first row I report authors' p-values, using their 

covariance calculation methods (default or cl/robust) and chosen distribution (normal or t).  The 

second row of the table moves things to a consistent framework, using cl/robust covariance 

matrices26 and the finite sample t distribution throughout.  All subsequent discussion is relative 

to this consistent benchmark.  Figure III graphs the alternative p-values against the benchmark 

cl/robust test of 2SLS significance. 

 Several patterns are apparent in the table and figure.  First, while the application of the 

pairs and wild bootstrap-c lowers significance rates in all and headline results to ½ or less of 

                                                 
26I use the robust covariance estimate in a paper that used the homoskedastic estimate throughout, and cluster 

the sole regression that was left unclustered in a paper that otherwise clustered all other covariance estimates. 

Notes: X-axes = clustered/robust p-values, Y-axes = jackknife or bootstrap p-values. Solid circles = headline results,
 plus marks = other results.

Figure III: Jackknife, Bootstrap & Clustered/Robust P-Values

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Pairs Bootstrap-t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Jackknife

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Pairs Bootstrap-c

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Wild Bootstrap-c

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Wild Bootstrap-t



 35 

those found using cl/robust methods at the .01 level, and ⅔ or less of cl/robust methods at the .05 

level, the corresponding adjustments using the pairs bootstrap-t are about .7 and .8, while the 

wild bootstrap-t largely leaves significance rates unchanged.  As argued earlier, this large gap 

between -c and -t significance levels, which have similar size and power in simulations, is 

suggestive of publication bias.  Papers do not report unusually large mean effects given the null; 

they report unusually large t-statistics.  The role small standard errors relative to coefficient 

estimates27 play in published significance is highlighted by the jackknife, which generates large 

changes in p-values (Figure III) simply by substituting an alternative standard error estimate.  

Notably, there is no systematic difference between bootstrap-c and -t results for OLS versions of 

these equations (on-line appendix), which do not form the basis for the publication decision. 

 Second, the differences between conventional and alternative significance rates reported 

in Table XI are concentrated in medium and especially high leverage papers, where significance 

rates at the .01 level using the bootstrap-c are negligible and at the .05 level are substantially 

lower than cl/robust findings even when using the bootstrap-t.  Regressions in the on-line 

appendix find that the difference between cl/robust and alternative p-values are significantly 

related to maximum leverage, with greater effects when the p-value of the null that the errors are 

homoskedastic is low, which is consistent with the results found in simulations above.  However, 

as the p-values of tests for homoskedasticity are close to 0 for ¾ of the sample, point estimates 

are imprecise and the coefficients on their interaction with leverage are not statistically 

significant when evaluated with the bootstrap. 

 Third, when alternative methods change a conventionally significant result, the change in 

the p-value is often substantive, as shown by the stacked observations at low conventional  

                                                 
27In the simulations presented above, I find that IV standard error estimates are strongly positively correlated 

with the absolute value of the deviation of the coefficient estimate from the null (e.g. average correlations of .28 and 
.68 with iid normal or heteroskedastic & clustered normal errors, respectively, and .37 and .47 with iid and 
heteroskedastic & clustered "actual" errors).  Consequently, it comes as no surprise that reported standard error 
estimates are not in the lowest percentiles of the bootstrapped distributions (averaging, for example, in the 49th 
percentile of the pairs bootstrap distribution of standard errors).  They are, however, low given the magnitude of the 
coefficient estimates, as shown by the difference between -c and -t results in Table XI. 
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Table XII:  Distribution of Alternative P-Values for Coefficients that are .05  

Significant in 2SLS Clustered/Robust Tests of Instrumented Coefficients 

 jackknife pairs boot-c pairs boot-t wild boot-c wild boot-t 

 all headline all headline all headline All headline all headline 

< .05 
.05 - .10 
.10 - .20 

> .20 

.671 

.161 

.084 

.084 

.664 

.120 

.111 

.105 

.569 

.183 

.153 

.095 

.644 

.125 

.151 

.080 

.730 

.187 

.071 

.012 

.750 

.151 

.093 

.006 

.565 

.164 

.169 

.102 

.535 

.209 

.123 

.133 

.878 

.095 

.024 

.003 

.881 

.060 

.059 

.000 

   Note:  average across papers of within paper distributions. 
     

