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A:  Sensitivity Tests for Tables IV - XVI in the Paper  

 This appendix presents sensitivity tests for Tables IV through X in the paper.  Table IV in 

the paper reported Type I error rates and power estimates for 2SLS and OLS using Monte Carlos 

with normal and "actual" errors, the data generating processes described in 9.1-9.3 and 11.1-11.3 

in the paper.  Table A1 below adds in the results with chi2 errors (processes 9.4-9.6 described in 

the paper).  Size distortions are somewhat larger with chi2 errors, but otherwise the patterns are 

those described in the paper: Type I error rates above nominal level with non-iid errors are not 

unique to IV; power declines more, both absolutely and proportionately, with non-iid errors in IV 

than in OLS; IV is a noticeably less efficient estimator with much lower power when errors are 

uncorrelated (OLS unbiased); and when errors are correlated, precise but biased OLS estimates 

give rise to huge size distortions.
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Table A1:  Average Null Rejection Probabilities at the .01 & .05 Levels 
 (sensitivity test for Table IV in the paper)  

 H0 = βdgp H0 = 0 
 all low medium high all all low medium high all 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

(a) correlated errors (all results) 
 2SLS OLS 2SLS OLS 

iid normal 
h normal 

h cl normal 

.029 

.069 

.069 

.077 

.126 

.123 

.011 

.012 

.010 

.049 

.045 

.040 

.036 

.052 

.054 

.082 

.106 

.106 

.039 

.142 

.143 

.101 

.226 

.224 

.718 

.528 

.439 

.782 

.613 

.535 

.461 

.276 

.182 

.590 

.375 

.272 

.578 

.372 

.256 

.694 

.457 

.333 

.285 

.132 

.107 

.440 

.249 

.212 

.519 

.324 

.183 

.636 

.418 

.271 

.579 

.430 

.379 

.682 

.534 

.488 

iid chi2 

h chi2 

n cl chi2 

.026 

.077 

.083 

.075 

.139 

.144 

.012 

.015 

.018 

.051 

.049 

.051 

.032 

.066 

.069 

.076 

.126 

.130 

.035 

.152 

.160 

.097 

.242 

.250 

.672 

.502 

.436 

.759 

.603 

.546 

.477 

.287 

.196 

.603 

.392 

.294 

.579 

.368 

.259 

.697 

.457 

.341 

.314 

.151 

.122 

.461 

.275 

.236 

.539 

.342 

.206 

.650 

.445 

.304 

.508 

.424 

.383 

.605 

.525 

.488 

iid "actual" 
h "actual" 

h cl "actual" 

.025 

.035 

.037 

.072 

.085 

.085 

.014 

.010 

.012 

.051 

.046 

.047 

.021 

.042 

.044 

.064 

.092 

.094 

.039 

.053 

.056 

.101 

.117 

.115 

.693 

.678 

.668 

.771 

.752 

.747 

.432 

.409 

.297 

.553 

.539 

.446 

.585 

.583 

.478 

.702 

.708 

.634 

.231 

.207 

.158 

.362 

.349 

.307 

.481 

.436 

.255 

.594 

.559 

.395 

.525 

.491 

.483 

.623 

.593 

.589 

(b) correlated errors (headline results) 
                  2SLS OLS 2SLS OLS 

iid normal 
h normal 

h cl normal 

.023 

.060 

.062 

.072 

.118 

.117 

.008 

.009 

.007 

.045 

.044 

.039 

.023 

.037 

.044 

.075 

.096 

.099 

.038 

.136 

.136 

.097 

.214 

.213 

.728 

.520 

.424 

.788 

.606 

.520 

.566 

.348 

.229 

.701 

.455 

.333 

.630 

.387 

.284 

.754 

.483 

.372 

.528 

.277 

.223 

.677 

.404 

.349 

.541 

.379 

.179 

.672 

.478 

.278 

.610 

.444 

.374 

.699 

.552 

.495 

iid chi2 

h chi2 

n cl chi2 

.020 

.070 

.075 

.066 

.133 

.137 

.010 

.012 

.017 

.047 

.047 

.053 

.018 

.054 

.058 

.066 

.125 

.123 

.033 

.144 

.149 

.086 

.228 

.235 

.686 

.492 

.414 

.766 

.591 

.528 

.576 

.353 

.234 

.711 

.463 

.342 

.615 

.386 

.270 

.751 

.496 

.373 

.551 

.294 

.240 

.694 

.409 

.359 

.560 

.380 

.192 

.689 

.485 

.294 

.544 

.428 

.372 

.629 

.539 

.489 

iid "actual" 
h "actual" 

h cl "actual" 

.021 

.038 

.046 

.070 

.089 

.092 

.007 

.009 

.010 

.043 

.045 

.042 

.023 

.057 

.062 

.076 

.116 

.120 

.031 

.049 

.067 

.088 

.106 

.114 

.698 

.691 

.708 

.780 

.752 

.769 

.537 

.518 

.404 

.661 

.660 

.573 

.633 

.604 

.489 

.761 

.764 

.689 

.458 

.473 

.431 

.582 

.612 

.577 

.521 

.479 

.293 

.641 

.604 

.453 

.560 

.550 

.570 

.649 

.630 

.644 
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Table A1:  Average Null Rejection Probabilities at the .01 & .05 Levels (continued) 

 H0 = βdgp H0 = 0 

 all low medium high all all low medium high all 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

(c) uncorrelated errors (all results) 

 OLS 2SLS OLS 2SLS 

iid normal 
h normal 

h cl normal 

.012 

.068 

.078 

.053 

.140 

.155 

.010 

.013 

.017 

.048 

.055 

.064 

.013 

.048 

.056 

.056 

.121 

.132 

.013 

.143 

.161 

.055 

.245 

.268 

.018 

.054 

.053 

.063 

.107 

.103 

.830 

.648 

.570 

.874 

.727 

.665 

.947 

.850 

.749 

.963 

.895 

.816 

.740 

.542 

.500 

.812 

.646 

.612 

.802 

.552 

.460 

.848 

.640 

.567 

.472 

.295 

.200 

.594 

.394 

.290 

iid chi2 

h chi2 

n cl chi2 

.013 

.088 

.097 

.056 

.163 

.177 

.011 

.023 

.028 

.049 

.071 

.082 

.015 

.075 

.080 

.060 

.152 

.162 

.014 

.166 

.183 

.060 

.266 

.286 

.017 

.065 

.067 

.061 

.126 

.125 

.835 

.696 

.623 

.878 

.768 

.712 

.950 

.868 

.778 

.965 

.906 

.840 

.750 

.588 

.548 

.820 

.682 

.652 

.805 

.631 

.543 

.850 

.715 

.643 

.489 

.309 

.214 

.609 

.412 

.311 

iid "actual" 
h "actual" 

h cl "actual" 

.017 

.042 

.056 

.058 

.103 

.123 

.025 

.031 

.027 

.066 

.078 

.075 

.012 

.035 

.040 

.052 

.096 

.102 

.013 

.061 

.101 

.057 

.134 

.193 

.017 

.028 

.026 

.058 

.076 

.071 

.832 

.797 

.740 

.875 

.851 

.815 

.949 

.922 

.893 

.965 

.944 

.920 

.732 

.684 

.638 

.805 

.772 

.753 

.814 

.786 

.689 

.855 

.836 

.772 

.449 

.429 

.337 

.566 

.552 

.468 

  Notes:  As in Table IV in the paper. 
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 Table A2:  Ln Truncated OLS Bias & Relative 2SLS to OLS Bias & Mean Squared Error 
(sensitivity test for Table V in the paper)  

||*1000|ˆ| dgp   ||*10|ˆ| dgp   

OLS 
bias 

relative 
bias 

   
relative 

mse 
OLS 
bias 

relative 
bias 

   
relative 

mse 
all all low medium high all all all low medium high all 

 (a) all results 

iid normal
h normal

h cl normal

-0.5 
-0.5 
-0.5 

-3.4 
-2.0 
-1.1 

-4.0 
-2.8 
-1.9 

-2.5 
-1.6 
-1.3 

-3.8 
-1.7 
-0.2 

-0.3 
1.9 
3.3 

-0.5 
-0.6 
-0.6 

-3.4 
-2.3 
-1.7 

-4.0 
-3.0 
-2.4 

-2.5 
-1.9 
-1.4 

-3.8 
-2.0 
-1.2 

-0.6 
0.5 
1.2 

iid chi2

h chi2

n cl chi2

-0.5 
-0.4 
-0.4 

-3.4 
-2.1 
-1.4 

-3.8 
-2.7 
-2.0 

-2.6 
-1.6 
-1.4 

-3.9 
-2.1 
-0.7 

-0.4 
1.4 
2.9 

-0.5 
-0.5 
-0.5 

-3.4 
-2.3 
-1.6 

-3.8 
-3.0 
-2.3 

-2.6 
-1.7 
-1.4 

-3.9 
-2.3 
-1.2 

-0.7 
0.3 
1.0 

iid "actual"
h "actual"

h cl "actual"

-0.4 
-0.4 
-0.4 

-3.3 
-3.0 
-2.1 

-3.9 
-3.8 
-3.0 

-2.1 
-2.0 
-1.6 

-3.8 
-3.1 
-1.8 

0.1 
0.4 
1.3 

-0.4 
-0.5 
-0.5 

-3.4 
-3.0 
-2.3 

-4.0 
-3.9 
-3.1 

-2.3 
-2.1 
-1.8 

-3.9 
-3.1 
-2.2 

-0.5 
-0.3 
0.3 

 (b) headline results 

iid normal
h normal

h cl normal

-0.7 
-0.8 
-0.8 

-3.6 
-2.1 
-1.2 

-4.3 
-3.2 
-2.2 

-2.8 
-1.3 
-1.1 

-3.7 
-1.8 
-0.3 

-0.8 
1.7 
3.2 

-0.7 
-0.8 
-0.8 

-3.6 
-2.4 
-1.8 

-4.3 
-3.3 
-2.8 

-2.8 
-1.7 
-1.4 

-3.7 
-2.2 
-1.1 

-0.9 
0.2 
1.1 

iid chi2

h chi2

n cl chi2

-0.7 
-0.7 
-0.7 

-3.3 
-2.2 
-1.3 

-3.6 
-3.4 
-2.0 

-2.9 
-1.6 
-1.3 

-3.5 
-1.8 
-0.6 

-0.9 
1.0 
2.5 

-0.7 
-0.7 
-0.7 

-3.4 
-2.5 
-1.7 

-3.7 
-3.6 
-2.3 

-3.0 
-1.7 
-1.5 

-3.5 
-2.3 
-1.2 

-1.0 
0.0 
0.9 

iid "actual"
h "actual"

h cl "actual"

-0.5 
-0.6 
-0.6 

-3.8 
-3.4 
-2.6 

-4.2 
-4.0 
-3.2 

-3.3 
-2.7 
-2.3 

-3.8 
-3.6 
-2.3 

-0.7 
-0.4 
0.4 

-0.5 
-0.6 
-0.6 

-3.9 
-3.5 
-2.5 

-4.4 
-4.0 
-3.0 

-3.4 
-2.7 
-2.3 

-3.9 
-3.6 
-2.3 

-1.0 
-0.7 
-0.1 

    Notes:  As in Table V in the paper.   
 Table A2 above adds chi2 errors to Table V's analysis in the paper of relative bias and 

mean squared error with correlated errors.  The patterns with chi2 errors are very much the same: 

IV's relative bias advantage falls with non-iid errors while IV mse on average becomes greater 

than that found in OLS.  An appendix further below shows that the change in relative bias with 

non-iid error processes is positively related to maximum leverage. 
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 Tables VI and VII in the paper examined the effectiveness of the Stock & Yogo (2005) 

size and bias tests using normal and "actual" errors, and in some cases only for the smallest and 

largest size and bias bounds given by Stock & Yogo.  Tables A3 and A4 below extend the 

analysis to include chi2 errors and all of the bounds provided by Stock & Yogo.  Results for size 

bounds with chi2 errors are generally worse than those found with normal errors, with a higher 

ratio of the fraction of regressions exceeding the desired size bound in H1 (strong instrument) to 

the fraction found in H0 (weak instrument).  Chi2 results with regards to bias are similar to those 

found with normal errors.  Results for intermediate bounds on size and bias lie between the 

smallest and largest bounds, as might be expected.  
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 Table A3:  Fraction of Regressions with Null Rejection Probabilities Greater than Size Bound 
in Specifications that Don’t (H0) and Do (H1) Reject the Stock & Yogo Weak Instrument Null 

(sensitivity test for Table VI in the paper)  

 maximum acceptable size for a nominal .05 test 

 .10 .15 .20 .25 

 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

(A) default IV coefficient covariance estimate, with default F used as Stock and Yogo test statistic 

iid normal 
iid chi2 

iid "actual" 

.126 

.141 

.085 

.000 (.022) 

.001 (.022) 

.003 (.028) 

.094 

.087 

.058 

.000 (.013) 

.000 (.013) 

.002 (.017) 

.067 

.062 

.036 

.000 (.010) 

.000 (.010) 

.002 (.013) 

.053 

.048 

.040 

.000 (.009) 

.000 (.009) 

.002 (.011) 

(B) cl/robust IV coefficient covariance estimate, with default F used as Stock and Yogo test statistic 

iid normal 
h normal 

h cl normal 

.258 

.425 

.415 

.267 (.022) 

.268 (.020) 

.449 (.019) 

.106 

.201 

.270 

.025 (.013) 

.125 (.014) 

.358 (.014) 

.062 

.097 

.134 

.014 (.010) 

.077 (.012) 

.176 (.012) 

.058 

.042 

.050 

.009 (.009) 

.061 (.011) 

.083 (.011) 

iid chi2 
h chi2 

h cl chi2 

.216 

.565 

.574 

.276 (.022) 

.448 (.019) 

.602 (.018) 

.074 

.283 

.319 

.024 (.013) 

.191 (.012) 

.432 (.012) 

.062 

.141 

.178 

.014 (.010) 

.134 (.010) 

.364 (.010) 

.053 

.047 

.096 

.008 (.009) 

.075 (.009) 

.217 (.009) 

iid "actual" 
h "actual" 

h cl "actual" 

.251 

.254 

.316 

.269 (.028) 

.389 (.026) 

.385 (.026) 

.058 

.136 

.159 

.025 (.017) 

.074 (.017) 

.192 (.017) 

.036 

.108 

.117 

.019 (.013) 

.057 (.014) 

.135 (.014) 

.036 

.091 

.094 

.011 (.011) 

.045 (.012) 

.099 (.012) 

(C) cl/robust IV coefficient covariance estimate, with cl/robust F used as Stock and Yogo test statistic 

iid normal 
h normal 

h cl normal 

.247 

.394 

.470 

.270 (.019) 

.247 (.041) 

.383 (.101) 

.118 

.185 

.351 

.024 (.011) 

.119 (.027) 

.327 (.059) 

.068 

.087 

.159 

.014 (.009) 

.078 (.021) 

.176 (.045) 

.063 

.045 

.055 

.009 (.008) 

.062 (.018) 

.094 (.037) 

iid chi2 
h chi2 

h cl chi2 

.215 

.534 

.589 

.273 (.017) 

.439 (.038) 

.605 (.077) 

.083 

.262 

.379 

.023 (.011) 

.183 (.025) 

.438 (.047) 

.069 

.142 

.277 

.014 (.009) 

.132 (.019) 

.372 (.036) 

.058 

.051 

.163 

.008 (.008) 

.077 (.016) 

.220 (.031) 

iid "actual" 
h "actual" 

h cl "actual" 

.236 

.244 

.349 

.275 (.022) 

.398 (.028) 

.378 (.060) 

.069 

.139 

.203 

.024 (.014) 

.072 (.018) 

.171 (.036) 

.041 

.114 

.153 

.018 (.011) 

.055 (.014) 

.120 (.029) 

.041 

.098 

.128 

.011 (.009) 

.043 (.012) 

.084 (.025) 

   Notes:  As in Table VI in the paper. 
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Table A4:  Fraction of Regressions with Relative Bias Greater than Bias Bound in 
Specifications that Don’t and Do Reject the Stock & Yogo Weak Instrument Null   

(sensitivity test for Table VII in the paper) -  

 maximum acceptable relative bias 

 .05 .10 .20 .30 

 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

(A) default F used as Stock and Yogo test statistic 

iid normal 
h normal 

h cl normal 

.988 

.992 

.995 

.153 (.162) 

.216 (.137) 

.869 (.114) 

.902 

.998 

.997 

.091 (.145) 

.396 (.085) 

.828 (.072) 

.878 

.960 

.963 

.052 (.106) 

.522 (.042) 

.848 (.037) 

.668 

.768 

.833 

.043 (.068) 

.415 (.025) 

.762 (.023) 

iid chi2 
h chi2 

h cl chi2 

.993 

.982 

.976 

.140 (.162) 

.366 (.105) 

.819 (.090) 

.910 

.962 

.955 

.069 (.145) 

.445 (.065) 

.803 (.055) 

.847 

.864 

.857 

.055 (.105) 

.502 (.033) 

.766 (.029) 

.676 

.515 

.562 

.065 (.065) 

.296 (.021) 

.579 (.019) 

iid "actual" 
h "actual" 

h cl "actual" 

.971 

.961 

.966 

.139 (.181) 

.116 (.178) 

.671 (.193) 

.911 

.925 

.941 

.052 (.156) 

.146 (.151) 

.689 (.143) 

.850 

.784 

.771 

.036 (.112) 

.136 (.100) 

.480 (.101) 

.705 

.580 

.589 

.040 (.084) 

.176 (.067) 

.402 (.069) 

(B) clustered/robust F used as Stock and Yogo test statistic 

iid normal 
h normal 

h cl normal 

.991 

.984 

.972 

.174 (.155) 

.649 (.032) 

.944 (.034) 

.914 

.988 

.973 

.127 (.130) 

.699 (.017) 

.910 (.017) 

.878 

.966 

.982 

.261 (.066) 

.674 (.009) 

.880 (.010) 

.655 

.546 

.970 

.248 (.030) 

.528 (.006) 

.759 (.007) 

iid chi2 
h chi2 

h cl chi2 

.997 

.976 

.937 

.171 (.151) 

.678 (.026) 

.908 (.027) 

.916 

.974 

.950 

.196 (.112) 

.656 (.016) 

.859 (.017) 

.825 

.938 

.951 

.386 (.043) 

.591 (.009) 

.771 (.010) 

.601 

.572 

.940 

.337 (.018) 

.334 (.006) 

.530 (.006) 

iid "actual" 
h "actual" 

h cl "actual" 

.989 

.983 

.966 

.172 (.157) 

.105 (.163) 

.604 (.252) 

.932 

.957 

.944 

.116 (.128) 

.122 (.136) 

.661 (.159) 

.864 

.818 

.788 

.225 (.070) 

.128 (.088) 

.466 (.093) 

.725 

.625 

.615 

.273 (.033) 

.181 (.052) 

.396 (.054) 

    Notes:  As in Table VII in the paper. 
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 Stock & Yogo (2005) base their theory around Wald and F-statistics calculated with 

finite sample corrections (pp. 83-84) but p-values based upon the asymptotic chi2 distribution 

(pp. 88), so I follow this approach in Table VI in the paper (as noted in the table's notes) and 

Table A3 above.  Table A5 below reports results using the t-distribution with finite sample 

degrees of freedom corrections to calculate IV p-values and size.  As expected, the fraction of 

regressions with Type I error probabilities greater than the specified levels falls with these 

corrections (compare to Table A3), but the patterns are identical to those reported in the paper.  

