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A: Sensitivity Tests for Tables IV - XVI in the Paper

This appendix presents sensitivity tests for Tables IV through X in the paper. Table IV in
the paper reported Type I error rates and power estimates for 2SLS and OLS using Monte Carlos
with normal and "actual" errors, the data generating processes described in 9.1-9.3 and 11.1-11.3
in the paper. Table Al below adds in the results with chi® errors (processes 9.4-9.6 described in
the paper). Size distortions are somewhat larger with chi’ errors, but otherwise the patterns are
those described in the paper: Type I error rates above nominal level with non-iid errors are not
unique to IV; power declines more, both absolutely and proportionately, with non-iid errors in IV
than in OLS; IV is a noticeably less efficient estimator with much lower power when errors are
uncorrelated (OLS unbiased); and when errors are correlated, precise but biased OLS estimates

give rise to huge size distortions.



Table Al: Average Null Rejection Probabilities at the .01 & .05 Levels
(sensitivity test for Table IV in the paper)
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Table Al: Average Null Rejection Probabilities at the .01 & .05 Levels (continued)
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Notes: As in Table IV in the paper.



Table A2: Ln Truncated OLS Bias & Relative 2SLS to OLS Bias & Mean Squared Error
(sensitivity test for Table V in the paper)

| B |<1000%| B, |

1B |<10%| B, |

OLS relative relative| OLS relative relative
bias bias mse bias bias mse
all all low medium high all all all low medium high all
(a) all results
iid normal -0.5 34 -4.0 2.5 38 03 -0.5 -3.4 -4.0 -2.5 3.8 -0.6
h normal -0.5 2.0 2.8 -1.6 -1.7 1.9 -0.6 2.3 -3.0 -1.9 2.0 0.5
h cl normal -0.5 -1.1 -1.9 -1.3 -0.2 33 -0.6 -1.7 2.4 -14 -1.2 1.2
iid chi®* -0.5 34 -3.8 -2.6 -39 04 -0.5 -34 -3.8 -2.6 -39 -07
hchi® -0.4 2.1 2.7 -1.6 2.1 14 -0.5 -2.3 -3.0 -1.7 2.3 0.3
neclchi? -0.4 -1.4 2.0 -1.4 -0.7 2.9 -0.5 -1.6 2.3 -14 -1.2 1.0
1id "actual" -0.4 33 -39 2.1 -3.8 0.1 -04 -34 -4.0 2.3 -39 -05
h "actual" -0.4 3.0 -3.8 -2.0 -3.1 04 -0.5 -3.0 -3.9 2.1 3.1 -03
h cl "actual" -0.4 2.1 -3.0 -1.6 -1.8 1.3 -0.5 -2.3 -3.1 -1.8 2.2 0.3
(b) headline results
iid normal -0.7 -3.6 4.3 2.8 37 -0.8 -0.7 -3.6 -4.3 -2.8 37 -09
h normal -0.8 2.1 3.2 -1.3 -1.8 1.7 -0.8 24 -33 -1.7 2.2 0.2
h cl normal -0.8 -1.2 2.2 -1.1 -0.3 32 -0.8 -1.8 -2.8 -14 -1.1 1.1
iid chi® -0.7 33 -3.6 2.9 35 -09 -0.7 -34 -3.7 -3.0 35 -1.0
hchi® -0.7 2.2 34 -1.6 -1.8 1.0 -0.7 -2.5 -3.6 -1.7 2.3 0.0
neclchi? -0.7 -1.3 2.0 -1.3 -0.6 2.5 -0.7 -1.7 2.3 -1.5 -1.2 0.9
1id "actual" -0.5 -3.8 -4.2 33 3.8  -0.7 -0.5 -3.9 4.4 -34 -39 -1.0
h "actual" -0.6 34 -4.0 2.7 36 -04 -0.6 -3.5 -4.0 2.7 36  -0.7
h cl "actual" -0.6 2.6 3.2 2.3 23 04 -0.6 -2.5 -3.0 2.3 23 -0.1

Notes: As in Table V in the paper.

Table A2 above adds chi” errors to Table V's analysis in the paper of relative bias and

. . )
mean squared error with correlated errors. The patterns with chi” errors are very much the same:

IV's relative bias advantage falls with non-iid errors while IV mse on average becomes greater

than that found in OLS. An appendix further below shows that the change in relative bias with

non-iid error processes is positively related to maximum leverage.



Tables VI and VII in the paper examined the effectiveness of the Stock & Yogo (2005)
size and bias tests using normal and "actual" errors, and in some cases only for the smallest and
largest size and bias bounds given by Stock & Yogo. Tables A3 and A4 below extend the
analysis to include chi® errors and all of the bounds provided by Stock & Yogo. Results for size
bounds with chi® errors are generally worse than those found with normal errors, with a higher
ratio of the fraction of regressions exceeding the desired size bound in H; (strong instrument) to
the fraction found in Hy (weak instrument). Chi’ results with regards to bias are similar to those
found with normal errors. Results for intermediate bounds on size and bias lie between the

smallest and largest bounds, as might be expected.



Table A3: Fraction of Regressions with Null Rejection Probabilities Greater than Size Bound
in Specifications that Don’t (Hy) and Do (H,) Reject the Stock & Yogo Weak Instrument Null
(sensitivity test for Table VI in the paper)

maximum acceptable size for a nominal .05 test
.10 15 20 .25
H, H; (max) H, H; (max) H, H; (max) H, H; (max)

(A) default IV coefficient covariance estimate, with default F used as Stock and Yogo test statistic

ildnormal .126 .000 (.022) .094 .000 (.013) .067 .000 (.010) .053  .000 (.009)
iid chi* .141 .001(.022) .087 .000(.013) .062 .000(.010) .048 .000 (.009)
iid "actual" .085 .003 (.028) .058 .002 (.017) .036 .002(.013) .040 .002 (.011)

(B) cl/robust IV coefficient covariance estimate, with default F used as Stock and Yogo test statistic

iidnormal 258 .267(.022) .106 .025(.013) .062 .014(.010) .058 .009 (.009)
hnormal .425 .268(.020) .201 .125(.014) .097 .077(.012) .042 .061(.011)
hclnormal 415 .449(.019) 270 .358(.014) .134 .176(.012) .050 .083 (.011)

iidchi>® 216 276 (.022) .074 .024(.013) .062 .014(.010) .053 .008 (.009)
hchi® .565 .448(.019) .283 .191(.012) .141 .134(.010) .047 .075(.009)
helchi® 574 .602(.018) .319 .432(.012) .178 .364(.010) .096 .217 (.009)

iid "actual” 251 .269(.028) .058 .025(.017) .036 .019(.013) .036 .011(.011)
h"actual” 254 389 (.026) .136 .074(.017) .108 .057(.014) .091 .045(.012)
hel "actual” 316 .385(.026) .159 .192(.017) .117 .135(.014) .094 .099 (.012)

(C) cl/robust IV coefficient covariance estimate, with cl/robust F used as Stock and Yogo test statistic

iidnormal .247 270 (.019) .118 .024(.011) .068 .014(.009) .063 .009 (.008)
hnormal .394 247(.041) .185 .119(.027) .087 .078(.021) .045 .062(.018)
hclnormal .470 383 (.101) .351 .327(.059) .159 .176(.045) .055 .094 (.037)

iidchi>® 215 273(017) .083 .023(.011) .069 .014(.009) .058 .008 (.008)
hehi® 534  .439(038) 262 .183(.025) .142 .132(.019) .051 .077(.016)
helchi® .589 .605(.077) .379 .438(.047) 277 .372(.036) .163 .220 (.031)

iid "actual” 236 .275(.022) .069 .024(.014) .041 .018(.011) .041 .011(.009)
h"actual” 244 398 (.028) .139 .072(.018) .114 .055(.014) .098 .043 (.012)
hel "actual” .349 378 (.060) 203 .171(.036) .153 .120(.029) .128 .084 (.025)

Notes: As in Table VI in the paper.



Table A4: Fraction of Regressions with Relative Bias Greater than Bias Bound in
Specifications that Don’t and Do Reject the Stock & Yogo Weak Instrument Null
(sensitivity test for Table VII in the paper) -

maximum acceptable relative bias

.05 10 .20 .30
H, H; (max) H, H; (max) H, H; (max) H, H; (max)
(A) default F used as Stock and Yogo test statistic
iid normal .988  .153 (.162) .902 .091 (.145) .878 .052(.106) .668 .043 (.068)
hnormal .992 .216(.137) .998 .396 (.085) .960 .522(.042) .768 .415(.025)
hclnormal .995 .869 (.114) .997 .828(.072) .963 .848(.037) .833 .762(.023)
iidchi® .993  .140(.162) .910 .069 (.145) .847 .055(.105) .676 .065 (.065)
hchi® 982 366 (.105) .962 .445(065) .864 .502(.033) .515 .296(.021)
heclchi® 976  .819(.090) .955 .803(.055) .857 .766(.029) .562 .579(.019)
iid "actual" 971  .139(.181) 911 .052(.156) .850 .036(.112) .705 .040 (.084)
h "actual" .961 .116(.178) .925 .146(.151) .784 .136(.100) .580 .176 (.067)
hcl "actual" .966 .671(.193) .941 .689 (.143) .771 .480(.101) .589 .402 (.069)
(B) clustered/robust F used as Stock and Yogo test statistic
ildnormal .991 .174 (.155) 914 .127(.130) .878 .261 (.066) .655 .248 (.030)
hnormal .984 .649 (.032) .988 .699 (.017) .966 .674(.009) .546 .528 (.006)
hclnormal .972 .944 (.034) 973 .910(.017) .982 .880(.010) .970 .759 (.007)
iidchi> .997 171 (.151) 916 .196(.112) .825 .386(.043) .601 .337(.018)
hchi> 976 .678 (.026) .974 .656(.016) .938 .591(.009) .572  .334(.006)
heclchi® 937  .908 (.027) .950 .859(.017) .951 .771(.010) .940 .530 (.006)
iid "actual" .989 172 (.157) .932 116 (.128) .864 .225(.070) .725 .273(.033)
h "actual" .983 .105(.163) .957 .122(.136) .818 .128(.088) .625 .181 (.052)
hcl "actual" .966 .604 (.252) 944 661 (.159) .788 .466(.093) .615 .396 (.054)

Notes: As in Table VII in the paper.



Stock & Yogo (2005) base their theory around Wald and F-statistics calculated with
finite sample corrections (pp. 83-84) but p-values based upon the asymptotic chi® distribution
(pp- 88), so I follow this approach in Table VI in the paper (as noted in the table's notes) and
Table A3 above. Table AS below reports results using the t-distribution with finite sample
degrees of freedom corrections to calculate IV p-values and size. As expected, the fraction of
regressions with Type I error probabilities greater than the specified levels falls with these
corrections (compare to Table A3), but the patterns are identical to those reported in the paper.

In particular, with non-iid errors the fraction of regressions with Type I error probabilities greater
than the specified level is often higher in H; regressions that reject the weak instrument null than
it is in Hy regressions that do not, and is always much greater than the maximum share that

would be consistent with the test itself having .05 size.



Table AS: Stock & Yogo Size Tests with P-Values Calculated using t-Distribution
(sensitivity test for Table VI in the paper)

maximum acceptable size for a nominal .05 test
.10 15 20 .25
H, H; (max) H, H; (max) H, H; (max) H, H; (max)

(A) default IV coefficient covariance estimate, with default F used as Stock and Yogo test statistic

iidnormal .116 .000(.022) .075 .000(.013) .067 .000(.010) .048 .000 (.009)
iidchi® .128 .001(.022) .075 .000(.013) .062 .000(.010) .048 .000 (.009)
iid "actual” .083 .003(.028) .055 .002(.017) .036 .002(.013) .036 .002(.011)

(B) cl/robust IV coefficient covariance estimate, with default F used as Stock and Yogo test statistic

iidnormal 209 .216(.022) .094 .024(.013) .062 .014(.010) .053 .001 (.009)
hnormal .400 .234(.020) .I181 .108(.014) .093 .073(.012) .039 .059(.011)
hclnormal 394 .442(.019) 240 .333(.014) .116 .165(.012) .049 .079 (.011)

iidchi® .182 .228(.022) .074 .023(.013) .062 .014(.010) .053 .005 (.009)
hchi® 533 413(.019) 253 .175(.012) .127 .123(.010) .045 .066(.009)
helchi® .552  .560(.018) .295 .420(.012) .168 .351(.010) .087 .198(.009)

iid "actual” .190 224 (.028) .055 .024(.017) .036 .018(.013) .036 .006 (.011)
h'actual" 212 .313(.026) .120 .065(.017) .107 .056(.014) .085 .042(.012)
hel "actual” 291 .351(.026) .147 .182(.017) .111 .132(.014) .088 .092(.012)

(C) cl/robust IV coefficient covariance estimate, with cl/robust F used as Stock and Yogo test statistic

ildnormal .205 .217(019) .105 .023 (.011) .068 .014(.009) .058 .001 (.008)
hnormal 367 .211(.041) .163 .103(.027) .085 .074(.021) .043 .060 (.018)
hclnormal .456 377 (.101) .324 .303(.059) .144 .166(.045) .052 .091 (.038)

iidchi> .189 .223(.017) .083 .022(.011) .069 .014(.009) .058 .005 (.008)
hchi® .501 .403(.038) 231 .171(.025) .127 .123(.019) .046 .068 (.016)
helchi® 563 .552(077) .357 .431(.047) 267 .358(.036) .147 .202(.031)

iid "actual” .180 .226(.022) .065 .023(.014) .041 .017(.011) .041 .006 (.010)
h'actual" .209 .317(.028) .123 .063(.018) .113 .054(.014) .092 .040(.012)
hel "actual” 328  .335(.060) .192 .162(.036) .147 .117(.029) .119 .079 (.025)

Notes: As in Table VI in the paper.
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Table A6 below divides the results for the Stock & Yogo size test by leverage group, a
sensitivity test for Table VI in the paper. With iid error processes and the default covariance
estimate used to evaluate F-statistics and calculate IV standard errors, the test, as shown in panel
A of the table, does well in all leverage groups, although only the medium leverage group has
substantial weak instrument induced size distortions. With clustered/robust covariance estimates
used to calculate IV standard errors, results in the medium and high leverage groups are
extraordinarily poor, whether or not default (panel B) or clustered/robust (panel C) covariance
estimates are used in the calculation of the 1% stage test statistic, as with non-iid errors Type I
error probabilities are often as large or greater in the H; “strong instrument” group than in the Hy
group that fails to reject the weak instrument null. The test does appear to work better in non-iid
settings in low leverage papers (panels B and C), but this is largely a consequence of the fact that
size distortions with clustered/robust covariance estimates in these papers are almost always very
low for both Hy and H; regressions. In the low leverage cases where rejection probabilities
greater than nominal value appear, size distortions in H; papers with non-iid errors in panels B
and C are occasionally as high as in Hy regressions and very often above the level consistent with
the Stock & Yogo test itself having .05 size.

