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Abstract 
 

I find systematic deviations in the relationship between measured industry 
total factor productivity growth and price & downstream demand growth associated 
with the use of computer and electronics intermediate inputs in production.  The 
effects are robustly negative, indicating an overstatement of quality adjusted output 
and productivity growth in using industries of about .003 per .01 expenditure share 
on computer & electronic intermediates.  These estimates are confirmed by 
regressions of measured productivity growth on own and upstream computer input 
use. After adjustment for mismeasurement, there is no association between 
computer intermediates use and total factor productivity growth. 
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I. Introduction 

 Unobserved objects can be quantified and measured by observed systematic 

discrepancies in the causal relationships between observables.  Linearly and trivially, if y = xβ, 

yo & xo are observed and β is known, then unobserved x is given by xuo = yo/β – xo.  

Econometrically, in a world in which x is not the sole determinant of y and β is unknown, if an 

observable indicator zo exists such that xuo = γzo + η, then both β and γ can be consistently 

estimated by running the non-linear regression yo = (xo+ γzo)β + ε.  The key identifying 

assumptions are that the impact of xuo on yo (β) is the same as that of xo and, implicitly, that zo 

affects yo only through its influence (γ) on xuo, i.e. an exclusion restriction.  The first assumption 

can be relaxed to allow xuo to have an impact f(β), where the function f() is known.  This 

naturally arises in cases where the linear relationship is on an unobservable  

yuo = (xo+ xuo)β + ε, and there is an additional known discrepancy between yo and yuo driven by 

xuo, as is the case below. 

This paper applies this idea to a topic that has troubled economists and statisticians for 

some decades, the question of whether we are properly measuring the quality-adjusted gains 

from the use of computer technology.  The lefthand side observables are measured quality-

adjusted prices and downstream input demand growth (yo), the righthand side observables are 

measured total factor productivity growth (xo) and computer factor income shares (zo) and the 

unobservable of interest is mismeasurement of total factor productivity growth associated with 

the use of computer related inputs (xuo = γzo).  The key identifying assumptions are that: (1) the 

movements of true quality adjusted prices and quantities demanded (yuo) are the same function of 

true total factor productivity growth (xo+xuo), regardless of its origin (a common β); and (2) the 

use of computer inputs has no impact on quality adjusted price and quantity demanded other than 

through its impact on true productivity growth (the exclusion restriction).  These are motivated 

using downstream industry demand and the relationship between price and costs.  The tested null 

hypothesis is that of no systematic mismeasurement associated with computer related inputs, γ = 

0. 
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The linear relation, xuo = γzo, is motivated by Solow’s comment quoted above, which 

suggests that we fail to measure what we do with computers.  This can be operationalized as 

mismeasurement of average rates of computer-factor augmenting technical change in computer 

using industries, so that the degree of mismeasurement is proportional to the expenditure share 

on computer inputs.  Mismeasurement of the output of one sector translates into mismeasurement 

of total factor productivity growth in the opposite direction in downstream industries that use its 

output.  Thus, the mismeasurement hypothesis actually implies mismeasurement in users and in 

users of users, with effects going in opposite directions, something that does not seem to have 

been considered. 

I find empirical evidence of mismeasurement in what we do with computer and electronic 

intermediates.  The point estimates are all decidedly negative, implying that we systematically 

overstate the factor augmenting gains associated with the use of these inputs.  These results are 

arrived at using likelihood and bootstrap techniques shown in Monte Carlos to be extremely 

conservative, with rejection probabilities of true nulls well below nominal value, while retaining 

power to reject false nulls of zero effects.  They are robust to multiple changes in the 

specification of ancillary variables, the systematic delete-one removal of individual industries 

from the sample, the use of varied likelihood techniques to account for heavy tailed data, the 

allowance for industry level heterogeneity in the association between productivity growth and 

price and quantity changes, adjustments for business cycle mismeasurement in total factor 

productivity, the use of simple long run industry means, and, even, a wide grid search over all 

possible combinations of the elasticity of supply and demand.   

Put simply, the relationship between price and demand growth and total factor 

productivity growth differs systematically and robustly from that implied by elasticities of 

demand and supply in a manner correlated with both within and between industry variation in the 

quantity of computer intermediate inputs.  Similarly statistically significant and robust deviations 

are not found for any other input.  I interpret this deviation in terms of a model of overstatement 

of factor augmenting technical change, i.e. what we do with computer inputs.  Point estimates 
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indicate an overstatement of industry output and total factor productivity growth of about .003 

per annum per percentage share of computer and electronics inputs in total factor payments.   

