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“You can see the computer age everywhere 
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Abstract 
 

I find systematic deviations in the relationship between measured industry 
total factor productivity growth and price & downstream demand growth associated 
with the use of computer and electronics intermediate inputs in production.  The 
effects are robustly negative, indicating an overstatement of quality adjusted output 
and productivity growth in using industries of between .003 and .006 per 
percentage expenditure share on computer & electronic intermediates.  These 
estimates are confirmed by regressions of measured productivity growth on own 
and upstream computer input use. After adjustment for mismeasurement, there is 
no association between computer intermediates use and total factor productivity 
growth. 

 
 
 
 
 
 
 
 
 
 
 
 
 

*I am grateful to participants in the LSE macro work-in-progress seminar for helpful comments.



1 

I. Introduction 

 Unobserved objects can be quantified and measured by observed systematic 

discrepancies in the causal relationships between observables.  Linearly and trivially, if y = xβ, 

yo & xo are observed and β is known, then unobserved x is given by xuo = yo/β – xo.  

Econometrically, in a world in which x is not the sole determinant of y and β is unknown, if an 

observable indicator zo exists such that xuo = γzo + η, then both β and γ can be consistently 

estimated by running the non-linear regression yo = (xo+ γzo)β + ε.  As this is equivalent to 

running yo = xoβx + zoβz + ε and estimating γ = βz/βx, one sees that consistency requires the 

standard OLS assumption that the plim of the product of the regressors and errors is zero, as well 

as βz = γβx, i.e. that zo affects yo only through its influence (γ) on xuo, which has the same effect 

on yo as xo.  The last can be relaxed to allow xuo to have an impact f(β), where the function f() is 

known.  This naturally arises in cases where the linear relationship is on an unobservable yuo = 

(xo+ xuo)β + ε, and there is an additional known discrepancy between yo and yuo driven by xuo, as 

is the case below. 

This paper applies this idea to a topic that has troubled economists and statisticians for 

some decades, the question of whether we are properly measuring the quality-adjusted gains 

from the use of computer technology.  The lefthand side observables are measured quality-

adjusted prices and demand growth (yo), the righthand side observables are measured total factor 

productivity growth (xo) and computer factor income shares (zo) and the unobservable of interest 

is mismeasurement of total factor productivity growth associated with the use of computer 

related inputs (xuo = γzo).  The key identifying assumptions are that: (1) total factor productivity 

growth and computer factor income shares are exogenous to price and quantity shocks (the OLS 

consistency requirement); (2) the movements of true quality adjusted prices and quantities 

demanded (yuo) are the same function of true total factor productivity growth (xo+xuo), regardless 

of its origin (the common β requirement); and (3) the use of computer inputs has no impact on 

price and quantities demanded other than through its impact on true productivity growth (the 

exclusion restriction).  (1) is addressed econometrically using controls and instruments, (2) by 

excluding components of demand (e.g. own-industry intermediate use) that might depend upon 

the form of productivity growth, and (3) by following standard measurement precepts of defining 

price and quantity in quality adjusted units.  The tested null hypothesis is that of no systematic 

mismeasurement associated with computer related inputs, γ = 0. 

The linear relation, xuo = γzo, is motivated by Solow’s comment quoted above, which 

suggests that we fail to measure what we do with computers.  This can be operationalized as 

mismeasurement of average rates of computer-factor augmenting technical change in computer 

using industries, so that the degree of mismeasurement is proportional to the expenditure share 

on computer inputs.  Mismeasurement of the output of one sector translates into mismeasurement 
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of total factor productivity growth in the opposite direction in downstream industries that use its 

output.  Thus, the mismeasurement hypothesis actually implies mismeasurement in users and in 

users of users, with effects going in opposite directions.  While linkages of mismeasurement 

through the input-output table have long been understood (e.g. Griliches and Lichtenberg 1984), 

their implications for empirical effects of opposite sign do not appear to have been explored. 

I find evidence of mismeasurement in what we do with computer and electronic 

intermediates.  The point estimates are all decidedly negative, implying that we systematically 

overstate the factor augmenting gains associated with the use of these inputs.  These results are 

robust to the use of different samples based upon different disaggregations of demand into 

national income accounting components.  They are found using various forms of short or long 

run variation, i.e. in panel data, with and without industry and year fixed effects, and in long run 

industry means data.  They are not driven by endogeneity of factor shares, as they remain when 

these are instrumented with pre-growth shares and lagged values of dependent variables are 

added to eliminate serial correlation in residuals.  They are not driven by endogeneity of total 

factor productivity to price and demand shocks, as they are robust to adjustments for business 

cycle variation and capital utilization, the use of long run industry means data and, even, a wide 

grid search over all possible imposed values of the relationship between price and quantity and 

the productivity growth regressor.   

Put simply, the relationship between price and demand growth and total factor 

productivity growth differs systematically and robustly from that implied by elasticities of 

demand and supply in a manner correlated with both within and between industry variation in the 

quantity of computer intermediate inputs.  Similarly statistically significant and robust deviations 

are not found for any other input.  I interpret this deviation in terms of a model of overstatement 

of factor augmenting technical change, i.e. what we do with computer inputs.  Excluding outlier 

results in both directions, point estimates indicate an overstatement of industry output and total 

factor productivity growth of between .003 and .006 percent per annum per percentage share of 

computer and electronics inputs in total factor payments.   

The paper whose observations are closest in spirit to this one is Acemoglu et al (2014).  

While documenting the correlation of higher industry labour productivity growth with some 

measures of computer technology use, they note that it is peculiarly negatively associated with 

real output growth, i.e. inconsistent with expected changes in demand following a reduction in 

price brought on by total factor productivity growth.  The present paper expands this emphasis 

on using confirmatory observables into a methodology that quantifies mismeasurement using 

estimated relationships between left and righthand side observables, finding, similarly, that there 

are virtually no supply and demand elasticities that can eliminate the discrepancy between price, 

quantity and total factor productivity growth associated with computer and electronics 
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intermediates use.  Unless, of course, one allows for the possibility that the gains from such use 

are overestimated. 

The association of higher labour productivity growth with some measures of computer 

use in pre- and early millennial data has been documented by Stiroh (2002) and Acemoglu et al 

(2014).  In that spirit, this paper also runs a simple linear regression of total factor productivity 

growth on the expenditure share on domestically produced computer and electronics 

intermediate inputs, documenting a similar positive relation in post-millennial data.  However, it 

also finds a substantial negative impact of the use of computer and electronic intermediates in 

upstream industries.  This positive own effect and negative supplier effect is consistent with 

overstatement of the output gains from intermediate input use, which would overstate 

productivity growth in users while understating it in users of users.  The point estimates from 

these regressions are very similar to those found using the “dark matter” methodology that 

concentrates on the relationship between observable price, quantity and total factor productivity 

growth.   

Consequently, once adjustment for estimated mismeasurement is made, there is basically 

no relation between industry productivity growth and computer intermediate input use.  This 

echoes the pushback to Solow’s comment given by Gordon (2000) and Oliner & Sichel (2000): 

while the growth of computer capital has contributed greatly, in a standard growth accounting 

framework, to growth outside that sector and there has also been rapid total factor productivity 

growth in computing industries, it is less obvious that there should be an additional productivity 

contribution from the use of those inputs.  The computer productivity revolution most obviously 

lies in Moore’s Law and the extraordinary fall in the price of computational power, and less 

obviously in what we accomplish with that power.1   

The new millennium has witnessed a US productivity slowdown with, for example, the 

Bureau of Economic Analysis’ data described below showing private sector total factor 

productivity growth of .012 per annum between 1997 and 2000 falling to .007 in 2000-2023.  

Opinion pieces in the popular press express the view that this is due to a failure to properly 

measure the gains from computer technology (e.g. Aeppel 2015, Alloway 2015), but in 

considered academic analyses Byrne, Fernald & Reinsdorf (2016) and Syverson (2017) 

persuasively argue that such unmeasured gains cannot explain the productivity slowdown.  This 

paper argues that insofar as this mismeasurement is attached to the sale of particular products, it 

should show up as discrepancies in the relation between price, quantity and total factor 

productivity growth and, hence, is actually measurable.  It finds evidence of mismeasurement, 

 
1In this regard, it is sobering to reflect on the fact that the Apollo 11 command and lunar module guidance 

computers each had only 2KB of RAM, which would be insufficient for almost any phone app today. 
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but unexpectedly in the opposite direction.  At the aggregate level, this translates into at least ⅛ 

of measured US private sector GDP growth between 1997 and 2023, and ½ of private sector total 

factor productivity growth during that period as well.  The estimated overstatement of growth is 

falling rapidly over time as the role of computer intermediates in the economy falls.  Ironically, 

the productivity “slowdown” can largely be resolved, but by recognizing the overstatement, 

rather than understatement, of the gains from the use of computers.  

The Boskin commission (1996) famously concluded that the Consumer Price Index (CPI) 

was biased upwards by 1.1 percent per year, of which about half could be attributed to a failure 

to measure quality improvements.  This, along with other well-known studies finding 

unmeasured gains to quality improvement and variety (e.g. Gordon 1990, Bils and Klenow 2001, 

Bils 2009), might lead readers to conclude that growth is unambiguously underestimated.  A 

number of studies, however, point in the opposite direction.  For example, Gordon (2009) and 

Gordon and VanGoethem (2007) find downward biases in the CPI of 3 percent per annum for 

women’s apparel and 1 percent per annum in rental shelter over many decades, while Aizcorbe 

and Ripperger-Suhler (2024) estimate a negative chain drift in hedonic price indices in 2011-

2020 of 6 and 8 percent per annum for desktop and notebook computers, respectively.  On the 

theoretical level, Feenstra (1995) finds that in a discrete choice framework with pricing above 

marginal cost log-linear hedonic regressions, such as those used in the analysis of computer 

prices, would overstate price declines, Hobijn (2002) shows that if price per unit quality rises 

with quality both hedonic and matched-model price indices will overstate price declines, Harper 

(2007) notes that durable goods obsolescence leads to an overstatement of quality change, and 

Aizcorbe and Copeland (2007) argue that with intermittent purchases price indices will tend to 

understate true movements in the cost of living index as consumers do not gain from price 

declines above their reservation value.  While this paper is not about the methodology of price 

indices, to aid in the interpretation of its results I summarize some of these insights in a short 

explanation of how obsolescence and lifecycle differences in the reservation values of buyers can 

lead both hedonic and matched-model price indices to overstate price declines and output growth 

in durable goods industries upgrading quality through the use of computer and electronics 

intermediates. 

The paper proceeds as follows:  Section II presents a model of systematic 

mismeasurement of factor augmenting technical change and discusses how data on price and 

demand can be used to identify the rate of mismeasurement.  Special emphasis is given to 

explaining the sources of identification, the steps taken to avoid endogeneity bias, and the 

methods used to demonstrate it is not determining the results.  Section III introduces the BEA 

industry level total factor productivity and input output data.  Monte Carlos are used to guide the 

methods used and emphasis placed in later results, highlighting relatively accurate inference 
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using heteroskedasticity robust standard errors and differences in efficiency and power between 

estimation using disaggregated versus aggregated demand.  

Section IV presents the main results using the dark matter methodology, emphasizing the 

robustness of results to sample and specification changes, as well as controls and instruments 

used to address possible endogeneity of total factor productivity growth and factor shares.  The 

finding of overstated productivity growth in computer using industries is shown to remain when 

elasticities of demand and supply are taken as known and given almost any value the reader may 

like, emphasizing robustness to any possible bias in the estimation of these elasticities.  As 

confirmatory evidence, Section V regresses total factor productivity growth on computer factor 

shares.  While such regressions might be interpreted as demonstrating the positive effects of 

computer use, in the light of the dark matter results the finding of a positive association with own 

computer intermediates use and negative association with upstream use suggests a different 

interpretation, i.e. that of mismeasurement.  Section VI evaluates the implications for growth in 

the aggregate economy, while Section VII concludes with a summary of results and short 

discussion of potential sources of downward bias in hedonic and matched-model durable goods 

price indices.  

II. Estimating Mismeasurement Using Observables 

(a) A Model of Systematic Mismeasurement in an Input-Output Framework 

 We assume throughout that national income accountants accurately measure nominal 

values but have difficulty disentangling these into price and quantity components.  Let true and 

measured gross output and price in perfectly competitive industry i in period t be given by 

(1𝑎) 𝑄௜௧
் = 𝐹௜(𝑓ଵ௜௧

் 𝑀ଵ௜௧
்  , . . . ,  𝑓௃௜௧

் 𝑀௃௜௧
் ) 𝑃௜௧

் = 𝐶௜(𝑊ଵ௧
் /𝑓ଵ௜௧

்  , . . . ,  𝑊௃௧
்/𝑓௃௜௧

் ) 

(1𝑏) 𝑄௜௧
ெ = 𝐹௜(𝑓ଵ௜௧

ெ 𝑀ଵ௜
்  , . . . ,  𝑓௃௜௧

ெ𝑀௃௜௧
் ) 𝑃௜௧

ெ = 𝐶௜(𝑊ଵ௧
் /𝑓ଵ௜௧

ெ  , . . . ,  𝑊௃௧
்/𝑓௃௜௧

ெ) 

where superscripted T and M denote true and measured values, Fi production functions which are 

constant returns to scale in J inputs M1…MJ, Ci cost functions which are constant returns to scale 

in J input prices W1… WJ, and fjit factor augmenting productivity parameters.  (1a) are standard 

production and cost functions.  (1b) is a formalization of what national income accountants 

implicitly measure, not how they actually measure output quantities and prices as, with rare 

exceptions,2 these are not measured by examining input quantities and prices, let alone 

productivity parameters.  For this reason, the factor quantity and price arguments in the functions 

on the righthand side of (1b) are true values, even though these might not be measured 

accurately.  The failure to properly appreciate and quantify the degree to which technical change 

is allowing industries to use inputs in novel and more productive ways (fjit) appears as implicit 

 
2Most notably government, which is not included as an industry in the analysis below. 



6 

unobserved (UO) discrepancies between true and measured factor augmenting productivity, 

𝑓௝௜௧
௎ை = 𝑓௝௜௧

் /𝑓௝௜௧
ெ. 

Differentiating (1) and (2) with respect to time and using the equivalence between 

elasticities and expenditure shares implied by perfect competition, the difference between 

measured and true output quantity and price growth is seen to be 

(2𝑎) 𝑄෠௜௧
ெ = 𝑄෠௜௧

் − ෍ 𝜃௝௜௧𝑓መ௝௜௧
௎ை

௃

௝ୀଵ

 (2𝑏) 𝑃෠௜௧
ெ = 𝑃෠௜௧

் + ෍ 𝜃௝௜௧𝑓መ௝௜௧
௎ை

௃

௝ୀଵ

, 

where θjit is the expenditure share of input j  and ^ denotes a proportional growth rate.  Since 

nominal output is measured correctly, i.e. 𝑃௜௧
்𝑄௜௧

் = 𝑃௜௧
ெ𝑄௜௧

ெ, offsetting errors in prices and 

quantities arise equally whether national income accountants derive real quantity indices by 

deflating nominal values using constructed price deflators or price indices by dividing nominal 

values by constructed quantity measures.  Furthermore, as the output of each sector is used as an 

input in others, the same errors in disentangling price and quantity are propagated through the 

input-output table.  Thus, when industry n is used as an input in sector i, we have: 

(3)   𝑀෡௡௜௧
ெ − 𝑀෡௡௜௧

் = 𝑄෠௡௧
ெ − 𝑄෠௡௧

்   & 𝑊෡௡௧
ெ − 𝑊෡௡௧

் = 𝑃෠௡௧
ெ − 𝑃෠௡௧

் . 

We order inputs so that the first N correspond to the industry indices i, with the remaining J - N 

consisting of primary factors.   

While the mismeasurement of what we do with computer inputs translates naturally into  

the mismeasurement of the intermediate inputs of downstream sectors, for the purposes of our 

analysis here we assume that primary factor inputs are measured accurately.  As this assumption 

may be of concern to readers, the on-line appendix estimates mismeasurement of primary factor 

inputs using a similar methodology.  Although point estimates consistently find that the growth 

of computer capital is overstated, the results are not statistically significant at the .01 level.  

While one might think that the mismeasurement of domestic output found below would result in 

mismeasurement of the growth of computer capital input, this is not the case, as computer related 

fixed capital investment is predominantly and increasingly based upon imports.3  The analysis 

below of mismeasurement of what industries do with computer inputs is based upon the prices of 

and demand for private sector domestically produced output. 