As noted in the paper, the results for Stock & Yogo's bias test cannot be meaningfully
broken down by leverage group. The 134 regressions for which Stock & Yogo provide bias
bounds only cover one high leverage paper and 3 low leverage papers, and in the latter almost all

observations, but for those from one regression, exceed the bounds.
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Table A6: Stock & Yogo Size Tests by Leverage Group

(sensitivity test for Table VI in the paper)

maximum acceptable size for a nominal .05 test

.10 15 .20 .25
Hy H; (max) Hy H; (max) Hy H,; (max) H H; (max)
(A) default covariance estimate used in 1% stage test statistic
and to evaluate coefficient significance

low

iid normal .042  .000 (.011) .045 .000(.005) .062 .000(.003) .000 .000 (.003)
iid chi’ .064 .000(.011) .045 .000 (.005) .000 .000(.003) .000 .000 (.003)
iid "actual”  .022 .009 (.011) .046 .008 (.005) .000 .008 (.003) .000 .008 (.003)
medium

iid normal .160  .001 (.063) .106 .001(.037) .070 .000(.029) .059 .000 (.025)
iid chi® 174 .003 (.061) .097 .001(.036) .070 .000(.028) .053 .000 (.025)
iid "actual”  .113  .001 (.082) .063 .000 (.050) .037 .000(.038) .041 .000 (.032)
high

iid normal .000 .000 (.006) .000 .000(.002) .000 .000(.001) .000 .000 (.001)
iid chi® .021  .000 (.006) .000 .000(.002) .000 .000(.001) .000 .000 (.001)
iid "actual”  .013  .000 (.010) .032 .000(.004) .053 .000(.002) .072 .000 (.002)

Notes: Low, medium, high refer to papers grouped on the basis of average maximum leverage, as in Table II
in the paper. Otherwise, as in Table VI in the paper.

12



Table A6: Stock & Yogo Size Tests by Leverage Group - continued

(sensitivity test for Table VI in the paper)

maximum acceptable size for a nominal .05 test

.10 15 .20 25
H() Hl (max) H() Hl (max) H() H 1 (max) H() Hl (max)
(B) default covariance estimate used in 1% stage test statistic,
clustered/robust covariance estimate used to evaluate coefficient significance

low

iid normal 100 .033(.011) .045 .000 (.005) .062 .000(.003) .000 .000 (.003)
h normal .061 .046 (.013) .027 .001(.007) .031 .001(.005) .034 .001(.005)
h cl normal .041  .009 (.012) .043 .006 (.008) .022 .001(.007) .022 .002 (.006)
iid chi? .069 .036(.011) .045 .000(.005) .063 .000(.003) .000 .000 (.003)
h chi? 107 .045(.012) .028 .005 (.007) .033 .001(.005) .037 .001(.004)
h ¢l chi’ .061 .051(012) .021 .010(.008) .022 .001(.007) .022 .002 (.006)
iid "actual" .050 .039(011) .046 .008 (.005) .000 .008 (.003) .000 .007 (.003)
h "actual" .048 .035(.011) .045 .004 (.005) .000 .000(.003) .000 .000 (.003)
hecl "actual" .137 .034 (.012) .034 .005(.006) .000 .000 (.004) .000 .000 (.004)
medium

iid normal 279 .031(.063) .119 .001(.037) .064 .000(.029) .065 .000 (.025)
h normal 466 .222(.049) 217  .127(034) .101 .036(.029) .037 .010(.025)
h cl normal 439 271(.040) 285 .192(.029) .144 .067 (.025) .051 .019(.022)
iid chi? 236 .015(061) .082 .002(.036) .065 .000(.028) .059 .000 (.025)
h chi? 618 769 (.049) .307 .212(.032) .143 .120(.026) .040 .021(.023)
h ¢l chi® 633 515(041) .352  .225(.028) .183 .170(.023) .093 .065 (.021)
iid "actual" 269 .021(.082) .063 .000(.050) .037 .000(.038) .035 .000(.032)
h "actual" 309 490 (.072) .162  .140(.049) .126 .102(.039) .104 .081 (.033)
hcl "actual" .377 .497 (.067) .180 .186(.045) .134 .130(.036) .106 .083 (.031)
high

iid normal 284 511 (.006) .000 .053(.002) .000 .031(.001) .000 .021(.001)
h normal .619 404 (.005) .275 .188(.003) .134 .146(.003) .088 .131(.002)
h ¢l normal 640 794 (.007) .400 .664 (.005) .189 .352(.004) .075 .177(.003)
iid chi? 242 540 (.006) .010 .051(.002) .000 .031(.001) .000 .019(.001)
h chi? 861 448 (.004) .468 .269 (.002) .335 .211(.001) .194 .155(.001)
h ¢l chi’ 857 928 (.005) .510 .794(.003) .407 .696(.002) .263 .447 (.002)
iid "actual" 298 518 (.010) .032 .048 (.004) .053 .036(.002) .072 .021(.002)
h "actual" 162 524 (.010) .009 .072(.004) .012 .058 (.003) .014 .044 (.002)
hcl "actual" .199 .509 (.010) .118 .296 (.005) .066 .212(.003) .060 .163 (.002)

Notes: Low, medium, high refer to papers grouped on the basis of average maximum leverage, as in Table II
in the paper. Otherwise, as in Table VI in the paper.
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Table A6: Stock & Yogo Size Tests by Leverage Group - continued
(sensitivity test for Table VI in the paper)

maximum acceptable size for a nominal .05 test
.10 15 20 .25
H, H; (max) H, H; (max) H, H; (max) H, H; (max)

(C) clustered/robust covariance estimate used in 1% stage test statistic
and to evaluate coefficient significance

low

iid normal .079 .038(.011) .045 .000(.004) .061 .000(.003) .000 .000 (.003)
h. normal .043 .054(.039) .012 .000(.025) .014 .000(.020) .015 .000(.017)
h.cl.normal .027 .000(.064) .021 .001(.052) .008 .000(.045) .008 .000 (.042)

iid chi® 059  .038(.011) .046 .000(.005) .063 .000(.003) .000 .000 (.003)
h. chi® 055 .058(.040) .011 .006(.026) .013 .000(.020) .015 .000 (.017)
h. cl. chi® 053 .052(.063) .013 .010(.052) .008 .000(.046) .008 .000 (.042)

iid "actual"  .046  .040 (.011) .046 .008 (.005) .000 .008 (.003) .000 .008 (.003)

h "actual" .035 .038(.013) .036 .004 (.006) .000 .000(.004) .000 .000 (.004)
hcl "actual” .068 .044 (.031) .018 .005(.014) .000 .000(.010) .000 .000 (.008)
medium

iid normal 284 .055(050) .133 .001(.030) .071 .001(.025) .070 .001 (.022)
h normal 427 .192(.089) 211 .115(.051) .091 .036(.038) .033 .011(.031)
h ¢l normal 410 196 ((116)  .302  .133(.063) .141 .049 (.046) .046 .016 (.038)
iid chi? 245 .035(.046) .091 .002(.030) .072 .000(.024) .064 .001(.021)
h chi? 574 872 (.075) .284 218 (.045) .141 .119(.033) .035 .022(.027)
h ¢l chi? 565 .570(.095) .351  .186(.054) .224 .135(.040) .117 .044(.033)
iid "actual" 267 .059 (.062) .072 .000 (.038) .042 .000 (.030) .040 .000 (.026)
h "actual" 326 459 (.065) .180 .127(.042) .144 .092(.034) .120 .073(.030)
hecl "actual" .374 .509 (.076) .169 .196 (.050) .128 .134(.040) .105 .083 (.035)
high

iid normal .198  .510(.004) .000 .053(.001) .000 .031(.001) .000 .021(.000)
h normal .650  .355(016) .283 .174(.011) .153 .145(.009) .118 .131(.008)
h ¢l normal 728 880 (.114) .576 716 (.058) .266 .401(.042) .092 .223(.035)
iid chi’ 204 528 (.003) .005 .050(.001) .000 .031(.001) .000 .019(.000)
h chi? 915 344 (.016) .475 .237(.010) .303 .201(.007) .157 .156(.006)
h ¢l chi? 898 953 (.069) .656 .869 (.038) .548 .759(.028) .348 .483(.023)
iid "actual" 224 .510(.006) .053 .047(.002) .086 .036(.001) .115 .021(.001)
h "actual" 123 .559(.014) .031 .073(.008) .026 .058 (.005) .025 .044 (.004)

hel "actual" 422 508 (.066) .293 .272(.040) 219 .194 (.031) .184 .145(.027)

Notes: Low, medium, high refer to papers grouped on the basis of average maximum leverage, as in Table II
in the paper. Otherwise, as in Table VI in the paper.
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Table VIII in the paper examined the effectiveness of the Olea & Pflueger (2013) bias
test in overidentified equations (where the finite sample 1* moment exists with normal errors)
using normal and "actual" errors. Table A7 presents results including chi’ errors. As noted in
the paper, the test performs somewhat worse with artificial chi’ errors, with bias levels in the low
and medium leverage sample and non-iid errors always exceeding the maximum bound
consistent with the test having a Type-I error rate of .05. Table A8 below applies the Olea &
Pflueger bias test to the exactly identified equations in my Monte Carlo simulations. As the
finite sample IV coefficients in these equations most likely do not have a 1% moment, I evaluate
relative truncated bias using coefficients whose absolute value is less than 1000 times the
absolute value of the underlying parameter of the data generating process. As noted in the paper,
the test functions somewhat worse in this sample than in over-identified equations, as in all
leverage groups and with all error processes H; regressions now show bias levels that are

multiples of the limit consistent with a .05 Type-I error rate.

15



Table A7: Fraction of Regressions with Relative Bias Greater than Bias Bound
in Specifications that Don’t and Do Reject the Olea & Pflueger Weak Instrument Null
(sensitivity test for Table VIII in the paper)

1id normal
h. normal

h. cl. normal
iid chi®

h chi®

h ¢l chi?

iid "actual"
h "actual"

h cl "actual"

1id normal
h. normal

h. cl. normal
iid chi®

h chi’

h ¢l chi’

iid "actual"
h "actual"

h cl "actual"

bias = .05 bias =.10 bias =.20 bias =5
H, H; (max) Hy H, (max) H, H, (max) H, H, (max)
174 over-identified regressions in 8 low and medium leverage papers
939  .040(.249) .861 .045(.226) .815 .033(.196) .587 .041(.146)
907 240 (.391) 907 .182(.266) .871 .183(.204) .650 .194 (.177)
938 432 (.698) .894 258 (.376) .880 .264 (.242) .767 .235(.199)
925 073 (.247) 864 .031(.226) .786 .034(.196) .581 .042(.152)
903 .355(.258) .903 316 (.170) .826 .314(.130) .460 .207 (.113)
912 .611(.431) .876 .465(.227) .839 .364(.145) .590 .219(.120)
930 .074 (.251) .876 .001 (.229) .799 .001 (.199) .648 .002(.169)
877 .093(.334) .879 .044 (.242) .729 .043 (.210) .538 .062 (.181)
899 219 (.381) .886 .135(.258) .736 .071(.211) .543 .071(.181)
52 over-identified regressions in 4 high leverage papers

.000 .197(.024) .000 .118(.012) .000 .000 (.005) .000 .000 (.003)
969 206 (.050) .878 .207 (.036) .839 .191(.026) .865 .219(.021)
985 .906 (.908) .978 .842 (.376) .968 .847(.198) .899  .843(.147)
.002  .186(.020) .000 .069 (.010) .000 .021 (.005) .000 .020 (.003)
930  .198 (.046) .855 .196 (.031) .733 .190(.021) .302 .079(.017)
985 927 (.611) 961 .847(.269) 922 .855(.141) .817 .789(.103)
.000 .083(.023) .000 .070(.011) .000 .064 (.006) .000 .041(.004)
485 1162 (.034) .197 .074(.027) .000 .026 (.017) .000 .024(.012)
528,480 (.246) 485 471 (.111) 326 .365(.049) .305 .277(.037)

Notes: As in Table VIII in the paper.
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Table A8: Olea & Pflueger Bias Tests in the Exactly Identified Sample
(sensitivity test for Table VIII in the paper)
maximum acceptable relative bias
.05 .10 .20 Y5
H, H; (max) H, H; (max) H, H; (max) H, H; (max)
(A) 253 regressions in 9 low leverage papers
iidnormal .777 .162(.029) .485 .098 ((017) .322 .048(.010) .318 .033(.007)
hnormal .888 .141(.058) .848 .077(.050) .758 .099 (.040) .627 .083 (.034)
hclnormal .881 .361(.095) .878 .197(.073) .858 .107 (.066) .826 .075 (.062)
iidchi® 762  .142(.029) .554 .095(.017) .339 .042(.009) .335 .037(.007)
hchi® 903 .118(.058) .845 .045(050) .709 .062(.041) .586 .045 (.035)
heclchi® .867 .301(.088) .899 .161(.071) .835 .125(.065) .768 .094 (.062)
iid "actual" 718 .182(.029) .539 .137(017) .334 .080(.009) .310 .058 (.007)
h "actual" .685 .247(.047) .602 .167(.022) .420 .089(.012) .329 .032(.009)
hcl "actual" 717 .365(.107) .571 .198 (.054) .548 .136(.028) .377 .088 (.021)
(B) 395 regressions in 8 medium leverage papers
iid normal 916 .126 (.066) .776 .154(.044) .527 .108 (.027) .409 .071 (.021)
hnormal .910 .577(.149) .834 .231(.092) .799 .168 (.064) .714 .175(.053)
hclnormal 914 .781(.249) .849 474 (.132) .769 .195(.083) .717 .187(.068)
iidchi® .903 .189(.060) .750 .177 (.040) .501 .116(.025) .346 .072(.020)
hchi® .885 432(114) 854 212(.082) .781 .142(.062) .660 .138(.053)
heclchi® 925 .776(221) .851 378 (.116) .813 .168 (.077) .701  .150 (.064)
iid "actual" .923 262 (.075) .843 .248(.056) .618 .182(.038) .399 .103 (.030)
h "actual" .901 .382(.084) .814 .269(.056) .588 .218(.040) .526 .191(.033)
hcl "actual" .845 .501 (.123) .798 .290 (.064) .653 .253(.048) .570 .230 (.040)
(C) 435 regressions in 9 high leverage papers
iid normal .782 .159(.011) .377 .078 (.006) .102 .031(.003) .103 .020 (.002)
hnormal .953 .220(.021) .913 .184(.018) .830 .134(.015) .766 .127(.013)
hclnormal .983  .991 (.424) .959 .935(.220) .901 .877(.127) .855 .814(.097)
iid chi® .733  .168 (.009) .331 .079 (.005) .105 .024(.002) .075 .012(.001)
hchi® .969 .196(.021) .939 .154(.018) .889 .124(.015) .826 .106(.013)
helchi® 965 .956 (.206) .938 .923(.115) .894 .861(.072) .830 .800 (.057)
iid "actual" .744 124 (.015) .618 .095(.009) .294 .045(.005) .189 .028 (.003)
h "actual" .826 .122(.021) .717 .097(.017) .582 .080(.013) .459 .069 (.011)
hcl "actual" .896 .558(.299) .815 .630(.104) .694 .561(.057) .543 .418 (.049)

Notes: As in Table VIII in the paper.
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Table A9 Average Rejection Rates of True Nulls at the .05 Level in 1% Stage Tests
(sensitivity test for Table IX in the paper)

clustered/robust
default

low leverage medium leverage high leverage

ar et kel Rer by el
coef joint coef joint coef joint coef joint
iid normal .051 .050 .050 .056 .057 .061 .149 .071 .235 .134 .111 .355
hnormal .404 253 .463 .062 .061 .070 .132 .053 .149 .281 .156 .481
hclnormal .595 .355 .652 .066 .064 .068 .133 .054 .144 .308 .199 .500
iid chi®* .052 .051 .056 .056 .054 .059 .123 .065 .192 .126 .105 .347
hchi® 401 247 459 .069 .063 .072 .156 .059 .194 299 .161 .490
hclchi® 594 346 .653 .080 .066 .074 .160 .061 .195 .341 .199 .515
iid "actual" .054 .051 .056 .056 .057 .059 .132 .065 .203 .124 .101 .342
h "actual" .196 .138 .223 .057 .066 .070 .208 .084 273 .203 .136 .359
hcl "actual" .372 232 .390 .061 .074 .075 211 .083 276 .226 .136 .397

Notes: As in Table IX in the paper.