In particular, with non-iid errors the fraction of regressions with Type I error probabilities greater 

than the specified level is often higher in H1 regressions that reject the weak instrument null than 

it is in H0 regressions that do not, and is always much greater than the maximum share that 

would be consistent with the test itself having .05 size. 
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Table A5:  Stock & Yogo Size Tests with P-Values Calculated using t-Distribution 

(sensitivity test for Table VI in the paper)   

 maximum acceptable size for a nominal .05 test 

 .10 .15 .20 .25 

 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

(A) default IV coefficient covariance estimate, with default F used as Stock and Yogo test statistic 

 iid normal 
 iid chi2 

 iid "actual" 

.116 

.128 

.083 

.000 (.022) 

.001 (.022) 

.003 (.028) 

.075 

.075 

.055 

.000 (.013) 

.000 (.013) 

.002 (.017) 

.067 

.062 

.036 

.000 (.010) 

.000 (.010) 

.002 (.013) 

.048 

.048 

.036 

.000 (.009) 

.000 (.009) 

.002 (.011) 

(B) cl/robust IV coefficient covariance estimate, with default F used as Stock and Yogo test statistic 

 iid normal 
 h normal 

 h cl normal 

.209 

.400 

.394 

.216 (.022) 

.234 (.020) 

.442 (.019) 

.094 

.181 

.240 

.024 (.013) 

.108 (.014) 

.333 (.014) 

.062 

.093 

.116 

.014 (.010) 

.073 (.012) 

.165 (.012) 

.053 

.039 

.049 

.001 (.009) 

.059 (.011) 

.079 (.011) 

 iid chi2 
 h chi2 

 h cl chi2 

.182 

.533 

.552 

.228 (.022) 

.413 (.019) 

.560 (.018) 

.074 

.253 

.295 

.023 (.013) 

.175 (.012) 

.420 (.012) 

.062 

.127 

.168 

.014 (.010) 

.123 (.010) 

.351 (.010) 

.053 

.045 

.087 

.005 (.009) 

.066 (.009) 

.198 (.009) 

 iid "actual" 
 h "actual" 

 h cl "actual" 

.190 

.212 

.291 

.224 (.028) 

.313 (.026) 

.351 (.026) 

.055 

.120 

.147 

.024 (.017) 

.065 (.017) 

.182 (.017) 

.036 

.107 

.111 

.018 (.013) 

.056 (.014) 

.132 (.014) 

.036 

.085 

.088 

.006 (.011) 

.042 (.012) 

.092 (.012) 

(C) cl/robust IV coefficient covariance estimate, with cl/robust F used as Stock and Yogo test statistic 

 iid normal 
 h normal 

 h cl normal 

.205 

.367 

.456 

.217 (.019) 

.211 (.041) 

.377 (.101) 

.105 

.163 

.324 

.023 (.011) 

.103 (.027) 

.303 (.059) 

.068 

.085 

.144 

.014 (.009) 

.074 (.021) 

.166 (.045) 

.058 

.043 

.052 

.001 (.008) 

.060 (.018) 

.091 (.038) 

 iid chi2 
 h chi2 

 h cl chi2 

.189 

.501 

.563 

.223 (.017) 

.403 (.038) 

.552 (.077) 

.083 

.231 

.357 

.022 (.011) 

.171 (.025) 

.431 (.047) 

.069 

.127 

.267 

.014 (.009) 

.123 (.019) 

.358 (.036) 

.058 

.046 

.147 

.005 (.008) 

.068 (.016) 

.202 (.031) 

 iid "actual" 
 h "actual" 

 h cl "actual" 

.180 

.209 

.328 

.226 (.022) 

.317 (.028) 

.335 (.060) 

.065 

.123 

.192 

.023 (.014) 

.063 (.018) 

.162 (.036) 

.041 

.113 

.147 

.017 (.011) 

.054 (.014) 

.117 (.029) 

.041 

.092 

.119 

.006 (.010) 

.040 (.012) 

.079 (.025) 

   Notes:  As in Table VI in the paper. 
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Table A6 below divides the results for the Stock & Yogo size test by leverage group, a 

sensitivity test for Table VI in the paper.  With iid error processes and the default covariance 

estimate used to evaluate F-statistics and calculate IV standard errors, the test, as shown in panel 

A of the table, does well in all leverage groups, although only the medium leverage group has 

substantial weak instrument induced size distortions.  With clustered/robust covariance estimates 

used to calculate IV standard errors, results in the medium and high leverage groups are 

extraordinarily poor, whether or not default (panel B) or clustered/robust (panel C) covariance 

estimates are used in the calculation of the 1st stage test statistic, as with non-iid errors Type I 

error probabilities are often as large or greater in the H1 “strong instrument” group than in the H0 

group that fails to reject the weak instrument null.  The test does appear to work better in non-iid 

settings in low leverage papers (panels B and C), but this is largely a consequence of the fact that 

size distortions with clustered/robust covariance estimates in these papers are almost always very 

low for both H0 and H1 regressions.  In the low leverage cases where rejection probabilities 

greater than nominal value appear, size distortions in H1 papers with non-iid errors in panels B 

and C are occasionally as high as in H0 regressions and very often above the level consistent with 

the Stock & Yogo test itself having .05 size.   

As noted in the paper, the results for Stock & Yogo's bias test cannot be meaningfully 

broken down by leverage group.  The 134 regressions for which Stock & Yogo provide bias 

bounds only cover one high leverage paper and 3 low leverage papers, and in the latter almost all 

observations, but for those from one regression, exceed the bounds. 
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 Table A6: Stock & Yogo Size Tests by Leverage Group 
(sensitivity test for Table VI in the paper)   

 maximum acceptable size for a nominal .05 test 

 .10 .15 .20 .25 

 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

(A) default covariance estimate used in 1st stage test statistic  
and to evaluate coefficient significance 

low 
 iid normal 
 iid chi2 

 iid "actual" 

 
.042 
.064 
.022 

 
.000 (.011) 
.000 (.011) 
.009 (.011) 

 
.045 
.045 
.046 

 
.000 (.005) 
.000 (.005) 
.008 (.005) 

 
.062 
.000 
.000 

 
.000 (.003) 
.000 (.003) 
.008 (.003) 

 
.000 
.000 
.000 

 
.000 (.003) 
.000 (.003) 
.008 (.003) 

medium  
 iid normal 
 iid chi2 

 iid "actual" 

 
.160 
.174 
.113 

 
.001 (.063) 
.003 (.061) 
.001 (.082) 

 
.106 
.097 
.063 

 
.001 (.037) 
.001 (.036) 
.000 (.050) 

 
.070 
.070 
.037 

 
.000 (.029) 
.000 (.028) 
.000 (.038) 

 
.059 
.053 
.041 

 
.000 (.025) 
.000 (.025) 
.000 (.032) 

high 
 iid normal 
 iid chi2 

 iid "actual" 

 
.000 
.021 
.013 

 
.000 (.006) 
.000 (.006) 
.000 (.010) 

 
.000 
.000 
.032 

 
.000 (.002) 
.000 (.002) 
.000 (.004) 

 
.000 
.000 
.053 

 
.000 (.001) 
.000 (.001) 
.000 (.002) 

 
.000 
.000 
.072 

 
.000 (.001) 
.000 (.001) 
.000 (.002) 

   Notes:  Low, medium, high refer to papers grouped on the basis of average maximum leverage, as in Table II 
in the paper.  Otherwise, as in Table VI in the paper. 
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 Table A6: Stock & Yogo Size Tests by Leverage Group - continued 

(sensitivity test for Table VI in the paper) 

 maximum acceptable size for a nominal .05 test 

 .10 .15 .20 .25 

 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

(B) default covariance estimate used in 1st stage test statistic,  
clustered/robust covariance estimate used to evaluate coefficient significance 

low  
 iid normal 

 h normal 
 h cl normal 

.100 

.061 

.041 

.033 (.011) 

.046 (.013) 

.009 (.012) 

.045 

.027 

.043 

.000 (.005) 

.001 (.007) 

.006 (.008) 

.062 

.031 

.022 

.000 (.003) 

.001 (.005) 

.001 (.007) 

.000 

.034 

.022 

.000 (.003) 

.001 (.005) 

.002 (.006) 

 iid chi2 
 h chi2 
 h cl chi2 

.069 

.107 

.061 

.036 (.011) 

.045 (.012) 

.051 (.012) 

.045 

.028 

.021 

.000 (.005) 

.005 (.007) 

.010 (.008) 

.063 

.033 

.022 

.000 (.003) 

.001 (.005) 

.001 (.007) 

.000 

.037 

.022 

.000 (.003) 

.001 (.004) 

.002 (.006) 

 iid "actual" 
 h "actual" 
 h cl "actual" 

.050 

.048 

.137 

.039 (.011) 

.035 (.011) 

.034 (.012) 

.046 

.045 

.034 

.008 (.005) 

.004 (.005) 

.005 (.006) 

.000 

.000 

.000 

.008 (.003) 

.000 (.003) 

.000 (.004) 

.000 

.000 

.000 

.007 (.003) 

.000 (.003) 

.000 (.004) 

medium 
 iid normal 

 h normal 
 h cl normal 

.279 

.466 

.439 

.031 (.063) 

.222 (.049) 

.271 (.040) 

.119 

.217 

.285 

.001 (.037) 

.127 (.034) 

.192 (.029) 

.064 

.101 

.144 

.000 (.029) 

.036 (.029) 

.067 (.025) 

.065 

.037 

.051 

.000 (.025) 

.010 (.025) 

.019 (.022) 

 iid chi2 
 h chi2 
 h cl chi2 

.236 

.618 

.633 

.015 (.061) 

.769 (.049) 

.515 (.041) 

.082 

.307 

.352 

.002 (.036) 

.212 (.032) 

.225 (.028) 

.065 

.143 

.183 

.000 (.028) 

.120 (.026) 

.170 (.023) 

.059 

.040 

.093 

.000 (.025) 

.021 (.023) 

.065 (.021) 

 iid "actual" 
 h "actual" 
 h cl "actual" 

.269 

.309 

.377 

.021 (.082) 

.490 (.072) 

.497 (.067) 

.063 

.162 

.180 

.000 (.050) 

.140 (.049) 

.186 (.045) 

.037 

.126 

.134 

.000 (.038) 

.102 (.039) 

.130 (.036) 

.035 

.104 

.106 

.000 (.032) 

.081 (.033) 

.083 (.031) 

high 
 iid normal 

 h normal 
 h cl normal 

.284 

.619 

.640 

.511 (.006) 

.404 (.005) 

.794 (.007) 

.000 

.275 

.400 

.053 (.002) 

.188 (.003) 

.664 (.005) 

.000 

.134 

.189 

.031 (.001) 

.146 (.003) 

.352 (.004) 

.000 

.088 

.075 

.021 (.001) 

.131 (.002) 

.177 (.003) 

 iid chi2 
 h chi2 
 h cl chi2 

.242 

.861 

.857 

.540 (.006) 

.448 (.004) 

.928 (.005) 

.010 

.468 

.510 

.051 (.002) 

.269 (.002) 

.794 (.003) 

.000 

.335 

.407 

.031 (.001) 

.211 (.001) 

.696 (.002) 

.000 

.194 

.263 

.019 (.001) 

.155 (.001) 

.447 (.002) 

 iid "actual" 
 h "actual" 
 h cl "actual" 

.298 

.162 

.199 

.518 (.010) 

.524 (.010) 

.509 (.010) 

.032 

.009 

.118 

.048 (.004) 

.072 (.004) 

.296 (.005) 

.053 

.012 

.066 

.036 (.002) 

.058 (.003) 

.212 (.003) 

.072 

.014 

.060 

.021 (.002) 

.044 (.002) 

.163 (.002) 

   Notes:  Low, medium, high refer to papers grouped on the basis of average maximum leverage, as in Table II 
in the paper.  Otherwise, as in Table VI in the paper. 
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 Table A6: Stock & Yogo Size Tests by Leverage Group - continued 

(sensitivity test for Table VI in the paper) 

 maximum acceptable size for a nominal .05 test 

 .10 .15 .20 .25 

 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

(C) clustered/robust covariance estimate used in 1st stage test statistic 
and to evaluate coefficient significance 

low  
 iid normal 

 h. normal 
 h. cl. normal 

.079 

.043 

.027 

.038 (.011) 

.054 (.039) 

.000 (.064) 

.045 

.012 

.021 

.000 (.004) 

.000 (.025) 

.001 (.052) 

.061 

.014 

.008 

.000 (.003) 

.000 (.020) 

.000 (.045) 

.000 

.015 

.008 

.000 (.003) 

.000 (.017) 

.000 (.042) 

 iid chi2 
 h. chi2 
 h. cl. chi2 

.059 

.055 

.053 

.038 (.011) 

.058 (.040) 

.052 (.063) 

.046 

.011 

.013 

.000 (.005) 

.006 (.026) 

.010 (.052) 

.063 

.013 

.008 

.000 (.003) 

.000 (.020) 

.000 (.046) 

.000 

.015 

.008 

.000 (.003) 

.000 (.017) 

.000 (.042) 

 iid "actual" 
 h "actual" 
 h cl "actual" 

.046 

.035 

.068 

.040 (.011) 

.038 (.013) 

.044 (.031) 

.046 

.036 

.018 

.008 (.005) 

.004 (.006) 

.005 (.014) 

.000 

.000 

.000 

.008 (.003) 

.000 (.004) 

.000 (.010) 

.000 

.000 

.000 

.008 (.003) 

.000 (.004) 

.000 (.008) 

medium 
 iid normal 

 h normal 
 h cl normal 

.284 

.427 

.410 

.055 (.050) 

.192 (.089) 

.196 (.116) 

.133 

.211 

.302 

.001 (.030) 

.115 (.051) 

.133 (.063) 

.071 

.091 

.141 

.001 (.025) 

.036 (.038) 

.049 (.046) 

.070 

.033 

.046 

.001 (.022) 

.011 (.031) 

.016 (.038) 

 iid chi2 
 h chi2 
 h cl chi2 

.245 

.574 

.565 

.035 (.046) 

.872 (.075) 

.570 (.095) 

.091 

.284 

.351 

.002 (.030) 

.218 (.045) 

.186 (.054) 

.072 

.141 

.224 

.000 (.024) 

.119 (.033) 

.135 (.040) 

.064 

.035 

.117 

.001 (.021) 

.022 (.027) 

.044 (.033) 

 iid "actual" 
 h "actual" 
 h cl "actual" 

.267 

.326 

.374 

.059 (.062) 

.459 (.065) 

.509 (.076) 

.072 

.180 

.169 

.000 (.038) 

.127 (.042) 

.196 (.050) 

.042 

.144 

.128 

.000 (.030) 

.092 (.034) 

.134 (.040) 

.040 

.120 

.105 

.000 (.026) 

.073 (.030) 

.083 (.035) 

high 
 iid normal 

 h normal 
 h cl normal 

.198 

.650 

.728 

.510 (.004) 

.355 (.016) 

.880 (.114) 

.000 

.283 

.576 

.053 (.001) 

.174 (.011) 

.716 (.058) 

.000 

.153 

.266 

.031 (.001) 

.145 (.009) 

.401 (.042) 

.000 

.118 

.092 

.021 (.000) 

.131 (.008) 

.223 (.035) 

 iid chi2 
 h chi2 
 h cl chi2 

.204 

.915 

.898 

.528 (.003) 

.344 (.016) 

.953 (.069) 

.005 

.475 

.656 

.050 (.001) 

.237 (.010) 

.869 (.038) 

.000 

.303 

.548 

.031 (.001) 

.201 (.007) 

.759 (.028) 

.000 

.157 

.348 

.019 (.000) 

.156 (.006) 

.483 (.023) 

 iid "actual" 
 h "actual" 
 h cl "actual" 

.224 

.123 

.422 

.510 (.006) 

.559 (.014) 

.508 (.066) 

.053 

.031 

.293 

.047 (.002) 

.073 (.008) 

.272 (.040) 

.086 

.026 

.219 

.036 (.001) 

.058 (.005) 

.194 (.031) 

.115 

.025 

.184 

.021 (.001) 

.044 (.004) 

.145 (.027) 

   Notes:  Low, medium, high refer to papers grouped on the basis of average maximum leverage, as in Table II 
in the paper.  Otherwise, as in Table VI in the paper. 
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 Table VIII in the paper examined the effectiveness of the Olea & Pflueger (2013) bias 

test in overidentified equations (where the finite sample 1st moment exists with normal errors) 

using normal and "actual" errors.  Table A7 presents results including chi2 errors.  As noted in 

the paper, the test performs somewhat worse with artificial chi2 errors, with bias levels in the low 

and medium leverage sample and non-iid errors always exceeding the maximum bound 

consistent with the test having a Type-I error rate of .05.  Table A8 below applies the Olea & 

Pflueger bias test to the exactly identified equations in my Monte Carlo simulations.  As the 

finite sample IV coefficients in these equations most likely do not have a 1st moment, I evaluate 

relative truncated bias using coefficients whose absolute value is less than 1000 times the 

absolute value of the underlying parameter of the data generating process.  As noted in the paper, 

the test functions somewhat worse in this sample than in over-identified equations, as in all 

leverage groups and with all error processes H1 regressions now show bias levels that are 

multiples of the limit consistent with a .05 Type-I error rate. 
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  Table A7:  Fraction of Regressions with Relative Bias Greater than Bias Bound  
in Specifications that Don’t and Do Reject the Olea & Pflueger Weak Instrument Null  

(sensitivity test for Table VIII in the paper) 

 bias = .05 bias = .10 bias = .20 bias = ⅓ 
 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

 174 over-identified regressions in 8 low and medium leverage papers 

iid normal 
h. normal 

h. cl. normal 

.939 

.907 

.938 

.040 (.249) 

.240 (.391) 

.432 (.698) 

.861 

.907 

.894 

.045 (.226) 

.182 (.266) 

.258 (.376) 

.815 

.871 

.880 

.033 (.196) 

.183 (.204) 

.264 (.242) 

.587 

.650 

.767 

.041 (.146) 

.194 (.177) 

.235 (.199) 

iid chi2 
h chi2 

h cl chi2 

.925 

.903 

.912 

.073 (.247) 

.355 (.258) 

.611 (.431) 

.864 

.903 

.876 

.031 (.226) 

.316 (.170) 

.465 (.227) 

.786 

.826 

.839 

.034 (.196) 

.314 (.130) 

.364 (.145) 

.581 

.460 

.590 

.042 (.152) 

.207 (.113) 

.219 (.120) 

iid "actual" 
h "actual" 

h cl "actual" 

.930 

.877 

.899 

.074 (.251) 

.093 (.334) 

.219 (.381) 

.876 

.879 

.886 

.001 (.229) 

.044 (.242) 

.135 (.258) 

.799 

.729 

.736 

.001 (.199) 

.043 (.210) 

.071 (.211) 

.648 

.538 

.543 

.002 (.169) 

.062 (.181) 

.071 (.181) 

 52 over-identified regressions in 4 high leverage papers 

iid normal 
h. normal 

h. cl. normal 

.000 

.969 

.985 

.197 (.024) 

.206 (.050) 

.906 (.908) 

.000 

.878 

.978 

.118 (.012) 

.207 (.036) 

.842 (.376) 

.000 

.839 

.968 

.000 (.005) 