 While true total factor productivity growth in industry i, i.e. the true growth of output 

minus the factor income share weighted growth of true factor inputs, is  

(4) 𝐴መ௜௧
் = 𝑄෠௜௧

் − ෍ 𝜃௝௜௧𝑀෡௝௜௧
்

௃

௝ୀଵ

= ෍ 𝜃௝௜௧𝑓መ௝௜௧
்

௃

௝ୀଵ

, 

 
3According to the input-output tables, the import share of non-residential fixed investment in equipment of 

computer & electronics industry origin rose from 27% in 1997-1999 to 61% in 2021-2023. 
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measured total factor productivity growth, equal to measured output growth minus the factor 

income share weighted measured growth of inputs, is given by 

(5) 𝐴መ௜௧
ெ = 𝑄෠௜௧

ெ − ෍ 𝜃௝௜௧𝑀෡௝௜௧
ெ

௃

௝ୀଵ

= 𝐴መ௜௧
் + 𝑄෠௜௧

ெ − 𝑄෠௜௧
் − ෍ 𝜃௝௜௧(𝑀෡௝௜௧

ெ − 𝑀෡௝௜௧
் )

௃

௝ୀଵ

 

⇒   𝐴መ௜௧
ெ = 𝐴መ௜௧

் −   ෍ 𝜃௝௜௧𝑓መ௝௜௧
௎ை

௃

௝ୀଵ

+  ෍ 𝜃௝௜௧ ෍ 𝜃௞௝௧𝑓መ௞௝௧
௎ை

௃

௞ୀଵ

ே

௝ୀଵ

. 

Mismeasurement of what is done with inputs impacts own industry TFP estimates directly in one 

direction and the TFP estimates of downstream industries indirectly in the opposite direction.   

(b) Estimation framework 

We aim to identify the above by looking at the market for industry output, where the 

moving supply and demand curves follow 

(6𝑎) 𝑄෠௜௧
ௌ = 𝜌𝑃෠௜௧

் + 𝜌𝐴መ௜௧
் + 𝜂௜

ௌ + 𝜂௧
ௌ + 𝜖௜௧

ௌ ,                                                                                   

(6𝑏) 𝑄෠௜௧
஽ = ෍ 𝜙஽௜௧

஽ୀ஼,௑…

𝐷෡௜௧
் ,  where  𝜙஽௜௧ =

𝐷௜௧
்

∑ 𝐷௜௧
்

஽

  &  𝐷෡௜௧
் = −𝜎஽𝑃෠௜௧

் + 𝜂௜
஽ + 𝜂௧

஽ + 𝜖௜௧
஽ , 

(6𝑐) 𝑄෠௜௧
ௌ = 𝑄෠௜௧

஽.                                                                                                                                  

In (6b) D denotes the different national income components of demand, i.e. consumption (C), 
exports (X), etc.  The growth of total real demand is the sum of the growth of these components 
weighted by their shares of total industry sales (𝜙஽௜௧).  We model each component as deriving 
from the maximization of a CES utility or production aggregator with elasticity of substitution 
𝜎஽, as in 

(7) 𝑈஽௧ = ൭෍ 𝛼௜௧
஽(𝐷௜௧

் )
ఙವିଵ

ఙವ

௜

൱

ఙವ
ఙವିଵ

,   so that   𝐷෡௜௧
் = −𝜎஽𝑃෠௜௧

் + 𝜎஽𝛼ො௜௧
஽ + 𝐸෠௧

஽ − 𝑃෠௧
஽ , 

  where 𝐸௧
஽ = ෍ 𝐷௜௧

்𝑃௜௧
்

௜

 and 𝑃௧
஽ = ෍(𝑃௜௧

்)ଵିఙವ(𝛼௜௧
஽)ఙವ

௜

. 

The 𝜂௧
஽ year fixed effects in (6b) capture the effect of 𝐸෠௧

஽ − 𝑃෠௧
஽, the growth of nominal D-type 

expenditure divided by its CES aggregator price index, which will include elements such as 

imports not included in our demand system. The 𝜂௜
஽ industry fixed effects capture long run 

values of 𝜎஽𝛼ො௜௧
஽, as there might be trends in 𝛼௜௧

஽ brought about by, say, unmodelled non-

homotheticity in demand (i.e. a dependence of 𝛼௜௧
஽ on 𝐸௧

஽/𝑃௧
஽). 

 Industry marginal cost evolves according to 

(8) ෍ 𝜃௝௜௧𝑊෡௝௧

௝

− ෍ 𝜃௝௜௧𝑓መ௝௜௧
்

௝

= ෍ 𝜃௝௜௧𝑊෡௝௧

௝

− 𝐴መ௜௧
் , 

where the 𝜃௝௜௧ ,  𝑊௝௧  and 𝑓௝௜௧
்  are the factor j input expenditure shares, prices and augmenting 
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productivity described earlier above.  Consequently, in (6a) the 𝜂௜
ௌ industry fixed effects reflect 

the impact of long run trends in relative factor prices on relative industry costs brought about by 

differences in factor proportions, while the 𝜂௧
ௌ year fixed effects capture inflation in all factor 

prices.  Differences in industry factor proportions and general equilibrium determination of 

factor prices, not to mention unmodelled short term adjustment costs, determine the industry 

elasticity of supply ρ in (6a).  As each percent of total factor productivity growth lowers industry 

costs and supply curves by an equivalent amount, the 𝜌𝐴መ௜௧
்  term comes from the assumption of 

perfect competition or, more generally, constant markups.  As discussed below, this assumption 

is not central to the analysis. 

 Setting the growth of supply equal to demand allows us to solve for the growth of 

equilibrium prices and quantities: 

(9)  𝑃෠௜௧
் =

−𝜂௜
ௌ − 𝜂௧

ௌ − 𝜖௜௧
ௌ − 𝜌𝐴መ௜௧

் + ∑ 𝜙஽௜௧(𝜂௜
஽ + 𝜂௧

஽ + 𝜖௜௧
஽)஽

𝜌 + ∑ 𝜙஽௜௧𝜎஽஽
                                                

𝐷෡௜௧
் =

𝜎஽[𝜂௜
ௌ + 𝜂௧

ௌ + 𝜖௜௧
ௌ + 𝜌𝐴መ௜௧

் − ∑ 𝜙஽௜௧(𝜂௜
஽ + 𝜂௧

஽ + 𝜖௜௧
஽)஽ ]

𝜌 + ∑ 𝜙஽௜௧𝜎஽஽
+ 𝜂௜

஽ + 𝜂௧
஽ + 𝜖௜௧

஽. 

(9) can be described as a system of linear equations with heterogeneous coefficients and error 

disturbances determined by the demand shares 𝜙஽௜௧  

(10)  𝐲௜௧
் = 𝛃௜௧(𝜙஽௜௧)𝐱௜௧

் + 𝛜௜௧(𝜙஽௜௧),  

where 𝐲௜௧
்  is the vector of true price and demand growth, 𝐱௜௧

்  the vector formed by true total factor 

productivity growth and industry and time dummy variables, and we use () to emphasize that 

both the matrix of coefficients 𝛃௜௧ and covariance structure of the residuals 𝛜௜௧ are determined by 

unknown parameters4 and the empirical demand shares 𝜙஽௜௧.  I refer to (9) and (10) below as the 

“structural” model, which can be estimated using maximum likelihood techniques and the 

assumption of multivariate normally distributed disturbances 𝜖௜௧
ௌ  and 𝜖௜௧

஽. 

 If demand shares are all identical, 𝜙஽௜௧ = 𝜙஽, then (9) can be simplified to: 

(11)  𝑃෠௜௧
் = 𝛽௉𝐴መ௜௧

் + 𝜇௜
௉ + 𝜇௧

௉ + 𝜀௜௧
௉    and  𝐷෡௜௧

் = 𝛽஽𝐴መ௜௧
் + 𝜇௜

஽ + 𝜇௧
஽ + 𝜀௜௧

஽  (𝐷 =  𝐶, 𝑋, … ), 

 where for 𝑘 = 𝑖, 𝑡:  𝜇௞
௉ =

−𝜂௞
ௌ + ∑ 𝜙஽𝜂௞

஽
஽

𝜌 + ∑ 𝜙஽𝜎஽஽
 and  𝜇௞

஽ = 𝜎஽

𝜂௞
ௌ − ∑ 𝜙஽𝜂௞

஽
஽

𝜌 + ∑ 𝜙஽𝜎஽஽
+ 𝜂௞

஽ , 

𝜀௜௧
௉ =

−𝜖௜௧
ௌ + ∑ 𝜙஽𝜖௜௧

஽
஽

𝜌 + ∑ 𝜙஽𝜎஽஽
,   𝜀௜௧

஽ = 𝜎஽

𝜖௜௧
ௌ − ∑ 𝜙஽𝜖௜௧

஽
஽

𝜌 + ∑ 𝜙஽𝜎஽஽
+ 𝜖௜௧

஽ , 

𝛽௉ =
−𝜌

𝜌 + ∑ 𝜙஽𝜎஽஽
  and  𝛽஽ =

𝜎஽𝜌

𝜌 + ∑ 𝜙஽𝜎஽஽
.  

 (11) can be re-expressed as a seemingly unrelated system of linear equations  

 
4The elasticities ρ and σD, the fixed effects ηi and ηt, and the covariance structure of the shocks 𝜖௦ and 𝜖஽. 
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(12)  𝐲௜௧
் = 𝚷𝐱௜௧

் + 𝛆௜௧,  

with 𝐲௜௧
்  and 𝐱௜௧

்  as defined following (10) above.  With common regressors for each dependent 

variable, the seemingly unrelated coefficient estimates 𝚷 are simply the row-by-row OLS 

estimates, as is also the case when (12) is estimated using maximum likelihood with a 

multivariate normal error distribution.  I refer to (11) and (12) below as the “seemingly unrelated 

regression” (SUR) model. 

The reader will naturally object that demand shares are not identical, and hence the 

regression coefficients are intrinsically heterogeneous.  The latter, however, is true of most 

empirical work, where the effects of the dependent variables are likely to be heterogeneous.  

While it is usually the case that 𝑦௜ = 𝒙௜′𝜷௜ + 𝜖௜, applied econometricians nevertheless run the 

regression 𝑦௜ = 𝒙௜′𝜷 + 𝜀௜ , with 𝜀௜ = 𝒙௜
ᇱ(𝜷௜ − 𝜷) + 𝜖௜.  As long as the expectation 𝐸(𝒙௜𝜀௜) = 𝟎, 

which is satisfied if the heterogeneity is independent of the regressors, with fixed regressors the 

expectation of the coefficient estimate of β is the expectation of βi, with an analogous 

consistency result with stochastic regressors if plim  ∑ 𝒙௜𝜀௜௜ /𝑁 = 𝟎.  In our case, the effects of 

dummy variables are mechanically accounted for by subtracting industry and time means, so if 

the structural model is literally true unbiasedness of the SUR OLS estimates 𝛽௉ and 𝛽஽ requires 

that the variation of 𝜙஽௜௧ net of industry and time means is independent of the same for true total 

factor productivity growth.  In the empirical sample, the correlations of these are all but zero, as 

reported below.  Heteroskedasticity robust standard errors are used throughout, in both SUR and 

structural estimation, to account for unmodelled intrinsic heteroskedasticity of the error terms.  

Econometric theory tells us that if the structural model is strictly true, it yields more 

efficient estimates, as it explicitly accounts for variation across observations in 𝛃௜௧(𝜙஽௜௧) and the 

covariance structure of the errors.  Conversely, the advantage of the SUR model is that it is not 

dependent upon a particular theoretical framework and hence valid under more general least 

squares conditions regarding the expectation or plim of products of regressors and errors.  In 

baseline specifications using the actual data I find results given by the two approaches to be 

practically identical.  I then rely on the flexibility of the SUR framework to explore larger 

specification changes, such as the inclusion of lags of the dependent variables and other 

additional regressors, without taking a formal stand on their implications for observational level 

heterogeneity in coefficients and the covariance structure of errors. 

In the supply and demand system described above all prices and quantities are true 

values, as emphasized by the superscripted Ts.  If mismeasurement applies, say, only to the use 

of one input j, (2) & (5) earlier can be simplified to 

(13)  𝑃෠௜௧
் = 𝑃෠௜௧

ெ − 𝜃௝௜௧𝑓መ௝௜௧
௎ை,   𝑄෠௜௧

் = 𝑄෠௜௧
ெ + 𝜃௝௜௧𝑓መ௝௜௧

௎ை                                   

&  𝐴መ௜௧
் = 𝐴መ௜௧

ெ + ൫𝜃௝௜௧ − 𝛺௝௜௧൯𝑓መ௝௜௧
௎ை ,  where 𝛺௝௜௧ = ∑ 𝜃௡௜௧𝜃௝௡௧

ே
௡ୀଵ .  
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As we deflate industry demand nominal values using the industry price index, we have 𝐷෡௜௧
் − 𝐷෡௜௧

ெ =

𝑄෠௜௧
் − 𝑄෠௜௧

ெ = 𝜃௝௜௧𝑓መ௝௜௧
௎ை for all components of demand D as well.  If we let 𝛾௝ denote the economy-

wide average rate of mismeasurement of factor augmenting productivity growth in the use of input 

j, we can then substitute and rewrite the SUR system in terms of measured values as: 

(14)  𝑃෠௜௧
ெ = 𝜃௝௜௧𝛾௝ + 𝛽௉[𝐴መ௜௧

ெ + ൫𝜃௝௜௧ − 𝛺௝௜௧൯𝛾௝] + 𝜇௜
௉ + 𝜇௧

௉ + 𝜀௜௧
௉                                         

              𝐷෡௜௧
ெ = −𝜃௝௜௧𝛾௝ + 𝛽஽ൣ𝐴መ௜௧

ெ + ൫𝜃௝௜௧ − 𝛺௝௜௧൯𝛾௝൧ + 𝜇௜
஽ + 𝜇௧

஽ + 𝜀௜௧
஽    (for 𝐷 = 𝐶, 𝑋 … ), 

which is a non-linear SUR system.  As happens for other parameters, variation in 𝑓መ௝௜௧
௎ைacross i 

and t is incorporated in the error term and unmodelled.  The structural system can similarly be 

estimated by substituting (13) into (9) and either assuming 𝑓መ௝௜௧
௎ை = 𝛾௝  for all i and t or formally 

modelling variation as a random effect, 𝜈௜௧ = 𝑓መ௝௜௧
௎ை − 𝛾௝.  As estimating the latter is 

computationally costly and I find has minimal effect on headline results, structural estimates 

reported below assume the former. 

In linear SUR with identical regressors, the generalized least squares (GLS) solution, 

weighting by the estimate of the covariance matrix of errors, is simply the equation-by-equation 

OLS solution.  In the non-linear SUR system (14), with cross-equation restrictions on 

coefficients and local regressors (equal to derivatives with respect to parameters) that are not 

identical, the solution depends upon the covariance structure.  If iterated until the estimated 

covariance matrix of residuals converges, this GLS solution is identical to maximization of the 

SUR system using maximum likelihood with normally distributed errors.  I use this iteration 

below, so that both the SUR and structural results are maximum likelihood estimates.  However, 

the SUR point estimates do not actually depend upon the assumption of normal errors and are 

valid under more general GLS conditions regarding plims and moments of regressors. 

(c) Discussion of Identification 

As noted in the Introduction, the conditions for identification above are simply those of 

standard linear or non-linear least squares, namely that the expectation or plim of the product of 

total factor productivity growth and factor share regressors with the error term is zero, i.e. 

exogeneity of the regressors, coupled with an interpretation of ratios of coefficients that requires 

that expenditure shares have no impact on price and quantity growth other than through their 

effects on true total factor productivity growth, an exclusion restriction, and that the impact of 

true total factor productivity growth on true price and quantity growth is the same regardless of 

its factor augmenting origin, i.e. a common β. 

Total factor productivity growth impacts many observables within an industry, such as 

the relative use of factors, but these observables are likely to be heavily influenced by the factor 

augmenting form total factor productivity growth takes.  It is plausible, however, that the form 

total factor productivity growth takes within an industry is not relevant to the downward shift in 
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the supply curve or the equilibrium demand of users.  In keeping with this argument, I remove 

own-industry-use intermediate input demand from the SUR specifications below to show that it 

does not determine results.  Here one of the advantages of the SUR specification presents itself.  

The structural system cannot drop a segment of demand, because it relies upon calculating the 

weighted sum of demand changes ( ∑ 𝜙஽௜௧𝜎஽஽ ).  However, if total factor productivity growth is 

correlated with the errors for one component of demand, i.e. endogenous to it, that component 

can be dropped from the SUR system and the remaining coefficients on total factor productivity 

growth estimated without prejudice.  It is only that, with the reduced dimension of the system, it 

is no longer possible to map back from the 𝛽௉ and 𝛽஽ to the underlying elasticities ρ and σD 

using the equivalences given in (11) above. 