Table A10: Average Rejection Rates of True Nulls at the .01 Level in 1* Stage Tests
(sensitivity test for Table IX in the paper)

clustered/robust
default

low leverage medium leverage high leverage

ar el Remlogy kel gy kel
coef joint coef joint coef joint coef joint
iid normal .010 .010 .010 .013 .012 .013 .075 .020 .133 .062 .045 .273
hnormal .312 .190 .390 .015 .013 .0l16 .057 .015 .074 .175 .087 .376
hclnormal 512 .284 .583 .017 .013 .015 .058 .015 .070 .194 .113 .391
iidchi® .012 .012 .014 .014 .012 .013 .053 .017 .094 .055 .041 .264
hchi® 309 .186 .386 .021 .016 .020 .080 .018 .114 .195 .091 .382
helchi® 510 274 .583 .031 .017 .021 .083 .019 .113 230 .115 .412
iid "actual" .014 .012 .015 .015 .013 .012 .062 .017 .106 .055 .040 .263
h "actual" .112 .069 .132 .013 .015 .014 .119 .027 .172 .110 .057 .246
hcl "actual" 275 .146 .284 .014 .017 .016 .119 .027 .173 .119 .051 .305

Notes: As in Table IX in the paper.
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Table IX in the paper reported rejection rates for 1% stage tests using normal and "actual"
errors at the .05 level. Tables A9 and A10 above add in chi” errors and .01 level results. The
pattern of results is much the same as in the paper's discussion of Table IX. Size distortions are
very large in medium and high leverage papers and grow with the dimensionality of the test, as
evidenced by the comparison of the average rejection rate for tests of individual instruments
against that of the joint test of all instruments in papers with overidentified 2SLS regressions.

Table X in the paper reported Monte Carlo estimates of null rejection probabilities of
clustered/robust, jackknife and bootstrap methods at the .01 and .05 levels using normal and
"actual" errors. Table A11 below adds in results based upon the chi® distribution. As elsewhere,
the pattern of results are very similar to those reported in the paper: (a) jackknife and bootstrap
methods reduce the size distortions of clustered/robust methods while producing a higher ratio of
power to size; (b) the bootstrap-c appears to be as accurate as the -t in tests of IV coefficients and
is by no means systematically worse in other tests; and (c) no matter which method is used
power declines with non-iid error processes. Table A12 reports results broken down by leverage
group. As noted in the paper, the improvement in size afforded by the jackknife and bootstrap
are concentrated in medium and high leverage papers, while in low leverage papers the

alternative methods are as accurate as clustered/robust inference.
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Table A11: Sensitivity test for Table X: Improved Finite Sample Inference Using the JackKnife & Bootstrap

(average within paper rejection rates at .01 and .05 levels, 10 Monte Carlos for each of 1309 equations)

clustered/ . )
robust jackknife

.01 .05 .01 .05

tests of true nulls

pairs bootstrap

.01

C

.05

.01

t

.05

wild bootstrap

.01

C

.05

t
.01

.05

clustered/ .
robust

.01

.05

jackknife

.01

.05

tests of false nulls

pairs bootstrap

.01

¢

.05

.01

t

.05

wild bootstrap

.01

C

.05

.01

t

.05

iid normal |.028 .081 .018 .050
h. normal |.069 .126 .024 .061
h clnormal |.070 .124 .023 .048

iid chi’* |.024 .065 .014 .040
h chi |.080 .144 .031 .067
helchi? |.075 .141 .027 .058

iid "actual" |.025 .073 .014 .044
h "actual" |.034 .081 .012 .040
hcl "actual" |.035 .083 .014 .039

iid normal |.051 .119 .023 .073
h normal |.085 .162 .034 .08l
h cl normal |.091 .171 .030 .078

iid chi’* |.038 .099 .019 .054
hchi |.101 .183 .044 .095
heclchi® |.108 .184 .053 .101

iid "actual" |.040 .105 .018 .054
h "actual" |.081 .160 .029 .075
hcl "actual" |.084 .162 .032 .078

.009
011
.009

.007
.016
.012

.007
.005
.004

.008
.020
.023

.006
.027
.036

.009
011
.015

.042
.048
.041

.033
.059
.051

.035
.035
.032

.054
.081
.088

.038
.088
.103

.041
.056
.066

IV coefficients (correlated 1st and 2™ stage errors): Hy = Pagp o1 0

.021
.025
.025

.017
.030
.028

.019
.022
.024

.017
.015
.012

.016
.024
.029

.015
.017
.018

.065
.063
.059

.050
.072
.067

.060
.063
.064

.009
.015
.013

.007
.018
.017

.007
.010
.009

.046
.051
.049

.038
.066
.072

.042
.049
.045

.011
.016
.015

.010
.025
.022

011
.014
.015

.052
.058
.055

.045
.072
.075

.050
.059
.057

455
263
.190

482
288
.189

428
407
293

.588
364
273

.606
395
.288

551
535
444

391
202
127

403
214
132

.370
339
226

518
284
.186

.530
.304
.200

485
453
.350

312
181
102

.330
191
.103

311
274
157

1** Stage F-tests (correlated errors): Hy = Tyg 01 0

.065
.059
.056

.053
.067
.072

.051
.064
.062

.010
.018
.023

.008
.028
.031

.008
.017
.020

.053
.072
.076

.046
.075
.086

.042
.067
.067

.012
.017
.017

.009
.027
.033

.009
.016
.015

20

.056
.065
.065

.050
.079
.084

044
066
063

925
759
.647

928
178
.658

.880
.857
766

950
.825
729

955
.848
137

924
910
.846

.894
.693
.562

901
712
575

.837
178
.666

933
172
.658

940
793
.665

.897
.855
766

.848
.688
571

.855
701
579

195
138
.621

482
270
177

494
287
189

447
416
294

924
187
.680

927
812
.691

.879
.853
177

384
182
121

.396
182
.107

355
322
228

.855
.547
434

.856
553
434

.806
718
.588

544
270
184

.543
282
187

495
470
375

912
.655
551

913
.666
.546

.873
.820
724

257
156
.100

279
.168
.099

263
226
139

.833
.699
576

.841
738
.618

191
51
.617

434
245
174

450
262
183

425
.380
.303

915
.790
.683

918
818
107

.882
.854
167

376
218
137

403
238
.148

362
342
273

.858
.668
.540

.870
713
.583

816
7154
.613

551
323
228

.565
.349
.250

520
501
424

921
758
.636

929
.800
.678

.889
.856
755



Table A11: Sensitivity test for Table X (continued)

tests of true nulls tests of false nulls
clustered/ jackknife pairs bootstrap wild bootstrap clustered/ jackknife pairs bootstrap wild bootstrap
robust c t c t robust c t c t

.01 05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05

Hausman tests: Hy = (85, = Sois)
(uncorrelated errors) (correlated errors)

iild normal |.021 .071 .008 .036 .005 .030 .008 .041 .006 .044 .010 .050(.373 .493 .255 .373 .216 .354 .262 .405 .266 .408 .306 .450
h normal |.065 .145 .011 .047 .006 .036 .007 .035 .013 .051 .014 .068|.268 .378 .153 .211 .147 216 .146 .202 .158 .242 .191 .279
h clnormal |.076 .157 .008 .029 .003 .025 .005 .025 .011 .050 .020 .070|.210 .316 .098 .147 .089 .139 .085 .138 .103 .178 .135 .219

iid chi® |.017 .060 .007 .033 .004 .031 .007 .035 .007 .041 .010 .051|.344 470 239 .347 210 338 .236 363 .247 397 276 .421
hchi® |.083 .158 .018 .054 .010 .047 .011 .046 .016 .068 .027 .087|.285 .383 .150 .210 .142 215 .140 .202 .165 .250 .198 .293
hcl chi® |-101 .182 .014 .045 .006 .039 .008 .040 .017 .065 .033 .101|.219 .323 .089 .129 .079 .132 .078 .119 .099 .177 .140 .233

iid "actual" |.023 .073 .006 .030 .003 .024 .007 .040 .024 .050 .013 .052|.375 .484 266 .364 .221 .346 .258 377 211 318 314 .441
h "actual" |.039 .100 .007 .032 .003 .028 .007 .041 .021 .051 .021 .068|.335 .454 .211 .315 .186 .297 .205 .323 .171 .272 .260 .387
hcl "actual" |[.049 .111 .008 .033 .003 .024 .007 .037 .021 .052 .022 .075|.278 .405 .139 .240 .097 .204 .134 260 .127 .232 .218 .350

Notes: As in Tsble X in the paper.
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Table A12: : Rejection Probabilities of True Nulls by Test and Leverage Group
(sensitivity test for Table X in the paper)

low leverage medium leverage high leverage
clust- - jack- bolzjgiap boxlsltciap clust- - jack- bolgzﬁap bogrlsl‘iap clust- - jack- bolcj)zﬁap bogclsl‘?rap
robust knife . ) . ) robust knife . ¢ . ) robust knife . ¢ . )

IV coefficients (correlated errors): .01 level

ildnormal .013 .011 .008 .013 .011 .016 | .036 .026 .014 .030 .007 .009 | .035 .017 .006 .021 .008 .008
hnormal .013 .008 .007 .007 .010 .010 | .054 .028 .011 .028 .010 .010 | .141 .038 .0l16 .039 .024 .027
hclnormal .016 .013 .009 .013 .010 .013 | .053 .026 .010 .027 .009 .008 | .142 .030 .009 .036 .019 .025

iid chi® .009 .007 .004 .008 .006 .007 |.031 .016 .011 .021 .009 .011 |.033 .019 .006 .022 .005 .012
hchi® .014 .016 .009 .013 .015 .014 |.069 .039 .022 .038 .019 .026 |.157 .038 .018 .039 .020 .035
heclchi* 012 .013 .010 .009 .012 .012 |.063 .034 .016 .036 .017 .023 |.151 .036 .009 .039 .021 .031

iid "actual" .012 .010 .007 .012 .011 .015 | .021 .012 .008 .016 .006 .010 | .044 .019 .005 .029 .005 .008
h"actual" .010 .007 .006 .007 .006 .009 | .043 .013 .006 .032 .019 .029 | .050 .015 .003 .028 .004 .004
hcl "actual" .010 .007 .004 .009 .005 .010 | .041 .014 .004 .033 .018 .027 | .055 .021 .005 .031 .005 .009

IV coefficients (correlated errors): .05 level

ild normal .058 .053 .048 .058 .049 .060 | .084 .051 .051 .064 .049 .052 | .102 .045 .025 .074 .039 .044
hnormal .053 .045 .037 .043 .043 .056 | .101 .058 .044 059 .045 .048 | 224 079 .064 .086 .066 .070
hclnormal .048 .038 .036 .042 .043 .054 | .096 .051 .041 .055 .046 .046 | 228 .056 .044 .079 .058 .064

iid chi® .035 .031 .029 .037 .032 .041 |.071 .044 .042 .051 .042 .050 | .090 .044 .030 .061 .040 .043
hchi® .057 .047 .045 .044 .053 .057 | .131 .074 .063 .079 .068 .073 | 244 .082 .068 .093 .076 .086
hclchi® .049 .040 .039 .037 .052 .059 | .135 .063 .060 .077 .087 .077 | 239 .073 .056 .088 .077 .087

iid "actual" .050 .045 .043 .050 .045 .052 | .062 .035 .034 .051 .051 .045 | .108 .051 .026 .079 .031 .053
h "actual" .039 .034 .035 .040 .035 .042 | .095 .042 .045 .070 .072 .078 | .109 .044 .024 .078 .041 .056
hcl "actual" .039 .032 .028 .044 .032 .042 |.092 .038 .039 .071 .069 .073 |.117 .047 .028 .077 .035 .055

Notes: As in Table X in the paper.
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Table A12: : Rejection Probabilities of True Nulls by Test and Leverage Group (continued)

low leverage medium leverage high leverage
. pairs wild . pairs wild . pairs wild
clust- jack- clust- jack- clust- jack-
robust knife bootstraf bootstrai) robust knife bootstraf bootstraf) robust knife bootstrai) bootstraf
c c c c c c

1* Stage F-tests (correlated errors): .01 level

iild normal .010 .009 .011 .009 .012 .011 | .081 .032 .007 .011 .009 .012 | .062 .028 .008 .030 .011 .011
hnormal .016 .011 .016 .006 .011 .010 | .054 .023 .018 .007 .014 .012 | .187 .066 .025 .033 .029 .030
hclnormal .018 .017 .020 .009 .012 .01l | .050 .021 .016 .006 .017 .0I1 | .206 .053 .032 .022 .039 .029

iidchi® .014 .011 .011 .010 .011 .01l |.044 .016 .004 .006 .008 .010 | .055 .029 .003 .031 .004 .004
hchi® .029 .023 .023 .014 .017 .021 |.074 .041 .020 .014 .020 .021 | .200 .069 .036 .044 .047 .040
heclchi® .026 .019 .018 .013 .019 .017 | .088 .057 .034 .022 .023 .039 | .209 .084 .054 .051 .051 .042

iid "actual" .013 .009 .010 .010 .011 .010 | .049 .017 .007 .008 .007 .009 | .059 .029 .011 .028 .007 .008
h "actual" .008 .006 .009 .005 .006 .006 | .130 .046 .014 .020 .030 .027 | .105 .035 .009 .027 .015 .014
hcl "actual" .010 .005 .012 .004 .006 .004 | .130 .051 .017 .018 .031 .032 | .113 .038 .015 .032 .022 .008

1* Stage F-tests (correlated errors): .05 level

ildnormal .073 .065 .068 .069 .063 .069 | .147 .085 .055 .042 .046 .052 | .137 .070 .039 .085 .050 .047
hnormal .067 .055 .066 .054 .055 .057 |.127 .067 .062 .031 .061 .054 |.293 .121 .115 .092 .101 .085
hclnormal .075 .061 .076 .053 .061 .059 | .129 .054 .072 .034 .058 .053 | 309 .119 .116 .082 .108 .083

iid chi* .052 .052 .047 .052 .051 .053 | .118 .045 .037 .030 .044 .055|.127 .066 .029 .077 .043 .043
hchi® .065 .060 .065 .048 .059 .055 |.168 .097 .083 .053 .061 .079 |.315 .129 .116 .100 .103 .103
heclchi® .067 .053 .065 .045 .055 .054 | .175 .109 .106 .062 .080 .095 | .310 .142 .138 .110 .122 .105

iid "actual" .050 .043 .046 .044 .048 .046 | .130 .050 .039 .033 .039 .046 | .136 .070 .038 .076 .040 .041
h "actual" .053 .048 .051 .042 .049 .052 | .219 .097 .066 .064 .089 .084 | .208 .080 .051 .086 .063 .06l
hcl "actual" .057 .047 .056 .038 .047 .047 | .221 .098 .069 .062 .084 .088 | .207 .090 .072 .088 .070 .053