.191 (.026) 

.847 (.198) 

.000 

.865 

.899 

.000 (.003) 

.219 (.021) 

.843 (.147) 

iid chi2 
h chi2 

h cl chi2 

.002 

.930 

.985 

.186 (.020) 

.198 (.046) 

.927 (.611) 

.000 

.855 

.961 

.069 (.010) 

.196 (.031) 

.847 (.269) 

.000 

.733 

.922 

.021 (.005) 

.190 (.021) 

.855 (.141) 

.000 

.302 

.817 

.020 (.003) 

.079 (.017) 

.789 (.103) 

iid "actual" 
h "actual" 

h cl "actual" 

.000 

.485 

.528 

.083 (.023) 

.162 (.034) 

.480 (.246) 

.000 

.197 

.485 

.070 (.011) 

.074 (.027) 

.471 (.111) 

.000 

.000 

.326 

.064 (.006) 

.026 (.017) 

.365 (.049) 

.000 

.000 

.305 

.041 (.004) 

.024 (.012) 

.277 (.037) 

   Notes:  As in Table VIII in the paper. 
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Table A8:  Olea & Pflueger Bias Tests in the Exactly Identified Sample  

(sensitivity test for Table VIII in the paper)  

 maximum acceptable relative bias 

 .05 .10 .20 ⅓ 

 H0 H1 (max) H0 H1 (max) H0 H1 (max) H0 H1 (max) 

 (A) 253 regressions in 9 low leverage papers 

iid normal 
h normal 

h cl normal 

.777 

.888 

.881 

.162 (.029) 

.141 (.058) 

.361 (.095) 

.485 

.848 

.878 

.098 (.017) 

.077 (.050) 

.197 (.073) 

.322 

.758 

.858 

.048 (.010) 

.099 (.040) 

.107 (.066) 

.318 

.627 

.826 

.033 (.007) 

.083 (.034) 

.075 (.062) 

iid chi2 
h chi2 

h cl chi2 

.762 

.903 

.867 

.142 (.029) 

.118 (.058) 

.301 (.088) 

.554 

.845 

.899 

.095 (.017) 

.045 (.050) 

.161 (.071) 

.339 

.709 

.835 

.042 (.009) 

.062 (.041) 

.125 (.065) 

.335 

.586 

.768 

.037 (.007) 

.045 (.035) 

.094 (.062) 

iid "actual" 
h "actual" 

h cl "actual" 

.718 

.685 

.717 

.182 (.029) 

.247 (.047) 

.365 (.107) 

.539 

.602 

.571 

.137 (.017) 

.167 (.022) 

.198 (.054) 

.334 

.420 

.548 

.080 (.009) 

.089 (.012) 

.136 (.028) 

.310 

.329 

.377 

.058 (.007) 

.032 (.009) 

.088 (.021) 

 (B) 395 regressions in 8 medium leverage papers 

iid normal 
h normal 

h cl normal 

.916 

.910 

.914 

.126 (.066) 

.577 (.149) 

.781 (.249) 

.776 

.834 

.849 

.154 (.044) 

.231 (.092) 

.474 (.132) 

.527 

.799 

.769 

.108 (.027) 

.168 (.064) 

.195 (.083) 

.409 

.714 

.717 

.071 (.021) 

.175 (.053) 

.187 (.068) 

iid chi2 
h chi2 

h cl chi2 

.903 

.885 

.925 

.189 (.060) 

.432 (.114) 

.776 (.221) 

.750 

.854 

.851 

.177 (.040) 

.212 (.082) 

.378 (.116) 

.501 

.781 

.813 

.116 (.025) 

.142 (.062) 

.168 (.077) 

.346 

.660 

.701 

.072 (.020) 

.138 (.053) 

.150 (.064) 

iid "actual" 
h "actual" 

h cl "actual" 

.923 

.901 

.845 

.262 (.075) 

.382 (.084) 

.501 (.123) 

.843 

.814 

.798 

.248 (.056) 

.269 (.056) 

.290 (.064) 

.618 

.588 

.653 

.182 (.038) 

.218 (.040) 

.253 (.048) 

.399 

.526 

.570 

.103 (.030) 

.191 (.033) 

.230 (.040) 

 (C) 435 regressions in 9 high leverage papers 

iid normal 
h normal 

h cl normal 

.782 

.953 

.983 

.159 (.011) 

.220 (.021) 

.991 (.424) 

.377 

.913 

.959 

.078 (.006) 

.184 (.018) 

.935 (.220) 

.102 

.830 

.901 

.031 (.003) 

.134 (.015) 

.877 (.127) 

.103 

.766 

.855 

.020 (.002) 

.127 (.013) 

.814 (.097) 

iid chi2 
h chi2 

h cl chi2 

.733 

.969 

.965 

.168 (.009) 

.196 (.021) 

.956 (.206) 

.331 

.939 

.938 

.079 (.005) 

.154 (.018) 

.923 (.115) 

.105 

.889 

.894 

.024 (.002) 

.124 (.015) 

.861 (.072) 

.075 

.826 

.830 

.012 (.001) 

.106 (.013) 

.800 (.057) 

iid "actual" 
h "actual" 

h cl "actual" 

.744 

.826 

.896 

.124 (.015) 

.122 (.021) 

.558 (.299) 

.618 

.717 

.815 

.095 (.009) 

.097 (.017) 

.630 (.104) 

.294 

.582 

.694 

.045 (.005) 

.080 (.013) 

.561 (.057) 

.189 

.459 

.543 

.028 (.003) 

.069 (.011) 

.418 (.049) 

   Notes:  As in Table VIII in the paper. 
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Table A9 Average Rejection Rates of True Nulls at the .05 Level in 1st Stage Tests 
(sensitivity test for Table IX in the paper) 

clustered/robust 
default 

low leverage medium leverage high leverage 

kZ > 1 kZ > 1 kZ > 1 kZ > 1 
 

all 
coef joint 

all 
coef joint 

all 
coef joint 

all 
coef joint 

iid normal 
h normal 

h cl normal 

.051 

.404 

.595 

.050 

.253 

.355 

.050 

.463 

.652 

.056 

.062 

.066 

.057 

.061 

.064 

.061 

.070 

.068 

.149 

.132 

.133 

.071 

.053 

.054 

.235 

.149 

.144 

.134 

.281 

.308 

.111 

.156 

.199 

.355 

.481 

.500 

iid chi2 
h chi2 

h cl chi2 

.052 

.401 

.594 

.051 

.247 

.346 

.056 

.459 

.653 

.056 

.069 

.080 

.054 

.063 

.066 

.059 

.072 

.074 

.123 

.156 

.160 

.065 

.059 

.061 

.192 

.194 

.195 

.126 

.299 

.341 

.105 

.161 

.199 

.347 

.490 

.515 

iid "actual" 
h "actual" 

h cl "actual" 

.054 

.196 

.372 

.051 

.138 

.232 

.056 

.223 

.390 

.056 

.057 

.061 

.057 

.066 

.074 

.059 

.070 

.075 

.132 

.208 

.211 

.065 

.084 

.083 

.203 

.273 

.276 

.124 

.203 

.226 

.101 

.136 

.136 

.342 

.359 

.397 

  Notes:  As in Table IX in the paper. 

 

Table A10: Average Rejection Rates of True Nulls at the .01 Level in 1st Stage Tests 
(sensitivity test for Table IX in the paper) 

clustered/robust 
default 

low leverage medium leverage high leverage 

kZ > 1 kZ > 1 kZ > 1 kZ > 1 
 

all 
coef joint 

all 
coef joint 

all 
coef joint 

all 
coef joint 

iid normal 
h normal 

h cl normal 

.010 

.312 

.512 

.010 

.190 

.284 

.010 

.390 

.583 

.013 

.015 

.017 

.012 

.013 

.013 

.013 

.016 

.015 

.075 

.057 

.058 

.020 

.015 

.015 

.133 

.074 

.070 

.062 

.175 

.194 

.045 

.087 

.113 

.273 

.376 

.391 

iid chi2 
h chi2 

h cl chi2 

.012 

.309 

.510 

.012 

.186 

.274 

.014 

.386 

.583 

.014 

.021 

.031 

.012 

.016 

.017 

.013 

.020 

.021 

.053 

.080 

.083 

.017 

.018 

.019 

.094 

.114 

.113 

.055 

.195 

.230 

.041 

.091 

.115 

.264 

.382 

.412 

iid "actual" 
h "actual" 

h cl "actual" 

.014 

.112 

.275 

.012 

.069 

.146 

.015 

.132 

.284 

.015 

.013 

.014 

.013 

.015 

.017 

.012 

.014 

.016 

.062 

.119 

.119 

.017 

.027 

.027 

.106 

.172 

.173 

.055 

.110 

.119 

.040 

.057 

.051 

.263 

.246 

.305 

  Notes:  As in Table IX in the paper. 
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Table IX in the paper reported rejection rates for 1st stage tests using normal and "actual" 

errors at the .05 level.  Tables A9 and A10 above add in chi2 errors and .01 level results.  The 

pattern of results is much the same as in the paper's discussion of Table IX.  Size distortions are 

very large in medium and high leverage papers and grow with the dimensionality of the test, as 

evidenced by the comparison of the average rejection rate for tests of individual instruments 

against that of the joint test of all instruments in papers with overidentified 2SLS regressions. 

Table X in the paper reported Monte Carlo estimates of null rejection probabilities of 

clustered/robust, jackknife and bootstrap methods at the .01 and .05 levels using normal and 

"actual" errors.  Table A11 below adds in results based upon the chi2 distribution.  As elsewhere, 

the pattern of results are very similar to those reported in the paper:  (a) jackknife and bootstrap 

methods reduce the size distortions of clustered/robust methods while producing a higher ratio of 

power to size; (b) the bootstrap-c appears to be as accurate as the -t in tests of IV coefficients and 

is by no means systematically worse in other tests; and (c) no matter which method is used 

power declines with non-iid error processes.  Table A12 reports results broken down by leverage 

group.  As noted in the paper, the improvement in size afforded by the jackknife and bootstrap 

are concentrated in medium and high leverage papers, while in low leverage papers the 

alternative methods are as accurate as clustered/robust inference. 
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Table A11:  Sensitivity test for Table X:  Improved Finite Sample Inference Using the JackKnife & Bootstrap 
(average within paper rejection rates at .01 and .05 levels, 10 Monte Carlos for each of 1309 equations)  

 tests of true nulls tests of false nulls 

 pairs bootstrap wild bootstrap pairs bootstrap wild bootstrap 
 
clustered/ 

robust 
jackknife c t c t 

clustered/ 
robust 

jackknife c t c t 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

 IV coefficients (correlated 1st and 2nd stage errors): H0 = βdgp or 0 

iid normal 
h. normal 

h cl normal 

.028 

.069 

.070 

.081 

.126 

.124 

.018 

.024 

.023 

.050 

.061 

.048 

.009 

.011 

.009 

.042 

.048 

.041 

.021 

.025 

.025 

.065 

.063 

.059 

.009 

.015 

.013 

.046 

.051 

.049 

.011 

.016 

.015 

.052 

.058 

.055 

.455 

.263 

.190 

.588 

.364 

.273 

.391 

.202 

.127 

.518 

.284 

.186 

.312 

.181 

.102 

.482 

.270 

.177 

.384 

.182 

.121 

.544 

.270 

.184 

.257 

.156 

.100 

.434 

.245 

.174 

.376 

.218 

.137 

.551 

.323 

.228 

iid chi2 
h chi2 

h cl chi2 

.024 

.080 

.075 

.065 

.144 

.141 

.014 

.031 

.027 

.040 

.067 

.058 

.007 

.016 

.012 

.033 

.059 

.051 

.017 

.030 

.028 

.050 

.072 

.067 

.007 

.018 

.017 

.038 

.066 

.072 

.010 

.025 

.022 

.045 

.072 

.075 

.482 

.288 

.189 

.606 

.395 

.288 

.403 

.214 

.132 

.530 

.304 

.200 

.330 

.191 

.103 

.494 

.287 

.189 

.396 

.182 

.107 

.543 

.282 

.187 

.279 

.168 

.099 

.450 

.262 

.183 

.403 

.238 

.148 

.565 

.349 

.250 

iid "actual" 
h "actual" 

h cl "actual" 

.025 

.034 

.035 

.073 

.081 

.083 

.014 

.012 

.014 

.044 

.040 

.039 

.007 

.005 

.004 

.035 

.035 

.032 

.019 

.022 

.024 

.060 

.063 

.064 

.007 

.010 

.009 

.042 

.049 

.045 

.011 

.014 

.015 

.050 

.059 

.057 

.428 

.407 

.293 

.551 

.535 

.444 

.370 

.339 

.226 

.485 

.453 

.350 

.311 

.274 

.157 

.447 

.416 

.294 

.355 

.322 

.228 

.495 

.470 

.375 

.263 

.226 

.139 

.425 

.380 

.303 

.362 

.342 

.273 

.520 

.501 

.424 

 1st Stage F-tests (correlated errors): H0 = πdgp or 0 

iid normal 
h normal 

h cl normal 

.051 

.085 

.091 

.119 

.162 

.171 

.023 

.034 

.030 

.073 

.081 

.078 

.008 

.020 

.023 

.054 

.081 

.088 

.017 

.015 

.012 

.065 

.059 

.056 

.010 

.018 

.023 

.053 

.072 

.076 

.012 

.017 

.017 

.056 

.065 

.065 

.925 

.759 

.647 

.950 

.825 

.729 

.894 

.693 

.562 

.933 

.772 

.658 

.848 

.688 

.571 

.924 

.787 

.680 

.855 

.547 

.434 

.912 

.655 

.551 

.833 

.699 

.576 

.915 

.790 

.683 

.858 

.668 

.540 

.921 

.758 

.636 

iid chi2 
h chi2 

h cl chi2 

.038 

.101 

.108 

.099 

.183 

.184 

.019 

.044 

.053 

.054 

.095 

.101 

.006 

.027 

.036 

.038 

.088 

.103 

.016 

.024 

.029 

.053 

.067 

.072 

.008 

.028 

.031 

.046 

.075 

.086 

.009 

.027 

.033 

.050 

.079 

.084 

.928 

.778 

.658 

.955 

.848 

.737 

.901 

.712 

.575 

.940 

.793 

.665 

.855 

.701 

.579 

.927 

.812 

.691 

.856 

.553 

.434 

.913 

.666 

.546 

.841 

.738 

.618 

.918 

.818 

.707 

.870 

.713 

.583 

.929 

.800 

.678 

iid "actual" 
h "actual" 

h cl "actual" 

.040 

.081 

.084 

.105 

.160 

.162 

.018 

.029 

.032 

.054 

.075 

.078 

.009 

.011 

.015 

.041 

.056 

.066 

.015 

.017 

.018 

.051 

.064 

.062 

.008 

.017 

.020 

.042 

.067 

.067 

.009 

.016 

.015 

.044 

.066 

.063 

.880 

.857 

.766 

.924 

.910 

.846 

.837 

.778 

.666 

.897 

.855 

.766 

.795 

.738 

.621 

.879 

.853 

.777 

.806 

.718 

.588 

.873 

.820 

.724 

.791 

.751 

.617 

.882 

.854 

.767 

.816 

.754 

.613 

.889 

.856 

.755 
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Table A11:  Sensitivity test for Table X (continued) 

 tests of true nulls tests of false nulls 
 pairs bootstrap wild bootstrap pairs bootstrap wild bootstrap 
 

clustered/ 
robust 

jackknife c t c t 
clustered/ 

robust 
jackknife c t c t 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

 Hausman tests: H0 = (βiv = βols) 

 (uncorrelated errors) (correlated errors) 

iid normal 
h normal 

h cl normal 

.021 

.065 

.076 

.071 

.145 

.157 

.008 

.011 

.008 

.036 

.047 

.029 

.005 

.006 

.003 

.030 

.036 

.025 

.008 

.007 

.005 

.041 

.035 

.025 

.006 

.013 

.011 

.044 

.051 

.050 

.010 

.014 

.020 

.050 

.068 

.070 

.373 

.268 

.210 

.493 

.378 

.316 

.255 

.153 

.098 

.373 

.211 

.147 

.216 

.147 

.089 

.354 

.216 

.139 

.262 

.146 

.085 

.405 

.202 

.138 

.266 

.158 

.103 

.408 

.242 

.178 

.306 

.191 

.135 

.450 

.279 

.219 

iid chi2 
h chi2 

h cl chi2 

.017 

.083 

.101 

.060 

.158 

.182 

.007 

.018 

.014 

.033 

.054 

.045 

.004 

.010 

.006 

.031 

.047 

.039 

.007 

.011 

.008 

.035 

.046 

.040 

.007 

.016 

.017 

.041 

.068 

.065 

.010 

.027 

.033 

.051 

.087 

.101 

.344 

.285 

.219 

.470 

.383 

.323 

.239 

.150 

.089 

.347 

.210 

.129 

.210 

.142 

.079 

.338 

.215 

.132 

.236 

.140 

.078 

.363 

.202 

.119 

.247 

.165 

.099 

.397 

.250 

.177 

.276 

.198 

.140 

.421 

.293 

.233 

iid "actual" 
h "actual" 

h cl "actual" 

.023 

.039 

.049 

.073 

.100 

.111 

.006 

.007 

.008 

.030 

.032 

.033 

.003 

.003 

.003 

.024 

.028 

.024 

.007 

.007 

.007 

.040 

.041 

.037 

.024 

.021 

.021 

.050 

.051 

.052 

.013 

.021 

.022 

.052 

.068 

.075 

.375 

.335 

.278 

.484 

.454 

.405 

.266 

.211 

.139 

.364 

.315 

.240 

.221 

.186 

.097 

.346 

.297 

.204 

.258 

.205 

.134 

.377 

.323 

.260 

.211 

.171 

.127 

.318 

.272 

.232 

.314 

.260 

.218 

.441 

.387 

.350 

     Notes:  As in Tsble X in the paper. 
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Table A12:  :  Rejection Probabilities of True Nulls by Test and Leverage Group 
(sensitivity test for Table X in the paper)  

 low leverage medium leverage high leverage 

 
pairs 

bootstrap 
wild 

bootstrap 
pairs 

bootstrap 
wild 

bootstrap 
pairs 

bootstrap 
wild 

bootstrap 
 

clust- 
robust 

jack-
knife 

c t c t 

clust- 
robust 

jack-
knife 

c t c t 

clust- 
robust 

jack-
knife 

c t c t 

 IV coefficients (correlated errors): .01 level 

iid normal 
h normal 

h cl normal 

.013 

.013 

.016 

.011 

.008 

.013 

.008 

.007 

.009 

.013 

.007 

.013 

.011 

.010 

.010 

.016 

.010 

.013 

.036 

.054 

.053 

.026 

.028 

.026 

.014 

.011 

.010 

.030 

.028 

.027 

.007 

.010 

.009 

.009 

.010 

.008 

.035 

.141 

.142 

.017 

.038 

.030 

.006 

.016 

.009 

.021 

.039 

.036 

.008 

.024 

.019 

.008 

.027 

.025 

iid chi2 
h chi2 

h cl chi2 

.009 

.014 

.012 

.007 

.016 

.013 

.004 

.009 

.010 

.008 

.013 

.009 

.006 

.015 

.012 

.007 

.014 

.012 

.031 

.069 

.063 

.016 

.039 

.034 

.011 

.022 

.016 

.021 

.038 

.036 

.009 

.019 

.017 

.011 

.026 

.023 

.033 

.157 

.151 

.019 

.038 

.036 

.006 

.018 

.009 

.022 

.039 

.039 

.005 

.020 

.021 

.012 

.035 

.031 

iid "actual" 
h "actual" 

h cl "actual" 