For computer expenditure shares not to influence price and quantity other than through 

total factor productivity growth, it is necessary that our conception of price, quantity and 

productivity include quality improvements.  (9), (11) and (14) allow for this, as they describe 

factor-augmenting-technical-change adjusted price and quantity as functions of true factor-

augmenting-adjusted productivity.  Here we follow standard national income accounting 

principles, re-expressing quality improvements as changes in quality adjusted prices per unit of 

quality adjusted quantity.  

The identification of the slopes of supply and demand curves is a standard econometric 

problem, but of less importance here than the preceding exposition might suggest.  In (6) above 

total factor productivity growth shifts the supply curve, allowing the identification of the demand 

elasticities σD in (9) and (11).  The additional assumption in (6) that productivity growth shifts 

the supply curve one for one identifies the supply elasticity, but is not actually needed.  To see 

this, note that if total factor productivity growth shifts the supply function by an unknown 

amount τ , then in moving from (6) to (11) in the SUR model we have 

(15) 𝛽௉ =
−𝜏𝜌

𝜌 + ∑ 𝜙஽𝜎஽஽
  and  𝛽஽ =

𝜎஽𝜏𝜌

𝜌 + ∑ 𝜙஽𝜎஽஽
 

and it is still the case that the ratio -βD/βP identifies σD.  The separate identification of the supply 

elasticity ρ from these coefficients, however, requires that τ be known, as can be seen by noting 

that otherwise we have ND + 1 equations in ND + 2 unknowns, where ND denotes the number of 

components of demand.  However, as can be seen in (11), knowledge of neither ρ, σ or τ is 

needed to estimate the value of 𝛾௝, which depends only on βP and βD and not their 

decomposition.  The non-structural SUR model highlights the fact that we are identifying 

mismeasurement from the way in which productivity growth affects price and quantities, without 

having to take a definitive structural stand on why that relation exists.  In particular, since τ need 

not be 1, deviations from perfect competition in the form of variation of markups with 
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productivity growth is not ruled out. 

There is also the conventional issue of the endogeneity of regressors, i.e. their correlation 

with the error terms in (9) and (11).  With regards to the factor shares 𝜃௝௜௧ and 𝛺௝௜௧, we are 

regressing the growth of prices and quantities on the levels of these regressors, so endogeneity 

would have to derive from correlated shocks.  To this end, in the analysis below I include lagged 

values of the dependent variables as regressors to “whiten” the residuals and, to avoid distortions 

brought about by pre-testing, present results with different lag structures side-by-side.  

An additional potential correlation stems from the use of discrete time growth measures.  

As the BEA’s total factor productivity measures use standard Tornqvist indices based on the 

average value of factor shares, I use these average shares as regressors in baseline specifications 

below.  The motivation for this is straightforward.  If one takes a second order approximation of 

the production function in (1) with respect to ln inputs, one gets the translog production function 

(16) ln 𝑄௜௧
் = 𝛼଴ + ∑ 𝛼௝

௃
௝ୀଵ ln 𝑓௝௜௧

் 𝑀௝௜௧
் + ∑ ∑

ఉೕೖ

ଶ

௃
௞ୀଵ ln 𝑓௝௜௧

் 𝑀௝௜௧
் ln 𝑓௞௜௧

் 𝑀௞௜௧
்௃

௝ୀଵ .  

As under perfect competition the factor income share equals the derivative of the ln of output 

with respect to the ln of input, with some manipulation one finds that  

(17) ln
ொ೔೟

೅

ொ೔೟షభ
೅ − ∑ 𝜃̅௝௜௧

௃
௝ୀଵ ln

ெೕ೔೟
೅

ெೕ೔೟
೅ = ∑ 𝜃̅௝௜௧

௃
௝ୀଵ ln

௙ೕ೔೟
೅

௙ೕ೔೟షభ
೅ , where 𝜃̅௝௜௧ =

ఏೕ೔೟ାఏೕ೔೟షభ

ଶ
,  

so that a productivity index based upon average factor shares is exact for changes across discrete 

time.  However, through factor prices or adjustment costs that vary by factor, period t factor 

shares may be endogenous to t-1 to t price and demand growth shocks.   

To address the possible endogeneity of average factor shares, I instrument these using 

initial t-1 factor shares, which are predetermined with respect to t-1 to t growth (especially once 

lagged dependent variables are added).  Given the non-linear specifications, this is most easily 

addressed by full information maximum likelihood (FIML), wherein we append the first stage 

equations to the SUR price and demand system: 

(18)  𝑃෠௜௧
ெ = 𝜃̅௝௜௧𝛾௝ + 𝛽௉[𝐴መ௜௧

ெ + ൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯𝛾௝] + 𝜇௜
௉ + 𝜇௧

௉ + 𝜀௜௧
௉   

              𝐷෡௜௧
ெ = −𝜃̅௝௜௧𝛾௝ + 𝛽஽ൣ𝐴መ௜௧

ெ + ൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯𝛾௝൧ + 𝜇௜
஽ + 𝜇௧

஽ + 𝜀௜௧
஽ 

         𝜃̅௝௜௧ = 𝛼ఏఏ𝜃௝௜௧ିଵ + 𝛼ఏఆ𝛺௝௜௧ିଵ + 𝛼ఏ஺𝐴መ௜௧
ெ + 𝜇௜

ఏ + 𝜇௧
ఏ + 𝜀௜௧

ఏ   

            𝛺ത௝௜௧ = 𝛼ఆఏ𝜃௝௜௧ିଵ + 𝛼ఆఆ𝛺௝௜௧ିଵ + 𝛼ఆ஺𝐴መ௜௧
ெ + 𝜇௜

ఆ +  𝜇௧
ఆ + 𝜀௜௧

ఆ . 

Lagged values of 𝑃෠௜௧
ெ and 𝐷෡௜௧

ெ , as well as business cycle controls, are added as exogenous 

variables in some specifications.  When instrumented below, the estimated values of 𝛾௝ for 

headline results shrink somewhat toward zero.  

The FIML maximum likelihood approach can also be used with the structural model by 

appending the equations for 𝜃̅௝௜௧ and 𝛺ത௝௜௧ to (9).  Notwithstanding the use of maximum likelihood 
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techniques as a general approach covering all frameworks examined in the paper, it is once again 

the case that for the SUR model the estimates are not dependent upon the assumption of a normal 

likelihood.  As shown in the on-line appendix, FIML point estimates for the SUR model are all 

but identical to those found using three stage least squares that inserts predicted values of 𝜃̅௝௜௧ 

and 𝛺ത௝௜௧ into the non-linear SUR system (14) above.   

With respect to total factor productivity growth, mismeasurement of this variable due to  

changes in capacity utilization brought about by demand and supply shocks make it endogenous 

to price and quantity changes.  The year fixed effects, motivated above as adjustment for 

movements in CES price indices and factor prices that are common to all industries, also adjust 

for common mismeasurement due to the business cycle.  Further corrections for productivity 

growth mismeasurement, in the form of industry level adjustments for business cycle 

fluctuations and direct corrections for capital utilization based upon the hours of work per 

worker, do not have a substantial impact on the results, as shown below.  Results using long run 

industry means, where mismeasurement due to capacity utilization should not be an issue, 

support the results found using annual panel data.  Finally, I completely sidestep the issue of 

endogeneity and bias in the estimated βs on total factor productivity growth by taking these as 

known and showing that headline results regarding the direction of mismeasurement persist 

across virtually all possible exogenously imposed values for the response of prices and quantities 

to productivity growth.  While the assumption of common βs is used to identify the degree of 

mismeasurement, this is not equivalent to saying that central conclusions regarding the direction 

of mismeasurement are sensitive to the estimated values of those β.  In practice they are not and 

hence any residual endogeneity of total factor productivity growth beyond that accounted for by 

business cycle controls and capital utilization adjustments cannot be central to the results. 

 Finally, it is worth noting that while one might think that there is a lack of identification 

between mismeasuring the gains from the use of input j and mismeasuring, in the opposite 

direction, the gains from the use of all other inputs ~j, this is incorrect.  While 𝜃~௝௜௧ = 1 - 𝜃௝௜௧, 

𝛺~௝௜௧ = ∑ 𝜃௡௜௧𝜃~௝௡௧
ே
௡ୀଵ = ∑ 𝜃௡௜௧

ே
௡ୀଵ − 𝛺௝௜௧, and hence the SUR framework (14) applied to the 

mismeasurement of all inputs other than j yields the equations: 

(19)  𝑃෠௜௧
ெ = ൫1 − 𝜃௝௜௧൯𝛾~௝ + 𝛽௉ൣ𝐴መ௜௧

ெ + ൫1 − ∑ 𝜃௡௜௧
ே
௡ୀଵ − 𝜃௝௜௧ + 𝛺௝௜௧൯𝛾~௝൧ + 𝜇௜

௉ + 𝜇௧
௉ + 𝜀௜௧

௉   

   𝐷෡௜௧
ெ = (𝜃௝௜௧ − 1)𝛾~௝ + 𝛽஽ൣ𝐴መ௜௧

ெ + ൫1 − ∑ 𝜃௡௜௧
ே
௡ୀଵ − 𝜃௝௜௧ + 𝛺௝௜௧൯𝛾~௝൧ + 𝜇௜

஽ +  𝜇௧
஽ + 𝜀௜௧

஽ .  

Were ∑ 𝜃௡௜௧
ே
௡ୀଵ , the sum of private sector intermediate input expenditure shares, equal to 1, 

estimation of (19) would yield 𝛾ො~௝ equal to −𝛾ො௝ of (14).  As primary inputs have non-zero 

expenditure shares, this is not the case, and in practice below the estimates differ substantially.  

This highlights the role played by shares of users of users (𝛺௝௜௧) in identification. 
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III.  The Data and Clarifying Monte Carlos 

I use the Bureau of Economic Analysis’s industry level total factor productivity estimates 

covering 61 private sector industries from 1997 to 2023 and input-output tables covering the 

same period.  The BEA productivity estimates provide factor income share and quantity data for 

14 inputs, comprised of 9 classes of capital, college and non-college labour, and energy, service 

and materials intermediates.  The input-output tables allow the more detailed calculation of the 

intermediate input shares of the domestic 61 private sector industries, giving a total of 75 input 

categories.5  Our interest lies in those inputs most obviously associated with computer 

technology, namely (i) computer hardware capital, (ii) software capital, (iii) computer and 

electronic intermediates and (iv) computer systems design & related intermediates.  As the data 

are available, mismeasurement in the remaining 71 input categories is also examined, albeit 

parenthetically.  I remind the reader that we are measuring mismeasurement of factor 

augmenting productivity growth in the use of inputs through systematic discrepancies in the 

relationship between prices & quantities demanded and total factor productivity growth in 

industries which are users and users of users of these inputs.  Thus, repeatedly below the term 

industry is used to refer to users or user of users of inputs, demand and price refer to demand for 

and price of such industries, and inputs is used to refer to the inputs whose factor augmenting 

productivity growth is implicitly being mismeasured. 

As dependent variables, I use the measured growth of industry prices (P) and demand for 

industry output (the D in equations above), broken down into the aggregate categories: 

consumption (C), exports (X), investment (I), government (G), private intermediate input use 

excluding own industry use (M), and own industry intermediate input use (O).  I separate out 

own use (O) because this source of demand is likely to depend upon the factor augmenting form 

of total factor productivity growth, making regressors such as total factor productivity growth 

and input factor shares endogenous.  As noted above, the flexibility of the SUR approach allows 

me to drop this element of demand.  All demand components are net of input-output tables 

estimated imports by industry for that category of demand, and together they sum to total 

domestic supply. 

Defined growth rates require positive values for these measures in all periods, which is 

only true for 20 industries. This 20 industry x 26 year sample is referred to as the PMCXIGO 

sample and model below, or PMCXIG when endogenous O is dropped in SUR estimation.  To 

expand the number of industries, I combine investment and government, which are individually  
 

5The BEA input-output tables are not actually a single matrix, but rather separate make tables by industry x 
commodity and use tables by commodity x industry.  As the make table is largely diagonal, I treat commodities as 
synonymous with industries in the use table in compiling data.  The correlation of the 61 industry x 26 year quantity 
growth in the IO use of commodities with the growth of industry output in the productivity data base is .988, or .982 
once industry and year means are removed. 
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Table 1: Testing Lag Length in the SUR Vector Auto-Regression model 
(p-value of lag coefficients by row in specifications indicated by column) 

 PMCXR model - 44 industries PMCXIG model - 20 industries PQ~O model - 61 industries 
 1 lag 2 lags 3 lags 4 lags 1 lag 2 lags 3 lags 4 lags 1 lag 2 lags 3 lags 4 lags 

 heteroskedasticity robust Wald statistic evaluated using asymptotic chi-squared distribution 

1st lag 
2nd lags 
3rd lags 
4th lags 

.017 
 
 
 

.001 

.000 
 
 

.000 

.000 

.156 
 

.000 

.000 

.169 

.102 

.000 
 
 
 

.000 

.000 
 
 

.000 

.000 

.000 
 

.000 

.000 

.000 

.011 

.942 
 
 
 

.951 

.000 
 
 

.944 

.000 

.002 
 

.979 

.000 

.002 

.694 
 heteroskedasticity robust Wald statistic evaluated using Wild bootstrap distribution 

1st lag 
2nd lags 
3rd lags 
4th lags 

.212 
 
 
 

.055 

.000 
 
 

.048 

.001 

.605 
 

.021 

.000 

.655 

.496 

.151 
 
 
 

.128 

.057 
 
 

.123 

.161 

.150 
 

.043 

.156 

.176 

.174 

.960 
 
 
 

.995 

.000 
 
 

.985 

.000 

.027 
 

.992 

.000 

.034 

.823 
   Notes: Each row presents tests of the indicated lag coefficients in a regression with the column indicated total 
number of lags.  Sample size equals number of industries times (26 - number of lags) years.  Specifications include 
TFP growth and industry and year dummies, in addition to lagged lefthand-side variables, as regressors.  PMCXR 
model has 25 (5x5) coefficients per lag length, PMCXIG 36 (6x6), and PQ~O model 4 (2x2).  Wild bootstrap p-
values based upon the distribution of the Wald statistic in 1000 iterations with estimated residuals multiplied by iid 
±1 Rademacher random variables. 

zero in many industries, into a residual category (R), which allows the calculation of growth 

rates for 44 industries in all years.  I take this broad sample as my main sample and refer to it as 

the PMCXRO or PMCXR sample and model in tables below.  Finally, all forms of demand net 

of imports can be combined to create aggregate domestic quantity demanded and supplied by 

industry.  This provides non-zero growth rates for all 61 industries and is referred to as the PQ 

sample and model below, or PQ~O when own use is subtracted from Q.  For the PQ sample, the 

SUR and structural models are identical, as demand shares (𝜙஽௜௧) are identically equal to 1.   

As noted in Section II, OLS regressions provide unbiased or (with stochastic regressors) 

consistent estimates of average parameter values if parameter heterogeneity is independent of the 

regressors.  In the context of the structural model above, this would be the case if variation in 

demand shares net of industry and year means is independent of the same for total factor 

productivity growth.  In the data used in this paper, the correlations of residuals net of year and 

industry fixed effects of total factor productivity growth with the demand shares of consumption, 

exports, intermediates net of own use, investment, government, and own use intermediates are 

-.0135, -.0183, -.0032, .0183, .0213 and .0186, respectively, with no correlation commanding a 

p-value less than .21.   

As also noted earlier, serial correlation in shocks might make t or even t-1 factor shares 

endogenous to t-1 to t price and demand growth.  Table 1 presents tests of the statistical 

significance of lagged dependent variables in SUR specifications regressing the PMCXR , 

PMCXIG or  PQ~O dependent variables on TFP growth, year and fixed effects, and lagged values 

of the vectors of lefthand-side variables.  Reported p-values are calculated using the conventional 
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heteroskedasticity robust Wald test alternately evaluated using its asymptotic chi-squared 

distribution, as well as the Wild bootstrap estimate of its finite sample distribution, as in small 

finite samples high dimensional tests of this sort using the asymptotic distribution often have 

sizeable positive size distortions (Young 2022).  These tests strongly reject the null of zero 2nd 

order lags, but evidence in favour of higher order lags is weak.  Specifications below err on the 

safe side; reporting results up to and including 3rd order lags. 

Monte Carlos might give the reader some reassurance regarding the validity of the 

methods described above and used below, while also providing some sense of how asymptotic 

econometric theory plays out in the finite samples of this paper.  Tables 2 and 3 use three data 

generating processes (dgps), based upon the point estimates of the PMCXRO structural model, 

its SUR counterpart, and the SUR model augmented with 3 lags of the vector of dependent 

variables.  The error disturbances are either iid normal variables, with the covariance structure 

across the dependent variables found in each model’s estimates, or else derived by multiplying 

the estimated residuals by Rademacher random variables that equal ±1 with 50/50 probability.  