Notes: As in Table X in the paper.
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Table A12: : Rejection Probabilities of True Nulls by Test and Leverage Group (continued)

low leverage medium leverage high leverage

pairs wild pairs wild pairs wild

bootstrap bootstrap rcolglslts_t {glcil;é bootstrap bootstrap rcolglslts_t Elcil;c; bootstrap bootstrap

C t C t C t C t C t C t

clust- jack-
robust knife

Hausman tests (uncorrelated errors): .01 level

iild normal .016 .010 .007 .009 .010 .012 | .016 .005 .005 .006 .004 .009 | .030 .009 .003 .011 .005 .008
hnormal .011 .005 .006 .004 .009 .011 | .043 .004 .001 .002 .011 .012 | .143 .025 .010 .0l16 .019 .020
hclnormal .020 .007 .007 .006 .007 .017 | .052 .004 .001 .002 .01l .018 |.155 .014 .002 .007 .015 .024

iid chi® .014 .007 .006 .006 .005 .012 |.012 .002 .001 .002 .006 .013 | .026 .012 .005 .014 .010 .007
hchi® .021 .008 .006 .003 .010 .015|.080 .013 .008 .010 .017 .030 |.149 .032 .016 .020 .022 .036
heclchi® .037 .010 .007 .007 .012 .024 | .071 .007 .004 .004 .017 .029 | .193 .024 .008 .014 .021 .048

iid "actual" .008 .005 .004 .005 .033 .007 | .028 .003 .002 .002 .034 .024 | .031 .012 .004 .013 .004 .008
h "actual" .020 .007 .006 .005 .027 .011 | .049 .003 .002 .003 .034 .041 | .047 .011 .002 .013 .002 .009
hecl "actual" .018 .002 .001 .001 .027 .011 | .065 .005 .007 .008 .033 .047 | .064 .016 .002 .010 .003 .008

Hausman tests (uncorrelated errors): .05 level

iild normal .068 .050 .045 .050 .053 .062 | .053 .016 .018 .023 .037 .044 | .091 .041 .026 .049 .041 .043
hnormal .080 .044 .039 .037 .046 .073 |.109 .023 .018 .016 .041 .051 | .247 .074 .052 .051 .066 .080
hclnormal .083 .033 .030 .031 .042 .070 | .118 .019 .019 .013 .041 .057 | .269 .036 .026 .030 .068 .082

iidchi* .049 .032 .031 .037 .039 .051 | .057 .026 .026 .023 .041 .052 |.075 .040 .035 .046 .043 .049
hchi® .072 .045 .044 .033 .050 .067 | .149 .043 .037 .034 .072 .096 | .253 .073 .061 .070 .081 .097
heclchi> .099 .049 .046 .038 .060 .090 | .138 .031 .021 .022 .063 .084 | .310 .055 .048 .060 .072 .128

iid "actual" .042 .032 .029 .033 .058 .041 | .074 .014 .018 .029 .079 .067 | .102 .043 .024 .059 .014 .050
h "actual" .065 .041 .043 .050 .067 .059 | .119 .018 .020 .024 .069 .091 | .116 .036 .022 .050 .017 .054
hcl "actual"  .069 .034 .028 .035 .058 .061 |.132 .028 .026 .032 .073 .106 | .132 .037 .017 .044 .025 .058

Notes: As in Table X in the paper.
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Because of the high computational cost of calculating jackknife and bootstrap p-values,
Table X in the paper (and Tables A11 and A12 above) estimated null rejection probabilities
using only 10 simulations for each of 1309 equations in 30 papers. To address the question of
whether this leads to inaccurate estimates, Tables A13 reports clustered/robust results using 10
and 1000 simulations per equation. As can be seen, 10 and 1000 results are very similar. Table
X aims to measure average rejection rates across 30 papers, not the average rejection rate in any
given equation, and in this regard, as noted in the paper, 10 simulations per equation appear to
yield reasonably accurate estimates of the average and relative performance of the different

methods.
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Table A13: Clustered/Robust Rejection Rates at the .01 and .05 Levels
(sensitivity test for Table X in the paper, 10 vs 1000 Monte Carlos per equation)

IV coefficients 1** Stage F-tests Hausman tests
uncorrelated correlated
Ho = P Hy=0 Hy = Mg H,=0 errors errors
10 1000 10 1000 10 1000 10 1000 10 1000 10 1000
.01 level

iid normal .028 .029 455 461 | .051 .050 .925 924 | .021 .020 .373 .374
h.normal .069 .069 263 276 | .085 .082 .759 .759 | .066 .065 .268 .270
hclnormal .070 .069 .190 .182 | .091 .090 .647 .642 | .076 .076 .210 .205

iidchi® .024 .026 482 477 | .038 .041 .928 .927 | .017 .018 344 349
h.chi’ .080 .077 288 287 | .101 .099 .778 775 | .083 .084 285 .289
heclchi> .075 .083 .189 .196 | .108 .115 .658 .662 | .101 .103 .219 .224

iid "actual" .025 .025 428 432 | .040 .044 880 .887 | .023 .019 375 374
h "actual" .034 .035 407 409 | .081 .080 .857 .860 | .039 .038 .335 .334
hcl "actual" .035 .037 293 297 | .084 .084 .766 .761 | .049 .046 278 279

.05 level

iid normal .081 .077 588 .590 | .119 .113 950 .953 | .071 .069 .493 .490
h.normal .126 .126 364 375 | .162 .158 .825 .825 | .145 .139 378 374
hclnormal .124 123 273 272 | .171 .169 .729 720 | .157 .155 316 312

iidchi® .065 .075 .606 .603 | .099 .102 .955 .953 | .060 .067 .470 .472
h.chi® .144 139 395 392 | .183 .174 .848 .847 | .158 .158 383 391
heclchi® .141 .144 288 294 | .184 .194 737 742 | .182 .182 323 .329

iid "actual" .073 .072 .551 .552 | .105 .104 .924 927 | .073 .068 .484  .487
h "actual" .081 .085 .535 539 | .160 .156 910 910 | .100 .098 .454 455
hcl"actual" .083 .085 444 446 | .162 .166 .846 .845 | .111 .110 405 .407

Notes: 10 and 1000 = number of Monte Carlos per equation used in calculation of average rejection rates.
Otherwise, as in Table X in the paper.
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Table A14: Significance of 2SLS Coefficients (sensitivity test for Table XI)
(average across papers of the fraction of coefficients rejecting the null of 0)

headline all results
results all low medium high

.01 .05 .01 .05 .01 .05 .01 .05 .01 .05
authors’ methods 522 788 365 .558 .543 719 215 400 336 555
clustered/robust 463 768 339 531 524 716 173 347 322 531
jackknife 382 537 250  .401 467 674 095 235 187  .293
pairs bootstrap - ¢ 243 520 160 340 346  .600 .074 168  .062 252
pairs bootstrap - t 308 599 247 453 444 692 088 2890 210 .378
wild bootstrap - ¢ 231 444 115 337 219 603  .092 246 .035 .163
wild bootstrap - t S12 719 346 535 600 768 231 414 208 425

Notes: As in Table XI.

Table A15: Frequency with which IV Confidence Intervals contain OLS Point Estimates
(sensitivity test for Table XIII)

headline all results
results all low medium high
.99 .95 .99 .95 .99 .95 .99 .95 .99 .95
clustered/robust .831 .673 870 .750 .820 706 951 .830  .840 713
jackknife 862 .801 902  .825  .801 J727 973 915 930  .833

pairs bootstrap-c ~ .895  .790 934 852 849 753 972 925 981 .877
pairs bootstrap - t 895 769 902 779 825 697 984 890 .897  .750
wild bootstrap - ¢ 847 759 916 801  .836  .733 920 771 990  .899
wild bootstrap - t 858  .664 887 719 768  .622 940 787 952  .748

Notes: As in Table XIII.

In Section VI's analysis of the sample aggregate information is given for all and headline
results, but (for reasons of space) detail by leverage group is only given for headline results.
Tables A14-A18 reverse this, providing detail for all results by leverage groups. The patterns by
leverage group are the same as those found for headline results reported in the paper with, in
particular, the greatest differences between cl/robust and jackknife and bootstrap significance

rates appearing in medium and high leverage papers.
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Table A16: Rejection Rates in Hausman Tests (tests of OLS bias)
(sensitivity test for Table XIV)

headline all results
results all low medium high
.01 .05 .01 .05 .01 .05 .01 .05 .01 .05
clustered/robust 309 445 232 382 290 441 228 358 177  .348
jackknife 188 254 135 227 252 344 071 162 .083 .174

pairs bootstrap-¢ ~ .138  .249  .098 .200 .190 .310 .066 .154 .037 .136
pairs bootstrap - t 110 300 .110 243 233 349 065 .176 .031  .205
wild bootstrap - ¢ 187 319 129 247 203 313 147 278 .036  .149
wild bootstrap - t 237 470 175 328 283 421 209 341 .034 221

Notes: As in Table XIV.

Table A17: Identification in the First-Stage (sensitivity test for Table XV)
(rejection rates in tests of instrument irrelevance)

headline all results
results all low medium high
.01 .05 .01 .05 .01 .05 .01 .05 .01 .05
clustered/robust .00 1.00 .858 929 913 966 .802 .853 .858  .969
jackknife 835 945 718 827 903 948 .630 .728 .621  .805

pairs bootstrap - ¢ 781 967 661 874 869 977 526 768  .588  .878
pairs bootstrap - t 155 877 638 773 859 923 571 704 484  .693
wild bootstrap - ¢ 794 967 704 886  .892 961 585 727 .636 971
wild bootstrap - t 7783 952 660 .856 .879 942 .604 749 497 876

Notes: As in Table XV.

Table A18: Does 2SLS Provide Information that is Strongly Statistically Different from OLS?
(average fraction of 2SLS regressions rejecting @ = 0 & P15 € Clygs or Bois unbiased)
(sensitivity test for Table XVI)

(1) at .01 level (ii) at .05 level
headline all results headline all results
results  all low med  high results all low med  high
cl/robust .309 234 285 .209 210 445 378 439 .329 .366
jackknife .188 130 .239 071 .081 271 228 341 159 184

pairs boot - ¢ 138 .097 .190 .064 .037 221 183 310 152 .086
pairs boot - t 138 127 220 .066 .093 355 277 353 203 273
wild boot - ¢ 187 116 205 133 .009 319 .249 315 274 158
wild boot - t 287 177 276 199 .058 .502 353 433 322 .305

Notes: As in Table XVI.
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B: Selection of Headline Results

As noted in the paper, at the request of reviewers I separate out headline results in the
discussion and analysis. The text of my paper gives the criteria used to define a headline result.
Table B below reports the location of headline results in each paper, along with notes indicating
how they were identified. Papers are identified by the initials of the last names of the authors
and the year of publication (see appendix L below for the full citations), followed by an equals
sign and the number of headline results. The location of headline results in tables is then
identified by a number indicating the table followed by a parentheses where the row (if needed)
and column of headline results are listed, separated by "/" marks. To illustrate: 2(3/4) means
table 2, IV coefficients in columns 3 and 4; 5(B14) means table 5, IV coefficients in panel B row

1 column 4.
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Table B: Selection of Headline Results

paper
notes
table(rowcol)
_ Abstract/intro mention black and white poverty, black-white income disparities, black incomes,
A2011=8 o . X . .
2(3/4) within white inequality. Repeated in first sentence of conclusion. Table 2 covers all of these
under column title main results.
A2012=1 . ] o . .
3(AD) Critique of another paper: use first replication regression, which has strongest 1st stage.
ACS2014=1 Cols 4 & 6 very close and given equal weight in text and match # reported in abstract/intro.
4(6) Col 6 used to construct estimates included lagged effects reported in text and abstract/intro.
_ Table 3, col. 6 noted as preferred specification. Abstract/intro/conclusion discuss other
ADH2013 =1 S . . o . .
3(6) significant effects, but these come much later in presentation within paper and intermingled
with insignificant results.
AJRY2008 =2 Both instruments given equal weight in introduction. Col 4 is baseline specification, given
5(4), 6(4) more discussion in terms of 1* stage and coef.
_ Columns with full controls given emphasis in text and match reported results in introduction.
AZ2011=3 . . o
6(2/4/6) Table 7 covers other measures of quality of governance, but rule of law singled out in this and
other sections.
Abstract: divorce, intermarriage, fewer children, for some living outside ethnic enclave;
introduction: lower marriage, ever married, higher divorce, spouse fluent, more educated and
earns more, marriage outside ethnicity and nationality, fewer children, living outside ethnic
BC2010=7 enclaves; conclusion: divorced, marrying US native, more educated and higher earning spouse,
3(A22/B32/C22/D12),|fewer children, for some living outside ethnic enclaves.

4(14), 5(B14), 6(F35)

Common to at least two of the above: divorce, intermarriage, spouse more educated and higher
earning, fewer children, for some outside ethnic enclave. Intermarriage - spouse has same
country of birth seems to summarize best the four measures; fertility - text indicates women's
results more easy to interpret as fertility; living outside enclave - second measure deemed more
accurate at top p. 183.

BC2013=3 Critique of other papers: use regressions that replicate original results for equations with a
1(1), 3(1/3) single instrumented variable.
BD2006 =1 . o . . . .
5(13) Result mentioned in intro, other results in table are specification checks and with caveats.
BHW2011=1 Non-textile results highlighted in abstract/introduction/conclusion. This instrument highlighted
1(7) as primary specification in introduction (p. 94).
BL2010 = 1 All‘ instruments, only point .est.imatAe fpr t_hat table summarized in text (p. 139), panels A & B
4(A2) (with more controls) very similar, insignificant results on movement to autocracy qualified in
conclusion and given less emphasis in introduction/abstract/conclusion.
Only coefficent estimate for that table discussed in text, remainder described as specification
BL2012=1 checks. [Alternative: Cols 5 & 8, but 8 involves multiple instrumented coefficients - my paper
3(2) only examines single instrumented as multiple is rare, see text of my paper - and both have low
Ist stage F - since yield same coef with higher s.e., seen by authors as specification checks].
2(2%(;}2 /6_/;1) No particular outcome mentioned in introduction, no abstract. Multiple outcomes, text
discusses rape, larceny, motor vehicle theft & aggravated assault.
CFLV\g%é))IZ =1 Highlighted as preferred specification in text.
CLGJ2010=1 Women's results considered more reliable than men's (text), overall infant mortality result
5(C4) noted in abstract.
CS2013=3 Property values, income, population, employment, poverty rates effects mentioned in abstract.