.012 

.010 

.010 

.010 

.007 

.007 

.007 

.006 

.004 

.012 

.007 

.009 

.011 

.006 

.005 

.015 

.009 

.010 

.021 

.043 

.041 

.012 

.013 

.014 

.008 

.006 

.004 

.016 

.032 

.033 

.006 

.019 

.018 

.010 

.029 

.027 

.044 

.050 

.055 

.019 

.015 

.021 

.005 

.003 

.005 

.029 

.028 

.031 

.005 

.004 

.005 

.008 

.004 

.009 

 IV coefficients (correlated errors): .05 level 

iid normal 
h normal 

h cl normal 

.058 

.053 

.048 

.053 

.045 

.038 

.048 

.037 

.036 

.058 

.043 

.042 

.049 

.043 

.043 

.060 

.056 

.054 

.084 

.101 

.096 

.051 

.058 

.051 

.051 

.044 

.041 

.064 

.059 

.055 

.049 

.045 

.046 

.052 

.048 

.046 

.102 

.224 

.228 

.045 

.079 

.056 

.025 

.064 

.044 

.074 

.086 

.079 

.039 

.066 

.058 

.044 

.070 

.064 

iid chi2 
h chi2 

h cl chi2 

.035 

.057 

.049 

.031 

.047 

.040 

.029 

.045 

.039 

.037 

.044 

.037 

.032 

.053 

.052 

.041 

.057 

.059 

.071 

.131 

.135 

.044 

.074 

.063 

.042 

.063 

.060 

.051 

.079 

.077 

.042 

.068 

.087 

.050 

.073 

.077 

.090 

.244 

.239 

.044 

.082 

.073 

.030 

.068 

.056 

.061 

.093 

.088 

.040 

.076 

.077 

.043 

.086 

.087 

iid "actual" 
h "actual" 

h cl "actual" 

.050 

.039 

.039 

.045 

.034 

.032 

.043 

.035 

.028 

.050 

.040 

.044 

.045 

.035 

.032 

.052 

.042 

.042 

.062 

.095 

.092 

.035 

.042 

.038 

.034 

.045 

.039 

.051 

.070 

.071 

.051 

.072 

.069 

.045 

.078 

.073 

.108 

.109 

.117 

.051 

.044 

.047 

.026 

.024 

.028 

.079 

.078 

.077 

.031 

.041 

.035 

.053 

.056 

.055 

   Notes:  As in Table X in the paper.   
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Table A12:  :  Rejection Probabilities of True Nulls by Test and Leverage Group (continued) 

 low leverage medium leverage high leverage 

 
pairs 

bootstrap 
wild 

bootstrap 
pairs 

bootstrap 
wild 

bootstrap 
pairs 

bootstrap 
wild 

bootstrap 
 

clust- 
robust 

jack-
knife 

c t c t 

clust- 
robust 

jack-
knife 

c t c t 

clust- 
robust 

jack-
knife 

c t c t 

 1st Stage F-tests (correlated errors): .01 level 

iid normal 
h normal 

h cl normal 

.010 

.016 

.018 

.009 

.011 

.017 

.011 

.016 

.020 

.009 

.006 

.009 

.012 

.011 

.012 

.011 

.010 

.011 

.081 

.054 

.050 

.032 

.023 

.021 

.007 

.018 

.016 

.011 

.007 

.006 

.009 

.014 

.017 

.012 

.012 

.011 

.062 

.187 

.206 

.028 

.066 

.053 

.008 

.025 

.032 

.030 

.033 

.022 

.011 

.029 

.039 

.011 

.030 

.029 

iid chi2 
h chi2 

h cl chi2 

.014 

.029 

.026 

.011 

.023 

.019 

.011 

.023 

.018 

.010 

.014 

.013 

.011 

.017 

.019 

.011 

.021 

.017 

.044 

.074 

.088 

.016 

.041 

.057 

.004 

.020 

.034 

.006 

.014 

.022 

.008 

.020 

.023 

.010 

.021 

.039 

.055 

.200 

.209 

.029 

.069 

.084 

.003 

.036 

.054 

.031 

.044 

.051 

.004 

.047 

.051 

.004 

.040 

.042 

iid "actual" 
h "actual" 

h cl "actual" 

.013 

.008 

.010 

.009 

.006 

.005 

.010 

.009 

.012 

.010 

.005 

.004 

.011 

.006 

.006 

.010 

.006 

.004 

.049 

.130 

.130 

.017 

.046 

.051 

.007 

.014 

.017 

.008 

.020 

.018 

.007

.030 

.031 

.009 

.027 

.032 

.059 

.105 

.113 

.029 

.035 

.038 

.011 

.009 

.015 

.028 

.027 

.032 

.007 

.015 

.022 

.008 

.014 

.008 

 1st Stage F-tests (correlated errors): .05 level 

iid normal 
h normal 

h cl normal 

.073 

.067 

.075 

.065 

.055 

.061 

.068 

.066 

.076 

.069 

.054 

.053 

.063 

.055 

.061 

.069 

.057 

.059 

.147 

.127 

.129 

.085 

.067 

.054 

.055 

.062 

.072 

.042 

.031 

.034 

.046 

.061 

.058 

.052 

.054 

.053 

.137 

.293 

.309 

.070 

.121 

.119 

.039 

.115 

.116 

.085 

.092 

.082 

.050 

.101 

.108 

.047 

.085 

.083 

iid chi2 
h chi2 

h cl chi2 

.052 

.065 

.067 

.052 

.060 

.053 

.047 

.065 

.065 

.052 

.048 

.045 

.051 

.059 

.055 

.053 

.055 

.054 

.118 

.168 

.175 

.045 

.097 

.109 

.037 

.083 

.106 

.030 

.053 

.062 

.044 

.061 

.080 

.055 

.079 

.095 

.127 

.315 

.310 

.066 

.129 

.142 

.029 

.116 

.138 

.077 

.100 

.110 

.043 

.103 

.122 

.043 

.103 

.105 

iid "actual" 
h "actual" 

h cl "actual" 

.050 

.053 

.057 

.043 

.048 

.047 

.046 

.051 

.056 

.044 

.042 

.038 

.048 

.049 

.047 

.046 

.052 

.047 

.130 

.219 

.221 

.050 

.097 

.098 

.039 

.066 

.069 

.033 

.064 

.062 

.039 

.089 

.084 

.046 

.084 

.088 

.136 

.208 

.207 

.070 

.080 

.090 

.038 

.051 

.072 

.076 

.086 

.088 

.040 

.063 

.070 

.041 

.061 

.053 

   Notes:  As in Table X in the paper.   
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Table A12:  :  Rejection Probabilities of True Nulls by Test and Leverage Group (continued) 

 low leverage medium leverage high leverage 

 
pairs 

bootstrap 
wild 

bootstrap 
pairs 

bootstrap 
wild 

bootstrap 
pairs 

bootstrap 
wild 

bootstrap 

 

clust- 
robust 

jack-
knife 

c t c t 

clust- 
robust 

jack-
knife 

c t c t 

clust- 
robust 

jack-
knife 

c t c t 

 Hausman tests (uncorrelated errors): .01 level 

iid normal 
h normal 

h cl normal 

.016 

.011 

.020 

.010 

.005 

.007 

.007 

.006 

.007 

.009 

.004 

.006 

.010 

.009 

.007 

.012 

.011 

.017 

.016 

.043 

.052 

.005 

.004 

.004 

.005 

.001 

.001 

.006 

.002 

.002 

.004 

.011 

.011 

.009 

.012 

.018 

.030 

.143 

.155 

.009 

.025 

.014 

.003 

.010 

.002 

.011 

.016 

.007 

.005 

.019 

.015 

.008 

.020 

.024 

iid chi2 
h chi2 

h cl chi2 

.014 

.021 

.037 

.007 

.008 

.010 

.006 

.006 

.007 

.006 

.003 

.007 

.005 

.010 

.012 

.012 

.015 

.024 

.012 

.080 

.071 

.002 

.013 

.007 

.001 

.008 

.004 

.002 

.010 

.004 

.006 

.017 

.017 

.013 

.030 

.029 

.026 

.149 

.193 

.012 

.032 

.024 

.005 

.016 

.008 

.014 

.020 

.014 

.010 

.022 

.021 

.007 

.036 

.048 

iid "actual" 
h "actual" 

h cl "actual" 

.008 

.020 

.018 

.005 

.007 

.002 

.004 

.006 

.001 

.005 

.005 

.001 

.033 

.027 

.027 

.007 

.011 

.011 

.028 

.049 

.065 

.003 

.003 

.005 

.002 

.002 

.007 

.002 

.003 

.008 

.034 

.034 

.033 

.024 

.041 

.047 

.031 

.047 

.064 

.012 

.011 

.016 

.004 

.002 

.002 

.013 

.013 

.010 

.004 

.002 

.003 

.008 

.009 

.008 

 Hausman tests (uncorrelated errors): .05 level 

iid normal 
h normal 

h cl normal 

.068 

.080 

.083 

.050 

.044 

.033 

.045 

.039 

.030 

.050 

.037 

.031 

.053 

.046 

.042 

.062 

.073 

.070 

.053 

.109 

.118 

.016 

.023 

.019 

.018 

.018 

.019 

.023 

.016 

.013 

.037 

.041 

.041 

.044 

.051 

.057 

.091 

.247 

.269 

.041 

.074 

.036 

.026 

.052 

.026 

.049 

.051 

.030 

.041 

.066 

.068 

.043 

.080 

.082 

iid chi2 
h chi2 

h cl chi2 

.049 

.072 

.099 

.032 

.045 

.049 

.031 

.044 

.046 

.037 

.033 

.038 

.039 

.050 

.060 

.051 

.067 

.090 

.057 

.149 

.138 

.026 

.043 

.031 

.026 

.037 

.021 

.023 

.034 

.022 

.041 

.072 

.063 

.052 

.096 

.084 

.075 

.253 

.310 

.040 

.073 

.055 

.035 

.061 

.048 

.046 

.070 

.060 

.043 

.081 

.072 

.049 

.097 

.128 

iid "actual" 
h "actual" 

h cl "actual" 

.042 

.065 

.069 

.032 

.041 

.034 

.029 

.043 

.028 

.033 

.050 

.035 

.058 

.067 

.058 

.041 

.059 

.061 

.074 

.119 

.132 

.014 

.018 

.028 

.018 

.020 

.026 

.029 

.024 

.032 

.079 

.069 

.073 

.067 

.091 

.106 

.102 

.116 

.132 

.043 

.036 

.037 

.024 

.022 

.017 

.059 

.050 

.044 

.014 

.017 

.025 

.050 

.054 

.058 

   Notes:  As in Table X in the paper.   

 
 



 25 

Because of the high computational cost of calculating jackknife and bootstrap p-values, 

Table X in the paper (and Tables A11 and A12 above) estimated null rejection probabilities 

using only 10 simulations for each of 1309 equations in 30 papers.  To address the question of 

whether this leads to inaccurate estimates, Tables A13 reports clustered/robust results using 10 

and 1000 simulations per equation.  As can be seen, 10 and 1000 results are very similar.  Table 

X aims to measure average rejection rates across 30 papers, not the average rejection rate in any 

given equation, and in this regard, as noted in the paper, 10 simulations per equation appear to 

yield reasonably accurate estimates of the average and relative performance of the different 

methods.   
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Table A13:  Clustered/Robust Rejection Rates at the .01 and .05 Levels 

(sensitivity test for Table X in the paper, 10 vs 1000 Monte Carlos per equation)  

 IV coefficients 1st Stage F-tests Hausman tests 

 H0 = βdgp H0 = 0 H0 = πdgp H0 = 0 uncorrelated 
errors 

correlated 
errors 

  10 1000  10 1000  10 1000  10 1000  10 1000  10 1000 

 .01 level 
iid normal 
h. normal 

h cl normal 

.028 

.069 

.070 

.029 

.069 

.069 

.455 

.263 

.190 

.461 

.276 

.182 

.051 

.085 

.091 

.050 

.082 

.090 

.925 

.759 

.647 

.924 

.759 

.642 

.021 

.066 

.076 

.020 

.065 

.076 

.373 

.268 

.210 

.374 

.270 

.205 

iid chi2 
h. chi2 

h cl chi2 

.024 

.080 

.075 

.026 

.077 

.083 

.482 

.288 

.189 

.477 

.287 

.196 

.038 

.101 

.108 

.041 

.099 

.115 

.928 

.778 

.658 

.927 

.775 

.662 

.017 

.083 

.101 

.018 

.084 

.103 

.344 

.285 

.219 

.349 

.289 

.224 

iid "actual" 
h "actual" 

h cl "actual" 

.025 

.034 

.035 

.025 

.035 

.037 

.428 

.407 

.293 

.432 

.409 

.297 

.040 

.081 

.084 

.044 

.080 

.084 

.880 

.857 

.766 

.887 

.860 

.761 

.023 

.039 

.049 

.019 

.038 

.046 

.375 

.335 

.278 

.374 

.334 

.279 

 .05 level 

iid normal 
h. normal 

h cl normal 

.081 

.126 

.124 

.077 

.126 

.123 

.588 

.364 

.273 

.590 

.375 

.272 

.119 

.162 

.171 

.113 

.158 

.169 

.950 

.825 

.729 

.953 

.825 

.720 

.071 

.145 

.157 

.069 

.139 

.155 

.493 

.378 

.316 

.490 

.374 

.312 

iid chi2 
h. chi2 

h cl chi2 

.065 

.144 

.141 

.075 

.139 

.144 

.606 

.395 

.288 

.603 

.392 

.294 

.099 

.183 

.184 

.102 

.174 

.194 

.955 

.848 

.737 

.953 

.847 

.742 

.060 

.158 

.182 

.067 

.158 

.182 

.470 

.383 

.323 

.472 

.391 

.329 

iid "actual" 
h "actual" 

h cl "actual" 

.073 

.081 

.083 

.072 

.085 

.085 

.551 

.535 

.444 

.552 

.539 

.446 

.105 

.160 

.162 

.104 

.156 

.166 

.924 

.910 

.846 

.927 

.910 

.845 

.073 

.100 

.111 

.068 

.098 

.110 

.484 

.454 

.405 

.487 

.455 

.407 

   Notes:  10 and 1000 = number of Monte Carlos per equation used in calculation of average rejection rates.  
Otherwise, as in Table X in the paper. 
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Table A14:  Significance of 2SLS Coefficients (sensitivity test for Table XI) 
(average across papers of the fraction of coefficients rejecting the null of 0)  

 all results 

 

headline 
results all low medium high 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

authors’ methods 
clustered/robust 
jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.522 

.463 

.382 

.243 

.308 

.231 

.512 

.788 

.768 

.537 

.520 

.599 

.444 

.719 

.365 

.339 

.250 

.160 

.247 

.115 

.346 

.558 

.531 

.401 

.340 

.453 

.337 

.535 

.543 

.524 

.467 

.346 

.444 

.219 

.600 

.719 

.716 

.674 

.600 

.692 

.603 

.768 

.215 

.173 

.095 

.074 

.088 

.092 

.231 

.400 

.347 

.235 

.168 

.289 

.246 

.414 

.336 

.322 

.187 

.062 

.210 

.035 

.208 

.555 

.531 

.293 

.252 

.378 

.163 

.425 

    Notes:  As in Table XI.     
  

Table A15: Frequency with which IV Confidence Intervals contain OLS Point Estimates 
(sensitivity test for Table XIII)  

 all results 

 
headline 
results all low medium high 

 .99 .95 .99 .95 .99 .95 .99 .95 .99 .95 

clustered/robust 
jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.831 

.862 

.895 

.895 

.847 

.858 

.673 

.801 

.790 

.769 

.759 

.664 

.870 

.902 

.934 

.902 

.916 

.887 

.750 

.825 

.852 

.779 

.801 

.719 

.820 

.801 

.849 

.825 

.836 

.768 

.706 

.727 

.753 

.697 

.733 

.622 

.951 

.973 

.972 

.984 

.920 

.940 

.830 

.915 

.925 

.890 

.771 

.787 

.840 

.930 

.981 

.897 

.990 

.952 

.713 

.833 

.877 

.750 

.899 

.748 

    Notes:  As in Table XIII. 

 In Section VI's analysis of the sample aggregate information is given for all and headline 

results, but (for reasons of space) detail by leverage group is only given for headline results.  

Tables A14-A18 reverse this, providing detail for all results by leverage groups.  The patterns by 

leverage group are the same as those found for headline results reported in the paper with, in 

particular, the greatest differences between cl/robust and jackknife and bootstrap significance 

rates appearing in medium and high leverage papers. 
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Table A16:  Rejection Rates in Hausman Tests (tests of OLS bias) 

(sensitivity test for Table XIV)  

 all results 

 

headline 
results all low medium high 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

clustered/robust 

jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.309 

.188 

.138 

.110 

.187 

.237 

.445 

.254 

.249 

.300 

.319 

.470 

.232 

.135 

.098 

.110 

.129 

.175 

.382 

.227 

.200 

.243 

.247 

.328 

.290 

.252 

.190 

.233 

.203 

.283 

.441 

.344 

.310 

.349 

.313 

.421 

.228 

.071 

.066 

.065 

.147 

.209 

.358 

.162 

.154 

.176 

.278 

.341 

.177 

.083 

.037 

.031 

.036 

.034 

.348 

.174 

.136 

.205 

.149 

.221 

   Notes:  As in Table XIV.       
    

Table A17: Identification in the First-Stage (sensitivity test for Table XV) 
(rejection rates in tests of instrument irrelevance)  

 all results 

 

headline 
results all low medium high 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

clustered/robust 
jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

1.00 
.835 
.781 
.755 
.794 
.783 

1.00 
.945 
.967 
.877 
.967 
.952 

.858 

.718 

.661 

.638 

.704 

.660 

.929 

.827 

.874 

.773 

.886 

.856 

.913 

.903 

.869 

.859 

.892 

.879 

.966 

.948 

.977 

.923 

.961 

.942 

.802 

.630 

.526 

.571 

.585 

.604 

.853 

.728 

.768 

.704 

.727 

.749 

.858 

.621 

.588 

.484 

.636 

.497 

.969 

.805 

.878 

.693 

.971 

.876 

      Notes:  As in Table XV.  
          

Table A18:  Does 2SLS Provide Information that is Strongly Statistically Different from OLS? 
(average fraction of 2SLS regressions rejecting π = 0 & βols ϵ CI2sls or βols unbiased) 

(sensitivity test for Table XVI)  

 (i) at .01 level (ii) at .05 level 

 all results all results 
 

headline 
results all low med high 

headline 
results all low med high 

cl/robust 
jackknife 
pairs boot - c 
pairs boot - t 
wild boot - c 
wild boot - t 

.309 

.188 

.138 

.138 

.187 

.287 

.234 

.130 

.097 

.127 

.116 

.177 

.285 

.239 

.190 

.220 

.205 

.276 

.209 

.071 

.064 

.066 

.133 

.199 

.210 

.081 

.037 

.093 

.009 

.058 

.445 

.271 

.221 

.355 

.319 

.502 

.378 

.228 

.183 

.277 

.249 

.353 

.439 

.341 

.310 

.353 

.315 

.433 

.329 

.159 

.152 

.203 

.274 

.322 

.366 

.184 

.086 

.273 

.158 

.305 

   Notes:  As in Table XVI. 
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B:  Selection of Headline Results 

 As noted in the paper, at the request of reviewers I separate out headline results in the 

discussion and analysis.  The text of my paper gives the criteria used to define a headline result.  