The latter are referred to as “actual” errors, and take two forms: in one each industry x year 

vector of errors (for the vector of dependent variables) is multiplied by an independent 

Rademacher realization, producing independent but heteroskedastic errors, and in the other each 

industry matrix of errors is multiplied by a single Rademacher realization, producing errors that 

retain the within industry-cluster residual correlation present in the data and induced by 

estimation.  100 realizations of each dgp for each of 75 estimated mismeasurement models 

(based upon the 75 inputs described above) are used and PMCXRO structural and SUR 

PMCXRO & PQ estimation (the last two with and without 3 lags) applied to each dgp.  

Table 2 reports the average across the 75 mismeasurement models for each dgp of the ln 

mean squared error of the estimated mismeasurement parameter, with the logarithm allowing the 

interpretation of differences as the average proportional difference per dgp.  When the structural 

model PMCXRO is the dgp, mean squared error is lowest with structural estimation, even when 

the errors are cluster correlated in a fashion that is not considered in the structural estimation, but 

the difference with SUR PMCXRO no lags estimation is only 5 to 12 percent.  Mean squared 

error rises when lags are added in SUR estimation, often by 20 percent or more, even when the 

dgp actually involves lagged values of the dependent variables.  The PQ model gives up 

information by combining the different components of demand into one Q aggregate and tends to 

have slightly higher mean squared error than models which use disaggregated demand. 

Table 3 reports rejection probabilities of both the true null equal to the mismeasurement 

parameter and the false null equal to 0 effects, to give some sense of size and power.  Results 

using heteroskedasticity robust, industry clustered and homoskedastic covariance estimates are 

presented in separate panels.  As seen, the industry clustered covariance estimate results in large 
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 Table 2:  Average ln Mean Squared Error of Mismeasurement Parameter 
by Data Generating Process, Error Distribution and Estimation Framework 

(each cell based on 100 replications for each of 75 mismeasurement models) 

  estimation framework 

dgp errors 
structural 
PMCXRO 

SUR no lags 
PMCXRO 

SUR 3 lags 
PMCXRO 

PQ no lags PQ 3 lags 

structural 
PMCXRO 

normal 
actual-id 
actual-cl 

-.81 
-.91 
-1.1 

-.72 
-.86 
-.98 

-.49 
-.59 
-.86 

-.75 
-.84 
-.97 

-.51 
-.57 
-.80 

SUR no lags 
PMCXRO 

normal 
actual-id 
actual-cl 

-.05 
-.78 
-.96 

-.71 
-.73 
-.98 

-.47 
-.47 
-.76 

-.61 
-.73 
-.86 

-.37 
-.47 
-.68 

SUR 3 lags 
PMCXRO 

normal 
actual-id 
actual-cl 

-.20 
-.76 
-.91 

-.76 
-.75 
-.93 

-.56 
-.56 
-.86 

-.67 
-.72 
-.87 

-.45 
-.54 
-.72 

 mean -.72 -.83 -.62 -.78 -.57 
   Notes:  dgps based upon point estimates of indicated mismeasurement model for each of 75 inputs.  Normal 
errors with estimated error covariance; actual-id (independently distributed) errors equal to vector of residuals 
for each industry x year multiplied by independent Rademacher ±1 variables; and actual-cl (industry clustered) 
errors equal to matrix of residuals for each industry multiplied by independent Rademacher ±1 variables. 

size distortions.  In contrast, the heteroskedasticity robust covariance estimate does reasonably 

well across the board, even when the simulated errors retain the within industry cluster 

correlation present in the data or induced by estimation.  With normal iid homoskedastic errors 

its rejection probabilities are somewhat higher than with the homoskedastic covariance matrix, 

but size distortions are never extreme and its average performance, across all dgps, is better.6  

Using the heteroskedasticity robust covariance estimate, SUR estimation without lags and 

without aggregating demand into one Q category provides more accurate true null rejection 

probabilities than with lags and/or aggregation, and is comparable to structural estimation in 

accuracy, even when the dgp has lags or is structural.  In the same, power is slightly higher with 

SUR estimation, except when the dgp is structural, and falls slightly when demand is aggregated, 

although differences for the most part are small.  Based upon the above, in the analysis below I 

use heteroskedasticity robust covariance estimates throughout.  Clustered covariance estimates 

are almost always smaller, making results appear more significant.   

While I use OLS estimation to cover all 75 inputs, below I apply computationally more 

costly FIML instrumental variables SUR methods to interrogate the headline results for computer 

and electronics intermediates.  Table 4 uses as its dgp the computer intermediates point estimates 

of the baseline FIML system in (18) above for SUR PMCXR estimation, augmented in some 

cases with three lags of the PMCXR variables.   1000 iterations are used with normal, actual and 

 
6The residuals (of regressions on TFP growth and industry and year fixed effects) are decidedly non-normal, 

with kurtoses of 37, 11, 29, 40, 14, & 17 for the PMCXRO variables, respectively. Nevertheless, as can be seen in 
the table by comparing the normal and actual rows, this does not substantially worsen the accuracy of inference 
using the heteroskedasticity robust covariance estimate. 



18 

Table 3:  Monte Carlo .01 Level Empirical Rejection Probabilities of Mismeasurement 
Nulls by Data Generating Process, Error Distribution and Estimation Framework 

(each cell = 100 replications for each of 75 mismeasurement models) 
 tests of true null = parameter value tests of false null = 0 

estimation 
framework: 

struc-
tural 

SUR 
no lags 

SUR 
 3 lags 

PQ 
no lags 

PQ 
3 lags 

struc-
tural 

SUR 
no lags 

SUR 
 3 lags 

PQ 
no lags 

PQ 
3 lags 

dgp errors (A) using heteroskedasticity robust covariance estimates 

struc- 
tural 

normal 
actual-id 
actual-cl 

.017 

.014 

.022 

.016 

.011 

.021 

.031 

.026 

.016 

.018 

.015 

.024 

.031 

.027 

.020 

.153 

.148 

.151 

.141 

.152 

.154 

.142 

.141 

.122 

.142 

.129 

.141 

.147 

.128 

.125 

SUR 
no lags 

normal 
actual-id 
actual-cl 

.013 

.013 

.022 

.018 

.014 

.014 

.027 

.026 

.017 

.019 

.015 

.022 

.030 

.027 

.020 

.054 

.122 

.131 

.154 

.131 

.127 

.155 

.134 

.128 

.134 

.118 

.134 

.140 

.127 

.133 

SUR 
3 lags 

normal 
actual-id 
actual-cl 

.008 

.027 

.029 

.018 

.023 

.018 

.028 

.026 

.013 

.019 

.021 

.024 

.031 

.028 

.023 

.043 

.123 

.118 

.114 

.106 

.096 

.163 

.148 

.109 

.104 

.098 

.097 

.138 

.146 

.117 
mean .018 .017 .023 .020 .026 .116 .131 .138 .122 .133 

  (B) using industry clustered covariance estimates 

struc- 
tural 

normal 
actual-id 
actual-cl 

.116 

.054 

.038 

.122 

.055 

.033 

.115 

.064 

.034 

.123 

.065 

.040 

.122 

.074 

.044 

.285 

.235 

.196 

.275 

.244 

.188 

.235 

.211 

.161 

.272 

.235 

.195 

.250 

.206 

.178 

SUR 
no lags 

normal 
actual-id 
actual-cl 

.077 

.052 

.037 

.118 

.057 

.036 

.113 

.065 

.043 

.124 

.069 

.052 

.119 

.074 

.052 

.147 

.207 

.196 

.289 

.238 

.203 

.249 

.203 

.167 

.267 

.237 

.219 

.237 

.207 

.188 

SUR 
3 lags 

normal 
actual-id 
actual-cl 

.065 

.073 

.058 

.119 

.082 

.068 

.112 

.072 

.031 

.127 

.097 

.081 

.113 

.079 

.039 

.153 

.180 

.186 

.256 

.206 

.199 

.261 

.223 

.180 

.249 

.205 

.197 

.236 

.227 

.192 
mean .063 .077 .072 .086 .080 .199 .233 .210 .231 .213 

  (C) using homoskedastic covariance estimates 

struc- 
tural 

normal 
actual-id 
actual-cl 

.011 

.028 

.028 

.011 

.027 

.020 

.021 

.046 

.020 

.011 

.030 

.030 

.019 

.050 

.024 

.141 

.150 

.145 

.127 

.141 

.129 

.128 

.153 

.119 

.131 

.142 

.133 

.135 

.154 

.130 

SUR 
no lags 

normal 
actual-id 
actual-cl 

.015 

.032 

.036 

.012 

.036 

.026 

.022 

.058 

.030 

.012 

.031 

.037 

.020 

.052 

.033 

.063 

.141 

.124 

.141 

.153 

.133 

.144 

.166 

.140 

.116 

.140 

.129 

.124 

.163 

.142 

SUR 
3 lags 

normal 
actual-id 
actual-cl 

.007 

.037 

.030 

.012 

.029 

.015 

.021 

.055 

.028 

.008 

.031 

.022 

.021 

.052 

.033 

.064 

.137 

.130 

.112 

.128 

.114 

.149 

.167 

.118 

.086 

.121 

.107 

.123 

.164 

.120 
mean .025 .021 .033 .023 .034 .122 .131 .143 .123 .139 

   Notes:  Structural and SUR refer to PMCXRO model.  Otherwise, as in Table 2. 
 

actual clustered errors created as described above and rejection probabilities using 

heteroskedasticity robust covariance estimates reported in the table.    

As can be seen in Table 4, the accuracy of inference worsens with instruments,7  

 
7Although first stage Fs are in the thousands.  As shown in Young (2022), first stage F tests provide little 

assurance of accurate rejection probabilities using instrumental variables when errors are not homoskedastic normal. 
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Table 4:  Monte Carlo .01 Level Empirical Rejection Probabilities and ln MSE 
(each cell = 1000 replications for computer & electronics intermediates mismeasurement model) 

  rejection probabilities  
  true null = parameter false null = 0 ln MSE 
  PMCXR PQ~O PMCXR PQ~O PMCXR PQ~O 

dgp errors 0 lags 3 lags 0 lags 3 lags 0 lags 3 lags 0 lags 3 lags 0 lags 3 lags 0 lags 3 lags 

FIML 
no lags 

normal 
actual-id 
actual-cl 

.025 

.044 

.000 

.072 

.067 

.000 

.029 

.057 

.000 

.065 

.078 

.000 

.963 
1.00 
1.00 

.926 

.932 

.975 

.918 

.918 

.943 

.903 

.845 

.950 

-4.2 
-4.6 
-5.9 

-3.4 
-3.3 
-4.4 

-4.1 
-4.0 
-5.2 

-3.3 
-2.9 
-3.6 

FIML 
3 lags 

normal 
actual-id 
actual-cl 

.050 

.067 

.000 

.025 

.011 

.000 

.035 

.098 

.000 

.039 

.052 

.000 

.974 

.999 
1.00 

.752 

.867 

.749 

.934 

.984 
1.00 

.771 

.879 

.931 

-3.5 
-3.5 
-3.8 

-3.7 
-3.9 
-5.7 

-3.5 
-3.2 
-3.4 

-3.4 
-3.1 
-4.1 

mean .031 .029 .036 .039 .989 .867 .950 .880 -4.2 -4.1 -3.9 -3.4 
   Notes:  PMCXR FIML dgp as in (18) above, augmented with 0 or 3 lags of the PMCXR variables on the 
right-hand side; estimation using PMCXR or PQ~O system, with and without lags.  Otherwise as in Table 2. 

especially for PQ~O estimation, but rejection probabilities .at the .01 level using PMCXR 

estimation remain below the .05 level when using the appropriate model for the lag structure of 

the dgp.  Below I use the nominal .01 level as the assessment of “statistical significance.”  Power 

now falls off substantially more with PQ~O estimation, especially with lags, where the mean 

squared error is on average 70 to 80% higher than that found using PMCXR estimation.  In the 

analysis below, headline results become much more volatile, and often insignificant, as lags are 

added to the PQ~O estimation framework, but are more stable and always significant when using 

the disaggregated demand models. 

IV. Results 

Table 5 reports estimates of mismeasurement in the gains from using computer related 

inputs following either the structural specification in (9) above, with true and measured values 

related as in (13), or the non-structural seemingly unrelated SUR model in (11) and (14).  As 

noted earlier, there are three samples with 44, 20 and 61 industries, based upon the existence of 

non-zero values to calculate growth rates for the components of demand.  SUR estimation allows 

the dropping of variables, as it does not make use of the structural equation linking the weighted 

sum of the growth of components of demand to the growth of total supply.  As such, in some 

specifications it drops endogenous own use (O) as a left-hand side variable or removes it from 

the measure of total quantity (Q~O).  Heteroskedasticity robust standard errors are reported in ().

 As seen in the table, estimated mismeasurement in the gains from using software capital 

varies closely around zero, while mismeasurement in the use of computer systems design 

intermediates is either strongly negative or strongly positive, often with equally large standard  

errors, depending upon the sample.  In contrast, estimated mismeasurement in the use of both 

computer hardware capital and computer and electronics intermediates is consistently negative. 
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Table 5: Mismeasurement Associated with Computer Technology 
(each cell a separately estimated model) 

 structural model SUR (seemingly unrelated regressions) 

variables: PMCXRO PMCXIGO PMCXRO  PMCXIGO PMCXR  PMCXIG PQ PQ~O 

industries: 44 20 44 20 44 20 61 61 

computer  
hardware 

capital 

-.30  
(.13) 

-.48 
(.14) 

-.32 
(.17) 

-.45 
(.22) 

-.37 
(.15) 

-.46 
(.21) 

-.54 
(.38) 

-.54 
(.40) 

software  
capital 

-.08 
(.15) 

-.16 
(.07) 

-.14 
(.19) 

-.13 
(.10) 

-.09 
(.18) 

-.12 
(.10) 

.06 
(.48) 

.04 
(.50) 

computer & 
electronic 

intermediates 

-.54 
(.12) 

-.61 
(.08) 

-.55 
(.10) 

-.61 
(.08) 

-.55 
(.09) 

-.61 
(.08) 

-.56 
(.17) 

-.61 
(.16) 

computer 
systems design 
intermediates 

-.88 
(.65) 

-2.5 
(.58) 

-1.0 
(.80) 

-2.5 
(.61) 

-.88 
(.75) 

-2.5 
(.59) 

1.7 
(1.2) 

1.7 
(1.3) 

everything but 
comp. & elec. 
intermediates 

.06 
(.08) 

.44 
(.15) 

.04 
(.07) 

.52 
(.15) 

.15 
(.09) 

.66 
(.11) 

.07 
(.05) 

.06 
(.05) 

   Notes:  Mismeasurement parameters as in the structural model (9) and (13) and SUR model (11) and (14).  
Heteroskedasticity robust errors in ().  Observations = number of industries x 26 years.  Industries dropped which 
have 0 demand for some component of demand, as growth rates are then undefined.  Right hand side variables = 
growth of P (price) and domestic demand (excluding imports) components M (private sector intermediate use, 
excluding own use), C (consumption), X (exports), R (residual = G + I ),  I (investment), G (government final and 
intermediate), O (own use intermediate), Q (total demand = supply), and Q~O (Q excluding own use). 

The absolute t-stats for computer hardware, however, are less than the 2.6 cutoff for significance 

at the .01 level in all but one specification and are shown to depend heavily on estimated 

elasticities of demand and supply further below, whereas the negative estimates for computer and 

electronics intermediates will be seen to be far more robust.  The use of structural or SUR 

estimation, inclusion or exclusion of endogenous own output, or use of 61, 44 or 20 industry 

samples with varying dependent variables, does little to change the latter, which vary between 

 -.54 and -.61, with absolute t-stats between 3.5 and 8, indicating that we overestimate the gains 

from using computer and electronic inputs in downstream industries. 

Because of the role played by concatenated expenditure shares of users of users in 

identification, mismeasurement of the gains in the use of one factor is not equivalent to 

mismeasurement in the opposite direction of the gains from the use of all other factors, as 

highlighted in (19) above.  The bottom row of Table 5 estimates a common rate of 

mismeasurement in the use of all factors other than computer and electronics intermediates.  