Table XIII: Frequency with which IV Confidence Intervals contain OLS Point Estimates 
 headline results 

 
all 

results all low medium high 

 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 

clustered/robust 
jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.870 

.902 

.934 

.902 

.916 

.887 

.750 

.825 

.852 

.779 

.801 

.719 

.831 

.862 

.895 

.895 

.847 

.858 

.673 

.801 

.790 

.769 

.759 

.664 

.900 

.900 

.900 

.900 

.900 

.800 

.800 

.800 

.700 

.800 

.850 

.700 

.800 

.800 

.800 

.900 

.654 

.888 

.475 

.767 

.800 

.808 

.542 

.575 

.793 

.886 

.986 

.886 

.986 

.886 

.743 

.836 

.871 

.699 

.886 

.718 

    Notes:  As in Table XI. 

p-values (x-axis) in Figure III.  Table XII explores this further, reporting the distribution of 

alternative p-values for coefficients that are .05 significant using a cl/robust p-value.  When, for 

either all results or headline results alone, a change in significance is recorded using a jackknifed 

or bootstrap-c p-value, at least half of the movement is beyond the .10 level.  Thus, for example, 

while .183 of .05 significant cl/robust p-values lie between .05 and .10 when evaluated using the 

pairs bootstrap-c, an additional .25 (=.153 + .095) lie in the .10-.20 and .20+ groupings.  P-value 

changes using the bootstrap-t are also often substantial, as shown in the table. 

 Published 2SLS coefficient estimates are imprecise and, for the most part, statistically 

indistinguishable from OLS results for the same parameters.  As shown in Table XIII, the 

conventional cl/robust .99 2SLS confidence interval contains the corresponding OLS point 

estimate for .870 of the regressions and .831 of the headline results of the typical paper.  95 

confidence intervals are tighter, reducing these frequencies to .750 and .673, respectively.  

Jackknife and bootstrapped confidence intervals raise these proportions, but only in medium and  
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Table XIV:  Rejection Rates in Hausman Tests (tests of OLS bias)  

 headline results 

 

all 
results all low medium high 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

clustered/robust 

jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.232 

.135 

.098 

.110 

.129 

.175 

.382 

.227 

.200 

.243 

.247 

.328 

.309 

.188 

.138 

.110 

.187 

.237 

.445 

.254 

.249 

.300 

.319 

.470 

.250 

.250 

.200 

.200 

.200 

.250 

.400 

.300 

.400 

.300 

.250 

.500 

.446 

.200 

.200 

.100 

.346 

.446 

.638 

.333 

.233 

.433 

.592 

.604 

.232 

.114 

.014 

.029 

.014 

.014 

.296 

.129 

.114 

.168 

.114 

.307 

   Note:  Test of the significance of θ in the equation ,ˆ uvδXYy    where .ˆˆˆ γXπZYv    

high leverage papers.  In the latter, at the .99 level coverage of the OLS point estimate 

approaches 1.0 with the bootstrap-c.  These results are not a consequence of a close similarity 

between OLS and 2SLS point estimates.  In the average paper .13 of headline 2SLS coefficient 

estimates are of the opposite sign of the OLS estimate for the same equation, while the absolute 

difference of the 2SLS and OLS point estimates is greater than 0.5 times the absolute value of 

the OLS point estimate in .73 of headline regressions and greater than 5.0 times that value in .24 

of headline regressions.  2SLS and OLS point estimates often differ substantively, but 

statistically the IV estimator rejects the OLS value much less frequently. 

 The imprecision of 2SLS estimation carries over into an inability to provide statistical 

evidence that OLS is biased.  Table XIV reports the Hausman test of OLS bias based upon the 

significance of the 1st stage residuals entered as regressors in OLS versions of the 2nd stage 

equation.  The conventional cl/robust estimate rejects the null that OLS is unbiased .232 & .382 

of the time at the .01 or .05 levels in the typical 2SLS regression, and somewhat more often, .309 

& .445, in headline results.  Jackknife and bootstrap methods lower these frequencies, down to 

an average of .172 and .319 at the .01 and .05 levels for headline results, with differences 

concentrated in medium and high leverage papers, where all bootstrap tests produce average .01 

rejection rates of less than 3 percent.  There may be theoretical reasons to believe that OLS 

estimates of parameters of interest in these papers are substantively biased, but 2SLS estimation 

is in most cases unable to provide strong empirical evidence to substantiate those beliefs. 
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Table XV: Identification in the First-Stage 
(rejection rates in tests of instrument irrelevance)  

 headline results 

 

all 
results all low medium high 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

clustered/robust 
jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.858 

.718 

.661 

.638 

.704 

.660 

.929 

.827 

.874 

.773 

.886 

.856 

1.00 
.835 
.781 
.755 
.794 
.783 

1.00 
.945 
.967 
.877 
.967 
.952 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

1.00 
.800 
.800 
.767 
.900 
.967 

1.00 
.900 
1.00 
.900 
1.00 
1.00 

1.00 
.706 
.542 
.498 
.481 
.381 

1.00 
.936 
.900 
.731 
.900 
.857 

      Notes:  As in Table XI. 