Table B below reports the location of headline results in each paper, along with notes indicating 

how they were identified.  Papers are identified by the initials of the last names of the authors 

and the year of publication (see appendix L below for the full citations), followed by an equals 

sign and the number of headline results.  The location of headline results in tables is then 

identified by a number indicating the table followed by a parentheses where the row (if needed) 

and column of headline results are listed, separated by "/" marks.  To illustrate:  2(3/4) means 

table 2, IV coefficients in columns 3 and 4; 5(B14) means table 5, IV coefficients in panel B row 

1 column 4. 
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Table B: Selection of Headline Results 

paper 
table(rowcol) 

notes 

A2011 = 8 
2(3/4) 

Abstract/intro mention black and white poverty, black-white income disparities, black incomes, 
within white inequality.  Repeated in first sentence of conclusion.  Table 2 covers all of these 
under column title main results.   

A2012 = 1 
3(A1) 

Critique of another paper: use first replication regression, which has strongest 1st stage. 

ACS2014 = 1 
4(6) 

Cols 4 & 6 very close and given equal weight in text and match # reported in abstract/intro.  
Col 6 used to construct estimates included lagged effects reported in text and abstract/intro. 

ADH2013 = 1 
3(6) 

Table 3, col. 6 noted as preferred specification.  Abstract/intro/conclusion discuss other 
significant effects, but these come much later in presentation within paper and intermingled 
with insignificant results. 

AJRY2008 = 2 
5(4), 6(4) 

Both instruments given equal weight in introduction.  Col 4 is baseline specification, given 
more discussion in terms of 1st stage and coef. 

AZ2011 = 3 
6(2/4/6) 

Columns with full controls given emphasis in text and match reported results in introduction.  
Table 7 covers other measures of quality of governance, but rule of law singled out in this and 
other sections. 

BC2010 = 7 
3(A22/B32/C22/D12), 
4(14), 5(B14), 6(F35) 

 

Abstract: divorce, intermarriage, fewer children, for some living outside ethnic enclave;  
introduction: lower marriage, ever married, higher divorce, spouse fluent, more educated and 
earns more, marriage outside ethnicity and nationality, fewer children, living outside ethnic 
enclaves; conclusion: divorced, marrying US native, more educated and higher earning spouse, 
fewer children, for some living outside ethnic enclaves. 
Common to at least two of the above: divorce, intermarriage, spouse more educated and higher 
earning, fewer children, for some outside ethnic enclave.  Intermarriage - spouse has same 
country of birth seems to summarize best the four measures; fertility - text indicates women's 
results more easy to interpret as fertility; living outside enclave - second measure deemed more 
accurate at top p. 183. 

BC2013 = 3 
1(1), 3(1/3) 

Critique of other papers: use regressions that replicate original results for equations with a 
single instrumented variable. 

BD2006 = 1 
5(13) 

Result mentioned in intro, other results in table are specification checks and with caveats. 

BHW2011 = 1 
1(7) 

Non-textile results highlighted in abstract/introduction/conclusion.  This instrument highlighted 
as primary specification in introduction (p. 94).  

BL2010 = 1 
4(A2) 

All instruments, only point estimate for that table summarized in text (p. 139), panels A & B 
(with more controls) very similar, insignificant results on movement to autocracy qualified in 
conclusion and given less emphasis in introduction/abstract/conclusion. 

BL2012 = 1 
3(2) 

Only coefficent estimate for that table discussed in text, remainder described as specification 
checks.  [Alternative: Cols 5 & 8, but 8 involves multiple instrumented coefficients - my paper 
only examines single instrumented as multiple is rare, see text of my paper - and both have low 
1st stage F - since yield same coef with higher s.e., seen by authors as specification checks]. 

C2015 = 4 
2(B2/4/6/7) 

 

No particular outcome mentioned in introduction, no abstract. Multiple outcomes, text 
discusses rape, larceny, motor vehicle theft & aggravated assault.   

CFLW2012 = 1 
3(6) 

Highlighted as preferred specification in text. 

CLGJ2010 = 1 
5(C4) 

Women's results considered more reliable than men's (text), overall infant mortality result 
noted in abstract.  

CS2013 = 3 
3(A1/2) & 5(A3) 

 

Property values, income, population, employment, poverty rates effects mentioned in abstract.  
First 3 repeated in introduction and conclusion.  Population effects (table 5) repeated in 
conclusion.  All other results in these tables compared in text to those in panel A. 
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Table L: Selection of Headline Results (continued) 

paper 
table(rowcol) 

notes 

D2011 = 2 
4(7/8) 

Employment and hours/wages highlighted in abstract/introduction.  Hours/wages only OLS, 
employment IV also.  Remaining results described as mechanisms.  Point estimate on female 
employment/participation repeated in introduction/text/conclusion.  These two columns 
highlighted as preferred specification in text.  Male results on participation in table 5 qualified 
in text. 

D2015 = 1 
8(1) 

Coefficients rise (OLS & IV) with additional covariates and discussion in text focuses on 
lowest OLS value (col 1) and possibility that it overstates.  This column given precedence in 
discussion and indicated to be preferred specification in introduction. 

DMW2011 = 1 
4I(C4) 

Highlighted as preferred estimate in conclusion, in range reported in introduction.  
[Alternative: Table 2, reg # 2, col 4 reported as preferred specification in text, but not 
highlighted in conclusion].  

GK2010 = 3 
3(last 3 rows of 2) 

6, 12 & 18 month horizons highlighted in introduction and conclusion. 

H2014 = 1 
5(6) 

Productivity result highlighted in introduction/conclusion.  Tables 4 & 5 are main results, text 
indicates dissatisfaction with 1st stage until get to last column of table 5.  Remaining tables 
described as testing robustness of results.  

HG2010 = 2 
7(H/J) 

Described in text as preferred IV specifications.  Then repeated in first column of table 8 which 
is then used to summarize results in conclusion.  Post-college results in table 8 not as 
significant. 

J2015 = 2 
3(3) & 7(3) 

IV results highlighted in abstract and introduction. Asymmetries explored in table 9 and 
discussed in introduction and conclusion, but is last table in paper and hence seems less central.  
Table 4 is a sub-category of 3, tables 5 & 6 IV insignificant and not featured in 
abstract/introduction.  Cols. 4 of tables (different specification) described as addressing some 
concerns, but in some cases results opposite to headline results or insignificant.  

K2014 = 1 
4(2) 

Closest match to number reported in abstract.  Cols 2 and 3 noted in text to have higher 1st 
stage F due to fact more important in these sub-samples.  Col 1 insignificant.  [Alternative: 
column 1, because full sample]. 

LMB2013 = 2 
6(6), 7(6) 

Identified as preferred specification in text.  Outcomes highlighted in intro,  

MVW2014 = 1 
4(2) 

Point estimate quoted in introduction, singled out in text. [Alternative: per patent estimate, col 
4, but not quoted in intro]. 

O2006 = 3 
4(12/42/82) 

Returns to schooling mentioned in both introduction and conclusion.  Introduction also 
mentions other outcomes, but not in conclusion and not reviewed in text until last.  Table 4 is 
table that delivers summary result (mentioned in introduction and conclusion) of 10-14%, 
compares 3 countries in text. 

SW2011 = 1 
1(6) 

Agrees with point estimates summarized in introduction.  In text, col. 4 quickly dismissed in 
favour of col. 5, col. 5 then described as "naive". 

T2008 = 1 
8(A2) 

Abstract/introduction emphasis on HIV positive purchasing condoms and number purchased.  
Because only use eqns with one instrumented coef in this study [see text of my paper], exclude 
results Table 7.  Also, Table 8 separates estimates out by HIV status, which is what is 
emphasized in introduction.  Table 8 - HIV positive, purchasing condoms, is closest to 
emphasis in abstract/introduction. 

Y2014 = 1 
2(D2) 

Considers defense spending as best instrument & use of capacity utilization controls important, 
value of -.750 used in later discussion.  (Specification with -.750 at bottom of table is a 
summary effect, including effects of lags which are not instrumented). 
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Table C1:  Increase in ln Relative 2SLS to OLS Relative Bias and Maximum Leverage 

(each cell, enclosed in a box, represents a separate regression)  

 
increase in relative bias from iid errors 

to heteroskedastic errors 
increase in relative bias from iid errors 
to clustered & heteroskedastic errors 

 ||*1000|ˆ| dgp   ||*100|ˆ| dgp   ||*10|ˆ| dgp   ||*1000|ˆ| dgp   ||*100|ˆ| dgp   ||*10|ˆ| dgp   

normal 
errors 

β 
s.e. 
p-v 

4.0 
(1.5) 
.012 

3.8 
(1.3) 
.019 

3.8 
(1.2) 
.012 

5.6 
(1.3) 
.001 

4.8 
(1.1) 
.002 

4.3 
(1.1) 
.002 

chi2 

errors 

β 
s.e. 
p-v 

3.6 
(1.3) 
.013 

3.7 
(1.2) 
.010 

3.7 
(1.0) 
.006 

5.5 
(1.4) 
.007 

5.5 
(1.1) 
.002 

5.2 
(1.1) 
.001 

"actual" 
errors 

β 
s.e. 
p-v 

2.2 
(0.8) 
.011 

2.2 
(0.7) 
.009 

2.3 
(0.7) 
.014 

2.9 
(1.4) 
.037 

2.7 
(1.3) 
.029 

2.9 
(1.3) 
.029 

    Notes:  Each cell represents a separate regression of the increase in ln 2SLS to OLS relative bias on maximum 
leverage and a constant term using paper averages (30observations).  β & s.e. = coefficient and heteroskedasticity 
robust standard error for maximum leverage, p-v = resampling bootstrap-t p-value calculated using 1000 bootstrap 
draws. 

C:  Maximum Leverage and Increases in Relative Bias  

 As noted in the paper's discussion of Table V, although the increase in relative 2SLS to 

OLS bias with non-iid error processes by broad leverage group (low, medium, high) is not 

monotonic, the two variables are positively and significantly related at the paper level.  To show 

this, Table C1 regresses the increase in ln relative 2SLS to OLS bias found in moving from iid to 

heteroskedastic or clustered & heteroskedastic errors on maximum leverage, separately 

examining results using normal, chi2 and "actual" error processes and different levels of 

truncation in calculating relative bias.  Regressions are done at the paper level using paper 

averages.  Reported standard errors are heteroskedasticity robust and p-values are calculated 

using the bootstrap-t.  All of the relations are positive and significant at the .05 level or less.   
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D:  Using Wild Bootstrap Data Generating Methods to Approximate the 
Characteristics of a Data Generating Process  

 In the paper and elsewhere in this on-line appendix I use transformations of jackknifed 

residuals to approximate the distribution of results produced by the data generating process 

underlying the actual data of my sample.  Such simulations are identified by the moniker "actual" 

in the relevant tables.  In this appendix I present two approaches to approximating the results 

produced by an underlying data generating process using wild bootstrap transformations of 

estimated residuals and apply them to the artificial data generating processes 9.1 - 9.6 described 

in the paper, whose true characteristics can be determined by simulation.  In the first I use 

standard estimated residuals and in the second jackknifed delete-i residuals.  I find that wild 

transformations of estimated residuals do a poor job of replicating the pattern of results produced 

by an underlying data generating process, perhaps because estimated residuals are shrunken 

toward zero in high leverage observations.  In contrast, wild transformations based on jackknifed 

residuals approximate some of the results produced by an underlying data generating process.   

 The two methods examined in simulations below are: 

(1) Wild bootstrap.  Given a set of base data, estimate the 2SLS equation system: 

 vγXπZYuδXYy ˆˆˆ,ˆˆˆ)1.1(  iv , 

and then produce artificial data  

 vγXπZYuδXYy  ˆˆ,ˆˆ)2.1( w
iv

ww  , 

where ),( vu are transformations of the estimated residual pairs )ˆ,ˆ( 1vu c , where c1=(n/(n-kz-kx))
½ is 

an adjustment for the reduction in variance brought about by OLS fitting.  The transformations 

vary by the assumption regarding the underlying data generating process: 

(1.3a) iid - the residual pairs are multiplied by a 50/50 iid draw from ±1 at the observation 
level and randomly shuffled across observations; 

(1.3b) heteroskedastic - the residual pairs are multiplied by a 50/50 iid draw from ±1 at the 
observation level, but not shuffled; 

(1.3c) heteroskedastic & clustered - the residual pairs are multiplied by a 50/50 iid draw 
from ±1 at the cluster level and not shuffled. 
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 (2) Wild bootstrap with the jackknife.  Given a set of base data, estimate the 2SLS 

coefficients 

 vγXπZYuδXYy ˆˆˆ,ˆˆˆ)1.2(  iv , 

estimate delete-i residuals based upon delete-i coefficient estimates  

 iiiiiiiiiiii γXπZYvδXYyu ~~~~ ˆˆand  ˆˆ)2.2(  
iv , 

where ~i indicates coefficient estimates excluding cluster i (or an individual observation when 

the regression is not clustered) and i the variables for cluster i, and then produce artificial data 

 vγXπZYuδXYy  ˆˆ,ˆˆ)3.2( jkjkjk w
iv

ww  , 

where ),( vu are transformations of the estimated delete-i residuals pairs ),( vu


using the processes 

described in (1.3a) - (1.3c).  Where the regressions include cluster fixed effects, the delete-i 

residuals are estimated using cluster demeaned variables, so the delete-i residuals have a zero 

cluster mean.  Delete-i residuals are estimated at the cluster level when the regression is 

clustered, regardless of whether the subsequent transformations (1.3a) - (1.3c) are clustered or 

not, so as to use a consistent set of residuals across the different transformations.   

 The above methods each describe a data generating process which tries to replicate the 

data generating process underlying the base data.  To avoid confusion, I shall refer to the data 

generating process of the base data as dgp, and the two data generating processes described 

above as wild and wild jk.  I refer to the underlying IV parameter value of each data generating 

process as β.  For dgp, based as it is upon simulations 9.1-9.6 described in the paper, this is the 

iv̂ of the papers' data.  In contrast, the β of wild and wild jk in the simulations below will be 

the iv̂ of each base data draw from dgp. 

 Table D1 reports rejection rates in clustered/robust tests of the instrumented coefficient 

for the true data generating processes (dgp) 9.1-9.6 that produce the base data, and for the wild 

bootstrap data generating processes wild and wild jk.  "Type I error rate" is the probability that 

the null that the parameter value equals the β of each process is rejected, while "power" is the 

rejection probability of the incorrect null of zero effects.  I use 1000 draws from dgp to calculate  
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 Table D1:  Type I Error Rates and Power using Wild Bootstrap Data Generating Methods vs 
Actual Characteristics for the Artificial Data Generating Processes Described in the Paper 

(average across papers of within paper averages)  

 low leverage papers medium leverage papers high leverage papers 

 dgp wild wild jk dgp wild wild jk dgp wild wild jk 

 Type I error rate: IV rejection rate of true nulls (.01 level) 

iid normal 
h normal 

h cl normal 

.011 

.012 

.010 

.012 

.031 

.047 

.012 

.016 

.016 

.036 

.052 

.054 

.036 

.056 

.061 

.024 

.035 

.033 

.039 

.142 

.143 

.040 

.135 

.105 

.041 

.132 

.132 

iid chi2 
h chi2 

h cl chi2 

.012 

.015 

.018 

.014 

.031 

.047 

.013 

.015 

.017 

.032 

.066 

.069 

.031 

.055 

.056 

.021 

.036 

.034 

.035 

.152 

.160 

.037 

.118 

.099 

.038 

.130 

.130 

 Type I error rate: IV rejection rate of true nulls (.05 level) 

iid normal 
h normal 

h cl normal 

.049 

.045 

.040 

.050 

.070 

.085 

.049 

.054 

.051 

.082 

.106 

.106 

.082 

.107 

.111 

.069 

.087 

.084 

.101 

.226 

.224 

.102 

.216 

.178 

.103 

.215 

.208 

iid chi2 
h chi2 

h cl chi2 

.051 

.049 

.051 

.052 

.070 

.086 

.052 

.053 

.053 

.076 

.126 

.130 

.076 

.105 

.105 

.066 

.090 

.086 

.097 

.242 

.250 

.099 

.199 

.168 

.099 

.216 

.209 

 power: IV rejection rate of the incorrect null of zero effects (.01 level) 

iid normal 
h normal 

h cl normal 

.578 

.372 

.256 

.590 

.396 

.294 

.582 

.395 

.286 

.285 

.132 

.107 

.356 

.222 

.197 

.286 

.162 

.145 

.519 

.324 

.183 

.546 

.379 

.286 

.512 

.363 

.234 

iid chi2 
h chi2 

h cl chi2 

.579 

.368 

.259 

.596 

.403 

.281 

.587 

.400 

.274 

.314 

.151 

.122 

.377 

.243 

.206 

.304 

.186 

.148 

.539 

.342 

.206 

.558 

.413 

.298 

.525 

.376 

.240 

 power: IV rejection rate of the incorrect null of zero effects (.05 level) 

iid normal 
h normal 

h cl normal 

.694 

.457 

.333 

.693 

.481 

.381 

.686 

.478 

.369 

.440 

.249 

.212 

.494 

.347 

.320 

.416 

.282 

.258 

.636 

.418 

.271 

.659 

.481 

.387 

.626 

.459 

.325 

iid chi2 
h chi2 

h cl chi2 

.698 

.457 

.341 

.696 

.489 

.372 

.689 

.485 

.362 

.461 

.275 

.236 

.512 

.372 

.328 

.436 

.307 

.263 

.650 

.445 

.304 

.666 

.519 

.405 

.633 

.477 

.335 
  Notes: (1) dgp = cl/robust rejection rates for the data generating processes listed in the left-most column, as 
determined by 1000 simulations per equation; (2) wild and wild jk = cl/robust rejection rates as determined by 
simulated distributions using 1000 transformations of residuals for 10 draws from dgp, with transformations 
1.3a in the text used for iid dgp, 1.3b for heteroskedastic dgp, and 1.3c for heteroskedastic and clustered dgp.     

its true rejection probabilities, while for the wild bootstrap methods I use 1000 wild 

transformations for each of 10 base data draws from dgp.  Reported numbers are the average of 
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within paper averages.  Since comparisons in the paper are often based upon leverage, I divide 

the sample papers into the low, medium and high leverage groups described in the paper.   

 As can be seen in Table D1, wild does exceptionally poorly.  In moving from iid to 

heteroskedastic and then heteroskedastic and clustered errors, it indicates large Type I error rates 

in low leverage papers (which is not actually a characteristic of dgp), a distinctly non-monotonic 

relationship in high leverage papers (which again is not a characteristic of dgp), and substantially 

understates the decline in power found in dgp in medium and high leverage papers.  In contrast, 

wild jk does a much better job of approximating the patterns of Type I error rates and power 

found in dgp, although it does not fully capture the degree to which Type I errors rise and power 

falls with heteroskedastic and clustered errors in medium and high leverage papers. 

 Table D2 reports average ln relative OLS to IV truncated relative bias and mean squared 

error, as well as ln absolute OLS bias, calculated across realized coefficients whose absolute 

value is less than 1000 times the absolute value of the parameter of the data generating process.  