While estimates for the 20 industry PMCXIGO and PMCXIG models are close to the negative of 

those for computer & electronics intermediates (𝛾ො~௝ ≈ −𝛾ො௝), estimates for the 44 and 61 industry 

models, being near to and statistically indistinguishable from zero, are decidedly not.  Thus, the 
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 Table 6: Mismeasurement Associated with Other Inputs 
(each cell a separately estimated model) 

 structural model SUR (seemingly unrelated regressions) 

variables:   PMCXRO PMCXIGO PMCXRO PMCXIGO PMCXR  PMCXIG PQ PQ~O 

industries: 44 20 44 20 44 20 61 61 

communications 
capital 

.18 
(.33) 

.19 
(.45) 

.01 
(.61) 

.24 
(.47) 

.03 
(.49) 

.22 
(.45) 

.85 
(.95) 

.77 
(1.0) 

r & d 
capital 

.18 
(.09) 

.29 
(.08) 

.17 
(.10) 

.28 
(.08) 

.20 
(.10) 

.29 
(.08) 

.21 
(.15) 

.25 
(.15) 

instruments 
capital 

.23 
(.50) 

1.7 
(.61) 

.58 
(.58) 

1.7 
(.62) 

.18 
(.59) 

1.7 
(.62) 

.17 
(.78) 

.42 
(.81) 

transport 
equipment 

-.16 
(.16) 

-.26 
(.22) 

-.30 
(.17) 

-.30 
(.22) 

-.22 
(.16) 

-.29 
(.22) 

-.22 
(.24) 

-.19 
(.25) 

other 
equipment 

-.10 
(.16) 

-.36 
(.24) 

-.14 
(.24) 

-.44 
(.24) 

-.06 
(.20) 

-.44 
(.24) 

.00 
(.27) 

.03 
(.29) 

art 
capital 

.07 
(.10) 

-.02 
(.08) 

.06 
(.12) 

-.01 
(.09) 

.01 
(.12) 

-.02 
(.09) 

.10 
(.21) 

.05 
(.20) 

structures 
capital 

-.10 
(.06) 

-.21 
(.05) 

-.12 
(.08) 

-.22 
(.06) 

-.10 
(.07) 

-.22 
(.06) 

-.22 
(.13) 

-.22 
(.15) 

college 
labour 

.22 
(.06) 

.24 
(.06) 

.20 
(.08) 

.25 
(.06) 

.22 
(.07) 

.25 
(.06) 

.24 
(.14) 

.29 
(.14) 

non-college 
labour 

.15 
(.05) 

.19 
(.08) 

.15 
(.06) 

.20 
(.08) 

.16 
(.06) 

.21 
(.08) 

.09 
(.10) 

.10 
(.10) 

energy 
intermediates 

.02 
(.07) 

.04 
(.09) 

.01 
(.07) 

-.01 
(.09) 

.02 
(.07) 

.00 
(.09) 

.05 
(.11) 

.07 
(.11) 

materials 
intermediates 

-.10 
(.05) 

-.20 
(.05) 

-.09 
(.05) 

-.21 
(.05) 

-.10 
(.05) 

-.21 
(.05) 

.02 
(.06) 

.01 
(.06) 

services 
intermediates 

-.03 
(.03) 

-.05 
(.03) 

-.02 
(.04) 

-.04 
(.03) 

-.02 
(.03) 

-.04 
(.03) 

.01 
(.05) 

.00 
(.05) 

electrical 
components* 

-1.5 
(.68) 

-1.6 
(.60) 

-1.7 
(.65) 

-1.7 
(.59) 

-1.9 
(.65) 

-1.8 
(.58) 

-1.1 
(1.0) 

-1.4 
(1.1) 

   Notes:  (*) “Electrical equipment, appliances and components”, but when used as intermediate inputs “components” 
are likely to dominate.  Otherwise, as in Table 5. 

negative results for computer intermediates in Table 5 should not be reinterpreted as indicating 

undermeasurement of the positive gains from the use of non-computer intermediates. 

As comparison to Table 5, Table 6 reports results for other primary and intermediate 

inputs available in the data sets used in this paper.  These are the five categories of non-computer 

capital, two categories of labour, and three broad intermediate input factor income share 

categories given in the BEA total factor productivity data base, as well as 59 other detailed 

intermediate industry input shares reported in the annual input-output tables.  Point estimates of 

mismeasurement of the gains from the use of these inputs are generally statistically insignificant 

and sometimes sensitive in terms of sign to the specification.  The exception is college labour, 
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Table 7:  Impact of Fixed Effects on Point Estimates 
(each cell a separately estimated model) 

SUR PMCXR 
44 industries 

SUR PMCXIG 
20 industries 

SUR PQ~O 

61 industries 

fixed effects:     I Y none I Y none I Y none 

computer  
hardware 

-.54 
(.18) 

-.72 
(.14) 

-.77 
(.15) 

-.58 
(.22) 

-.57 
(.14)  

-.59 
(.14) 

-.75 
(.37) 

-1.3 
(.27) 

-1.3 
(.26) 

computer & elec. 
intermediates 

-.59 
(.10) 

-.38 
(.05) 

-.39 
(.05) 

-.63 
(.08) 

-.41 
(.04)  

-.41 
(.04) 

-.66 
(.17) 

-.35 
(.08) 

-.37 
(.08) 

communications 
capital 

.32 
(.09) 

-.10 
(.03) 

-.07 
(.03) 

.34 
(.08) 

-.20 
(.03)  

-.17 
(.03) 

.36 
(.15) 

-.06 
(.05) 

-.04 
(.05) 

r & d 
capital 

-.08 
(.62) 

-.46 
(.18) 

-.49 
(.20) 

2.0 
(.58) 

-.48 
(.27)  

-.38 
(.30) 

-.10 
(.81) 

-.37 
(.20) 

-.41 
(.20) 

instruments 
capital 

-.18 
(.18) 

-.01 
(.02) 

-.01 
(.03) 

-.14 
(.24) 

.20 
(.07)  

.22 
(.09) 

-.08 
(.25) 

-.03 
(.04) 

-.02 
(.04) 

transport 
equipment 

-.01 
(.20) 

.24 
(.05) 

.24 
(.06) 

-.56 
(.28) 

.09 
(.09)  

.08 
(.11) 

.02 
(.28) 

.37 
(.08) 

.35 
(.08) 

structures 
capital 

-.06 
(.06) 

.03 
(.01)  

.03 
(.01) 

-.08 
(.05) 

.03 
(.01)  

.03 
(.01) 

-.15 
(.13) 

.03 
(.03) 

.03 
(.03) 

college 
labour 

.31 
 (.06) 

-.05 
(.02) 

-.05 
(.02) 

.31 
(.07) 

-.01 
(.01) 

.00 
(.01) 

.36 
(.12) 

-.09 
(.02) 

-.08 
(.02) 

non-college 
labour 

-.02 
(.04) 

.05 
(.02) 

.03 
(.02) 

-.08 
(.04) 

.13 
(.02) 

.09 
(.02)  

-.05 
(.05) 

.04 
(.03) 

.02 
(.03) 

electrical 
components 

-2.5 
(.79) 

.02 
(.09) 

.01 
(.11) 

-2.0 
(.78) 

.06 
(.08) 

.05 
(.11) 

-2.4 
(1.2) 

.14 
(.14) 

.10 
(.17) 

   Notes:  Included fixed effects are industry (I), year (Y) or none.  Otherwise, as in Table 5. 

where there are found to be unmeasured positive effects that have t-stats above 2.6 in 6 of 8 

specifications.  Of the 59 other detailed industry intermediate inputs examined, only one, 

electrical components, has absolute t-stats greater than 2.6 in more than 3 of the 8 specifications, 

and its negative point estimates are reported in the table.   

The results in Table 6, however, are sensitive to the inclusion of both year and industry 

fixed effects, as shown in Table 7, which reports SUR model estimates excluding intermediate 

own-use demand with subsets of fixed effects for those results found to be of a consistent sign in 

Tables 5 and 6.  As can be seen, when industry or year fixed effects are removed all estimates 

found earlier in Table 6 to be of consistent sign, including statistically significant results for 

college labour, cease to be so.  Thus, belief in these results requires strong adherence to 

identification from a particular form of residual variation.  In contrast, the point estimates for 

computer hardware and electronics intermediates remain consistently negative, with absolute t-

stats for the latter far above 2.6 in all specifications in this table and Table 5 earlier.   

Table 8 introduces specification checks for the computer & electronics intermediates 

results that control for possible endogeneity of factor shares.  In panel (A) lags of all dependent 
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Table 8: Controlling for Possible Endogeneity of Factor Shares: Lags and Initial Shares 
(computer & electronics intermediates, each cell a separately estimated SUR model) 

 no lags 1 lag 2 lags 3 lags no lags 1 lag 2 lags 3 lags 

 (A) using average factor shares (B) instrumenting with initial shares 

PMCXR 
44 industries 

-.55 
(.09) 

-.48 
(.11) 

-.60 
(.12) 

-.45 
(.14) 

-.50 
(.10) 

-.42 
(.11) 

-.56 
(.12) 

-.40 
(.14) 

PMCXIG 
20 industries 

-.61 
(.08) 

-.51 
(.09) 

-.50 
(.10) 

-.45 
(.11) 

-.59 
(.08) 

-.49 
(.09) 

-.47 
(.11) 

-.43 
(.12) 

SUR PQ~O 

61 industries 
-.61 
(.16) 

-.50 
(.17) 

-.67 
(.17) 

-.41 
(.19) 

-.45 
(.17) 

-.33 
(.19) 

-.52 
(.19) 

-.26 
(.20) 

     Notes: With growth rates denoting changes between t-1 and t, average factor shares are the average of the two 
periods and initial are the factor shares in t-1.  Specifications as in (14) and (18) with lags of the vector of lefthand 
side variables added to each equation.  Otherwise, as in Table 5. 

variables are added to each equation, making them vector autoregressions.  These should remove 

any association between the levels of factor shares and the residuals brought about by the 

cumulative impact of autocorrelated shocks.  As noted earlier, evidence in favour of more than 2 

lags is weak, but up to 3 lags are added to be conservative.  As in earlier Monte Carlos, 

efficiency falls and on average standard errors increase with the addition of lags.  Here in the 

sample, point estimates bounce up and down with the addition of successive lags and on average 

are no different with two lags than with none, but are smallest in absolute magnitude with three 

lags, where they are -.45 for the two disaggregated demand models and -.41 for the aggregated 

PQ~O specification.  Panel (B) adds an additional control for endogeneity, using the FIML 

equations of (18) above to instrument the average t and t-1 shares used in the analysis with initial 

t-1 factor shares and avoid possible endogeneity bias from the simultaneity of t factor income 

shares and t-1 to t growth rates.   Comparing with panel (A), we see that point estimates of 

mismeasurement move a few percentage points toward zero in the PMCXR and PMCXIG 

specifications.  The effects are larger in the PQ~O estimates, which are statistically insignificant 

with 1 or 3 lags, with point estimates of -.33 and -.26, but .01 statistically significant with 0 or 2 

lags, with point estimates of -.45 and -.52, respectively.  

Changes in capacity utilization with the business cycle or other demand and supply 

shocks create mismeasurement of TFP growth, which potentially makes this righthand side 

variable endogenous, biasing the estimates of the response to TFP growth and hence the linked 

mismeasurement parameter 𝛾௝.  The year fixed effects offer a very minimal correction for 

common effects due to these forces, but panel (A) of Table 9 addresses this issue more fully by 

allowing for industry heterogeneity.  I add the national unemployment rate interacted with an 

industry indicator to the righthand side, so that the specification (not counting lags of the vector 

of dependent variables) becomes 
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Table 9: Controlling for Possible Endogeneity of Total Factor Productivity Growth: 
Business Cycle Controls, Capital Utilization Adjustment & Estimation using Mean Values 

(computer & electronics intermediates, each cell a separately estimated SUR model) 
 no lags 1 lag 2 lags 3 lags no lags 1 lag 2 lags 3 lags 

 
(A) national unemployment level 

 Ut as industry specific control 
(B) national unemployment change 
Ut - Ut-1 as industry specific control 

PMCXR 
44 industries 

-.51 
(.09) 

-.47 
(.11) 

-.61 
(.13) 

-.42 
(.14) 

-.56 
(.08) 

-.50 
(.10) 

-.56 
(.11) 

-.37 
(.13) 

PMCXIG 
20 industries 

-.60 
(.07) 

-.51 
(.09) 

-.48 
(.11) 

-.41 
(.12) 

-.62 
(.07) 

-.50 
(.08) 

-.45 
(.10) 

-.40 
(.11) 

PQ~O 

61 industries 
-.57 
(.16) 

-.51 
(.17) 

-.70 
(.18) 

-.40 
(.19) 

-.62 
(.14) 

-.53 
(.15) 

-.61 
(.16) 

-.30 
(.17) 

 
(C) unemployment level controls,  

average shares instrumented with initial 
(D) unemployment change controls,  

average shares instrumented with initial 

PMCXR 
44 industries 

-.46 
(.10) 

-.42 
(.12) 

-.56 
(.13) 

-.38 
(.14) 

-.51 
(.09) 

-.45 
(.10) 

-.52 
(.11) 

-.33 
(.13) 

PMCXIG 
20 industries 

-.58 
(.08) 

-.49 
(.09) 

-.45 
(.11) 

-.39 
(.12) 

-.60 
(.07) 

-.47 
(.08) 

-.42 
(.10) 

-.37 
(.11) 

PQ~O 

61 industries 
-.41 
(.17) 

-.34 
(.19) 

-.56 
(.19) 

-.26 
(.20) 

-.49 
(.16) 

-.39 
(.17) 

-.48 
(.18) 

-.17 
(.18) 

 
(E) capital utilization adjusted 

TFP growth 
(F) capital utilization adjusted TFP growth, 

average shares instrumented with initial 

PMCXR 
44 industries 

-.52 
(.09) 

-.43 
(.12) 

-.55 
(.13) 

-.42 
(.15) 

-.46 
(.10) 

-.38 
(.12) 

-.51 
(.13) 

-.37 
(.15) 

PMCXIG 
20 industries 

-.57 
(.07) 

-.48 
(.09) 

-.45 
(.11) 

-.46 
(.11) 

-.55 
(.07) 

-.46 
(.09) 

-.43 
(.11) 

-.44 
(.11) 

PQ~O 

61 industries 
-.53 
(.17) 

-.44 
(.18) 

-.54 
(.17) 

-.33 
(.21) 

-.37 
(.18) 

-.28 
(.19) 

-.40 
(.18) 

-.16 
(.21) 

 (G) estimation using industry means (# of observations = # of industries) 

 PMCXR: 44 industries PMCXIG: 20 industries PQ~O: 61 industries 

 average instrumented average instrumented average instrumented 

 
-.88 
(.31) 

-.83 
(.26) 

-.49 
(1.2) 

-.40 
(.36) 

-.72 
(.15) 

-.71 
(.15) 

   Notes: Unemployment specifications as in (20).  Capital utilization adjusted TFP growth equals measured TFP 
growth minus the change in hours per person engaged times the capital income share.  Means specification as in 
(21), with initial shares equal to those in 1997 for 1997 to 2023 growth.  Otherwise, as in Tables 5 & 8. 

(20)  𝑃෠௜௧
ெ = 𝜃̅௝௜௧𝛾௝ + 𝛽௉ൣ𝐴መ௜௧

ெ + ൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯𝛾௝൧ + 𝛿௜
௉𝑈௧ + 𝜇௜

௉ + 𝜇௧
௉ + 𝜀௜௧

௉  

  𝐷෡௜௧
ெ = −𝜃̅௝௜௧𝛾௝ + 𝛽஽ൣ𝐴መ௜௧

ெ + ൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯𝛾௝൧ + 𝛿௜
஽𝑈௧ + 𝜇௜

஽ + 𝜇௧
஽ + 𝜀௜௧

஽ 

where Ut is the national unemployment rate and the δi are industry specific responses to the 

business cycle.  Panel (B) uses the same specification, with the change in the unemployment rate, 

Ut - Ut-1, as the regressor.  Comparing with Table 8, we see the effects of these adjustments are 

inconsistent, raising the mismeasurement parameter in some instances and lowering it in others.  
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Panels (C) and (D) of Table 9 add the unemployment controls as exogenous variables in the 

FIML instrumental variables system (18).  The effects of instrumenting are analogous to those 

earlier in Table 8, as coefficients shrink toward 0, albeit mostly for the PQ~O sample. 

 Panels (E) and (F) consider a direct adjustment for capacity utilization, taking the change 

in hours per person engaged (which are included in TFP calculations) and imputing the same 

utilization adjustment to capital input (which has no such adjustment) by subtracting the change 

in hours per person engaged times the capital income share from TFP growth.   Relative to 

baseline results with lags in Table 8, point estimates again move a few points towards zero.  