3(A1/2) & 5(A3)

First 3 repeated in introduction and conclusion. Population effects (table 5) repeated in
conclusion. All other results in these tables compared in text to those in panel A.
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Table L: Selection of Headline Results (continued)

paper
notes
table(rowcol)
Employment and hours/wages highlighted in abstract/introduction. Hours/wages only OLS,
D2011 =2 employment IV also. Remaining results described as mechanisms. Point estimate on female
4(7/8) employment/participation repeated in introduction/text/conclusion. These two columns
highlighted as preferred specification in text. Male results on participation in table 5 qualified
in text.
D2015 = 1 Coefficients rise (OLS & IV) with additional covariates and discussion in text focuses on
8(1) lowest OLS value (col 1) and possibility that it overstates. This column given precedence in
discussion and indicated to be preferred specification in introduction.
DMW2011 = 1 Highlighted as preferred estimate in conclusion, in range reported in introduction.
41(C4) [Alternative: Table 2, reg # 2, col 4 reported as preferred specification in text, but not
highlighted in conclusion].
GK2010=3 . N L . .
3(last 3 rows of 2) 6, 12 & 18 month horizons highlighted in introduction and conclusion.
H2014 = 1 Productivity result highlighted in introduction/conclusion. Tables 4 & 5 are main results, text
5(6) indicates dissatisfaction with st stage until get to last column of table 5. Remaining tables
described as testing robustness of results.
HG2010 =2 Described in text as preferred I'V specifications. Then repeated in first column of table 8 which
7(H/T) is then used to summarize results in conclusion. Post-college results in table 8 not as
significant.
IV results highlighted in abstract and introduction. Asymmetries explored in table 9 and
12015 = 2 discussed in introduction and conclusion, but is last table in paper and hence seems less central.
33) & 7(3) Table 4 is a sub-category of 3, tables 5 & 6 IV insignificant and not featured in
abstract/introduction. Cols. 4 of tables (different specification) described as addressing some
concerns, but in some cases results opposite to headline results or insignificant.
K2014 = 1 Closest match to number reported in abstract. Cols 2 and 3 noted in text to have higher 1st
42) stage F due to fact more important in these sub-samples. Col 1 insignificant. [Alternative:
column 1, because full sample].
Ll\g(lﬁo;?@: 2 Identified as preferred specification in text. Outcomes highlighted in intro,
MVW2014 =1 Point estimate quoted in introduction, singled out in text. [ Alternative: per patent estimate, col
4(2) 4, but not quoted in intro].
Returns to schooling mentioned in both introduction and conclusion. Introduction also
02006=3 mentions other outcomes, but not in conclusion and not reviewed in text until last. Table 4 is
4(12/42/82) table that delivers summary result (mentioned in introduction and conclusion) of 10-14%,
compares 3 countries in text.
SW2011 =1 Agrees with point estimates summarized in introduction. In text, col. 4 quickly dismissed in
1(6) favour of col. 5, col. 5 then described as "naive".
Abstract/introduction emphasis on HIV positive purchasing condoms and number purchased.
T2008 = 1 Because only use eqns with one instrumented coef in this study [see text of my paper], exclude
8(A2) results Table 7. Also, Table 8 separates estimates out by HIV status, which is what is
emphasized in introduction. Table 8 - HIV positive, purchasing condoms, is closest to
emphasis in abstract/introduction.
Y2014 = Considers defense spending as best instrument & use of capacity utilization controls important,
2D2) value of -.750 used in later discussion. (Specification with -.750 at bottom of table is a

summary effect, including effects of lags which are not instrumented).
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Table C1: Increase in In Relative 2SLS to OLS Relative Bias and Maximum Leverage
(each cell, enclosed in a box, represents a separate regression)

increase in relative bias from iid errors increase in relative bias from iid errors
to heteroskedastic errors to clustered & heteroskedastic errors

1B 1<1000%| B, | | B 1<100%| By, | | B 1<10%[ By | | B 1<1000%| By, | | B |<100%| By, | | B |<10%| By, |

cormal B 4.0 3.8 3.8 5.6 4.8 43
Do se (1.5) (1.3) (1.2) (1.3) (1.1) (1.1)
p-v 012 019 012 .001 .002 002

o B 3.6 3.7 3.7 5.5 5.5 5.2
s S (1.3) (1.2) (1.0) (1.4) (1.1) (1.1)
p-v 013 010 .006 .007 .002 .001

vctual” P 2.2 2.2 2.3 2.9 2.7 2.9
o S (0.8) (0.7) (0.7) (1.4) (1.3) (1.3)
p-v 011 .009 014 037 .029 029

Notes: Each cell represents a separate regression of the increase in In 2SLS to OLS relative bias on maximum
leverage and a constant term using paper averages (30observations). B & s.e. = coefficient and heteroskedasticity
robust standard error for maximum leverage, p-v = resampling bootstrap-t p-value calculated using 1000 bootstrap
draws.

C: Maximum Leverage and Increases in Relative Bias

As noted in the paper's discussion of Table V, although the increase in relative 2SLS to
OLS bias with non-iid error processes by broad leverage group (low, medium, high) is not
monotonic, the two variables are positively and significantly related at the paper level. To show
this, Table C1 regresses the increase in In relative 2SLS to OLS bias found in moving from iid to
heteroskedastic or clustered & heteroskedastic errors on maximum leverage, separately
examining results using normal, chi* and "actual" error processes and different levels of
truncation in calculating relative bias. Regressions are done at the paper level using paper
averages. Reported standard errors are heteroskedasticity robust and p-values are calculated

using the bootstrap-t. All of the relations are positive and significant at the .05 level or less.
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D: Using Wild Bootstrap Data Generating Methods to Approximate the
Characteristics of a Data Generating Process

In the paper and elsewhere in this on-line appendix I use transformations of jackknifed
residuals to approximate the distribution of results produced by the data generating process
underlying the actual data of my sample. Such simulations are identified by the moniker "actual"
in the relevant tables. In this appendix I present two approaches to approximating the results
produced by an underlying data generating process using wild bootstrap transformations of
estimated residuals and apply them to the artificial data generating processes 9.1 - 9.6 described
in the paper, whose true characteristics can be determined by simulation. In the first [ use
standard estimated residuals and in the second jackknifed delete-i residuals. I find that wild
transformations of estimated residuals do a poor job of replicating the pattern of results produced
by an underlying data generating process, perhaps because estimated residuals are shrunken
toward zero in high leverage observations. In contrast, wild transformations based on jackknifed
residuals approximate some of the results produced by an underlying data generating process.

The two methods examined in simulations below are:

(1) Wild bootstrap. Given a set of hase data, estimate the 2SLS equation system:

(1) y=YB, +Xo+0, Y=Zra+Xj+¥V,
and then produce artificial data

(12) y' =YY", +Xd+u, Y'=Zr+Xj+v,
where (u,v) are transformations of the estimated residual pairs (1, ¢, V) , where cr=(n/(n-k,-ky))” is
an adjustment for the reduction in variance brought about by OLS fitting. The transformations

vary by the assumption regarding the underlying data generating process:

(1.3a) iid - the residual pairs are multiplied by a 50/50 iid draw from #1 at the observation
level and randomly shuffled across observations;

(1.3b) heteroskedastic - the residual pairs are multiplied by a 50/50 iid draw from +1 at the
observation level, but not shuffled;

(1.3c¢) heteroskedastic & clustered - the residual pairs are multiplied by a 50/50 iid draw
from =1 at the cluster level and not shuffled.

33



(2) Wild bootstrap with the jackknife. Given a set of base data, estimate the 2SLS
coefficients

Q1) y=YS, +X6+1, Y=Za+Xy+¥,
estimate delete-i residuals based upon delete-i coefficient estimates

22) 0, =y, - Y,f., +X0, and ¥, =Y, - Z, 7, +X,7,
where ~i indicates coefficient estimates excluding cluster i (or an individual observation when
the regression is not clustered) and i the variables for cluster i, and then produce artificial data

23) ¥y =Y B +Xb+u, Y =Za+Xj+v,
where (u,v) are transformations of the estimated delete-i residuals pairs (u, v) using the processes
described in (1.3a) - (1.3c). Where the regressions include cluster fixed effects, the delete-i
residuals are estimated using cluster demeaned variables, so the delete-i residuals have a zero
cluster mean. Delete-i residuals are estimated at the cluster level when the regression is
clustered, regardless of whether the subsequent transformations (1.3a) - (1.3¢) are clustered or
not, so as to use a consistent set of residuals across the different transformations.

The above methods each describe a data generating process which tries to replicate the
data generating process underlying the base data. To avoid confusion, I shall refer to the data
generating process of the base data as dgp, and the two data generating processes described
above as wild and wild jk. 1 refer to the underlying IV parameter value of each data generating
process as . For dgp, based as it is upon simulations 9.1-9.6 described in the paper, this is the
,Bl.v of the papers' data. In contrast, the S of wild and wild jk in the simulations below will be
the /3, of each base data draw from dgp.

Table D1 reports rejection rates in clustered/robust tests of the instrumented coefficient
for the true data generating processes (dgp) 9.1-9.6 that produce the base data, and for the wild
bootstrap data generating processes wild and wild jk. "Type I error rate" is the probability that
the null that the parameter value equals the f of each process is rejected, while "power" is the

rejection probability of the incorrect null of zero effects. use 1000 draws from dgp to calculate
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Table D1: Type I Error Rates and Power using Wild Bootstrap Data Generating Methods vs
Actual Characteristics for the Artificial Data Generating Processes Described in the Paper
(average across papers of within paper averages)

low leverage papers medium leverage papers high leverage papers
dgp wild  wildjk  dgp wild  wildjk  dgp wild  wild jk
Type I error rate: IV rejection rate of true nulls (.01 level)

iidnormal  .011 .012 .012 .036 .036 .024 .039 .040 .041
hnormal .012 .031 .016 .052 .056 .035 142 135 132
hclnormal  .010 .047 .016 .054 .061 .033 .143 105 132

iid chi®  .012 .014 .013 .032 .031 .021 .035 .037 .038
hchi®  .015 .031 .015 .066 .055 .036 152 118 130
helchi>  .018 .047 .017 .069 .056 .034 .160 .099 130

Type I error rate: IV rejection rate of true nulls (.05 level)

iid normal  .049 .050 .049 .082 .082 .069 101 102 .103
hnormal  .045 .070 .054 .106 107 .087 226 216 215
hclnormal  .040 .085 .051 .106 A11 .084 224 178 .208

iid chi® 051 .052 .052 .076 .076 .066 .097 .099 .099
hchi® .049 .070 .053 126 105 .090 242 .199 216
heclchi®  .051 .086 .053 130 105 .086 250 .168 .209

power: IV rejection rate of the incorrect null of zero effects (.01 level)

iild normal  .578 .590 .582 .285 356 .286 519 .546 512
hnormal .372 .396 .395 132 222 162 324 .379 363
hclnormal  .256 294 .286 .107 197 .145 .183 .286 234

iid chi®  .579 .596 587 314 377 .304 .539 558 525
hchi®  .368 403 .400 151 243 .186 342 413 376
heclchi® 259 281 274 122 .206 .148 .206 .298 .240

power: IV rejection rate of the incorrect null of zero effects (.05 level)

iid normal  .694 .693 .686 440 494 416 .636 .659 .626
hnormal  .457 481 478 .249 347 282 418 481 459
hclnormal  .333 381 .369 212 320 258 271 .387 325

iid chi*  .698 .696 .689 461 512 436 .650 .666 .633
hchi® 457 489 485 275 372 .307 445 519 AT77
heclchi® 341 372 362 236 328 263 .304 405 335

Notes: (1) dgp = cl/robust rejection rates for the data generating processes listed in the left-most column, as
determined by 1000 simulations per equation; (2) wild and wild jk = cl/robust rejection rates as determined by
simulated distributions using 1000 transformations of residuals for 10 draws from dgp, with transformations
1.3a in the text used for iid dgp, 1.3b for heteroskedastic dgp, and 1.3¢ for heteroskedastic and clustered dgp.

its true rejection probabilities, while for the wild bootstrap methods I use 1000 wild

transformations for each of 10 base data draws from dgp. Reported numbers are the average of
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within paper averages. Since comparisons in the paper are often based upon leverage, I divide
the sample papers into the low, medium and high leverage groups described in the paper.

As can be seen in Table D1, wild does exceptionally poorly. In moving from iid to
heteroskedastic and then heteroskedastic and clustered errors, it indicates large Type I error rates
in low leverage papers (which is not actually a characteristic of dgp), a distinctly non-monotonic
relationship in high leverage papers (which again is not a characteristic of dgp), and substantially
understates the decline in power found in dgp in medium and high leverage papers. In contrast,
wild jk does a much better job of approximating the patterns of Type I error rates and power
found in dgp, although it does not fully capture the degree to which Type I errors rise and power
falls with heteroskedastic and clustered errors in medium and high leverage papers.

Table D2 reports average In relative OLS to IV truncated relative bias and mean squared
error, as well as In absolute OLS bias, calculated across realized coefficients whose absolute
value is less than 1000 times the absolute value of the parameter of the data generating process.
As can be seen in the table, wild once again does poorly, as both relative bias and relative mean
squared error do not rise nearly as fast as in dgp with a movement from iid to heteroskedastic and
clustered errors, especially in high leverage papers. In contrast, wild jk provides a much closer
approximation of the movements in relative IV to OLS bias and mean squared error that arise
with heteroskedastic and clustered errors at different levels of leverage. Both methods tend to
overstate slightly the In proportional bias of OLS itself, with wild doing somewhat better on this
metric. This is not a measure, however, that I emphasize much in the paper, beyond noting that
it changes little in moving from iid to heteroskedastic errors, which seems to be true in all of the
simulations.