As can be seen in the table, wild once again does poorly, as both relative bias and relative mean 

squared error do not rise nearly as fast as in dgp with a movement from iid to heteroskedastic and 

clustered errors, especially in high leverage papers.  In contrast, wild jk provides a much closer 

approximation of the movements in relative IV to OLS bias and mean squared error that arise 

with heteroskedastic and clustered errors at different levels of leverage.  Both methods tend to 

overstate slightly the ln proportional bias of OLS itself, with wild doing somewhat better on this 

metric.  This is not a measure, however, that I emphasize much in the paper, beyond noting that 

it changes little in moving from iid to heteroskedastic errors, which seems to be true in all of the 

simulations. 

 At the request of readers, I include simulations using the data generating process 

produced by wild jk in the paper.  As shown in the tables above, it approximates IV Type I error 

rates and power and the relative bias and mse of IV and OLS, which are the results discussed in 

Section IV of the paper.  That said, jackknifed residuals are most certainly not the actual errors 

of a data generating process and it must be borne in mind that it simply is not possible to extract 
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 Table D2:  OLS Bias and Relative Truncated Bias and Mean Squared Error using Wild 

Bootstrap Data Generating Methods vs Actual Characteristics for the Artificial Data 
Generating Processes Described in the Paper (average across papers of within paper averages) 
 low leverage papers medium leverage papers high leverage papers 

 dgp wild wild jk dgp wild wild jk dgp wild wild jk 

 ln absolute value of IV to OLS bias 

iid normal 
h normal 

h cl normal 

-4.0 
-2.8 
-1.9 

-4.0 
-3.0 
-2.3 

-4.0 
-3.1 
-2.2 

-2.5 
-1.6 
-1.3 

-2.5 
-1.7 
-1.6 

-2.3 
-1.4 
-1.3 

-3.8 
-1.7 
-0.2 

-3.8 
-2.1 
-1.6 

-3.7 
-1.7 
-0.5 

iid chi2 
h chi2 

h cl chi2 

-3.8 
-2.7 
-2.0 

-3.9 
-3.0 
-2.3 

-4.0 
-3.0 
-2.2 

-2.6 
-1.6 
-1.4 

-2.5 
-1.9 
-1.7 

-2.3 
-1.6 
-1.4 

-3.9 
-2.1 
-0.7 

-3.8 
-2.2 
-1.6 

-3.8 
-1.9 
-0.6 

 ln IV to OLS mean squared error 

iid normal 
h normal 

h cl normal 

-0.8 
1.3 
2.9 

-0.9 
0.6 
1.9 

-1.0 
0.7 
2.2 

0.5 
2.1 
2.3 

0.7 
1.7 
1.8 

1.1 
2.3 
2.5 

-0.6 
2.3 
4.8 

-0.4 
1.4 
1.7 

-0.2 
1.9 
3.1 

iid chi2 
h chi2 

h cl chi2 

-0.8 
1.1 
2.8 

-0.8 
0.5 
1.7 

-0.9 
0.6 
2.0 

0.5 
1.8 
2.0 

0.7 
1.6 
1.7 

1.1 
2.2 
2.4 

-0.7 
1.5 
3.8 

-0.5 
1.1 
1.6 

-0.4 
1.6 
3.0 

 ln OLS bias 

iid normal 
h normal 

h cl normal 

-0.6 
-0.6 
-0.7 

-0.5 
-0.3 
-0.3 

-0.5 
-0.3 
-0.3 

-0.3 
-0.3 
-0.3 

-0.4 
-0.3 
-0.4 

-0.3 
-0.2 
-0.3 

-0.6 
-0.6 
-0.6 

-0.6 
-0.5 
-0.4 

-0.5 
-0.4 
-0.4 

iid chi2 
h chi2 

h cl chi2 

-0.6 
-0.6 
-0.6 

-0.6 
-0.3 
-0.3 

-0.5 
-0.3 
-0.2 

-0.3 
-0.2 
-0.2 

-0.4 
-0.4 
-0.4 

-0.3 
-0.3 
-0.3 

-0.6 
-0.4 
-0.4 

-0.5 
-0.5 
-0.4 

-0.5 
-0.4 
-0.3 

  Note:  Values calculated based upon truncated central .99 of the coefficient distributions. Bias and mse around 
the parameter β of the data generating process.  Relative bias = ln(|IV bias|/|OLS bias|), relative mse = ln(IV 
mse/OLS mse), and OLS bias = ln(|OLS bias/β|). 

the true residuals from a single realization of base data or uncover from these the distribution of 

results produced by the dgp that produced that base data.  Were such miracles possible, standard 

errors would not be needed. 
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E:  Comparing Tests of OLS Bias using Monte Carlos  

 This appendix compares simulation results for two forms of the Durbin (1954) - Wu 

(1973) - Hausman (1978) tests of OLS bias.  The first test is based upon the "artificial 

regression" suggested by Hausman (1978), wherein the residuals of the 1st stage regression are 

entered into an OLS version of the 2nd stage regression and, using the notation of the paper, we 

test of the significance of θ in: 

 .ˆˆˆ       where,ˆ)1E( γXπZYvuvδXYy    

The second is based upon the "vector of contrasts", i.e. the difference between the IV and OLS 

coefficients on Y in the second stage regression, using the test statistic: 

 ,
)ˆ(V)ˆ(V

)ˆˆ(
)E2(

2

olsiv

olsiv






 

where )ˆ(V iv  and )ˆ(V ols  are estimates of the variance of the two coefficients.  (E1) can easily 

be adapted to a non-iid environment with the use of a clustered/robust variance estimate for θ.  

However, while with the same n-k finite sample adjustment the default or homoskedastic 

variance estimate for iv̂  is always greater than that for ols̂ , this is not always the case with 

clustered/robust variance estimates.  Consequently, it is not possible to use non-iid adjustments 

in tests of the form of (E2), and this leads to large size distortions in the conventional test and 

comparatively weaker power when jackknife and bootstrap corrections are applied. 

 Table E1 below presents the relevant simulations.  The simulations use the error 

processes described in 9.1 - 9.6 in the paper, there are 10 simulations per data generating process 

per equation, and the table reports the average across papers of the average within paper rejection 

rate.  "Correlated errors", based upon the covariance structure of errors found in the residuals of 

the 2SLS systems of the samples (see (9) in the paper), produce OLS bias and are used in tests of 

power.  "Uncorrelated errors", where the off-diagonal elements of the covariance matrix are set 

to zero, generate a true null where OLS is unbiased, and are used to estimate Type I error rates.   



 39 

  
Table E1:  Tests of OLS Bias 

(average within paper rejection rates, 10 Monte Carlo for each of 1309 equations)  

 Type I error rates (uncorrelated errors) power (correlated errors) 

 
pairs 

bootstrap 
wild 

bootstrap 
pairs 

bootstrap 
wild 

bootstrap 
 

conven
tional 

jack-
knife 

c t c t 

conven
tional 

jack-
knife 

c t c t 

(a) artificial regression:  test of θ in uvδXYy   ˆ  (.01 level) 

iid normal 
h normal  

cl h normal 

.021 

.065 

.076 

.008 

.011 

.008 

.005 

.006 

.003 

.008 

.007 

.005 

.006 

.013 

.011 

.010 

.014 

.020 

.373 

.268 

.210 

.255 

.153 

.098 

.216 

.147 

.089 

.262 

.146 

.085 

.266 

.158 

.103 

.306 

.191 

.135 

iid chi2 
h chi2 

h & cl chi2 

.017 

.083 

.101 

.007 

.018 

.014 

.004 

.010 

.006 

.007 

.011 

.008 

.007 

.016 

.017 

.010 

.027 

.033 

.344 

.285 

.219 

.239 

.150 

.089 

.210 

.142 

.079 

.236 

.140 

.078 

.247 

.165 

.099 

.276 

.198 

.140 

(a) artificial regression:  test of θ in uvδXYy   ˆ  (.05 level) 

iid normal 
h normal  

cl h normal 

.071 

.145 

.157 

.036 

.047 

.029 

.030 

.036 

.025 

.041 

.035 

.025 

.044 

.051 

.050 

.050 

.068 

.070 

.493 

.378 

.316 

.373 

.211 

.147 

.354 

.216 

.139 

.405 

.202 

.138 

.408 

.242 

.178 

.450 

.279 

.219 

iid chi2 
h chi2 

h & cl chi2 

.060 

.158 

.182 

.033 

.054 

.045 

.031 

.047 

.039 

.035 

.046 

.040 

.041 

.068 

.065 

.051 

.087 

.101 

.470 

.383 

.323 

.347 

.210 

.129 

.338 

.215 

.132 

.363 

.202 

.119 

.397 

.250 

.177 

.421 

.293 

.233 

(b) vector of contrasts:  test based upon )]ˆ(V)ˆ(V/[)ˆˆ( 2
olsivolsiv    (.01 level) 

iid normal 
h normal  

cl h normal 

.005 

.238 

.434 

.008 

.012 

.005 

.004 

.006 

.003 

.012 

.010 

.005 

.006 

.011 

.010 

.011 

.015 

.016 

.283 

.429 

.546 

.241 

.148 

.081 

.187 

.134 

.070 

.248 

.144 

.077 

.250 

.150 

.091 

.309 

.188 

.134 

iid chi2 
h chi2 

cl h chi2 

.007 

.248 

.420 

.006 

.016 

.009 

.003 

.007 

.004 

.009 

.013 

.008 

.006 

.012 

.011 

.013 

.024 

.027 

.288 

.429 

.539 

.232 

.152 

.081 

.186 

.132 

.070 

.233 

.149 

.076 

.238 

.151 

.089 

.287 

.188 

.129 

(b) vector of contrasts:  test based upon )]ˆ(V)ˆ(V/[)ˆˆ( 2
olsivolsiv    (.05 level) 

iid normal 
h normal  

cl h normal 

.038 

.341 

.531 

.035 

.041 

.022 

.027 

.032 

.018 

.051 

.043 

.025 

.042 

.050 

.045 

.052 

.065 

.063 

.421 

.552 

.647 

.349 

.199 

.119 

.311 

.189 

.116 

.398 

.204 

.119 

.397 

.231 

.160 

.451 

.282 

.206 

iid chi2 
h chi2 

cl h chi2 

.037 

.354 

.527 

.030 

.049 

.035 

.026 

.041 

.031 

.039 

.049 

.034 

.039 

.056 

.057 

.052 

.082 

.089 

.417 

.550 

.649 

.338 

.209 

.118 

.310 

.203 

.115 

.368 

.213 

.117 

.380 

.235 

.161 

.434 

.287 

.220 

   Notes:  As in Table X in the paper.  (a) calculated using cl/robust covariance estimates for both the conventional 
test and the bootstrap; (b) calculated using default/homoskedastic covariance estimates for both methods. 

 

In the tests based upon "artificial regressions", clustered/robust covariance estimates and 

associated degrees of freedom are used to evaluate the significance of θ in (E1), whereas in the 
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tests based upon the vector of contrasts default/homoskedastic covariance estimates and the chi 

squared distribution are used to compute and evaluate (E2).  Bootstrap-t covariance estimates 

follow those used in each conventional test.  As shown in the table, with non-iid errors the test 

based upon the vector of contrasts produces very large size distortions in the conventional test 

and weaker power in the jackknife and bootstrap tests.  Moreover, in the actual analysis of the 

sample using the jackknife and bootstrap, the artificial regression produces higher rejection rates, 

i.e. results that are more favourable to the sample (see results reported further below).  For these 

reasons, I report results based upon the artificial regression in Section VI of the paper. 
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Table F1:  Wild Bootstrap Methods (null not imposed) 

 estimated residuals jackknifed residuals 

preliminary 
estimation vγXπZY

uδXYy

ˆˆˆ

ˆˆˆ



 iv  
vγXπZY

uδXYy

ˆˆˆ

ˆˆˆ


 iv

 

adjustment of 
residuals 

vv ˆ*)/(~
XZ kknn   

iiiiii

iiiiii

γXπZYv

δXYyu

~~

~~

ˆˆ

ˆˆ







iv

 

data generating 
process 

vηγXπZY

uηδXYy

~ˆˆ

ˆˆˆ









w

iv
ww 

 
vηγXπZY

uηδXYy











ˆˆ

ˆˆ

w

iv
ww 

 

  Notes:  ○ denotes Hadamard product.  η is composed of observation or cluster level iid draws of a transformation 
variable, as described in the text.  kZ and kX denote the number of regressors in Z and X. 

F:  Comparing Wild-Bootstrap Methods using Monte Carlos  

This section describes various forms of the wild bootstrap and examines their relative 

performance in Monte Carlos.  The methods which impose the null, yielding the most accurate 

size and following what is considered to be "best practice", are used in the paper.   

Table F1 begins by detailing the methods I follow in implementing wild bootstrap tests 

where the null is not imposed on the data generating process.  Following the customary 

estimation of 2SLS coefficients, the residuals are modified.  In the case where "estimated 

residuals" are used, the modification is a small adjustment of 1st stage residuals for the reduction 

in variance brought about by OLS fitting.1  Where "jackknifed residuals" are used, the estimated 

residuals are replaced with the delete-i residuals.  The modified residuals are then Hadamard 

multiplied by a transformation vector η which involves iid observation or cluster level2 draws of 

a random variable, and added to the estimated 2SLS predicted values to generate yw and Yw.   

                                                 
1There is no theoretical justification for modifying 2nd stage residuals in this manner, so 

they are left as is. 
2In all simulations or tests reported in the paper and this appendix, I implement the wild 

bootstrap using transformations that follow authors' covariance estimates, i.e. clustered where 
they cluster and at the observation level where they do not.  I do this even in simulations with 
non-clustered iid or heteroskedastic error processes, as this allows us to see how the methods 
used in the tests of the actual sample would perform if the authors' clustering were uncalled for. 
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Table F2:  Wild Bootstrap Methods (null imposed) 

 tests of IV coefficients tests of IV coefficients (RER) 

preliminary 
estimation vγXπZY

uδXYy

ˆˆˆ

ˆˆ



 
 

vuγXπZY

uδXYy

ˆˆˆˆˆ

ˆˆ








 

adjustment of 
residuals vv

uu

ˆ*)/(~

ˆ*)/(~

XZ

X

kknn

knn




 

)ˆˆˆ(*)/(~

ˆ*)/(~

vuv

uu





XZ

X

kknn

knn
 

data generating 
process 

vηγXπZY

uηδXYy

~ˆˆ

~ˆ









w

ww 
 

vηγXπZY

uηδXYy

~ˆˆ

~ˆ









w

ww 
 

 tests of 1st stage coefficients tests of OLS bias 

preliminary 
estimation 

vγXπZY ˆˆ   
vγXπZY

uδXYy

ˆˆˆ

ˆˆˆ


 ols

 

adjustment of 
residuals 

vv ˆ*)/(~
Xknn   

vv

uu

ˆ*)/(~

ˆ*)1/(~

XZ

X

kknn

knn




 

data generating 
process vηγXπZY ~ˆ w  

vηγXπZY

uηδXYy

~ˆˆ

~ˆˆ

1

2









w

ols
ww 

 

  Notes:  Unless otherwise noted, as in Table F1.  RER = restricted efficient residuals. 

Following Davidson-Flachaire’s (2008) analysis of the wild bootstrap, I consider symmetric 

transformations where ηi takes on the values [1,-1] with a 50/50 probability, and asymmetric 

transformations where it takes on the values [(1-√5)/2, (1+√5)/2] with probabilities [(√5+1)/2√5, 

(√5-1)/2√5].  On each draw of η, the 2SLS coefficients iv̂  and π̂  and their respective variance 

estimates can be estimated, allowing implementation of the bootstrap-c and -t, as described in the 

paper. 

 An alternative wild bootstrap approach involves imposing the null, as described in Table 

F2.  In this case, preliminary estimation imposes the restriction implied by the null.  Aside from 

the simple imposition of the null, there is also the “wild restricted efficient residual bootstrap” 
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(Davidson & McKinnon 2010), which uses the 2nd stage OLS residuals to try to get more 

efficient estimates of 1st stage relations when the instruments may be weak.  Since the null varies 

according to what is being tested, a separate data generating process is used for tests of IV and 1st 

stage coefficients.  The table also presents a wild bootstrap data generating process for tests of 

OLS bias.  As the null is that OLS is unbiased, preliminary estimation uses OLS for both 1st and 

2nd stage coefficients.  In the case of this test, I will consider two versions of the test: (i) where 

the transformations on the 1st and 2nd stage residuals are the same, η1= η2; and (ii) where the 

transformations are independent.  Version (ii) looks to see whether power can be increased by 

strengthening the null (that the residuals are uncorrelated and OLS is unbiased) to include the 

assumption that the residuals are actually completely independent (which is not a necessary 

implication of lack of correlation when errors are non-normal).  In the case of each method 

described in Table F2, on each draw of yw and Yw one estimates the coefficents (and associated 

variance estimates) relevant to the null being tested, i.e. iv̂  for tests of the IV coefficient, π̂  for 

1st stage coefficients, and, for tests of OLS bias, either the vector of contrasts iv̂ - ols̂  or 

coefficient ̂  on the 1st stage residuals in the artificial 2nd stage OLS regression (Appendix E). 

Table F3 below presents Monte Carlo estimates of Type I error rates, comparing methods 

that impose the true null to those that do not.  I use the six data generating processes described in 

the paper3 and run 10 Monte Carlo simulations per equation (with 1000 wild bootstrap draws 

with symmetric transformations used to construct a p-value for each test), i.e. 13090 Monte 

Carlo p-values per data generating process.  Reported is the average across papers of the within 

paper average rejection rate of true nulls (i.e. the parameter values of the underlying data 

generating processes).  When the null is not imposed and estimated residuals used, wild 

bootstrap rejection probabilities are grossly larger than nominal value and, in the case of the -c, 

actually worse than simply cl/robust conventional techniques in tests of 1st stage coefficients  

                                                 
3As fewer computer resources were available to me towards the end of this project, I did 

not run (and hence do not report) the comparisons reported in the table for the data generating 
process based upon "actual" errors. 
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Table F3:  Wild Bootstrap Inference With and Without Imposing the Null 
(average within paper rejection rates of true nulls, 10 Monte Carlo simulations per equation) 

 IV coefficients (βiv) 
 c t c t 
 .01 .05 .01 .05 .01 .05 .01 .05 

 estimated residuals jackknifed residuals 

iid normal 
h normal  

cl h normal 

.036 

.079 

.069 

.091 

.133 

.118 

.033 

.060 

.059 

.080 

.104 

.094 

.016 

.026 

.017 

.053 

.060 

.042 

.028 

.040 

.042 

.069 

.081 

.077 

iid chi2 
h chi2 

cl h chi2 

.028 

.089 

.081 

.079 

.141 

.133 

.030 

.069 

.063 

.070 

.114 

.109 

.012 

.029 

.025 

.039 

.061 

.060 

.025 

.047 

.045 

.057 

.087 

.085 

 null imposed null imposed (RER) 

iid normal 
h normal  

cl h normal 

.008 

.011 

.011 

.047 

.047 

.047 

.015 

.024 

.025 

.055 

.070 

.068 

.009 

.015 

.013 

.046 

.051 

.049 

.011 

.016 

.015 

.052 

.058 

.055 

iid chi2 
h chi2 

cl h chi2 

.006 

.017 

.016 

.037 

.060 

.063 

.014 

.037 

.030 

.049 

.087 

.089 

.007 

.018 

.017 

.038 

.066 

.072 

.010 

.025 

.022 

.045 

.072 

.075 

 1st stage F-tests (π) 

 estimated residuals jackknifed residuals null imposed 

 c t c t c t 
 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

iid normal 
h normal  

cl h normal 

.075 

.141 

.145 

.141 

.200 

.209 

.033 

.051 

.056 

.087 

.095 

.099 

.039 

.065 

.067 

.082 

.106 

.111 

.022 

.031 

.029 

.063 

.069 

.069 

.010 

.018 

.023 

.053 

.072 

.076 

.012 

.017 

.017 

.056 

.065 

.065 

iid chi2 
h chi2 

cl h chi2 

.065 

.160 

.164 

.122 

.216 

.220 

.029 

.065 

.074 

.072 

.115 

.118 

.031 

.079 

.086 

.066 

.128 

.126 

.022 

.040 

.048 

.056 

.083 

.087 

.008 

.028 

.031 

.046 

.075 

.086 

.009 

.027 

.033 

.050 

.079 

.084 

   Notes:  Reported figures are the average across 30 papers of the within paper average rejection rate.  c/t = 
bootstrap-c or bootstrap-t tests using symmetric transformations η as described in text accompanying Table F2.  
.01/.05 = nominal size of the test.  iid normal & chi2, heteroskedastic (h) and clustered (cl) denote the data 
generating process for the Monte Carlo disturbances, as described in 9.1 - 9.6 in the paper.  All simulations with 
correlated 1st and 2nd stage residuals.  RER = restricted efficient residuals.   