Across all panel specifications in Table 9, estimates are at their smallest magnitude in panels (D) 

and (F) with unemployment change controls or capital utilization adjustment, instrumenting 

average shares using initial shares and two or three lags.  With two lags, these are between -.42 

and -.52 for the PMCXR and PMCXIG models and -.40 to -.48 for PQ~O, shrinking with three 

lags to between -.33 and -.44 and -.16 to -.17, respectively.  PMCXR and PMCXIG estimates are 

always statistically significant at the .01 level with absolute t-stats greater than 2.6, but with three 

lags PQ~O results are not. 

Panel (G) of Table 9 considers a more radical adjustment for capacity utilization, running 

the analysis using the 26-year industry averages of the variables.  This should eliminate any 

endogeneity from changes in capacity utilization, whether due to business cycles or other price 

and demand shocks.  Naturally, the industry and year fixed effects are dropped, so the 

specification is 
(21)  𝑃෠௜

ெ = 𝛾௝𝜃௝௜ + 𝛽௉ൣ𝐴መ௜
ெ + 𝛾௝൫𝜃̅௝௜ − 𝛺ത௝௜൯൧ + 𝑐௉ + 𝜀௜

௉ 

    𝐷෡௜
ெ = −𝛾௝𝜃௝௜ + 𝛽஽ൣ𝐴መ௜

ெ + 𝛾௝൫𝜃̅௝௜ − 𝛺ത௝௜൯൧ + 𝑐஽ + 𝜀௜
஽ , 

where cP and cD are constants, growth rates of price, demand and total factor productivity are 

1997-2023 industry averages and factor shares are either 26 year industry averages or such 

instrumented with initial (1997) values in a FIML framework.  Point estimates using average 

shares are generally more negative than those found using annual panel data and instrumenting 

now has virtually no impact on PQ~O estimates.  The instrumented estimates eliminate any 

possible endogeneity due to price and demand movements of total factor productivity growth 

through capacity utilization or factor shares through adjustment costs or equilibrium factor prices 

and are -.83 (.26) for PMCXR, -.40 (.36) for PMCXIG, and -.71 (.15) for PQ~O.  The large 

standard errors for PMCXIG are not surprising, as 6 constant terms and 28 covariance 

parameters are estimated using 20 effective observations each of means and covariance. 

Sceptics might still argue that total factor productivity growth can be endogenous in the 

long run to realized or anticipated demand changes, as these determine market size and the 

profitability of investment in new technology.  The ultimate response to this is to show that the  
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Table 10: Estimated Supply (ρ) & Demand (σ) Elasticities and 
Coefficients (β) on Price and Demand Components (computer & electronics intermediates)  

 structural models seemingly unrelated regression models (without own use) 

 PMCXRO PMCXIGO  PMCXR PMCXIG PQ~O 

 panel means panel means  panel means panel means panel means 

ρ 
.57 

(.10) 
30 

(74) 
.66 

(.12) 
23 

(61) 
βP 

-.17 
(.04) 

-.96 
(.10) 

-.06 
(.05) 

-.93 
(.30) 

-.45 
(.08) 

-.79 
(.14) 

σM 
4.7 

(1.0) 
1.4 

(.39) 
13 

(8.4) 
2.4 

(.65) 
βM 

.53 
(.10) 

1.4 
(.26) 

.44 
(.15) 

2.2 
(3.2) 

  

σC 
14 

(3.5) 
1.7 

(.64) 
19 

(13) 
2.6 

(1.4) 
βC 

.29 
(.16) 

1.7 
(.37) 

.40 
(.26) 

2.4 
(1.1) 

  

σX 
2.4 

(1.0) 
1.7 

(.53) 
6.0 

(4.5) 
1.9 

(1.2) 
βX 

.21 
(.12) 

1.7 
(.27) 

.60 
(.18) 

1.8 
(1.1) 

  

σO 
3.2 

(1.4) 
2.2 

(.91) 
3.6 

(4.3) 
3.9 

(1.4) 
       

σR 
7.4 

(1.8) 
1.7 

(.45) 
  βR 

.59 
(.11) 

1.6 
(.27) 

    

σI   
25 

(17) 
3.0 

(.94) 
βI   

.58 
(.23) 

2.6 
(4.1) 

  

σG   
11 

(7.7) 
2.6 

(.73) 
βG   

.44 
(.17) 

2.3 
(2.7) 

  

     βQ~O     
.61 

(.08) 
1.4 

(.22) 

γ 
-.54 
(.12) 

-.92 
(.37) 

-.61 
(.08) 

-.46 
(.32) 

γ 
-.55 
(.09) 

-.88 
(.31) 

-.61 
(.08) 

-.49 
(1.2) 

-.61 
(.16) 

-.72 
(.15) 

   Note: Point estimates from specifications in Table 5. 

finding of negative mismeasurement, i.e. an implicit overstatement of factor augmenting 

technical change in the use of computer and electronics inputs, is robust to variation in the 

relation between total factor productivity growth and price and demand growth.  As a 

preliminary to this, Table 10 reports the point estimates associated with the response of price and 

quantity to total factor productivity growth in the baseline estimates of mismeasurement of 

computer and electronics inputs in Table 5 earlier.  For the structural models, with annual panel 

data the estimated elasticity of supply ρ is found to be around .6 and elasticities of demand σ well 

in excess of 2, while with long run mean data the elasticity of supply is found to be an order of 

magnitude larger than the elasticities of demand, which fall somewhat.  This pattern could be 

explained by convex adjustment costs in supply, leading to flatter long run supply curves, and 

the use of inventories and durable goods services to smooth use, allowing greater demand price 

sensitivity in the short than in the long run.  Standard error estimates, however, are very large 

and in most cases differences between short and long run estimates are not statistically 

significant. 
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A similar pattern, however, is found in the non-structural SUR models.  As noted earlier, 

the coefficient on total factor productivity growth in the SUR price equation, βP, if given a 

structural interpretation, equals -𝜌/(𝜌 + Σ௜𝜙௜𝜎௜), so that 𝜌/Σ௜𝜙௜𝜎௜ = -βP/(1+βP).  Thus, the 

coefficient in the price equation provides an indication of the ratio of the elasticity of supply to 

the weighted elasticities of demand, even if not all of those elasticities are actually estimated 

when a component of demand (i.e. own use) is dropped.  Using this, in SUR estimation in Table 

10 we find implied estimates of the ratio of supply to weighted demand elasticities in the short 

and long runs (using panel and means data), respectively, of .20 and 24, .06 and 13, and .82 and 

4 in the PMCXR, PMCXIG and PQ~O models, respectively.  The coefficients on total factor 

productivity growth in the SUR demand equations, βD, if given a structural interpretation equal 

σD𝜌/(𝜌 + Σ௜𝜙௜𝜎௜), so that σD = -βD/βP.  With this in mind, we see that the PMCXR and 

PMCXIG models indicate that elasticities of demand are generally smaller in the long run. 

For our purposes, however, the most interesting feature of Table 10 is the fact that 

estimated mismeasurement of computer & electronics intermediates (γ) remains strongly 

negative across a variety of estimated elasticities and relative elasticities.  To explore this further, 

Table 11 re-estimates the mismeasurement models taking the elasticities and relative elasticities 

as “known” in each regression but varying across regressions so as to cover the whole range of 

possible values.  For the structural models, I consider supply and demand elasticities that are 

either 0, ½, 1, 5 or 100.  There are 15624 possible combinations in the PMCXRO model and 

78124 in the PMCXIGO model,8 and I separately estimate the mismeasurement parameter for 

computer hardware and computer and electronics intermediates for each and every one.  In the 

case of the non-structural SUR model, I consider values of βP ranging in .1 increments along the 

interval [-1,0], i.e. a relative supply-to-demand elasticity ranging from ∞ to 0, and set the values 

of βD = -σDβP, where σD takes on each of the values (0,½,1,5,100) in the PMCXR and PMCXIG 

models, with 6251 and 31251 total combinations, respectively, and (0,¼,½,¾,1,2,5,10,100) in the 

PQ~O model, where there are 91 combinations across βP and βQ~O.9  Separate estimation is carried 

out using average factor shares and the same instrumented using initial factor shares. 

As can be seen in Table 11, across almost all possible combinations of elasticities and 

relative elasticities of supply and demand, and across all samples and estimation frameworks, in 

almost every instance the point estimate of mismeasurement for computer & electronic 

intermediate inputs is negative.  Those rare estimates which are positive involve very high 

relative elasticities of supply (i.e. values of βP equal to -1 or nearly so) and elasticities of demand  

 
8The structural model is undefined when all elasticities equal 0, i.e. supply and demand are both vertical, thus 

the number of combinations is 5k-1, where k equals the number of lefthand side variables.  

9When βP = 0 the estimate of γ does not depend upon σD (price does not respond to TFP growth and so the 
elasticity of demand does not matter). 
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Table 11: Mismeasurement Estimates’ Range Across Combinations of “Known” Elasticities 
 computer hardware capital computer & elec. intermediates  

 average shares instrumented average shares instrumented combin- 
ations  range # > 0 range # > 0 range # > 0 range # > 0 

struc. PMCXRO 
   panel data 
   industry means 

 
-2.3 to .33 
-3.5 to .27 

 
5381 
932 

 
-1.9 to 19 
-42 to 4.7 

 
5673 
2485 

 
-.69 to -.24 
-.84 to -.12 

 
0 
0 

 
-9.6 to .00 
-.70 to -.04 

 
1 
0 

 
15624 
15624 

struc. PMCXIGO 
   panel data 
   industry means 

 
-2.0 to .88 
-3.6 to .55 

 
114 
3549 

 
-15 to 14 
-24 to 8.4 

 
3060 
8285 

 
-1.0 to -.30 
-1.1 to -.01 

 
0 
0 

 
-2.7 to -.09 
-.84 to .10 

 
0 
8 

 
78124 
78124 

SUR PMCXR 
   panel no lags 
   panel 1 lag 
   panel 2 lags 
   panel 3 lags 
   industry means 

 
-2.9 to .33 
-2.8 to .40 
-4.1 to .63 
-4.0 to 1.2 
-3.0 to .42 

 
4451 
4608 
4655 
4743 
3140 

 
-1.9 to 19 
-1.7 to 19 
-2.6 to 19 
-3.0 to 20 
-18 to 5.2 

 
4528 
4654 
4714 
4756 
4051 

 
-.70 to -.21 
-.66 to -.08 
-.79 to -.22 
-.64 to -.04 
-.86 to -.16 

 
0 
0 
0 
0 
0 

 
-10 to .06 
-11 to .28 
-11 to -.06 
-13 to .47 

-.71 to -.11 

 
1 
4 
0 
9 
0 

 
6251 
6251 
6251 
6251 
6251 

SUR PMCXIG 
   panel no lags 
   panel 1 lag 
   panel 2 lags 
   panel 3 lags 
   industry means 

 
-1.9 to 1.0 
-1.8 to 1.8 
-3.5 to 1.9 
-5.8 to 2.0 
-3.8 to .57 

 
164 

11523 
23132 
24008 
5815 

 
-15 to 15 
-13 to 15 
-4.3 to 16 
-6.8 to 16 
-9.2 to 5.9 

 
6413 
21371 
23280 
24148 
6832 

 
-1.0 to -.29 
-1.3 to -.15 
-1.3 to -.14 
-.99 to .13 
-1.1 to .02 

 
0 
0 
0 
6 
2 

 
-2.9 to -.08 
-4.0 to .10 
-4.7 to .08 
-5.4 to .80 
-.86 to .06 

 
0 

18 
6 

52 
19 

 
31251 
31251 
31251 
31251 
31251 

SUR PQ~O 
   panel no lags 
   panel 1 lag 
   panel 2 lags 
   panel 3 lags 
   industry means 

 
-1.0 to 1.4 
-.61 to 2.2 
-1.6 to 1.9 
-2.1 to 2.3 
-2.9 to .97 

 
32 
35 
32 
41 
23 

 
-.70 to 22 
-.54 to 23 
-1.0 to 24 
-1.4 to 25 
-8.9 to 5.8 

 
35 
38 
35 
35 
15 

 
-.80 to -.55 
-.78 to -.35 
-1.1 to -.47 
-1.0 to -.01 
-.96 to -.24 

 
0 
0 
0 
0 
0 

 
-14 to -.03 
-15 to .47 
-15 to .20 
-17 to 1.0 

-.86 to -.20 

 
0 
3 
1 
8 
0 

 
99 
99 
99 
99 
99 

   Notes: # > 0 = number of combinations for which the point estimate of mismeasurement is > 0. 

between .5 and 1.  Appearing for the most part in panel data with identification net of fixed 

effects for industry and year, the highly elastic short run supply needed for these positive 

estimates seems implausible and is grossly removed from the short run point estimates found in 

Table 10, requiring a large degree of endogeneity bias.  In contrast, the point estimates of 

mismeasurement for computer hardware capital, which were consistently negative, albeit 

statistically insignificant, in the baseline results of Table 5 earlier, are very often positive for a 

large fraction and wide range of potential combinations.  

Table 12 provides further detail, giving the point estimates and associated standard errors 

for the outcome with the largest share of positive estimates for computer intermediates, in the 

PQ~O specification instrumenting with initial shares using panel data and 3 lags, as well as the 

estimates that are least susceptible to criticism on the grounds of endogeneity, those 

instrumenting mean 1997-2023 growth rates with 1997 initial shares.  As can be seen, the panel 

data point estimates of mismeasurement for computer hardware capital are positive with   
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 Table 12: Estimated Mismeasurement for Different “Known” Values of βP and βD = -σQ~OβP 

(PQ~O FIML estimation using initial shares as instruments) 
σQ~O: 0 .25 .50 .75 1 2 5 10 100 
βP (A) computer hardware – estimation using industry means  

-.00 
-.10 
-.20 
-.30 
-.40 
-.50 
-.60 
-.70 
-.80 
-.90 
-1.0 

-8.9 (9.1)
-7.4 (6.7)
-5.7 (5.1)
-4.1 (5.6)
-2.6 (6.7)
-1.5 (3.7)
-1.2 (1.6)
-1.0 (.94)
-.87 (.70)
-.60 (.71)
-.13 (1.0)

-8.9 (9.6)
-7.4 (7.0)
-5.7 (5.7)
-4.0 (6.3)
-2.4 (6.4)
-1.5 (3.1)
-1.3 (1.5)
-1.2 (.90)
-1.1 (.66)
-.91 (.64)
-.33 (.97)

-8.9 (9.5)
-7.4 (7.2)
-5.7 (6.1)
-3.9 (6.8)
-2.3 (5.9)
-1.6 (2.7)
-1.4 (1.4)
-1.4 (.92)
-1.4 (.69)
-1.2 (.72)
-.24 (1.6)

-8.9 (9.6) 
-7.3 (7.3) 
-5.6 (6.4) 
-3.8 (7.0) 
-2.2 (5.4) 
-1.6 (2.5) 
-1.5 (1.4) 
-1.5 (.96) 
-1.6 (.76) 
-1.3 (1.2) 
.86 (2.9) 

-8.9 (9.6)
-7.3 (7.3)
-5.5 (6.4)
-3.6 (7.0)
-2.2 (4.9)
-1.6 (2.4)
-1.5 (1.4)
-1.6 (.97)
-1.5 (.85)
-.51 (1.8)
2.8 (3.1)

-8.9 (9.4)
-6.7 (6.0)
-4.7 (5.2)
-3.0 (5.4)
-2.0 (3.5)
-1.5 (1.9)
-1.1 (1.1)
-.57 (.85)
.11 (.84)
.76 (.92)
1.2 (1.1)

-8.9 (9.6)
-5.0 (3.3)
-3.2 (2.9)
-2.2 (2.3)
-1.8 (1.8)
-1.8 (1.5)
-1.9 (1.2)
-2.2 (1.1)
5.7 (1.8)
5.7 (1.8)
5.7 (1.7)

-8.9 (9.6)
-3.7 (2.2)
-2.6 (1.4)
-2.5 (1.0)
-2.5 (.91)
-2.6 (.89)
-2.8 (1.6)
5.8 (1.6)
5.7 (1.6)
5.7 (1.6)
5.7 (1.6)

-8.9 (9.6)
5.7 (1.5)
5.6 (1.6)

-3.5 (.88)
-3.5 (.89)
-3.5 (.95)
-3.5 (.86)
-3.6 (.69)
-3.6 (.79)
-3.6 (1.0)
-3.6 (.71)

 (B) computer hardware capital – estimation using panel data with 3 lags 
-.00 
-.10 
-.20 
-.30 
-.40 
-.50 
-.60 
-.70 
-.80 
-.90 
-1.0 

-.18 (.17)
-.24 (.19)
-.30 (.22)
-.35 (.24)
-.40 (.27)
-.44 (.30)
-.47 (.33)
-.47 (.34)
-.45 (.35)
-.39 (.35)
-.30 (.34)