At the request of readers, I include simulations using the data generating process
produced by wild jk in the paper. As shown in the tables above, it approximates IV Type I error
rates and power and the relative bias and mse of IV and OLS, which are the results discussed in
Section IV of the paper. That said, jackknifed residuals are most certainly not the actual errors

of a data generating process and it must be borne in mind that it simply is not possible to extract
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Table D2: OLS Bias and Relative Truncated Bias and Mean Squared Error using Wild
Bootstrap Data Generating Methods vs Actual Characteristics for the Artificial Data
Generating Processes Described in the Paper (average across papers of within paper averages)

low leverage papers medium leverage papers high leverage papers
dgp wild  wild jk dgp wild  wild jk dgp wild  wild jk

In absolute value of IV to OLS bias

iid normal  -4.0 -4.0 -4.0 2.5 2.5 -2.3 -3.8 -3.8 -3.7
hnormal  -2.8 -3.0 -3.1 -1.6 -1.7 -1.4 -1.7 2.1 -1.7
hclnormal  -1.9 2.3 2.2 -1.3 -1.6 -1.3 -0.2 -1.6 -0.5
iidchi*  -3.8 -3.9 -4.0 2.6 2.5 -2.3 -3.9 -3.8 -3.8
hchi>  -2.7 -3.0 -3.0 -1.6 -1.9 -1.6 2.1 2.2 -1.9
hclchi>  -2.0 2.3 2.2 -1.4 -1.7 -1.4 -0.7 -1.6 -0.6

In IV to OLS mean squared error
iild normal ~ -0.8 -0.9 -1.0 0.5 0.7 1.1 -0.6 -0.4 -0.2
h normal 1.3 0.6 0.7 2.1 1.7 2.3 2.3 1.4 1.9
h ¢l normal 2.9 1.9 2.2 2.3 1.8 2.5 4.8 1.7 3.1
iid chi*  -0.8 -0.8 -0.9 0.5 0.7 1.1 -0.7 -0.5 -0.4
h chi® 1.1 0.5 0.6 1.8 1.6 2.2 1.5 1.1 1.6
h cl chi® 2.8 1.7 2.0 2.0 1.7 2.4 3.8 1.6 3.0

In OLS bias

iid normal  -0.6 -0.5 -0.5 -0.3 -0.4 -0.3 -0.6 -0.6 -0.5
hnormal  -0.6 -0.3 -0.3 -0.3 -0.3 -0.2 -0.6 -0.5 -0.4
hclnormal  -0.7 -0.3 -0.3 -0.3 -0.4 -0.3 -0.6 -0.4 -0.4
iid chi*  -0.6 -0.6 -0.5 -0.3 -0.4 -0.3 -0.6 -0.5 -0.5
hchi®  -0.6 -0.3 -0.3 -0.2 -0.4 -0.3 -0.4 -0.5 -0.4
heclchi®>  -0.6 -0.3 -0.2 -0.2 -0.4 -0.3 -0.4 -0.4 -0.3

Note: Values calculated based upon truncated central .99 of the coefficient distributions. Bias and mse around
the parameter S of the data generating process. Relative bias = In(|I'V bias|/|OLS bias|), relative mse = In(IV
mse/OLS mse), and OLS bias = In(|OLS bias/f]).

the true residuals from a single realization of base data or uncover from these the distribution of
results produced by the dgp that produced that hase data. Were such miracles possible, standard

errors would not be needed.
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E: Comparing Tests of OLS Bias using Monte Carlos

This appendix compares simulation results for two forms of the Durbin (1954) - Wu
(1973) - Hausman (1978) tests of OLS bias. The first test is based upon the "artificial
regression" suggested by Hausman (1978), wherein the residuals of the 1 stage regression are
entered into an OLS version of the 2™ stage regression and, using the notation of the paper, we
test of the significance of 4 in:

(El) y=YB+Xé+VO+u, where v=Y-Za-Xjy.
The second is based upon the "vector of contrasts", i.e. the difference between the IV and OLS
coefficients on Y in the second stage regression, using the test statistic:

By = Po)’

VB -V(Bu)

where V( ﬁiv) and V( ﬁols) are estimates of the variance of the two coefficients. (E1) can easily

(E2)

be adapted to a non-iid environment with the use of a clustered/robust variance estimate for 6.
However, while with the same n-k finite sample adjustment the default or homoskedastic
variance estimate for ,éiv is always greater than that for ﬂAol“_ , this is not always the case with
clustered/robust variance estimates. Consequently, it is not possible to use non-iid adjustments
in tests of the form of (E2), and this leads to large size distortions in the conventional test and
comparatively weaker power when jackknife and bootstrap corrections are applied.

Table E1 below presents the relevant simulations. The simulations use the error
processes described in 9.1 - 9.6 in the paper, there are 10 simulations per data generating process
per equation, and the table reports the average across papers of the average within paper rejection
rate. "Correlated errors", based upon the covariance structure of errors found in the residuals of
the 2SLS systems of the samples (see (9) in the paper), produce OLS bias and are used in tests of
power. "Uncorrelated errors", where the off-diagonal elements of the covariance matrix are set

to zero, generate a true null where OLS is unbiased, and are used to estimate Type I error rates.
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Table E1: Tests of OLS Bias
(average within paper rejection rates, 10 Monte Carlo for each of 1309 equations)

Type I error rates (uncorrelated errors) power (correlated errors)
ok pairs wild ok pairs wild
conven Jacks o otstra bootstrap ~ OMVEM JACKT hootstra bootstra
tional knife O OO donal kmife 00T OO

(a) artificial regression: testof in y =Y/ +Xd+ v& +u (.01 level)

ildnormal .021 .008 .005 .008 .006 .010 | .373 .255 216 .262 .266 .306
hnormal .065 .011 .006 .007 .013 .014 | .268 .153 .147 .146 .158 .191
clhnormal .076 .008 .003 .005 .01l .020 | .210 .098 .089 .085 .103 .135

iid chi* .017 .007 .004 .007 .007 .010 | .344 239 210 .236 .247 .276
hchi® .083 .018 .010 .011 .016 .027 | .285 .150 .142 .140 .165 .198
h&clchi® .101 .014 .006 .008 .017 .033 | 219 .089 .079 .078 .099 .140

(a) artificial regression: testof in y =Y/ + Xd+ v@ +u (.05 level)

iidnormal .071 .036 .030 .041 .044 .050 | .493 373 354 405 .408 .450
hnormal .145 .047 .036 .035 .051 .068 | 378 .211 216 .202 .242 279
clhnormal .157 .029 .025 .025 .050 .070 | .316 .147 .139 .138 .178 219

iid chi® .060 .033 .031 .035 .041 .051 | .470 .347 338 363 397 .421
hchi® .158 .054 .047 .046 .068 .087 | .383 210 .215 .202 .250 .293
h&clchi® .182 .045 .039 .040 .065 .101 | .323 .129 .132 .119 .177 .233

(b) vector of contrasts: test based upon ( ﬁiv - ﬁols)z /TV( Bw) - V( ﬁols )] (.01 level)

iidnormal .005 .008 .004 .012 .006 .011 | .283 .241 .187 .248 .250 .309
hnormal .238 .012 .006 .010 .011 .015 | 429 .148 .134 .144 150 .188
clhnormal 434 .005 .003 .005 .010 .016 | .546 .081 .070 .077 .091 .134

iid chi* .007 .006 .003 .009 .006 .013 | .288 232 .186 .233 .238 .287
hchi® 248 .016 .007 .013 .012 .024 | .429 .152 .132 .149 .151 .188
clhchi® 420 .009 .004 .008 .011 .027 | .539 .081 .070 .076 .089 .129

(b) vector of contrasts: test based upon ( ,éiv - ﬁols)z / [V(va) - V( ,éols)] (.05 level)

ildnormal .038 .035 .027 .051 .042 .052 | 421 .349 311 398 .397 .45l
hnormal .341 .041 .032 .043 .050 .065 | .552 .199 .189 .204 231 .282
clhnormal .531 .022 .018 .025 .045 .063 | .647 .119 .116 .119 .160 .206

iidchi® .037 .030 .026 .039 .039 .052 | .417 .338 310 .368 .380 .434
hchi® 354 .049 .041 .049 .056 .082 | .550 .209 203 213 235 .287
clhchi® 527 .035 .031 .034 .057 .089 | .649 .118 .115 .117 .161 .220

Notes: As in Table X in the paper. (a) calculated using cl/robust covariance estimates for both the conventional
test and the bootstrap; (b) calculated using default/homoskedastic covariance estimates for both methods.

In the tests based upon "artificial regressions", clustered/robust covariance estimates and

associated degrees of freedom are used to evaluate the significance of 4 in (E1), whereas in the
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tests based upon the vector of contrasts default/homoskedastic covariance estimates and the chi
squared distribution are used to compute and evaluate (E2). Bootstrap-t covariance estimates
follow those used in each conventional test. As shown in the table, with non-iid errors the test
based upon the vector of contrasts produces very large size distortions in the conventional test
and weaker power in the jackknife and bootstrap tests. Moreover, in the actual analysis of the
sample using the jackknife and bootstrap, the artificial regression produces higher rejection rates,
i.e. results that are more favourable to the sample (see results reported further below). For these

reasons, I report results based upon the artificial regression in Section VI of the paper.
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Table F1: Wild Bootstrap Methods (null not imposed)

estimated residuals jackknifed residuals
preliminary y=Yj, +Xé+u y= Y,éiv +Xo+10
estimation Y=Za+Xy+¥ Y=Zrn+Xy+V

adjustment of ~_ \/ﬁ o
residuals V=nin=k, k) *v

data generating Y =Y'4,+Xd+neu V' =Y"S, +Xo+neou

process Y* =Zi+ Xy 10V Y' =Za+Xy+nov

Notes: o denotes Hadamard product. 1 is composed of observation or cluster level iid draws of a transformation
variable, as described in the text. k, and ky denote the number of regressors in Z and X.

F: Comparing Wild-Bootstrap Methods using Monte Carlos

This section describes various forms of the wild bootstrap and examines their relative
performance in Monte Carlos. The methods which impose the null, yielding the most accurate
size and following what is considered to be "best practice", are used in the paper.

Table F1 begins by detailing the methods I follow in implementing wild bootstrap tests
where the null is not imposed on the data generating process. Following the customary
estimation of 2SLS coefficients, the residuals are modified. In the case where "estimated
residuals" are used, the modification is a small adjustment of 1 stage residuals for the reduction
in variance brought about by OLS fitting." Where "jackknifed residuals" are used, the estimated
residuals are replaced with the delete-i residuals. The modified residuals are then Hadamard
multiplied by a transformation vector  which involves iid observation or cluster level® draws of

a random variable, and added to the estimated 2SLS predicted values to generate y" and Y".

'There is no theoretical justification for modifying 2nd stage residuals in this manner, so
they are left as is.

’In all simulations or tests reported in the paper and this appendix, I implement the wild
bootstrap using transformations that follow authors' covariance estimates, i.e. clustered where
they cluster and at the observation level where they do not. 1 do this even in simulations with
non-clustered iid or heteroskedastic error processes, as this allows us to see how the methods
used in the tests of the actual sample would perform if the authors' clustering were uncalled for.
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Table F2: Wild Bootstrap Methods (null imposed)

tests of IV coefficients tests of IV coefficients (RER)
preliminary y-Yp=Xs+1 y-YB=Xs+u
estimation Y=Za+Xy+V Y=Za+Xy+aa+v

adjustment of
residuals

data generating Y =Y'S+Xs+nou Y =Y'[S+Xd+nou
process Y = Za+ X7 +1o¥ Y =Za+ X§+ 10V
tests of 1% stage coefficients tests of OLS bias
preliminary y=Y[  +Xo+1u

limin Y-Zn=Xj+¥
estimation Y=Zrn+Xy+V

~:\/fw

adjustment of V=Jnln—k)*v Honh DT
. - X

residuals V=ynl/ln—k,—k,)*v

data generating y' =YL, +Xd+n,cu

process Y"'=Zrn+Xy+noV

Y' =Za+Xy+n,0V

Notes: Unless otherwise noted, as in Table F1. RER = restricted efficient residuals.

Following Davidson-Flachaire’s (2008) analysis of the wild bootstrap, I consider symmetric
transformations where n; takes on the values [1,-1] with a 50/50 probability, and asymmetric
transformations where it takes on the values [(1-V5)/2, (1+V5)/2] with probabilities [(V5+1)/2V5,
(\5-1)/25]. On each draw of n, the 2SLS coefficients [}iv and 7 and their respective variance
estimates can be estimated, allowing implementation of the bootstrap-c and -t, as described in the
paper.

An alternative wild bootstrap approach involves imposing the null, as described in Table
F2. In this case, preliminary estimation imposes the restriction implied by the null. Aside from

the simple imposition of the null, there is also the “wild restricted efficient residual bootstrap”
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(Davidson & McKinnon 2010), which uses the 2™ stage OLS residuals to try to get more
efficient estimates of 1* stage relations when the instruments may be weak. Since the null varies
according to what is being tested, a separate data generating process is used for tests of IV and 1%
stage coefficients. The table also presents a wild bootstrap data generating process for tests of
OLS bias. As the null is that OLS is unbiased, preliminary estimation uses OLS for both 1% and
2nd stage coefficients. In the case of this test, I will consider two versions of the test: (1) where
the transformations on the 1** and 2™ stage residuals are the same, n;= 12; and (ii) where the
transformations are independent. Version (ii) looks to see whether power can be increased by
strengthening the null (that the residuals are uncorrelated and OLS is unbiased) to include the
assumption that the residuals are actually completely independent (which is not a necessary
implication of lack of correlation when errors are non-normal). In the case of each method
described in Table F2, on each draw of y" and Y" one estimates the coefficents (and associated
variance estimates) relevant to the null being tested, i.e. /3, for tests of the IV coefficient, # for
1* stage coefficients, and, for tests of OLS bias, either the vector of contrasts ﬁv- ﬁo,s or
coefficient & on the 1% stage residuals in the artificial 2nd stage OLS regression (Appendix E).
Table F3 below presents Monte Carlo estimates of Type I error rates, comparing methods
that impose the true null to those that do not. I use the six data generating processes described in
the paper® and run 10 Monte Carlo simulations per equation (with 1000 wild bootstrap draws
with symmetric transformations used to construct a p-value for each test), i.e. 13090 Monte
Carlo p-values per data generating process. Reported is the average across papers of the within
paper average rejection rate of true nulls (i.e. the parameter values of the underlying data
generating processes). When the null is not imposed and estimated residuals used, wild
bootstrap rejection probabilities are grossly larger than nominal value and, in the case of the -c,

actually worse than simply cl/robust conventional techniques in tests of 1st stage coefficients

3As fewer computer resources were available to me towards the end of this project, I did
not run (and hence do not report) the comparisons reported in the table for the data generating
process based upon "actual" errors.
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Table F3: Wild Bootstrap Inference With and Without Imposing the Null
(average within paper rejection rates of true nulls, 10 Monte Carlo simulations per equation)

IV coefficients (8;,)

¢ t c t

.01 .05 .01 .05 .01 .05 .01 .05

estimated residuals jackknifed residuals
iid normal .036 .091 .033 .080 .016 .053 .028 .069
h normal .079 133 .060 .104 .026 .060 .040 .081
cl h normal .069 118 .059 .094 .017 .042 .042 077
iid chi’® .028 .079 .030 .070 .012 .039 .025 .057
h chi® .089 141 .069 114 .029 .061 .047 .087
cl h chi® .081 133 .063 .109 .025 .060 .045 .085

null imposed null imposed (RER)
iid normal .008 .047 .015 .055 .009 .046 .011 .052
h normal 011 .047 .024 .070 .015 .051 .016 .058
cl h normal 011 .047 .025 .068 .013 .049 .015 .055
iid chi’® .006 .037 .014 .049 .007 .038 .010 .045
h chi’ .017 .060 .037 .087 .018 .066 .025 .072
cl h chi® .016 .063 .030 .089 .017 .072 .022 .075

1* stage F-tests ()
estimated residuals jackknifed residuals null imposed
c t ¢ t ¢ t

.01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05

iild normal .075 .141 .033 .087 .039 .082 .022 .063 .010 .053 .012 .056
hnormal .141 .200 .051 .095 .065 .106 .031 .069 .018 .072 .017 .065
clhnormal .145 .209 .056 .099 .067 .111 .029 .069 .023 .076 .017 .065

iidchi® .065 .122 .029 .072 .031 .066 .022 .056 .008 .046 .009 .050
hchi® .160 216 .065 .115 .079 .128 .040 .083 .028 .075 .027 .079
clhchi* .164 220 .074 .118 .086 .126 .048 .087 .031 .086 .033 .084

Notes: Reported figures are the average across 30 papers of the within paper average rejection rate. c/t =
bootstrap-c or bootstrap-t tests using symmetric transformations 1 as described in text accompanying Table F2.
.01/.05 = nominal size of the test. iid normal & chi2, heteroskedastic (h) and clustered (cl) denote the data
generating process for the Monte Carlo disturbances, as described in 9.1 - 9.6 in the paper. All simulations with
correlated 1% and 2™ stage residuals. RER = restricted efficient residuals.