 Table XV asks whether published 2SLS results are identified by testing the null that all 

first stage coefficients on the excluded exogenous variables are zero.  Using the conventional test 

with the cl/robust covariance estimate, an average of .858 of 1st stage regressions in the typical 

paper reject the null of a rank zero first stage relation at the .01 level.  This share falls to between 

.638 and .718, i.e. on average about .8 of the original level, using bootstrap and jackknife 

techniques.  Headline results, which are often highlighted by authors on the basis of the first 

stage, start out much better, rejecting the null 100% of the time at the .01 level using cl/robust 

techniques, but on average suffer the exact same .8 proportional reduction in significance rates at 

the .01 level.  Once again, differences are most pronounced in medium and high leverage papers, 

where bootstrap and jackknife rejection rates for headline results at the .01 level fall as low as 

.381.  Once jackknife and bootstrap techniques are used to reduce, albeit not eliminate (Table X), 

the dimensionally-increasing size distortions that appear with cl/robust covariance estimates and 

non-iid errors, 1/5 of all regressions which are singled out by authors as headline results, and 

about ½ of the same in high leverage papers, cannot present strong statistical evidence against 

the null that the instruments are irrelevant. 

 Table XVI brings the preceding results together, asking to what degree 2SLS credibly 

provides information that is statistically different from the biased results of OLS.  Column (i) in 

the table reports the average fraction of 2SLS regressions that reject the null hypotheses that the 

IV regression is completely unidentified, a basic prerequisite for credibility, and either deliver 
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Table XVI:  Does 2SLS Provide Information that is Statistically Different from OLS? 
(average fraction of 2SLS regressions rejecting π = 0 & βols ϵ CI2sls or βols unbiased)  

 (i) at .01 level (ii) at .05 level 

 headline results headline results 
 

all 
results all low med high 

all 
results all low med high 

cl/robust 
jackknife 
pairs boot - c 
pairs boot - t 
wild boot - c 
wild boot - t 

.234 

.130 

.097 

.127 

.116 

.177 

.309 

.188 

.138 

.138 

.187 

.287 

.250 

.250 

.200 

.200 

.200 

.300 

.446 

.200 

.200 

.100 

.346 

.446 

.232 

.114 

.014 

.114 

.014 

.114 

.378 

.228 

.183 

.277 

.249 

.353 

.445 

.271 

.221 

.355 

.319 

.502 

.400 

.300 

.400 

.300 

.250 

.500 

.638 

.333 

.233 

.492 

.592 

.638 

.296 

.179 

.029 

.273 

.114 

.368 

   Notes:  π = 0 = 1st stage coefficients on excluded instruments all equal 0; βols ϵ CI2sls = OLS point estimate in .99 
or .95 2SLS confidence interval; βols unbiased = Hausman test used in Table IV earlier. 

point estimates that are statistically different from OLS or reject the null that OLS is unbiased.  

Using conventional cl/robust methods, only .234 of all results and .309 of headline results meet 

these criteria at the .01 level, these shares falling to an average of .129 and .188, respectively, 

when jackknife and bootstrap tests are used.   Results are especially poor in high leverage papers 

where only .014 or .114 of headline 2SLS regressions meet these criteria using the jackknife or 

bootstrap.  Lowering the bar by raising the level to .05 raises rejection rates, but only to an 

average across jackknife and bootstrap methods of .258 and .333 in all and headline results, 

respectively. 

 None of the preceding results validate OLS as an estimation and inference procedure for 

the problems considered in my sample papers.  As noted early on in Table IV, precise estimates 

of biased parameters do not provide a sensible basis for statistical inference.  What the results 

above do show, however, is that unbalanced regression design, non-iid error processes and the 

inherent inefficiency of 2SLS have interacted to create a published literature which 

fundamentally has very low power.  While published 2SLS results often differ dramatically in 

sign and magnitude from their OLS counterparts, they are not actually statistically very 

informative.  This does not validate OLS point estimates, but it does show that much less has 

been learnt than might otherwise be thought. 
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Table XVII:  Probability of 1st Stage F > 10 when Instruments are Irrelevant  
(1000 Monte Carlo simulations for each of 1309 equations) 

 default covariance estimate clustered/robust covariance estimate 

 all low medium high all low medium high 

iid normal 
h normal 

h & cl normal 

.001 

.223 

.416 

.001 

.193 

.435 

.002 

.128 

.209 

.001 

.349 

.604 

.012 

.042 

.047 

.002 

.004 

.005 

.010 

.015 

.018 

.023 

.107 

.119 

iid "actual" 
h "actual" 

h & cl "actual" 