-.18 (.17)
-.25 (.19)
-.32 (.22)
-.40 (.26)
-.48 (.31)
-.55 (.36)
-.62 (.40)
-.66 (.45)
-.66 (.48)
-.60 (.49)
-.45 (.47)

-.18 (.17)
-.26 (.20)
-.34 (.23)
-.44 (.28)
-.56 (.35)
-.68 (.42)
-.81 (.51)
-.91 (.60)
-.96 (.68)
-.86 (.74)
-.50 (.73)

-.18 (.17) 
-.27 (.20) 
-.37 (.25) 
-.49 (.31) 
-.64 (.39) 
-.82 (.50) 
-1.0 (.64) 
-1.2 (.81) 
-1.3 (1.0) 
-.92 (1.2) 
.69 (1.3) 

-.18 (.17)
-.28 (.20)
-.39 (.26)
-.54 (.33)
-.72 (.44)
-.96 (.58)
-1.2 (.78)
-1.4 (1.1)
-1.2 (1.5)
1.6 (2.0)
9.4 (2.4)

-.18 (.17)
-.31 (.22)
-.48 (.30)
-.68 (.42)
-.80 (.54)
-.51 (.57)
.70 (.54)
2.2 (.79)
2.8 (1.0)
3.0 (1.1)
2.9 (1.1)

-.18 (.17)
-.39 (.26)
-.28 (.27)
.62 (.28)
1.3 (.49)
1.6 (.59)
1.8 (.65)
1.9 (.70)
2.1 (.77)
2.2 (.86)
2.5 (.97)

-.18 (.17)
-.20 (.21)
.98 (.38)
1.4 (.54)
1.7 (.65)
2.1 (.82)
2.6 (1.1)
3.4 (1.6)
4.5 (2.4)
6.3 (3.7)
8.7 (4.9)

-.18 (.17)
7.8 (4.8)

20.7 (3.3)
22.9 (3.0)
23.8 (3.0)
24.3 (2.6)
24.5 (3.9)
24.7 (3.6)
24.8 (7.1)
24.9 (2.9)
25.0 (3.3)

 (C) computer & electronics intermediates – estimation using industry means 
-.00 
-.10 
-.20 
-.30 
-.40 
-.50 
-.60 
-.70 
-.80 
-.90 
-1.0 

-.42 (.04)
-.42 (.04)
-.43 (.04)
-.43 (.05)
-.44 (.05)
-.43 (.05)
-.42 (.06)
-.40 (.06)
-.35 (.07)
-.29 (.07)
-.21 (.06)

-.42 (.04)
-.42 (.04)
-.43 (.04)
-.44 (.05)
-.44 (.05)
-.45 (.05)
-.44 (.06)
-.43 (.07)
-.39 (.08)
-.32 (.09)
-.20 (.09)

-.42 (.04)
-.42 (.04)
-.43 (.04)
-.44 (.05)
-.45 (.05)
-.46 (.05)
-.47 (.06)
-.47 (.07)
-.45 (.09)
-.38 (.11)
-.23 (.13)

-.42 (.04) 
-.43 (.04) 
-.44 (.05) 
-.45 (.05) 
-.46 (.05) 
-.47 (.05) 
-.49 (.06) 
-.51 (.07) 
-.53 (.09) 
-.52 (.13) 
-.40 (.19) 

-.42 (.04)
-.43 (.04)
-.44 (.05)
-.45 (.05)
-.47 (.05)
-.49 (.06)
-.51 (.06)
-.55 (.08)
-.61 (.10)
-.71 (.15)
-.86 (.29)

-.42 (.04)
-.43 (.04)
-.44 (.05)
-.46 (.05)
-.49 (.05)
-.52 (.06)
-.57 (.07)
-.62 (.07)
-.68 (.08)
-.72 (.07)
-.71 (.07)

-.42 (.04)
-.44 (.04)
-.46 (.04)
-.48 (.04)
-.49 (.04)
-.49 (.04)
-.49 (.03)
-.48 (.03)
-.47 (.03)
-.46 (.03)
-.46 (.03)

-.42 (.04)
-.44 (.04)
-.45 (.04)
-.45 (.03)
-.44 (.03)
-.43 (.03)
-.43 (.03)
-.43 (.03)
-.44 (.04)
-.44 (.04)
-.45 (.05)

-.42 (.04)
-.43 (.04)
-.52 (.15)
-.61 (.24)
-.68 (.30)
-.72 (.33)
-.75 (.34)
-.77 (.35)
-.79 (.36)
-.80 (.37)
-.81 (.39)

 (D) computer & electronics intermediates – estimation using panel data with 3 lags 
-.00 
-.10 
-.20 
-.30 
-.40 
-.50 
-.60 
-.70 
-.80 
-.90 
-1.0 

-.34 (.12)
-.33 (.12)
-.31 (.12)
-.30 (.13)
-.28 (.13)
-.26 (.14)
-.24 (.14)
-.21 (.15)
-.18 (.15)
-.16 (.16)
-.13 (.16)

-.34 (.12)
-.33 (.12)
-.31 (.12)
-.30 (.13)
-.27 (.14)
-.25 (.15)
-.22 (.16)
-.18 (.17)
-.13 (.18)
-.08 (.19)
-.03 (.20)

-.34 (.12)
-.33 (.12)
-.31 (.13)
-.29 (.13)
-.27 (.14)
-.24 (.16)
-.19 (.17)
-.14 (.19)
-.06 (.22)
.03 (.24)
.14 (.27)

-.34 (.12) 
-.33 (.12) 
-.31 (.13) 
-.29 (.14) 
-.26 (.15) 
-.22 (.17) 
-.17 (.20) 
-.09 (.23) 
.03 (.28) 
.20 (.35) 
.47 (.43) 

-.34 (.12)
-.33 (.12)
-.31 (.13)
-.29 (.14)
-.26 (.16)
-.22 (.19)
-.15 (.23)
-.05 (.29)
.11 (.38)
.40 (.54)
.97 (.83)

-.34 (.12)
-.33 (.12)
-.31 (.14)
-.30 (.17)
-.28 (.21)
-.29 (.26)
-.35 (.32)
-.50 (.33)
-.68 (.29)
-.81 (.24)
-.87 (.21)

-.34 (.12)
-.33 (.14)
-.38 (.17)
-.52 (.17)
-.64 (.15)
-.70 (.13)
-.73 (.13)
-.76 (.13)
-.79 (.14)
-.83 (.16)
-.87 (.17)

-.34 (.12)
-.39 (.15)
-.59 (.13)
-.67 (.12)
-.73 (.13)
-.80 (.15)
-.89 (.19)
-1.0 (.25)
-1.2 (.36)
-1.4 (.53)
-1.8 (.86)

-.34 (.12)
-1.6 (.68)

-12.5 (2.8)
-15.1 (2.1)
-15.9 (1.9)
-16.3 (2.2)
-16.5 (2.1)
-16.7 (2.3)
-16.8 (1.7)
-16.8 (1.3)
-16.9 (2.1)
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elasticities of demand above 2 and values of βP below -.5, i.e. a relative elasticity of supply from 

1 to infinity, in both short and long run data.  In contrast, the estimates for mismeasurement of 

the gains from the use of computer and electronics intermediate inputs are consistently negative 

and only approach 0 if the short term (estimated off of annual panel data with year and industry 

fixed effects and 3 lags) relative elasticity of supply to demand is above 5 (βP < -.8) and the 

elasticity of demand tightly delimited by ½ and 1.  For long run means data instrumenting with 

initial shares, the estimate of mismeasurement using computer intermediates is always negative 

and, with the exception of extreme elasticity values, statistically significant at the .01 level. 

V.  Confirmatory Evidence from TFP Growth Projected on Factor Shares 

The variation underlying the preceding results is admittedly difficult to intuit.  At the 

least squares-like solution which maximizes each non-linear SUR likelihood, the “regressors” are 

the derivatives of the non-linear equations with respect to each parameter:  

(21)  
𝜕𝑃෠௜௧

ெ

𝜕𝛽௉
= 𝐴መ௜௧

ெ + 𝛾௝൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯,  
𝜕𝑃෠௜௧

ெ

𝜕𝛾௝
= 𝛽௉൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯ + 𝜃̅௝௜௧  

           
𝜕𝐷෡௜௧

ெ

𝜕𝛽஽
= 𝐴መ௜௧

ெ + 𝛾௝൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯,  
𝜕𝐷෡௜௧

ெ

𝜕𝛾௝
= 𝛽஽൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯ − 𝜃̅௝௜௧ . 

weighted by the inverse covariance matrix of dependent variable residuals.  Thus, at the point 

estimates, the mismeasurement parameter is determined by the variation of 𝛽൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯ ± 𝜃̅௝௜௧  

that is correlated with 𝑃෠௜௧
ெ and 𝐷෡௜௧

ெ that is orthogonal to unobserved true total factor productivity 

growth 𝐴መ௜௧
ெ + 𝛾௝൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯.  Unfortunately, little credibility is likely to be gained by pointing 

readers to variation that is orthogonal to constructed variation.10  One might be tempted to gain 

some insight by regressing 𝑃෠௜௧
ெ & 𝐷෡௜௧

ெ on 𝐴መ௜௧
ெ, 𝜃̅௝௜௧ and 𝛺ത௝௜௧, but this is senseless, because the 

whole point of mismeasurement is that it affects 𝐴መ௜௧
ெ, so not much can credibly be learnt from 

variation of factor shares that is orthogonal to measured total factor productivity growth. 

 We can, instead, look for confirmation in variation in factor shares that is not orthogonal 

to measured total factor productivity growth.  Specifically, consider running measured total 

factor productivity growth on own and upstream factor shares plus industry & year fixed effects 

(22)  𝐴መ௜௧
ெ = 𝛽ఏ𝜃̅௝௜௧ + 𝛽ఆ𝛺ത௝௜௧ + 𝜂௜

஺ + 𝜂௧
஺ + 𝜀௜௧. 

The mismeasurement model predicts that 𝛽ఏ = −𝛽ஐ(= −𝛾௝), mismeasurement of what users 

accomplish with computer inputs should result in opposite effects on measured productivity 

growth in users of users.  While proponents of the unmeasured benefits associated with computer 

related inputs would expect to find a positive coefficient on own factor shares 𝜃̅௝௜௧, non-zero  
 

10Even the “OLS” dependent variables are constructed.  For a non-linear regression with a single dependent 
variable, if 𝑦௜ = 𝑓(𝒙௜ , 𝜷) + 𝜀௜ , where 𝑓(𝒙௜ , 𝜷) = 𝒛௜

′ 𝜷 + 𝑟௜ , with 𝒛௜ equal to the derivative of f with respect to 𝜷 and 
ri the linear approximation error, the estimate of 𝜷 is given by (𝒁ᇱ𝒁)(𝒁ᇱ(𝒚 − 𝒓)).  In the system above, 𝑟௜ =
−𝛾௝𝛽௞(𝜃̅௝௜௧ − 𝛺ത௝௜௧), for k = P or D and 𝛽௞ as in (11). 
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 Table 13: Measured TFP Growth Projected on Computer Input Shares (industry means) 

 OLS: average shares IV: initial shares OLS: average shares IV: initial shares 

industries 61 44 20 61 44 20 61 44 20 61 44 20 

 (A) computer hardware capital (B) computer software capital 

βθ 
-.02 
(.21) 

-.01 
(.21) 

.07 
(.27) 

-.49 
(.16) 

-.40 
(.11) 

.14 
(.27) 

.13 
(.07) 

.16 
(.07) 

.12 
(.07) 

.03 
(.10) 

.01 
(.10) 

.07 
(.04) 

βΩ 
.62 

(1.4) 
.22 

(1.4) 
-.52 
(2.7) 

2.4 
(1.9) 

1.6 
(1.2) 

2.2 
(1.9) 

-.49 
(.42) 

-.62 
(.41) 

-.72 
(.54) 

.29 
(.67) 

.55 
(.76) 

.00 
(.70) 

βθ = -βΩ .648 .876 .866 .283 .313 .246 .346 .210 .234 .610 .431 .909 

βθ-Ω 
.00 

(.20) 
.00 

(.20) 
.06 

(.25) 
-.40 
(.10) 

-.33 
(.08) 

.22 
(.28) 

.11 
(.05) 

.12 
(.05) 

.08 
(.05) 

.06 
(.07) 

.08 
(.06) 

.08 
(.06) 

 (C) computer & electronics intermediates (D) computer systems design intermediates 

βθ 
.44 

(.05) 
.42 

(.04) 
.43 

(.04) 
.42 

(.05) 
.39 

(.04) 
.42 

(.04) 
.47 

(.29) 
.53 

(.30) 
.17 

(.45) 
.74 

(.34) 
.54 

(.29) 
-.22 
(.44) 

βΩ 
-1.3 
(.40) 

-1.0 
(.33) 

-1.4 
(.40) 

-1.1 
(.40) 

-.79 
(.38) 

-1.2 
(.36) 

-1.2 
(.46) 

-1.7 
(2.0) 

4.3 
(5.3) 

.57 
(1.4) 

3.5 
(2.8) 

22 
(14) 

βθ = -βΩ .016 .041 .019 .043 .232 .013 .183 .553 .386 .378 .151 .115 

βθ-Ω 
.32 

(.03) 
.33 

(.02) 
.30 

(.03) 
.32 

(.02) 
.34 

(.02) 
.31 

(.03) 
.49 

(.28) 
.46 

(.30) 
.39 

(.37) 
.72 

(.33) 
.67 

(.33) 
.67 

(.40) 

   Notes:  Estimation as in (24).  βθ = - βΩ: p-value of the test.  Heteroskedasticity robust standard errors in ().  
Unconstrained estimates instrumented with initial values of  θ and Ω, constrained estimates instrumented 
with initial value of θ-Ω. 

effects of the opposite sign on the concatenated computer factor shares of upstream industries 

𝛺ത௝௜௧  are hard to explain as a benefit of computer use.  If the mismeasurement model is true, 

efficiency can be gained by imposing the constraint βθ = - βΩ and estimating 

(23)  𝐴መ௜௧
ெ = 𝛽ఏିఆ൫𝜃̅௝௜௧ − 𝛺ത௝௜௧൯ + 𝜂௜

஺ + 𝜂௧
஺ + 𝜀௜௧. 

As before, these regressions can be run using industry mean data, in the form 

(24a)  𝐴መ௜
ெ = 𝛽ఏ𝜃̅௝௜ + 𝛽ఆ𝛺ത௝௜ + 𝑐 + 𝜀௜    and  (24b)  𝐴መ௜

ெ = 𝛽ఏିఆ൫𝜃̅௝௜ − 𝛺ത௝௜൯ + 𝑐 + 𝜀௜, 

and as before, since I follow customary Tornqvist indices and use average factor shares (𝜃̅, 𝛺ത) 

across the period of growth as regressors, concerns about endogeneity can be addressed by 

instrumenting with initial (pre-growth) values of 𝜃 and 𝛺. 

Table 13 reports such estimates for computer related inputs, using industry means data 

and the 44, 20 and 61 industry samples used in the analysis earlier above.  As seen in the table, 

the results for computer and electronics intermediates are consistent with the mismeasurement 

model.  The coefficients on 𝜃௝௜  are all positive and those on 𝛺௝௜ negative, albeit not always 

significant at the .01 level.  The restriction βθ = -βΩ is not rejected at the .01 level, and insofar as 

it is challenged it is because the negative effects of 𝛺௝௜ are greater in magnitude than the positive 

effects seen for 𝜃௝௜ .  When the restriction is imposed it results in almost identical point estimates    
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Table 14: Measured TFP Growth Projected on Computer Input Shares 
(computer & electronics intermediates) 

 61 industry sample 44 industry sample 20 industry sample 

 no lags 1 lag 2 lags no lags 1 lag 2 lags no lags 1 lag 2 lags 

 (A) OLS using average factor shares 

βθ 
.57 

(.22) 
.65 

(.24) 
.89 

(.26) 
.51 

(.21) 
.59 

(.22) 
.80 

(.24) 
.39 

(.21) 
.37 

(.25) 
.56 

(.29) 

βΩ 
-.84 
(.98) 

-1.1 
(1.1) 

-2.0 
(1.4) 

-.58 
(.93) 

-.74 
(1.1) 

-1.5 
(1.3) 

.10 
(1.0) 

.20 
(1.3) 

-.55 
(1.7) 

βθ = -βΩ .729 .643 .355 .929 .866 .515 .561 .591 .993 

βθ-Ω 
.50 

(.14) 
.54 

(.15) 
.61 

(.17) 
.49 

(.14) 
.55 

(.15) 
.61 

(.17) 
.52 

(.14) 
.52 

(.17) 
.56 

(.19) 

 (B) IV instrumenting with initial factor shares 

βθ 
.15 

(.24) 
.17 

(.24) 
.37 

(.25) 
.13 

(.23) 
.15 

(.23) 
.32 

(.24) 
.20 

(.22) 
.14 

(.25) 
.32 

(.28) 

βΩ 
1.3 

(1.0) 
1.4 

(1.1) 
.80 

(1.3) 
1.4 

(1.0) 
1.6 

(1.1) 
1.0 

(1.3) 
1.2 

(1.1) 
1.6 

(1.3) 
.92 

(1.5) 

βθ = -βΩ .080 .087 .288 .066 .057 .212 .099 .108 .344 

βθ-Ω 
.55 

(.13) 
.59 

(.14) 
.66 

(.16) 
.55 

(.13) 
.61 

(.15) 
.67 

(.16) 
.58 

(.14) 
.58 

(.16) 
.62 

(.17) 

   Notes:  Estimation as in (22)-(23) with panel data, fixed effects and 0 or 2 lags.  Otherwise as in Table 13.   

across all samples in both OLS and IV formulations, i.e. about .3 estimated exaggeration of the 

gains from the use of computer and electronics intermediates, with t-stats of 10 or greater.  In 

contrast, for computer systems design intermediates and software the point estimates are all 

statistically insignificant, while for computer hardware they vary in sign depending upon the 

sample and OLS/IV specification. 