(compare with Table X in the paper). Use of jackknifed residuals improves on these results,
moving rejection rates closer to nominal level, but imposing the null in most cases does even
better. There are simply very large advantages to knowing the underlying parameter of the data

generating process, as is the case when looking for the distribution of a test statistic under a
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Table F4: Wild Bootstrap Inference using Symmetric & Asymmetric Transformations
(average within paper rejection rates of true nulls, 10 Monte Carlo simulations per equation)

symmetric asymmetric
C t C t
.01 .05 .01 .05 .01 .05 .01 .05
IV coefficients (null imposed, correlated errors)
iid normal  .008 .047 .015 .055 .006 .046 .015 .058
hnormal .01l .047 .024 .070 .006 .041 .027 .071
clhnormal  .011 .047 .025 .068 .008 .044 .033 .074
iid chi®>  .006 .037 .014 .049 .004 .035 .016 .050
hchi®> .017 .060 .037 .087 011 .054 .038 .089
clhchi®  .016 .063 .030 .089 012 .056 .034 .086
IV coefficients (null imposed, restricted efficient residual, correlated errors)
iid normal  .009 .046 011 .052 .007 .046 .012 .052
hnormal .015 051 .016 .058 .009 .043 .016 .058
clhnormal  .013 .049 .015 .055 012 .048 .020 .056
iid chi*  .007 .038 .010 .045 .005 .037 .012 .042
hchi® .018 .066 .025 .072 012 .056 .025 072
clhchi®* .017 .072 .022 .075 013 .061 .025 072
1** stage F-tests (null imposed, correlated errors)
iild normal ~ .010 .053 .012 .056 .008 .047 .009 .054
hnormal .018 .072 .017 .065 .007 .047 .011 .052
clhnormal  .023 .076 .017 .065 .007 .050 .010 051
iid chi®  .008 .046 .009 .050 .006 .043 .007 .047
hchi®> .028 .075 .027 .079 011 .057 .019 .066
clhchi®  .031 .086 .033 .084 .013 .067 .026 .071

Notes: Symmetric and asymmetric transformations refer to the wild bootstrap draws for n. Otherwise, as in
Table F3.

particular null. Among wild bootstrap methods that impose the null in the evaluation of the
significance of instrumented coefficients, those using restricted efficient residuals do appear to
produce Type I error rates that are generally somewhat closer to nominal value. Table F4
compares size with symmetric and asymmetric transformations n in wild bootstrap methods that
impose the null. For IV coefficients inference with asymmetric transformations is sometimes
more and sometimes less accurate. In 1% stage tests, asymmetric transformations mostly result in

lower rejection rates across all types of data generating processes. This brings Type I error rates
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closer to or further away from nominal level depending upon whether they are initially above or
below it, but does not systematically improve accuracy.

Tables F5 and F6 below explore the impact of different residual transformations on Type
I error rates and power in tests of OLS bias (described in Appendix E). In these tables, Type |
error rates report the the probability of rejecting the null that OLS is unbiased when 1 and 2™
stage errors are uncorrelated, while power reports rejection rates when they are correlated (see
description of simulations in 9.1-9.6 and associated text in paper). Once again, there is no
indication that asymmetric transformations allow for systematically more accurate Type I error
rates, even in the case of skewed chi” error processes. Using independent transformations 1 on
the 1* and 2™ stage errors in most instances and on average improves power. The test based
upon the artificial regression also appears to be systematically more powerful than that based
upon the vector of contrasts, as already noted in Appendix E earlier.

In results reported in the paper itself I impose the null, as this appears to be essential for
accurate wild bootstrap inference. For the Monte Carlos (Table X), when estimating Type I error
rates | impose the null that the parameter value equals that of the data generating process and
when estimating power I impose the null that the parameter value equals zero. For the analysis
of the sample itself, I impose the null that the parameter value equals zero. For tests of [V
coefficients, in both Monte Carlos and the analysis of the sample, I report results using restricted
efficient residuals. In tests of OLS bias, I use the the Hausman test based upon the artificial
regression (in preference to the test based upon the vector of contrasts) and independent
transformations, as both of these allow greater power. For both Monte Carlos and the analysis of
the sample, I use symmetric transformations, as asymmetric transformations neither provide
obvious advantages in Monte Carlos nor produce results that are systematically more favourable
to the sample. In an appendix further below, I report wild bootstrap results for the sample using
all methods and tests described in this appendix that impose the null. The range of results varies

very little from the subset reported in Section VI of the paper itself.
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Table F5: Type I Error Rates & Power in Tests of OLS Bias based on Artificial Regressions
(average within paper rejection rates, 10 Monte Carlo simulations per equation)

n=mn 1, and 1, independent
c t C t
.01 .05 .01 .05 .01 .05 .01 .05
Type I error rates (uncorrelated 1% and 2™ stage errors), symmetric transformations
iid normal .006 .042 .010 051 .006 .044 .010 .050
h normal .019 .062 .019 .073 .013 .051 .014 .068
cl h normal 012 .044 021 .070 011 .050 .020 .070
iid chi’® .006 .039 .012 .048 .007 .041 .010 .051
h chi® .020 .063 .032 .086 .016 .068 .027 .089
cl h chi® .014 .053 .038 .092 .017 .065 .033 .101
Type I error rates (uncorrelated 1% and 2™ stage errors), asymmetric transformations
iid normal .004 .032 .013 .058 .004 .042 .009 .047
h normal .005 .032 .029 .087 .006 .046 .014 .063
cl h normal .005 .031 .030 .080 .006 .045 .016 .064
iid chi’® .002 .026 .014 .054 .004 .038 .009 .045
h chi® .005 .037 .041 .099 .009 .054 .028 .084
cl h chi® .006 .037 .046 .108 .008 .058 .034 .099
power (correlated 1% and 2™ stage errors), symmetric transformations
iid normal 223 371 .263 413 266 408 .306 450
h normal 153 225 185 276 158 242 191 279
cl h normal .084 145 113 195 .103 178 135 219
iid chi’ 236 384 275 420 247 .397 276 421
h chi® 161 241 210 299 165 250 .198 293
cl h chi® .088 158 141 227 .099 177 .140 233
power (correlated 1% and 2™ stage errors), asymmetric transformations
iid normal .166 .306 294 441 231 391 .290 447
h normal 122 178 201 291 136 225 181 283
cl h normal .069 114 137 220 .089 .163 128 218
iid chi’® 158 294 284 423 207 375 254 414
h chi® 123 .190 217 304 135 229 .188 .290
cl h chi® 071 116 152 241 .082 162 132 225

Notes: Type I error rates using uncorrelated 1% and 2™ stage errors; power using correlated 1* and 2™ stage errors.
Symmetric and asymmetric transformations refer to the wild bootstrap draws for . Otherwise, as in Table F3.
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Table F6: Type I Error Rates & Power in Tests of OLS Bias based on the Vector of Contrasts
(average within paper rejection rates, 10 Monte Carlo simulations per equation)

n=mn 1N, and 1, independent
¢ t ¢ t
.01 .05 .01 .05 .01 .05 .01 .05
Type I error rates (uncorrelated 1% and 2™ stage errors), symmetric transformations
iid normal .005 .041 .010 .053 .006 .042 011 .052
h normal .018 .062 .022 .073 011 .050 .015 .065
cl h normal .014 .045 018 .061 .010 .045 .016 .063
iid chi’® .006 .037 .013 .050 .006 .039 .013 .052
h chi® .020 .060 .026 .078 012 .056 .024 .082
cl h chi® .015 051 .027 .078 011 .057 027 .089
Type I error rates (uncorrelated 1% and 2™ stage errors), asymmetric transformations
iid normal .004 .030 .006 .043 .005 .041 .009 .051
h normal .005 .031 021 .068 .005 .042 .020 .074
cl h normal .005 .029 .022 .063 .006 .042 .019 .072
iid chi’® .002 .026 .006 .039 .004 .039 .009 .050
h chi® .005 .034 .024 .073 .007 .054 021 .087
cl h chi® .006 .035 .031 .084 .007 .053 .029 .097
power (correlated 1% and 2™ stage errors), symmetric transformations
iid normal 214 356 271 424 250 .397 .309 451
h normal .149 214 182 270 150 231 .188 .282
cl h normal .080 134 .108 182 .091 .160 134 .206
iid chi’ 224 369 287 429 238 .380 287 434
h chi® 156 232 193 282 151 235 .188 287
cl h chi® .085 .146 120 208 .089 161 129 .220
power (correlated 1% and 2™ stage errors), asymmetric transformations
iid normal 159 296 218 365 215 .385 276 436
h normal 120 174 173 256 127 217 181 .284
cl h normal .067 110 120 .189 .081 153 136 213
iid chi’® 154 283 207 355 195 367 253 419
h chi® 119 182 184 269 126 218 177 285
cl h chi® .069 .109 126 202 077 153 128 222

Notes: As in Table F5.
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G: Comparing Symmetric & Asymmetric Tests using Monte Carlos

As noted in the paper, Hall (1992) argues that size in bootstrapped symmetric tests
converges more rapidly to nominal value than in asymmetric tests because symmetric tests
minimize the influence of skewness. Symmetric tests calculate p-values using the fraction of
bootstrapped results that exceed the absolute value of the t-statistic or coefficient deviation from
the null, while equal-tailed asymmetric tests calculate the bootstrapped p-value as 2 times the
minimum of the fraction of results that are either greater or less than the actual value of the t-
statistic or coefficient deviation. Wald based F-statistics are by construction positive and hence
not (sensibly) amenable to asymmetric tests.

Table G1 below confirms the finite sample validity of Hall’s asymptotic result using the
Monte Carlos described earlier.* For the pairs bootstrap, in 36 different comparisons of rejection
rates for tests of true nulls for IV coefficients (.01 & .05 levels for the nine data generating
processes given in the table for the boot-c and boot-t), Type I error rates are closer to nominal
value using an asymmetric test only 8 times (with an average improvement of .005) and further
from nominal value 28 times (with an average increased deviation of .086), while in 36
comparisons of Hausman tests Type I error rates are closer to nominal value using an
asymmetric test 7 times (with an average improvement of .003) and further 29 times (with an
average increased deviation of .014). For the wild bootstrap using symmetric transformations, in
36 different comparisons of Type I error rates for tests of [V coefficients asymmetric tests are
closer to nominal value 11 times (with an average improvement of .001) and further from
nominal value 25 times (with an average increased deviation of .006), while in 36 comparisons
for Hausman tests they are closer 19 times (.0006 improvement) and further 17 times (.0008
worse deviation from nominal level). For the wild bootstrap using asymmetric transformations,

in 24 comparisons of test of IV coefficients Type I error rates using asymmetric tests are closer

*Wild bootstrap tests of IV coefficients are those using the null imposed with restricted
efficient residuals, while wild bootstrap tests of OLS bias use independent transformations (1) of
residuals, both as described earlier in Appendix F.

49



Table G1: Type I Bootstrap Error Rates in Symmetric & Asymmetric Tests
(average within paper rejection rates, 10 Monte Carlo simulations for each of 1309 equations)

symmetric tests asymmetric equal-tailed tests
pairs symmetric  asymmetric pairs symmetric ~ asymmetric
bootstrap  wild bootstrap wild bootstrap  bootstrap  wild bootstrap wild bootstrap
¢ t ¢ t ¢ t c t ¢ t ¢ t

IV coefficients (correlated errors): .01 level

iidnormal .009 .021 .009 .011 .007 .012 | .017 .056 .008 .009 .006 .027
hnormal .011 .025 .015 .016 .009 .016 | .064 .132 .020 .021 .009 .064
heclnormal .009 .025 .013 .015 .012 .020 | .059 .173 .018 .015 .013 .058

iidchi2 .007 .017 .007 .010 .005 .012 | .013 .057 .006 .010 .003 .028
h.chi2 .016 .030 .018 .025 .012 .025 | .071 .127 .026 .026 .012 .072
helchi2 .012 .028 .017 .022 .013 .025 | .067 .178 .027 .028 .016 .085

iid "actual" .007 .019 .007 .011 NA NA | .012 .065 .008 .010 NA NA
h"actual" .005 .022 .010 .014 NA NA | .015 .089 .013 015 NA NA
hcl "actual" .004 .024 .009 .015 NA NA | .020 .120 .015 .014 NA NA

IV coefficients (correlated errors): .05 level

iidnormal .042 .065 .046 .052 .046 .052 | .053 .113 .047 .050 .037 .080
hnormal .048 .063 .051 .058 .043 .058 | .122 211 .059 .062 .040 .132
hclnormal .041 .059 .049 .055 .048 .056 | .120 .260 .062 .059 .046 .121

iidchi2 .033 .050 .038 .045 .037 .042 | .048 .111 .038 .046 .026 .08l
h.chi2 .059 .072 .066 .072 .056 .072 | .137 .204 .076 .080 .048 .143
helchi2 .051 .067 .072 .075 .061 .072 | .136 .266 .085 .085 .057 .160

iid "actual" .035 .060 .042 050 NA NA | .054 .132 045 .047 NA NA
h"actual" .035 .063 .049 059 NA NA | .060 .164 .055 .058 NA NA
hcl "actual" .032 .064 .045 .057 NA NA | .068 .196 .062 .068 NA NA

Notes: At end of table below.

to nominal value 3 times (with an average improvement of .003) and further from nominal value
21 times (with an average increased deviation of .029), while in Hausman tests they are closer 2
times (.003 improvement) and worse 22 times (.017 increased deviation). Thus, in finite samples

symmetric tests are seen to have rejection rates that are systematically closer to nominal value.
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Table G1: Type I Bootstrap Error Rates in Symmetric & Asymmetric Tests (continued)

symmetric tests asymmetric equal-tailed tests
pairs symmetric ~ asymmetric pairs symmetric ~ asymmetric
bootstrap  wild bootstrap wild bootstrap  bootstrap ~ wild bootstrap wild bootstrap
C t C t C t C t C t c t

Hausman Tests of OLS Bias (uncorrelated errors): .01 level

iidnormal .005 .008 .006 .010 .004 .009 | .008 .006 .007 .010 .004 .022
hnormal .006 .007 .013 .014 .006 .014 | .041 .006 .012 .014 .005 .035
heclnormal .003 .005 .011 .020 .006 .016 | .040 .005 .011 .019 .005 .035

iidchi2 .004 .007 .007 .010 .004 .009 | .006 .006 .006 .010 .002 .024
hchi2 .010 .011 .016 .027 .009 .028 | .048 .010 .016 .029 .007 .053
hclchi2 .006 .008 .017 .033 .008 .034 | .047 .008 .017 .035 .008 .057

iid "actual" .003 .007 .024 013 NA NA | .000 .005 .025 .013 NA NA
h "actual" .003 .007 .021 .021 NA NA | .000 .007 .021 .019 NA NA
hcl "actual" .003 .007 .021 .022 NA NA | .001 .004 .021 .022 NA NA

Hausman Tests of OLS Bias (uncorrelated errors): .05 level

iidnormal .030 .041 .044 .050 .042 .047 | .041 .033 .043 .050 .034 .070
hnormal .036 .035 .051 .068 .046 .063 | .100 .028 .050 .067 .031 .109
hclnormal .025 .025 .050 .070 .045 .064 | .087 .020 .049 .069 .033 .105

iidchi2 .031 .035 .041 .051 .038 .045 | .035 .027 .041 .051 .030 .074
hchi2 .047 .046 .068 .087 .054 .084 | .106 .038 .067 .088 .040 .127
heclchi2 .039 .040 .065 .101 .058 .099 | .099 .029 .063 .101 .047 .131

iid "actual" .024 .040 .050 .052 NA NA | .001 .032 .050 .051 NA NA
h "actual" .028 .041 .051 .068 NA NA | .002 .032 .049 .068 NA NA
hcl "actual" .024 .037 .052 .075 NA NA | .003 .030 .053 .077 NA NA