(compare with Table X in the paper).  Use of jackknifed residuals improves on these results, 

moving rejection rates closer to nominal level, but imposing the null in most cases does even 

better.  There are simply very large advantages to knowing the underlying parameter of the data 

generating process, as is the case when looking for the distribution of a test statistic under a  
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Table F4:  Wild Bootstrap Inference using Symmetric & Asymmetric Transformations 
(average within paper rejection rates of true nulls, 10 Monte Carlo simulations per equation) 

 symmetric asymmetric 
 c t c t 
 .01 .05 .01 .05 .01 .05 .01 .05 

IV coefficients (null imposed, correlated errors) 

iid normal 
h normal 

cl h normal 

.008 

.011 

.011 

.047 

.047 

.047 

.015 

.024 

.025 

.055 

.070 

.068 

.006 

.006 

.008 

.046 

.041 

.044 

.015 

.027 

.033 

.058 

.071 

.074 

iid chi2 
h chi2 

cl h chi2 

.006 

.017 

.016 

.037 

.060 

.063 

.014 

.037 

.030 

.049 

.087 

.089 

.004 

.011 

.012 

.035 

.054 

.056 

.016 

.038 

.034 

.050 

.089 

.086 

IV coefficients (null imposed, restricted efficient residual, correlated errors) 

iid normal 
h normal 

cl h normal 

.009 

.015 

.013 

.046 

.051 

.049 

.011 

.016 

.015 

.052 

.058 

.055 

.007 

.009 

.012 

.046 

.043 

.048 

.012 

.016 

.020 

.052 

.058 

.056 

iid chi2 
h chi2 

cl h chi2 

.007 

.018 

.017 

.038 

.066 

.072 

.010 

.025 

.022 

.045 

.072 

.075 

.005 

.012 

.013 

.037 

.056 

.061 

.012 

.025 

.025 

.042 

.072 

.072 

1st stage F-tests (null imposed, correlated errors) 

iid normal 
h normal 

cl h normal 

.010 

.018 

.023 

.053 

.072 

.076 

.012 

.017 

.017 

.056 

.065 

.065 

.008 

.007 

.007 

.047 

.047 

.050 

.009 

.011 

.010 

.054 

.052 

.051 

iid chi2 
h chi2 

cl h chi2 

.008 

.028 

.031 

.046 

.075 

.086 

.009 

.027 

.033 

.050 

.079 

.084 

.006 

.011 

.013 

.043 

.057 

.067 

.007 

.019 

.026 

.047 

.066 

.071 

    Notes:  Symmetric and asymmetric transformations refer to the wild bootstrap draws for η.  Otherwise, as in 
Table F3. 

particular null.  Among wild bootstrap methods that impose the null in the evaluation of the 

significance of instrumented coefficients, those using restricted efficient residuals do appear to 

produce Type I error rates that are generally somewhat closer to nominal value.  Table F4 

compares size with symmetric and asymmetric transformations η in wild bootstrap methods that 

impose the null.  For IV coefficients inference with asymmetric transformations is sometimes 

more and sometimes less accurate.  In 1st stage tests, asymmetric transformations mostly result in 

lower rejection rates across all types of data generating processes.  This brings Type I error rates 
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closer to or further away from nominal level depending upon whether they are initially above or 

below it, but does not systematically improve accuracy.  

 Tables F5 and F6 below explore the impact of different residual transformations on Type 

I error rates and power in tests of OLS bias (described in Appendix E).  In these tables, Type I 

error rates report the the probability of rejecting the null that OLS is unbiased when 1st and 2nd 

stage errors are uncorrelated, while power reports rejection rates when they are correlated (see 

description of simulations in 9.1-9.6 and associated text in paper).  Once again, there is no 

indication that asymmetric transformations allow for systematically more accurate Type I error 

rates, even in the case of skewed chi2 error processes.  Using independent transformations η on 

the 1st and 2nd stage errors in most instances and on average improves power.  The test based 

upon the artificial regression also appears to be systematically more powerful than that based 

upon the vector of contrasts, as already noted in Appendix E earlier. 

In results reported in the paper itself I impose the null, as this appears to be essential for 

accurate wild bootstrap inference.  For the Monte Carlos (Table X), when estimating Type I error 

rates I impose the null that the parameter value equals that of the data generating process and 

when estimating power I impose the null that the parameter value equals zero.  For the analysis 

of the sample itself, I impose the null that the parameter value equals zero.  For tests of IV 

coefficients, in both Monte Carlos and the analysis of the sample, I report results using restricted 

efficient residuals.  In tests of OLS bias, I use the the Hausman test based upon the artificial 

regression (in preference to the test based upon the vector of contrasts) and independent 

transformations, as both of these allow greater power.  For both Monte Carlos and the analysis of 

the sample, I use symmetric transformations, as asymmetric transformations neither provide 

obvious advantages in Monte Carlos nor produce results that are systematically more favourable 

to the sample.  In an appendix further below, I  report wild bootstrap results for the sample using 

all methods and tests described in this appendix that impose the null.  The range of results varies 

very little from the subset reported in Section VI of the paper itself. 
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Table F5:  Type I Error Rates & Power in Tests of OLS Bias based on Artificial Regressions 

(average within paper rejection rates, 10 Monte Carlo simulations per equation) 

 η1 = η2 η1 and η2 independent 
 c t c t 
 .01 .05 .01 .05 .01 .05 .01 .05 

 Type I error rates (uncorrelated 1st and 2nd stage errors), symmetric transformations 

iid normal 
h normal  

cl h normal 

.006 

.019 

.012 

.042 

.062 

.044 

.010 

.019 

.021 

.051 

.073 

.070 

.006 

.013 

.011 

.044 

.051 

.050 

.010 

.014 

.020 

.050 

.068 

.070 

iid chi2 
h chi2 

cl h chi2 

.006 

.020 

.014 

.039 

.063 

.053 

.012 

.032 

.038 

.048 

.086 

.092 

.007 

.016 

.017 

.041 

.068 

.065 

.010 

.027 

.033 

.051 

.089 

.101 

 Type I error rates (uncorrelated 1st and 2nd stage errors), asymmetric transformations 

iid normal 
h normal  

cl h normal 

.004 

.005 

.005 

.032 

.032 

.031 

.013 

.029 

.030 

.058 

.087 

.080 

.004 

.006 

.006 

.042 

.046 

.045 

.009 

.014 

.016 

.047 

.063 

.064 

iid chi2 
h chi2 

cl h chi2 

.002 

.005 

.006 

.026 

.037 

.037 

.014 

.041 

.046 

.054 

.099 

.108 

.004 

.009 

.008 

.038 

.054 

.058 

.009 

.028 

.034 

.045 

.084 

.099 

 power (correlated 1st and 2nd stage errors), symmetric transformations 

iid normal 
h normal  

cl h normal 

.223 

.153 

.084 

.371 

.225 

.145 

.263 

.185 

.113 

.413 

.276 

.195 

.266 

.158 

.103 

.408 

.242 

.178 

.306 

.191 

.135 

.450 

.279 

.219 

iid chi2 
h chi2 

cl h chi2 

.236 

.161 

.088 

.384 

.241 

.158 

.275 

.210 

.141 

.420 

.299 

.227 

.247 

.165 

.099 

.397 

.250 

.177 

.276 

.198 

.140 

.421 

.293 

.233 

 power (correlated 1st and 2nd stage errors), asymmetric transformations 

iid normal 
h normal  

cl h normal 

.166 

.122 

.069 

.306 

.178 

.114 

.294 

.201 

.137 

.441 

.291 

.220 

.231 

.136 

.089 

.391 

.225 

.163 

.290 

.181 

.128 

.447 

.283 

.218 

iid chi2 
h chi2 

cl h chi2 

.158 

.123 

.071 

.294 

.190 

.116 

.284 

.217 

.152 

.423 

.304 

.241 

.207 

.135 

.082 

.375 

.229 

.162 

.254 

.188 

.132 

.414 

.290 

.225 

   Notes:  Type I error rates using uncorrelated 1st and 2nd stage errors; power using correlated 1st and 2nd stage errors.  
Symmetric and asymmetric transformations refer to the wild bootstrap draws for η.  Otherwise, as in Table F3. 
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Table F6:  Type I Error Rates & Power in Tests of OLS Bias based on the Vector of Contrasts 

(average within paper rejection rates, 10 Monte Carlo simulations per equation) 

 η1 = η2 η1 and η2 independent 
 c t c t 
 .01 .05 .01 .05 .01 .05 .01 .05 

 Type I error rates (uncorrelated 1st and 2nd stage errors), symmetric transformations 

iid normal 
h normal  

cl h normal 

.005 

.018 

.014 

.041 

.062 

.045 

.010 

.022 

.018 

.053 

.073 

.061 

.006 

.011 

.010 

.042 

.050 

.045 

.011 

.015 

.016 

.052 

.065 

.063 

iid chi2 
h chi2 

cl h chi2 

.006 

.020 

.015 

.037 

.060 

.051 

.013 

.026 

.027 

.050 

.078 

.078 

.006 

.012 

.011 

.039 

.056 

.057 

.013 

.024 

.027 

.052 

.082 

.089 

 Type I error rates (uncorrelated 1st and 2nd stage errors), asymmetric transformations 

iid normal 
h normal  

cl h normal 

.004 

.005 

.005 

.030 

.031 

.029 

.006 

.021 

.022 

.043 

.068 

.063 

.005 

.005 

.006 

.041 

.042 

.042 

.009 

.020 

.019 

.051 

.074 

.072 

iid chi2 
h chi2 

cl h chi2 

.002 

.005 

.006 

.026 

.034 

.035 

.006 

.024 

.031 

.039 

.073 

.084 

.004 

.007 

.007 

.039 

.054 

.053 

.009 

.021 

.029 

.050 

.087 

.097 

 power (correlated 1st and 2nd stage errors), symmetric transformations 

iid normal 
h normal  

cl h normal 

.214 

.149 

.080 

.356 

.214 

.134 

.271 

.182 

.108 

.424 

.270 

.182 

.250 

.150 

.091 

.397 

.231 

.160 

.309 

.188 

.134 

.451 

.282 

.206 

iid chi2 
h chi2 

cl h chi2 

.224 

.156 

.085 

.369 

.232 

.146 

.287 

.193 

.120 

.429 

.282 

.208 

.238 

.151 

.089 

.380 

.235 

.161 

.287 

.188 

.129 

.434 

.287 

.220 

 power (correlated 1st and 2nd stage errors), asymmetric transformations 

iid normal 
h normal  

cl h normal 

.159 

.120 

.067 

.296 

.174 

.110 

.218 

.173 

.120 

.365 

.256 

.189 

.215 

.127 

.081 

.385 

.217 

.153 

.276 

.181 

.136 

.436 

.284 

.213 

iid chi2 
h chi2 

cl h chi2 

.154 

.119 

.069 

.283 

.182 

.109 

.207 

.184 

.126 

.355 

.269 

.202 

.195 

.126 

.077 

.367 

.218 

.153 

.253 

.177 

.128 

.419 

.285 

.222 

   Notes:  As in Table F5. 
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G:  Comparing Symmetric & Asymmetric Tests using Monte Carlos  

As noted in the paper, Hall (1992) argues that size in bootstrapped symmetric tests 

converges more rapidly to nominal value than in asymmetric tests because symmetric tests 

minimize the influence of skewness.  Symmetric tests calculate p-values using the fraction of 

bootstrapped results that exceed the absolute value of the t-statistic or coefficient deviation from 

the null, while equal-tailed asymmetric tests calculate the bootstrapped p-value as 2 times the 

minimum of the fraction of results that are either greater or less than the actual value of the t-

statistic or coefficient deviation.  Wald based F-statistics are by construction positive and hence 

not (sensibly) amenable to asymmetric tests. 

Table G1 below confirms the finite sample validity of Hall’s asymptotic result using the 

Monte Carlos described earlier.4  For the pairs bootstrap, in 36 different comparisons of rejection 

rates for tests of true nulls for IV coefficients (.01 & .05 levels for the nine data generating 

processes given in the table for the boot-c and boot-t), Type I error rates are closer to nominal 

value using an asymmetric test only 8 times (with an average improvement of .005) and further 

from nominal value 28 times (with an average increased deviation of .086), while in 36 

comparisons of Hausman tests Type I error rates are closer to nominal value using an 

asymmetric test 7 times (with an average improvement of .003) and further 29 times (with an 

average increased deviation of .014).  For the wild bootstrap using symmetric transformations, in 

36 different comparisons of Type I error rates for tests of IV coefficients asymmetric tests are 

closer to nominal value 11 times (with an average improvement of .001) and further from 

nominal value 25 times (with an average increased deviation of .006), while in 36 comparisons 

for Hausman tests they are closer 19 times (.0006 improvement) and further 17 times (.0008 

worse deviation from nominal level).  For the wild bootstrap using asymmetric transformations, 

in 24 comparisons of test of IV coefficients Type I error rates using asymmetric tests are closer   

                                                 
4Wild bootstrap tests of IV coefficients are those using the null imposed with restricted 

efficient residuals, while wild bootstrap tests of OLS bias use independent transformations (η) of 
residuals, both as described earlier in Appendix F.   
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Table G1:  Type I Bootstrap Error Rates in Symmetric & Asymmetric Tests 
(average within paper rejection rates, 10 Monte Carlo simulations for each of 1309 equations) 

 symmetric tests asymmetric equal-tailed tests 

 
pairs 

bootstrap 
symmetric 

wild bootstrap 
asymmetric 

wild bootstrap 
pairs 

bootstrap 
symmetric 

wild bootstrap 
asymmetric 

wild bootstrap 
 c t c t c t c t c t c t 

 IV coefficients (correlated errors): .01 level 

iid normal 
h normal 

h cl normal 

.009 

.011 

.009 

.021 

.025 

.025 

.009 

.015 

.013 

.011 

.016 

.015 

.007 

.009 

.012 

.012 

.016 

.020 

.017 

.064 

.059 

.056 

.132 

.173 

.008 

.020 

.018 

.009 

.021 

.015 

.006 

.009 

.013 

.027 

.064 

.058 

iid chi2 
h.chi2 

h cl chi2 

.007 

.016 

.012 

.017 

.030 

.028 

.007 

.018 

.017 

.010 

.025 

.022 

.005 

.012 

.013 

.012 

.025 

.025 

.013 

.071 

.067 

.057 

.127 

.178 

.006 

.026 

.027 

.010 

.026 

.028 

.003 

.012 

.016 

.028 

.072 

.085 

iid "actual" 
h "actual" 

h cl "actual" 

.007 

.005 

.004 

.019 

.022 

.024 

.007 

.010 

.009 

.011 

.014 

.015 

NA 
NA 
NA 

NA 
NA 
NA 

.012 

.015 

.020 

.065 

.089 

.120 

.008 

.013 

.015 

.010 

.015 

.014 

NA 
NA 
NA 

NA 
NA 
NA 

 IV coefficients (correlated errors): .05 level 

iid normal 
h normal 

h cl normal 

.042 

.048 

.041 

.065 

.063 

.059 

.046 

.051 

.049 

.052 

.058 

.055 

.046 

.043 

.048 

.052 

.058 

.056 

.053 

.122 

.120 

.113 

.211 

.260 

.047 

.059 

.062 

.050 

.062 

.059 

.037 

.040 

.046 

.080 

.132 

.121 

iid chi2 
h.chi2 

h cl chi2 

.033 

.059 

.051 

.050 

.072 

.067 

.038 

.066 

.072 

.045 

.072 

.075 

.037 

.056 

.061 

.042 

.072 

.072 

.048 

.137 

.136 

.111 

.204 

.266 

.038 

.076 

.085 

.046 

.080 

.085 

.026 

.048 

.057 

.081 

.143 

.160 

iid "actual" 
h "actual" 

h cl "actual" 

.035 

.035 

.032 

.060 

.063 

.064 

.042 

.049 

.045 

.050 

.059 

.057 

NA 
NA 
NA 

NA 
NA 
NA 

.054 

.060 

.068 

.132 

.164 

.196 

.045 

.055 

.062 

.047 

.058 

.068 

NA 
NA 
NA 

NA 
NA 
NA 

Notes: At end of table below. 

to nominal value 3 times (with an average improvement of .003) and further from nominal value 

21 times (with an average increased deviation of .029), while in Hausman tests they are closer 2 

times (.003 improvement) and worse 22 times (.017 increased deviation).  Thus, in finite samples 

symmetric tests are seen to have rejection rates that are systematically closer to nominal value.   
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Table G1:  Type I Bootstrap Error Rates in Symmetric & Asymmetric Tests (continued) 

 symmetric tests asymmetric equal-tailed tests 

 
pairs 

bootstrap 
symmetric 

wild bootstrap 
asymmetric 

wild bootstrap 
pairs 

bootstrap 
symmetric 

wild bootstrap 
asymmetric 

wild bootstrap 
 c t c t c t c t c t c t 

 Hausman Tests of OLS Bias (uncorrelated errors): .01 level 

iid normal 
h normal 

h cl normal 

.005 

.006 

.003 

.008 

.007 

.005 

.006 

.013 

.011 

.010 

.014 

.020 

.004 

.006 

.006 

.009 

.014 

.016 

.008 

.041 

.040 

.006 

.006 

.005 

.007 

.012 

.011 

.010 

.014 

.019 

.004 

.005 

.005 

.022 

.035 

.035 

iid chi2 
h chi2 

h cl chi2 

.004 

.010 

.006 

.007 

.011 

.008 

.007 

.016 

.017 

.010 

.027 

.033 

.004 

.009 

.008 

.009 

.028 

.034 

.006 

.048 

.047 

.006 

.010 

.008 

.006 

.016 

.017 

.010 

.029 

.035 

.002 

.007 

.008 

.024 

.053 

.057 

iid "actual" 
h "actual" 

h cl "actual" 