Table 14 reports panel data results for computers and electronics intermediates, using the 

panel specifications in (22) and (23) augmented with 0, 1 or 2 lags of total factor productivity 

growth11.  Estimates of βθ and βΩ are mostly very imprecise, with standard errors as large or 

larger than the coefficients, especially with the IV specification.  The statistically insignificant 

estimates of βΩ, while mostly negative using average shares, are positive when instrumented.  

However, when the constraint is imposed, the IV estimates of βθ-Ω differ substantively and 

statistically from the IV estimates for βθ, and are also much more precise, showing that the 

variation found from the movement of θ-Ω is substantially different and more informative than 

that from θ  alone.  With the restriction βθ = -βΩ , OLS and IV specifications yield almost  

 
11When regressing industry x year TFP growth on year and industry dummies and 3 lagged values of TFP 

growth, while the 2nd lag of TFP growth is significant at the .01 level, the 3rd lag is completely insignificant 
(coefficient of -.002 and p-value using a heteroskedasticity robust covariance estimate of .966), and when regressing 
on 4 lagged values, both the 3rd and 4th lags are insignificant (p-values of .553 and .579, respectively). 
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Table 15: Fixed Effects, Industry Unemployment Controls, & Capital Utilization Adjustment 
(estimates of βθ-Ω for computer & electronics intermediates) 

 fixed effects industry-level U controls  K utilization 
adjusted TFP  industry year none Ut Ut - Ut-1 

 no lags 2 lags no lags 2 lags no lags 2 lags no lags 2 lags no lags 2 lags no lags 2 lags 

 (A) OLS using average factor shares 

61 
industries 

.52 
(.13) 

.64 
(.16) 

.34 
(.05) 

.39 
(.06) 

.34 
(.05) 

.40 
(.06) 

.51 
(.14) 

.65 
(.17) 

.48 
(.14) 

.57 
(.17) 

.51 
(.15) 

.56 
(.16) 

44 
industries 

.54 
(.13) 

.67 
(.17) 

.35 
(.05) 

.43 
(.07) 

.36 
(.05) 

.43 
(.07) 

.50 
(.14) 

.64 
(.17) 

.48 
(.14) 

.57 
(.18) 

.51 
(.15) 

.56 
(.16) 

20 
industries 

.55 
(.14) 

.61 
(.18) 

.33 
(.05) 

.34 
(.08) 

.34 
(.05) 

.36 
(.08) 

.53 
(.14) 

.59 
(.19) 

.51 
(.15) 

.53 
(.19) 

.53 
(.16) 

.48 
(.16) 

 (B) IV instrumenting with initial factor shares 

61 
industries 

.57 
(.13) 

.70 
(.16) 

.34 
(.05) 

.40 
(.06) 

.35 
(.05) 

.41 
(.06) 

.56 
(.13) 

.71 
(.15) 

.53 
(.13) 

.62 
(.16) 

.56 
(.14) 

.62 
(.15) 

44 
industries 

.60 
(.13) 

.73 
(.16) 

.36 
(.05) 

.44 
(.07) 

.37 
(.05) 

.44 
(.07) 

.55 
(.13) 

.69 
(.16) 

.53 
(.13) 

.62 
(.16) 

.57 
(.14) 

.63 
(.15) 

20 
industries 

.61 
(.13) 

.68 
(.18) 

.34 
(.05) 

.35 
(.07) 

.35 
(.05) 

.37 
(.08) 

.59 
(.13) 

.64 
(.17) 

.56 
(.14) 

.57 
(.17) 

.59 
(.15) 

.55 
(.16) 

   Notes: unemployment controls are interacted with industry dummies, as in (19) earlier.  Capital utilization 
adjustment of TFP growth as in Table 9. 

 

identical point estimates and standard errors.  Similarly,  when fixed effects are removed, 

unemployment controls added, or TFP adjusted for capital utilization as specification checks in 

Table 15, point estimates of βθ-Ω are very similar using OLS and IV specifications.  All computer 

& electronics intermediates βθ-Ω point estimates in the OLS and IV specifications in Tables 13, 

14 and 15 are significant at the .01 level.  Of the 74 other inputs examined in this paper, none has 

effects that are similarly consistently .01 significant across either OLS or IV specifications. 

VI.  Implications for Aggregate Productivity Growth 

This section calculates the impact of implicit mismeasurement of factor augmenting 

technical change on aggregate productivity growth.  Total private sector productivity growth 

(𝐴መ௧
்) is the sum of the Domar weighted gross output productivity growth measures by sector 

(25)  𝐴መ௧
் = ෍

𝑃௜௧𝑄௜௧

𝐺𝐷𝑃௧
𝐴መ௜௧

் ,

ே

௜ୀଵ

 

where the ratios of gross output to private sector GDP, PitQit/GDPt, are the Domar weights.  

Hulten (1978) provides a rigorous derivation, but a short heuristic proof can be derived by noting 

that aggregate TFP growth should be the value added share weighted growth of industry TFP 

growth calculated on a value added basis.  If we think of value added as being composed of 

“price” and “quantity” components whose product equals the nominal value of output minus the 
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nominal value of intermediate inputs, 𝑃௜௧
௏஺𝑄௜௧

௏஺ = 𝑃௜௧𝑄௜௧ − ∑ 𝑃௝௜௧𝑀௝௜௧
ே
௝ୀଵ , then differentiating 

quantities with respect to time holding prices constant we have  

(26) 𝑄෠௜௧
௏஺ =

𝑃௜௧𝑄௜௧

𝑃௜௧
௏஺𝑄௜௧

௏஺ ቌ𝑄෠௜௧
் − ෍ 𝜃௝௜௧𝑀෡௝௜௧

்

ே

௝ୀଵ

ቍ 

and as value added TFP growth is the growth of real value added minus the value added share 

weighted growth of primary inputs j = N+1 .. J, we have: 12 

(27)  𝐴መ௧
்(𝑉𝐴) = 𝑄෠௜௧

௏஺ − ෍
𝑃௜௧𝑄௜௧

𝑃௜௧
௏஺𝑄௜௧

௏஺ 𝜃௝௜௧𝑀෡௝௜௧
்

௃

௝ୀேାଵ

 

=
𝑃௜௧𝑄௜௧

𝑃௜௧
௏஺𝑄௜௧

௏஺ ቌ𝑄෠௜௧
் − ෍ 𝜃௝௜௧𝑀෡௝௜௧

்

௃

௝ୀଵ

ቍ =
𝑃௜௧𝑄௜௧

𝑃௜௧
௏஺𝑄௜௧

௏஺ 𝐴መ௜௧
் , 

so that weighting by value added shares of nominal private sector GDP we get (25). 

 Assuming mismeasurement only of factor augmenting productivity growth in the use of 

factor j, plugging in the relation between 𝐴መ௜௧
்  and 𝐴መ௜௧

ெ given in (13) above:  

(28)  𝐴መ௧
் = ෍

𝑃௜௧𝑄௜௧

𝐺𝐷𝑃௧
[𝐴መ௜௧

ெ + ൫𝜃௝௜௧ − 𝛺௝௜௧൯𝑓መ௝௜௧
௎ை]  ൭where 𝛺௝௜௧ = ෍ 𝜃௡௜௧𝜃௝௡௧

ே

௡ୀଵ

൱

ே

௜ୀଵ

= 𝐴መ௧
ெ +

𝛾௝

𝐺𝐷𝑃௧
෍ ൭𝑃௝௧𝑀௝௜௧ − ෍ 𝑃௡௧𝑀௡௜௧

𝑃௝௧𝑀௝௡௧

𝑃௡௧𝑄௡௧

ே

௡ୀଵ

൱

ே

௜ୀଵ

 

= 𝐴መ௧
ெ +

𝛾௝

𝐺𝐷𝑃௧
൭෍ 𝑃௝௧𝑀௝௜௧

ே

௜ୀଵ

− ෍ 𝑃௝௧𝑀௝௡௧ ෍
𝑀௡௜௧

𝑄௡௧

ே

௜ୀଵ

ே

௡ୀଵ

൱ = 𝐴መ௧
ெ + 𝛾௝ ෍

𝑃௜௧𝑄௜௧

𝐺𝐷𝑃௧
𝜃௝௜௧ ൬1 −

𝑀௜௧

𝑄௜௧
൰

ே

௜ୀଵ

, 

where Mit denotes the total use of the output of industry i as private sector intermediate input and 

we assume that industry x year variation in mismeasurement (𝑓መ௝௜௧
௎ை − 𝛾௝) is orthogonal to 

variation in direct and indirect expenditure on input j, 𝑃௜௧𝑄௜௧൫𝜃௝௜௧ − 𝛺௝௜௧൯.  (28) makes the 

obvious point that insofar as mismeasured output is used as an intermediate input in other 

sectors, that mismeasurement simply results in a transfer of productivity growth from one sector 

to another and does not affect aggregate total factor productivity growth.  The key summary 

statistic is the Domar weighted sum of the intensity of mismeasured factor use times 1 minus the 

intermediate input use share of each sector’s output, ∑ (𝑃௜௧𝑄௜௧/𝐺𝐷𝑃௧)𝜃௝௜௧(1 − 𝑀௜௧/𝑄௜௧)ே
௜ୀଵ , which 

in US data averages .011 between 1997 and 2023, falling from .019 in 1997-2000 to .010 in 2000 

to 2023.  This term also summarizes the mismeasurement of private sector GDP growth.13   

 
12The reader is reminded that as θ is the expenditure share out of nominal gross output, (PQ/PVAQVA)θ is 

value added income share of a primary input.  

13Take (26), weight by value added shares of GDP, and apply the summation rearrangements done in (28). 
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 Average annual private sector GDP and total factor productivity growth in the US 

KLEMS database between 1997 and 2023 are .025 and .0073, or 2.5 and .73 percentage points, 

respectively.  In the dark matter regressions of Section IV, excluding extreme outcomes in both 

directions, estimates of 𝛾௝ range from roughly -.6 in baseline formulations up to -.3 when up to 3 

lags, unemployment controls, capacity utilization adjustments and initial share instruments are 

used.  A similar range is found when projecting total factor productivity growth on θ - Ω in 

Section V.  These estimates suggest an adjustment of -.0033 to -.0066 of annual private sector 

GDP and TFP growth.  Thus, at least ⅛ of private sector GDP and ½ of private sector TFP 

growth in the past 26 years can be attributed to an exaggeration of the gains from the use of 

computer & electronics intermediate inputs.  Of the productivity slowdown from .012 in 1997 to 

2000 to .05 in 2000 to 2023 mentioned in the Introduction, again at least ½ can be explained by a 

reduction in mismeasurement as the role of computer intermediates in producing GDP has fallen.   

VII.  Summary and Conclusion 

 The results above show that movements of price and quantities demanded, net of 

movements implied by total factor productivity growth, vary systematically with the share of 

computer and electronics inputs in an industry’s cost structure and its upstream suppliers in a 

manner that suggests overestimation of the growth benefits from the use of these inputs of 

between .3 to .6 per percentage use of these inputs.  This result is found with industry and year 

fixed effects (using within industry time series variation) and when estimated across industry 

means alone (using cross industry long run variation).  It is found in 44 industry, 20 industry and 

61 industry samples, using different disaggregations of total demand.  It is robust to the addition 

of lagged values of the dependent variables and instrumenting factor shares using pre-growth 

initial values.  It is not driven by any bias due to endogeneity of total factor productivity growth 

through capacity utilization mismeasurement, as it is robust to adjustments for business cycle 

variation and capital utilization and, furthermore, holds for long run 26-year industry averages, 

where capacity utilization is hardly relevant.  The point estimates are also almost universally 

negative across all possible elasticities of demand and supply, showing that endogeneity and bias 

in estimating the response of price and demand to total factor productivity growth cannot be 

driving the results.  An alternative, and completely different, empirical strategy that projects total 

factor productivity growth directly on own and upstream computer intermediates use, finds 

similar estimates of mismeasured growth of about .3 to .6 per percentage share of these factors 

using industry means data, panel data with and without fixed effects, instrumentation with pre-

growth factor shares, lags, unemployment controls, and capital utilization adjustments in samples 

of 44, 20 or all 61 industries.  No such statistically significant and specification robust 

relationship is found for any other input.  
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 Industries which use computer and electronics intermediates as inputs are durable goods 

industries.  As such,  some perspective on the results above can be found by considering two 

characteristics of durable goods that impart a downward bias to matched-model and hedonic 

price indices, two common price deflation techniques used in the US.14  First, as emphasized by 

Harper (2007), the prices of durable goods reflect the net present value of the flow of quasi-rents 

from their use.  However, as technology progresses durable goods become obsolete because of 

issues with interoperability and the shadow value of complementary resources.  Thus, old 

computers are regularly scraped not because they wear out but because they lack the capacity 

needed to interface with more modern software and, most importantly, because the growing 

capabilities of alternatives raises the shadow value of users’ time.  Obsolescence means that the 

same physical product purchased in later years is not the same product from the point of view of 

buyers, as it has a shorter expected life.  This leads hedonic price indices to overstate the value of 

increasing characteristics, as there is a hidden characteristic (expected service life) that is 

correlated with quality, and hence overstate price deflation.  Similarly, matching the “same” 

product through time overstates deflation as later versions of the same good embody a shorter 

stream of expected rents.  The use of the flow rental as the price for the flow value of durable 

goods services would address this issue, but unfortunately, outside of housing, in our national 

accounts the benefits of durables are measured using their sales prices and not their rentals. 

 Second, as emphasized by Aizcorbe and Copeland (2007), durable goods are purchased 

intermittently and have a product life cycle.  When initially introduced higher quality models are 

purchased by consumers who place the highest valuation on quality.  As prices decline over time, 

either due to cost reducing learning by doing or price discrimination, consumers who place a 

lower valuation on quality purchase them.  Matched-model price indices will overstate gains 

from price declines because those who place a low value on quality only gain from the part of the 

price decline that is below their low initial reservation value, while those with a high reservation 

value may not gain from price declines at all if they go on to purchase newer high quality 

vintages.  Hedonic price indices will also overstate the value of quality and produce downward 

biased price trends because when comparing the prices and characteristics of contemporaneously 

sold vintages there is an omitted variable, the value of quality to those buying the goods, that is 

positively correlated with goods characteristics. 

 
14A third technique used heavily in the evaluation of automobiles and other products with frequent model 

changes (see Groshen et al 2017) asks manufacturers to identify the cost increment associated with new 
characteristics and treats that cost increment as quality, i.e. assumes cost per unit quality remains constant.  This is 
problematic, not least because it treats government mandated features such as catalytic converters and fuel 
efficiency as providing quality gains to individual consumers equal to their costs, which would make such mandates 
unnecessary in the first place. 
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 Methods such as matched-model and hedonic price indices are well suited to measuring 

price and quality changes in environments where all buyers literally “consume” all products all 

of the time.  Once one allows that products are durable and purchased intermittently by buyers 

whose characteristics and valuations vary systematically with the product life cycle, it is not hard 

to see that such techniques could easily produce upward biased estimates of quality-adjusted 

output growth.  Since in the modern era computer intermediates are intimately tied to 

improvements in the characteristics and quality of goods, these biases could produce the 

exaggeration of the benefits of computer intermediate use found in this paper.    
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