Notes: Symmetric and asymmetric in the context of the wild bootstrap refer to the residual transformations, as
described earlier in Appendix F. Symmetric versus asymmetric equal-tailed in the context of tests refer to use of the
absolute value of coefficients and t-statistics versus the actual value of the coefficients and t-statistics, as described
in the text above. NA = not available, due to limitations on computer resources towards the end of this project these
simulations were not performed. Reported figures are the average across 30 papers of the within paper average
rejection rate.
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Table H1: Type I Error Rates of the BCA Bootstrap Compared to other Methods
(average within paper rejection rates, 10 Monte Carlo simulations for each of 1309 equations)

lustered b pairs bootstrap pairs bootstrap
clustere ca symmetric tests asymmetric equal tailed tests
/robust bootstrap c ¢ c ¢

.01 .05 .01 .05 .01 .05 .01 .05 .01 .05 .01 .05

IV coefficients (correlated errors)

iidnormal .028 .081 .025 .068 .009 .042 .021 .065 .017 .052 .056 .113
hnormal .069 .126 .055 .128 .011 .048 .025 .063 .064 .122 132 211
hclnormal .070 .124 .072 .155 .009 .041 .025 .059 .059 .120 .173 .260

iidchi2 .024 .065 .025 .068 .007 .033 .017 .050 .013 .048 .057 .11l
hchi2 .080 .144 .061 .126 .016 .059 .030 .072 .071 .137 .127 .204
helchi2 .075 .141 .082 .162 .012 .051 .028 .067 .067 .136 .178 .266

iid "actual" .025 .073 .029 .078 .007 .035 .019 .060 .012 .054 .065 .132
h "actual" .034 .081 .034 .091 .005 .035 .022 .063 .015 .060 .089 .164
hcl "actual" .035 .083 .039 .099 .004 .032 .024 .064 .020 .068 .120 .196

Hausman Tests of OLS Bias based on Artificial Regressions (uncorrelated errors)

iidnormal .021 .071 .020 .061 .005 .030 .008 .041 .008 .041 .006 .033
hnormal .065 .145 .052 .122 .006 .036 .007 .035 .041 .100 .006 .028
heclnormal .076 .157 .067 .142 .003 .025 .005 .025 .040 .087 .005 .020

iidchi2 .017 .060 .024 .066 .004 .031 .007 .035 .006 .035 .006 .027
hchi2 .083 .158 .052 .127 .010 .047 .011 .046 .048 .106 .010 .038
helchi2 .101 .182 .064 .155 .006 .039 .008 .040 .047 .099 .008 .029

iid "actual" .023 .073 .023 .077 .003 .024 .007 .040 .000 .001 .005 .032
h"actual" .039 .100 .034 .095 .003 .028 .007 .041 .000 .002 .007 .032
hcl "actual" .049 111 .043 .102 .003 .024 .007 .037 .001 .003 .004 .030

Notes: Symmetric and asymmetric in this context refer to tests using the absolute value of the t-statistic and equal
tailed tests using the percentiles of the t-statistic, respectively, as described earlier in Appendix G. .01/.05 = level.

H: Monte Carlos for the Bias Corrected and Accelerated Bootstrap

As noted in a footnote in the paper, the bias corrected and accelerated (BCA) bootstrap is
another refinement of the pairs resampling bootstrap. By correcting for skewness, it
asymptotically provides O(n™) convergence to nominal size, as opposed to the O(n™?) achieved
by the bootstrap-c in asymmetric equal tailed tests. The convergence rate of the bootstrap-t in
asymmetric equal tailed tests is also O(n™), but the bootstrap-t is not transformation respecting,
so the BCA method in theory provides a means of attaining O(n™") performance with a

transformation respecting asymmetric test (Hall 1992, Efron & Tibshirani 1994).

52



Table H1 above applies the BCA method to the Monte Carlos described in the paper and
compares results to those found using conventional symmetric clustered/robust tests and the pairs
bootstrap ¢ & t in symmetric and asymmetric tests. As shown, in finite sample tests of [V
coefficients the BCA method actually performs worse than asymmetric bootstrap-c methods or
even conventional symmetric clustered/robust tests (which are also asymptotically O(n™)),
although it does perform better than the asymmetric bootstrap-t test. It is, however, completely
dominated by symmetric bootstrap tests, both -c and -t, which provide much more accurate Type
I error rates in tests of IV coefficients. In the Hausman test of OLS bias, the BCA method has
size distortions that are somewhat less than the conventional clustered/robust test, but clearly
worse than the bootstrap-t in symmetric and asymmetric tests, particularly at the .01 level. In
sum, the BCA method does not appear to provide accurate inference in finite samples. It also
does not provide reliable improvements over the bootstrap-c and -t in asymmetric tests and is

very much dominated by these two methods when they are used in symmetric tests.
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Table I1: Significance of OLS Coefficients
(supplement for Table XI)

all headline results
results all low medium high

.01 .05 .01 .05 .01 .05 .01 .05 .01 .05

clustered/robust .543  .638  .615 .654 .750 750 496 496  .600 .717
jackknife 466  .589 529 633 750 750 350 496 486  .652

pairs bootstrap-¢ 458 592 545 633 .750 .750 350 496 .536  .652
pairs bootstrap -t .472  .599 490 .633 .650 750 363 496 .457  .652
wild bootstrap-¢ 474 618 516  .638 750 .750 363 496 436  .669
wild bootstrap -t 455  .608 516 .605 .750 750 363 496 436  .569

Notes: Unless otherwise noted, as in Table XI in the paper. Wild bootstrap methods impose the null.

I: OLS Significance Rates in the Sample

Section VI of the paper analyzes the sample's results using jackknife and bootstrap
methods. In the discussion of the large differences between bootstrap-c and -t significance rates
for instrumented coefficients in Table XI, I note that no such differences exist when these
techniques are applied to OLS versions of the estimating equations. Table I1 above reports
rejection rates for OLS estimates of the (otherwise) instrumented coefficient in authors' 2nd stage
regressions, and shows that this is by and large the case. The only instance where a large
difference between -c and -t methods arises is in the pairs bootstrap analysis of headline results at
the .01 level, and even here the difference is proportionately much smaller than the comparable
difference for IV versions in Table XI and in the opposite direction (with -t methods showing
lower rather than higher rates of significance). In the paper I argue that the discrepancy between
-c and -t results reflects publication bias which selects in favour of spuriously significant IV t-
statistics which, as the comparison between -c and -t methods shows, are characterized by
unusually large t-statistics rather than unusually large coefficient estimates under the null. No
such difference exists in tests of OLS coefficients, which do not form the basis for the

publication decision.
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J: Alternative Wild Bootstrap & OLS Bias Results for the Sample

In the paper I analyse the sample using wild bootstrap methods with symmetric
transformations in symmetric two-sided tests with the null imposed and, in the case of IV
coefficients, following the recommendation of Davidson & MacKinnon (2010), restricted
efficient residuals. Monte Carlo simulations show that wild bootstrap tests with the null imposed
have decidedly more accurate Type I error rates than those without, but other choices I have
made are based upon smaller advantages (Appendices E, F & G above). In Table J1 I compare
the results reported in the paper (in bold) with those found using the wild bootstrap with
asymmetric transformations (1 in Appendix F), asymmetric equal tailed tests, and tests of [V
coefficients that simply impose the null (without restricted efficient residuals). As can be seen,
using asymmetric transformations generally produces lower significance rates in the 1* stage F-
test than are reported in the paper. In the Hausman test, using independent transformations of the
residuals (n1#12), as done in the paper, produces higher rejection rates than using the same
transformations in the 1** and 2™ stage (1=72). In the context of symmetric Hausman tests,
asymmetric transformations do not produce higher rejection rates than those reported in the
paper. Asymmetric equal tailed Hausman tests produce the same or lower rejection rates as
those reported in the paper, except in the case of those with asymmetric transformations for
asymmetric bootstrap-t tests which, as can be seen in Table G1 earlier, have sizeable size
distortions in simulation. In tests of IV coefficients, wild bootstrap tests that simply impose the
null without restricted efficient residuals produce somewhat higher -c rejection rates and slightly
lower -t rejection rates. I reported restricted efficient residual results in the paper for fear that
wild bootstrap users, who appear to be convinced that these are the best, would reject the results
out of hand if I did not use this method. Otherwise, asymmetric transformations in symmetric
tests produce lower rejection rates, as do most asymmetric equal tailed tests. The only exception
is once again asymmetric equal tailed bootstrap-t tests with asymmetric transformations which

again, as can be seen in Table G1 earlier, appear to have substantial size distortions.
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Table J1: Wild Bootstrap Inference in the Sample with the Null Imposed
in Symmetric & Asymmetric Transformations & Tests
(average within paper rejection rates by level of the test)

test: symmetric two-sided asymmetric equal tailed

transformation: symmetric asymmetric symmetric asymmetric
level: .01 .05 .01 .05 .01 .05 .01 .05

all results

IV coefficients:
bootstrap - ¢ (RER) 115 337 .106 322 204 .383 .141 .304

bootstrap - t (RER) 346 535 340 506 322 508 439 581
bootstrap - ¢ 153 377 147 364 229 440 163 332
bootstrap - t .343 533 324 503 329 512 445 591

Hausman test:
bootstrap - ¢ (1;=1,) 085 236 .060 .142 075 .178 .059  .109
bootstrap - t (1,=1),) 156 323 167 346 122 278 184  .333
bootstrap - ¢ (n;712) JA29 0 247 112 242 123 247 086 215
bootstrap - t (1,71,) JA75 0 328 171 335 168 333 241 427

1* stage:
bootstrap - ¢ 704 886  .557  .823 NA NA NA NA
bootstrap - t .660 .856 .638 .847 NA NA NA NA

headline results

IV coefficients:
bootstrap - ¢ (RER) 231 444 .194 467 334 .544 .205 453

bootstrap - t (RER) S12 719 459 677 492 682 596 774
bootstrap - ¢ 235 508 231 560 387 654 258 484
bootstrap - t 512 702 454 .677 503 .682 567 774

Hausman test:
bootstrap - ¢ (n;=1,) 153 252 .067 .186 .081 .261 .033 .108

bootstrap - t (n;=15) 170 404 220 412 159 358 .201 404

bootstrap - ¢ (,#12) 187 319 153 323 187 352 067  .308

bootstrap - t (;71>) 237 470 220 428 237 470 280  .498
1* stage:

bootstrap - ¢ 794 .967 724 917 NA NA NA NA

bootstrap - t 783 952 758 971 NA NA NA NA

Notes: RER = restricted efficient residuals. Figures in bold are those reported in the paper. All
methods with the null imposed. NA — not applicable, as the 1* stage F-test is often a joint test of
multiple coefficients where the test statistic is, by construction, positive. 1;=1, vs 1,#1,: whether the
transformations for the wild residuals are the same for both the 1° and 2™ stage or independent, as
discussed in Appendix F above.
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Table J2: Rejection Rates in Tests of OLS Bias in the Sample
(average within paper rejection rates by level of the test)

all results headline results all results headline results

.01 .05 .01 .05 .01 .05 .01 .05
artificial regression: test of 6 in vector of contrasts: test based upon

y :Yﬂ+X6+€,9+u (ﬂzv _ﬂols)z /[V(ﬁiv)_v(ﬂols)]
clustered/robust 232 382 309 445 252 382 318 464
jackknife  .135 227 .188 254 .116 .199 .138 221
pairs bootstrap -c ~ .098 200 138 249 .079 183 138 238
pairs bootstrap -t~ .110 .243 110 300 .109 257 .148 261
wild bootstrap -¢ =~ .129 247 187 319 113 .239 .183 319
wild bootstrap -t .175 328 237 470 178 .358 253 .443

Notes: Figures in bold are those reported in the paper. Symmetric two-sided tests in all cases.

Table J2 reports alternative results for tests of OLS bias in the sample. In Table XIV in
the paper I report results based upon the significance of the coefficient on the 1* stage residuals
entered into an artificial 2" stage OLS regression using clustered/robust covariance estimates.
As noted in Appendix E above, an alternative test based upon the vector of contrasts, i.e. the
differences between 2™ stage IV and OLS coefficients, in non-iid error environments has large
size distortions in the conventional test and less power when evaluated using the jackknife or
bootstrap. Table J2 shows that in the analysis of the sample the vector of contrasts generally
provides higher rejection rates in the conventional test (an average of .012 higher in 4
comparisons between the first rows of the left and right panels of the table) and lower rejection
rates in the jackknife and bootstrap versions of the tests (an average of .008 lower in 20
comparisons between the bottom five rows of the left and right panels in the table). Since |
emphasize the jackknife and bootstrap results in the paper, and the conventional vector of
contrasts test has large size distortions with non-iid errors (Appendix E above), I report results

based on the artificial regression in the paper.
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Table K1: Leverage, Heteroskedasticity and Differences in IV P-Values
(alternative p-values - cl/robust p-value regressed on leverage & homoskedasticity p-value)

jackknife pairs boot-t  pairs boot-c  wild boot-t  wild boot-c

- B 217 059 154 112 213
s.e. (.053) (.045) (.049) (.033) (.062)
leverage p-v .000 319 016 016 021
max lev x B 3.97 ~.829 2.04 -356 _273
homoskedasticity  s.e. (1.46) (.423) (.941) (.274) (1.03)
p-value p-v 229 210 218 276 850
- B 866 203 442 006 076
homos_liz(liizt““ty s.e. (291) (.096) (.190) (.067) (212)
p p-v 231 253 216 933 799
B 023 .006 015 ~013 004
constant s.e. (.013) (.008) (.011) (.008) (.013)
p-v 164 459 248 085 769
R 368 147 192 227 213

Notes: Each column represents a separate regression. Each observation is a paper average, so there are 30
observations in each regression. B & s.e. = coefficient and heteroskedasticity robust standard error, p-v =
bootstrap-t p-value calculated using 1000 bootstrap draws. Max lev = maximum instrument leverage share of
single observation or cluster (paper level average), as in Table II in the paper. Homoskedasticity p-value =
Koenker (1981) p-value on test that residuals are homoskedastic, as in Table III in the paper. Results using
Wooldridge (2013) p-value are almost identical.

K: Leverage, Heteroskedasticity and Differences in IV P-Values

Table K1 above regresses the difference between the jackknife and bootstrap p-values
and the conventional clustered/robust p-values for the sample regressions (Section VI in the
paper) on maximum leverage, the p-value on the test of homoskedasticity, and the interaction
between the two. Observations are paper averages, so there are 30 observations in each column's
regression. The maximum leverage share of the largest cluster or observation is always
positively associated with p-value differences, and this effect is larger when the average p-value
on the test that the 1% stage residuals are homoskedastic is low. These results are consistent with
the Monte Carlo simulations presented in the paper which indicated that clustered/robust p-
values have larger size distortions when leverage is high and the residuals are heteroskedastic.
However, although many of the coefficients in the table are deemed to be statistically significant

when evaluated using heteroskedasticity robust standard errors, only the coefficients on
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maximum leverage are found to be significant when evaluated using the bootstrap-t, as reported
in the table. The average homoskedasticity p-value is close to zero in % of the papers, so the
bootstrap resampling finds that the results are heavily sensitive to a few observations and not

statistically significant. These results were described in Section VI in the paper.
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