The paper whose observations are closest in spirit to this one is Acemoglu et al (2014).  

While documenting the correlation of higher industry labour productivity growth with some 

measures of computer technology use, they note that it is peculiarly negatively associated with 

real output growth, i.e. inconsistent with expected changes in demand following a reduction in 

price brought on by total factor productivity growth.  The present paper expands this emphasis 

on using confirmatory observables into a methodology that quantifies mismeasurement using 

estimated relationships between left and righthand side observables, finding, similarly, that there 

are in fact no supply and demand elasticities that can eliminate the discrepancy between price, 

quantity and total factor productivity growth associated with computer and electronics 

intermediates use.  Unless, of course, one allows for the possibility that the gains from such use 

are overestimated. 

The association of higher labour productivity growth with some measures of computer 

use in pre- and early millennial data has been documented by Stiroh (2002) and Acemoglu et al 

(2014).  In that spirit, this paper also runs a simple linear regression of total factor productivity 

growth on the expenditure share of domestically produced computer and electronics intermediate 

inputs, documenting a similar positive relation in post-millennial data.  However, it also finds a 

negative relation between industry total factor productivity growth and the use of computer and 

electronic intermediates in upstream industries.  This positive own effect and negative supplier 

effect is consistent with overstatement of the output gains from intermediate input use, which 

would overstate productivity growth in users while understating it in users of users.  The point 

estimates from these regressions are virtually identical to those found using the “dark matter” 

methodology that concentrates on the relationship between observable price, quantity and total 

factor productivity growth.   

Once adjustment for estimated mismeasurement is made, there is basically no relation 

between industry productivity growth and computer intermediate input use.  This echoes the 
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pushback to Solow’s comment given by Gordon (2000) and Oliner & Sichel (2000): while the 

growth of computer capital has contributed greatly, in a standard growth accounting framework, 

to growth outside that sector and there has also been rapid total factor productivity growth in 

computing industries, it is less obvious that there should be an additional productivity 

contribution from the use of those inputs.  The computer productivity revolution most obviously 

lies in Moore’s Law and the extraordinary fall in the price of computational power, and less 

obviously in what we accomplish with that power.1   

The new millennium has witnessed a US productivity slowdown, with the Bureau of 

Economic Analysis’ data described below showing private sector total factor productivity growth 

of .0084 per annum in 1987-2004 falling to .0032 per annum in 2004-2021.  Opinion pieces in 

the popular press express the view that this is due to a failure to properly measure the gains from 

computer technology (e.g. Aeppel 2015, Alloway 2015), but in considered academic analyses 

Byrne, Fernald & Reinsdorf (2016) and Syverson (2017) persuasively argue that such 

unmeasured gains cannot explain the productivity slowdown.  This paper argues that insofar as 

this mismeasurement is attached to the sale of particular products, it should show up as 

discrepancies in the relation between price, quantity and total factor productivity growth and, 

hence, is actually measurable.  It finds evidence of mismeasurement, but unexpectedly in the 

opposite direction, suggesting that post-millennial growth is even slower than believed.  At the 

aggregate level, this translates into about ⅛ of measured US output growth between 2000 and 

2021, and ½ of total factor productivity growth during that period as well.  Decades ago, Jones 

(1995, 2002) argued that the incremental costs of innovation and productivity growth rise with 

the level of technology, implying, absent ever increasing market size, declining growth.  That 

view appears increasingly prescient. 