.003 

.003 

.003 

.007 

.007 

.007 

.024 

.021 

.021 

.013 

.021 

.022 

NA 
NA 
NA 

NA 
NA 
NA 

.000 

.000 

.001 

.005 

.007 

.004 

.025 

.021 

.021 

.013 

.019 

.022 

NA 
NA 
NA 

NA 
NA 
NA 

 Hausman Tests of OLS Bias (uncorrelated errors): .05 level 

iid normal 
h normal 

h cl normal 

.030 

.036 

.025 

.041 

.035 

.025 

.044 

.051 

.050 

.050 

.068 

.070 

.042 

.046 

.045 

.047 

.063 

.064 

.041 

.100 

.087 

.033 

.028 

.020 

.043 

.050 

.049 

.050 

.067 

.069 

.034 

.031 

.033 

.070 

.109 

.105 

iid chi2 
h chi2 

h cl chi2 

.031 

.047 

.039 

.035 

.046 

.040 

.041 

.068 

.065 

.051 

.087 

.101 

.038 

.054 

.058 

.045 

.084 

.099 

.035 

.106 

.099 

.027 

.038 

.029 

.041 

.067 

.063 

.051 

.088 

.101 

.030 

.040 

.047 

.074 

.127 

.131 

iid "actual" 
h "actual" 

h cl "actual" 

.024 

.028 

.024 

.040 

.041 

.037 

.050 

.051 

.052 

.052 

.068 

.075 

NA 
NA 
NA 

NA 
NA 
NA 

.001 

.002 

.003 

.032 

.032 

.030 

.050 

.049 

.053 

.051 

.068 

.077 

NA 
NA 
NA 

NA 
NA 
NA 

   Notes:  Symmetric and asymmetric in the context of the wild bootstrap refer to the residual transformations, as 
described earlier in Appendix F.  Symmetric versus asymmetric equal-tailed in the context of tests refer to use of the 
absolute value of coefficients and t-statistics versus the actual value of the coefficients and t-statistics, as described 
in the text above.  NA = not available, due to limitations on computer resources towards the end of this project these 
simulations were not performed.  Reported figures are the average across 30 papers of the within paper average 
rejection rate.   
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Table H1:  Type I Error Rates of the BCA Bootstrap Compared to other Methods 

(average within paper rejection rates, 10 Monte Carlo simulations for each of 1309 equations) 

 
pairs bootstrap 
symmetric tests 

pairs bootstrap 
asymmetric equal tailed tests 

 

clustered 
/robust 

bca 
bootstrap 

c t c t 
 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

 IV coefficients (correlated errors) 

iid normal 
h normal 

h cl normal 

.028 

.069 

.070 

.081 

.126 

.124 

.025 

.055 

.072 

.068 

.128 

.155 

.009 

.011 

.009 

.042 

.048 

.041 

.021 

.025 

.025 

.065 

.063 

.059 

.017 

.064 

.059 

.052 

.122 

.120 

.056 

.132 

.173 

.113 

.211 

.260 

iid chi2 
h chi2 

h cl chi2 

.024 

.080 

.075 

.065 

.144 

.141 

.025 

.061 

.082 

.068 

.126 

.162 

.007 

.016 

.012 

.033 

.059 

.051 

.017 

.030 

.028 

.050 

.072 

.067 

.013 

.071 

.067 

.048 

.137 

.136 

.057 

.127 

.178 

.111 

.204 

.266 

iid "actual" 
h "actual" 

h cl "actual" 

.025 

.034 

.035 

.073 

.081 

.083 

.029 

.034 

.039 

.078 

.091 

.099 

.007 

.005 

.004 

.035 

.035 

.032 

.019 

.022 

.024 

.060 

.063 

.064 

.012 

.015 

.020 

.054 

.060 

.068 

.065 

.089 

.120 

.132 

.164 

.196 

 Hausman Tests of OLS Bias based on Artificial Regressions (uncorrelated errors) 

iid normal 
h normal 

h cl normal 

.021 

.065 

.076 

.071 

.145 

.157 

.020 

.052 

.067 

.061 

.122 

.142 

.005 

.006 

.003 

.030 

.036 

.025 

.008 

.007 

.005 

.041 

.035 

.025 

.008 

.041 

.040 

.041 

.100 

.087 

.006 

.006 

.005 

.033 

.028 

.020 

iid chi2 
h chi2 

h cl chi2 

.017 

.083 

.101 

.060 

.158 

.182 

.024 

.052 

.064 

.066 

.127 

.155 

.004 

.010 

.006 

.031 

.047 

.039 

.007 

.011 

.008 

.035 

.046 

.040 

.006 

.048 

.047 

.035 

.106 

.099 

.006 

.010 

.008 

.027 

.038 

.029 

iid "actual" 
h "actual" 

h cl "actual" 

.023 

.039 

.049 

.073 

.100 

.111 

.023 

.034 

.043 

.077 

.095 

.102 

.003 

.003 

.003 

.024 

.028 

.024 

.007 

.007 

.007 

.040 

.041 

.037 

.000 

.000 

.001 

.001 

.002 

.003 

.005 

.007 

.004 

.032 

.032 

.030 

   Notes:  Symmetric and asymmetric in this context refer to tests using the absolute value of the t-statistic and equal 
tailed tests using the percentiles of the t-statistic, respectively, as described earlier in Appendix G. .01/.05 = level. 

H:  Monte Carlos for the Bias Corrected and Accelerated Bootstrap  

 As noted in a footnote in the paper, the bias corrected and accelerated (BCA) bootstrap is 

another refinement of the pairs resampling bootstrap.  By correcting for skewness, it 

asymptotically provides O(n-1) convergence to nominal size, as opposed to the O(n-½) achieved 

by the bootstrap-c in asymmetric equal tailed tests.  The convergence rate of the bootstrap-t in 

asymmetric equal tailed tests is also O(n-1), but the bootstrap-t is not transformation respecting, 

so the BCA method in theory provides a means of attaining O(n-1) performance with a 

transformation respecting asymmetric test (Hall 1992, Efron & Tibshirani 1994). 
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 Table H1 above applies the BCA method to the Monte Carlos described in the paper and 

compares results to those found using conventional symmetric clustered/robust tests and the pairs 

bootstrap c & t in symmetric and asymmetric tests.  As shown, in finite sample tests of IV 

coefficients the BCA method actually performs worse than asymmetric bootstrap-c methods or 

even conventional symmetric clustered/robust tests (which are also asymptotically O(n-1)), 

although it does perform better than the asymmetric bootstrap-t test.  It is, however, completely 

dominated by symmetric bootstrap tests, both -c and -t, which provide much more accurate Type 

I error rates in tests of IV coefficients.  In the Hausman test of OLS bias, the BCA method has 

size distortions that are somewhat less than the conventional clustered/robust test, but clearly 

worse than the bootstrap-t in symmetric and asymmetric tests, particularly at the .01 level.  In 

sum, the BCA method does not appear to provide accurate inference in finite samples.  It also 

does not provide reliable improvements over the bootstrap-c and -t in asymmetric tests and is 

very much dominated by these two methods when they are used in symmetric tests. 
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Table I1:  Significance of OLS Coefficients 

 (supplement for Table XI)  
headline results 

 
all 

results all low medium high 

 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 

clustered/robust 
jackknife 

pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.543 

.466 

.458 

.472 

.474 

.455 

.638 

.589 

.592 

.599 

.618 

.608 

.615 

.529 

.545 

.490 

.516 

.516 

.654 

.633 

.633 

.633 

.638 

.605 

.750 

.750 

.750 

.650 

.750 

.750 

.750 

.750 

.750 

.750 

.750 

.750 

.496 

.350 

.350 

.363 

.363 

.363 

.496 

.496 

.496 

.496 

.496 

.496 

.600 

.486 

.536 

.457 

.436 

.436 

.717 

.652 

.652 

.652 

.669 

.569 

    Notes:  Unless otherwise noted, as in Table XI in the paper.  Wild bootstrap methods impose the null. 

I:  OLS Significance Rates in the Sample   

 Section VI of the paper analyzes the sample's results using jackknife and bootstrap 

methods.  In the discussion of the large differences between bootstrap-c and -t significance rates 

for instrumented coefficients in Table XI, I note that no such differences exist when these 

techniques are applied to OLS versions of the estimating equations.  Table I1 above reports 

rejection rates for OLS estimates of the (otherwise) instrumented coefficient in authors' 2nd stage 

regressions, and shows that this is by and large the case.  The only instance where a large 

difference between -c and -t methods arises is in the pairs bootstrap analysis of headline results at 

the .01 level, and even here the difference is proportionately much smaller than the comparable 

difference for IV versions in Table XI and in the opposite direction (with -t methods showing 

lower rather than higher rates of significance).  In the paper I argue that the discrepancy between 

-c and -t results reflects publication bias which selects in favour of spuriously significant IV t-

statistics which, as the comparison between -c and -t methods shows, are characterized by 

unusually large t-statistics rather than unusually large coefficient estimates under the null.  No 

such difference exists in tests of OLS coefficients, which do not form the basis for the 

publication decision. 
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J:  Alternative Wild Bootstrap & OLS Bias Results for the Sample 

 In the paper I analyse the sample using wild bootstrap methods with symmetric 

transformations in symmetric two-sided tests with the null imposed and, in the case of IV 

coefficients, following the recommendation of Davidson & MacKinnon (2010), restricted 

efficient residuals.  Monte Carlo simulations show that wild bootstrap tests with the null imposed 

have decidedly more accurate Type I error rates than those without, but other choices I have 

made are based upon smaller advantages (Appendices E, F & G above).  In Table J1 I compare 

the results reported in the paper (in bold) with those found using the wild bootstrap with 

asymmetric transformations (η in Appendix F), asymmetric equal tailed tests, and tests of IV 

coefficients that simply impose the null (without restricted efficient residuals).  As can be seen, 

using asymmetric transformations generally produces lower significance rates in the 1st stage F-

test than are reported in the paper.  In the Hausman test, using independent transformations of the 

residuals (η1≠η2), as done in the paper, produces higher rejection rates than using the same 

transformations in the 1st and 2nd stage (η1=η2).  In the context of symmetric Hausman tests, 

asymmetric transformations do not produce higher rejection rates than those reported in the 

paper.  Asymmetric equal tailed Hausman tests produce the same or lower rejection rates as 

those reported in the paper, except in the case of those with asymmetric transformations for 

asymmetric bootstrap-t tests which, as can be seen in Table G1 earlier, have sizeable size 

distortions in simulation.  In tests of IV coefficients, wild bootstrap tests that simply impose the 

null without restricted efficient residuals produce somewhat higher -c rejection rates and slightly 

lower -t rejection rates. I reported restricted efficient residual results in the paper for fear that 

wild bootstrap users, who appear to be convinced that these are the best, would reject the results 

out of hand if I did not use this method.  Otherwise, asymmetric transformations in symmetric 

tests produce lower rejection rates, as do most asymmetric equal tailed tests.  The only exception 

is once again asymmetric equal tailed bootstrap-t tests with asymmetric transformations which 

again, as can be seen in Table G1 earlier, appear to have substantial size distortions.   
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Table J1:  Wild Bootstrap Inference in the Sample with the Null Imposed 
in Symmetric & Asymmetric Transformations & Tests 

(average within paper rejection rates by level of the test) 

test: symmetric two-sided asymmetric equal tailed 

transformation: symmetric asymmetric symmetric asymmetric 

level: .01 .05 .01 .05 .01 .05 .01 .05 

all results 

IV coefficients: 
  bootstrap - c (RER) 
  bootstrap - t (RER) 
  bootstrap - c 
  bootstrap - t 

 
.115 
.346 
.153 
.343 

 
.337 
.535 
.377 
.533 

 
.106 
.340 
.147 
.324 

 
.322 
.506 
.364 
.503 

 
.204 
.322 
.229 
.329 

 
.383 
.508 
.440 
.512 

 
.141 
.439 
.163 
.445 

 
.304 
.581 
.332 
.591 

Hausman test: 
  bootstrap - c (η1=η2) 
  bootstrap - t (η1=η2) 
  bootstrap - c (η1≠η2) 
  bootstrap - t (η1≠η2) 

 
.085 
.156 
.129 
.175 

.236 

.323 

.247 

.328 

.060 

.167 

.112 

.171 

.142 

.346 

.242 

.335 

.075 

.122 

.123 

.168 

.178 

.278 

.247 

.333 

.059 

.184 

.086 

.241 

.109 

.333 

.215 

.427 

1st stage: 
  bootstrap - c 
  bootstrap - t 

 
.704 
.660 

 
.886 
.856 

 
.557 
.638 

 
.823 
.847 

 
NA 
NA 

 
NA 
NA 

 
NA 
NA 

 
NA 
NA 

headline results 

IV coefficients: 
  bootstrap - c (RER) 
  bootstrap - t (RER) 
  bootstrap - c 
  bootstrap - t 

.231 

.512 

.235 

.512 

.444 

.719 

.508 

.702 

.194 

.459 

.231 

.454 

.467 

.677 

.560 

.677 

.334 

.492 

.387 

.503 

.544 

.682 

.654 

.682 

.205 

.596 

.258 

.567 

.453 

.774 

.484 

.774 

Hausman test: 
  bootstrap - c (η1=η2) 
  bootstrap - t (η1=η2) 
  bootstrap - c (η1≠η2) 
  bootstrap - t (η1≠η2) 

.153 

.170 

.187 

.237 

.252 

.404 

.319 

.470 

.067 

.220 

.153 

.220 

.186 

.412 

.323 

.428 

.081 

.159 

.187 

.237 

.261 

.358 

.352 

.470 

.033 

.201 

.067 

.280 

.108 

.404 

.308 

.498 

1st stage: 
  bootstrap - c 
  bootstrap - t 

.794 

.783 
.967 
.952 

.724 

.758 
.917 
.971 

 
NA 
NA 

 
NA 
NA 

 
NA 
NA 

 
NA 
NA 

  Notes:  RER = restricted efficient residuals.  Figures in bold are those reported in the paper.  All 
methods with the null imposed.  NA – not applicable, as the 1st stage F-test is often a joint test of 
multiple coefficients where the test statistic is, by construction, positive.  η1=η2 vs η1≠η2: whether the 
transformations for the wild residuals are the same for both the 1st and 2nd stage or independent, as 
discussed in Appendix F above. 
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Table J2:  Rejection Rates in Tests of OLS Bias in the Sample 

(average within paper rejection rates by level of the test) 

 all results headline results all results headline results 

 .01 .05 .01 .05 .01 .05 .01 .05 

 
artificial regression: test of  θ  in 

uvδXYy   ˆ  
vector of contrasts:  test based upon 

)]ˆ(V)ˆ(V/[)ˆˆ( 2
olsivolsiv    

clustered/robust 

jackknife 
pairs bootstrap - c 
pairs bootstrap - t 
wild bootstrap - c 
wild bootstrap - t 

.232 

.135 

.098 

.110 

.129 

.175 

.382 

.227 

.200 

.243 

.247 

.328 

.309 

.188 

.138 

.110 

.187 

.237 

.445 

.254 

.249 

.300 

.319 

.470 

.252 

.116 

.079 

.109 

.113 

.178 

.382 

.199 

.183 

.257 

.239 

.358 

.318 

.138 

.138 

.148 

.183 

.253 

.464 

.221 

.238 

.261 

.319 

.443 

   Notes:  Figures in bold are those reported in the paper.  Symmetric two-sided tests in all cases.  

 Table J2 reports alternative results for tests of OLS bias in the sample.  In Table XIV in 

the paper I report results based upon the significance of the coefficient on the 1st stage residuals 

entered into an artificial 2nd stage OLS regression using clustered/robust covariance estimates.  

As noted in Appendix E above, an alternative test based upon the vector of contrasts, i.e. the 

differences between 2nd stage IV and OLS coefficients, in non-iid error environments has large 

size distortions in the conventional test and less power when evaluated using the jackknife or 

bootstrap.  Table J2 shows that in the analysis of the sample the vector of contrasts generally 

provides higher rejection rates in the conventional test (an average of .012 higher in 4 

comparisons between the first rows of the left and right panels of the table) and lower rejection 

rates in the jackknife and bootstrap versions of the tests (an average of .008 lower in 20 

comparisons between the bottom five rows of the left and right panels in the table).  Since I 

emphasize the jackknife and bootstrap results in the paper, and the conventional vector of 

contrasts test has large size distortions with non-iid errors (Appendix E above), I report results 

based on the artificial regression in the paper. 
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Table K1:  Leverage, Heteroskedasticity and Differences in IV P-Values 

(alternative p-values - cl/robust p-value regressed on leverage & homoskedasticity p-value) 

 jackknife pairs boot-t pairs boot-c wild boot-t wild boot-c 

max  
leverage 

β 
s.e. 
p-v 

.217 
(.053) 
.000 

.059 
(.045) 
.319 

.154 
(.049) 
.016 

.112 
(.033) 
.016 

.213 
(.062) 
.021 

max lev x 
homoskedasticity 

p-value 

β 
s.e. 
p-v 

-3.97 
(1.46) 
.229 

-.829 
(.423) 
.210 

-2.04 
(.941) 
.218 

-.356 
(.274) 
.276 

-.273 
(1.03) 
.850 

homoskedasticity 
p-value 

β 
s.e. 
p-v 

.866 
(.291) 
.231 

.203 
(.096) 
.253 

.442 
(.190) 
.216 

.006 
(.067) 
.933 

.076 
(.212) 
.799 

constant 
β 

s.e. 
p-v 

.023 
(.013) 
.164 

.006 
(.008) 
.459 

.015 
(.011) 
.248 

-.013 
(.008) 
.085 

.004 
(.013) 
.769 

R2  .368 .147 .192 .227 .213 

    Notes:  Each column represents a separate regression.  Each observation is a paper average, so there are 30 
observations in each regression.  β & s.e. = coefficient and heteroskedasticity robust standard error, p-v = 
bootstrap-t p-value calculated using 1000 bootstrap draws.  Max lev = maximum instrument leverage share of 
single observation or cluster (paper level average), as in Table II in the paper.  Homoskedasticity p-value = 
Koenker (1981) p-value on test that residuals are homoskedastic, as in Table III in the paper.  Results using 
Wooldridge (2013) p-value are almost identical. 

K:  Leverage, Heteroskedasticity and Differences in IV P-Values  

 Table K1 above regresses the difference between the jackknife and bootstrap p-values 

and the conventional clustered/robust p-values for the sample regressions (Section VI in the 

paper) on maximum leverage, the p-value on the test of homoskedasticity, and the interaction 

between the two.  Observations are paper averages, so there are 30 observations in each column's 

regression.  The maximum leverage share of the largest cluster or observation is always 

positively associated with p-value differences, and this effect is larger when the average p-value 

on the test that the 1st stage residuals are homoskedastic is low.  These results are consistent with 

the Monte Carlo simulations presented in the paper which indicated that clustered/robust p-

values have larger size distortions when leverage is high and the residuals are heteroskedastic.  

However, although many of the coefficients in the table are deemed to be statistically significant 

when evaluated using heteroskedasticity robust standard errors, only the coefficients on 
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maximum leverage are found to be significant when evaluated using the bootstrap-t, as reported 

in the table.  The average homoskedasticity p-value is close to zero in ¾ of the papers, so the 

bootstrap resampling finds that the results are heavily sensitive to a few observations and not 

statistically significant.  These results were described in Section VI in the paper. 
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