.004 

.057 

.198 

.005 

.036 

.193 

.002 

.058 

.074 

.003 

.078 

.328 

.011 

.030 

.033 

.006 

.002 

.003 

.007 

.031 

.034 

.021 

.056 

.061 

  Notes:  Average across papers of within paper average rejection rates;  low, medium and high divide the sample 
into thirds, based upon average maximum leverage, as in Table II earlier. 

VII. Conclusion 

Contemporary IV practice involves the screening of reported results on the basis of the 1st 

stage F-statistic as, beyond argumentation in favour of the exogeneity of instruments, the 

acceptance of findings rests on evidence of a strong first stage relationship.  The results in this 

paper suggest that this approach is not helpful, and possibly pernicious.  Table XVII reports the 

Monte Carlo probability of an F greater than 10 in tests of true nulls in my sample.  Following 

Stock & Yogo's (2005) asymptotic iid based theory, an F of 10 became an important benchmark 

in the profession.  As shown in the table, in an ideal iid normal world, using the appropriate 

homoskedastic/default covariance estimate, the probability of an F greater than 10 arising when 

the instruments are completely irrelevant is a 1 or 2 in 1000 event, whether leverage is low, 

medium or high.  However, with clustered and heteroskedastic errors, in high leverage papers the 

probability of an F greater than 10 rises to 30 or 60 percent, depending upon the error process, 

and is still very substantial when the default covariance estimate is replaced with its 

clustered/robust counterpart.  A benchmark F of 10, used for years by the profession, ensured 

that regressions in which the instruments were utterly irrelevant would regularly pass as having 

strong 1st stage relations.  The adoption of more demanding cl/robust standards, such as that of 

the Olea-Pflueger test, will screen out most unidentified regressions,28 but, as shown in the 

                                                 
28Thus, for example, the probabilities of a cl/robust F greater than 40 with clustered heteroskedastic normal 

and "actual" errors in high leverage papers when the regression is unidentified are only .016 and .0013, respectively. 
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simulations above, will not guarantee the protection against relative bias sought of the test.  More 

generally, the adoption of any one-size-fits-all standards based upon zero maximum leverage 

asymptotic theory selects in favour of the worst finite sample regression design, where the fixed 

standards have no predictive value and 2SLS is at its very worst. 

This paper has highlighted a number of ways in which current practice might be 

improved.  The reporting of the number of clusters for each regression in a table, now rarely 

done, is an easy starting point.  Delete-one sensitivity, of t-statistics not coefficients, highlights 

the degree to which significant results depend upon sensitive coefficient and standard error 

estimates.  The maximum leverage share of one cluster provides a measure of the degree to 

which regression design has small sample characteristics and an appeal to asymptotic theorems is 

less compelling.  The bootstrap provides improved null rejection probabilities in a variety of tests 

across a range of regression designs and disturbance characteristics, although its use must still be 

tempered by a consideration of the pathologies that may arise in unidentified regressions.  The 

use of the considerable talents of econometricians to develop additional methods which adjust 

for finite sample regression design would be an enormous boon to the profession. 

Economists use 2SLS because they wish to gain a more accurate estimate of parameters 

of interest than is provided by biased OLS.  In this regard, explicit consideration of the degree to 

which 2SLS results are distinguishable from OLS seems natural, a point raised early on by 

Sargan in his seminal (1958) paper.  In the analysis of the sample, above, I find that 2SLS rarely 

rejects the OLS point estimate or is able to provide strong statistical evidence against OLS being 

unbiased, despite the fact that 2SLS point estimates are often of the opposite sign or substantially 

different magnitude.  This is virtually always true in high leverage papers, but is even true in the 

low leverage sample, where on average only .23 or .35 of headline results are able to either reject 

the null of zero OLS bias or exclude OLS point estimates at the .01 or .05 levels in bootstrap and 

jackknife tests.  These results need not heighten confidence in OLS point estimates, as the 

simulations in this paper show that heteroskedastic clustered disturbances systematically lower 

power, especially in 2SLS estimation; but they do show that in practical application 2SLS is 
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sufficiently inefficient that it does not often provide meaningful information regarding the degree 

to which OLS point estimates are biased.  Learning about the world may simply be harder than 

suggested by simple dichotomies between good and bad research design. 
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