The Boskin commission (1996) famously concluded that the Consumer Price Index (CPI) 

was biased upwards by 1.1 percent per year, of which about half could be attributed to a failure 

 
1In this regard, it is sobering to reflect on the fact that the Apollo 11 command and lunar module guidance 

computers each had only 2KB of RAM, which would be insufficient for almost any phone app today. 
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to measure quality improvements.  This, along with other well known studies finding 

unmeasured gains to quality improvement and variety (e.g. Gordon 1990, Bils and Klenow 

2001), might lead readers to conclude that growth is unambiguously underestimated.  There are a 

number of studies, however, pointing in the opposite direction.  For example, Gordon (2009) and 

Gordon and VanGoethem (2007) find downward biases in the CPI of 3 percent per annum for 

women’s apparel and 1 percent per annum in rental shelter over many decades, while Aizcorbe 

and Ripperger-Suhler (2024) estimate a negative chain drift in hedonic price indices in 2011-

2020 of 6 and 8 percent per annum for desktop and notebook computers, respectively.  On the 

theoretical level, Feenstra (1995) finds that in a discrete choice framework with pricing above 

marginal cost log-linear hedonic regressions, such as are used in the analysis of computer prices, 

would overstate price declines, Hobijn (2002) shows that if price per unit quality rises with 

quality both hedonic and model matching price indices will overstate price declines, Harper 

(2007) notes that durable goods obsolescence leads to an overstatement of quality change, and 

Aizcorbe and Copeland (2007) argue that with intermittent purchases price indices will tend to 

understate true movements in the cost of living index as consumers do not gain from price 

declines above their reservation value.  While this paper is not about the methodology of price 

indices, to aid in the interpretation of its results I summarize some of these insights in a short 

explanation of how obsolescence and lifecycle differences in the reservation values of buyers can 

lead both hedonic and model matching price indices to overstate price declines and output 

growth in durable goods industries upgrading quality through the use of computer and 

electronics intermediates. 

The paper proceeds as follows:  Section II presents a model of systematic 

mismeasurement of factor augmenting technical change and discusses how data on price and 

downstream intermediate input demand can be used to identify the rate of mismeasurement.  

Special emphasis is given to explaining the sources of identification, the steps taken to avoid 

endogeneity bias, and the methods used to demonstrate it is not determining the results. Section 

III introduces the BEA industry level total factor productivity and input output data.  The data 
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are heavy-tailed and consequently I use both the standard multivariate normal and better fitting 

multivariate-t in estimation.  Monte Carlos show bootstrapped standard errors achieve 

conservative control of size in this environment, but only the multivariate-t retains substantive 

power to reject erroneous nulls of zero effects.  Consequently, while point estimates are similar 

across likelihoods, those using the multivariate-t are more consistently statistically significant.  

Section IV presents the main results using the dark matter methodology, emphasizing the 

robustness of point estimates to the regression and likelihood specification and sample changes.  

The finding of overstated productivity growth in computer using industries is shown to remain 

when elasticities of demand and supply are taken as known and given any value the reader may 

like, emphasizing the robustness of the baseline results to any possible bias in the estimation of 

these elasticities.  As confirmatory evidence, Section V regresses total factor productivity growth 

on computer factor shares.  While such regressions might be interpreted as demonstrating the 

positive effects of computer use, in the light of the dark matter results the finding of a positive 

association with own computer intermediates use and negative association with upstream use 

suggests a different interpretation, i.e. that of mismeasurement.  Section VI summarizes the 

implications for growth by industry and in the aggregate economy and concludes with a short 

discussion of potential sources of downward bias in hedonic and model matching durable goods 

price indices.  

II. Estimating Mismeasurement Using Observables 

(a) A Model of Systematic Mismeasurement in an Input-Output Framework 

 We assume throughout that national income accountants accurately measure nominal 

values, but have difficulty disentangling these into price and quantity components.  Let true and 

measured gross output and price in perfectly competitive industry i in period t be given by 

(1𝑎) 𝑄௧
் = 𝐹( 𝑓ଵ௧

் 𝑋ଵ௧
்  , . . . ,  𝑓௧

் 𝑋௧
்  ) 𝑃௧

் = 𝐶( 𝑊ଵ௧
் /𝑓ଵ௧

் , . . . ,  𝑊௧
்/𝑓௧

் ) 

(1𝑏) 𝑄௧
ெ = 𝐹(𝑓ଵ௧

ெ 𝑋ଵ௧
்  , . . . ,  𝑓௧

ெ𝑋௧
் )   𝑃௧

ெ = 𝐶( 𝑊ଵ௧
் /𝑓ଵ௧

ெ , . . . ,  𝑊௧
்/𝑓௧

ெ) 

where T and M denote true and measured values, Fi production functions which are constant  
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returns to scale in J inputs X1…XJ, Ci cost functions which are constant returns to scale in J input 

prices W1… WJ, and fjit factor augmenting productivity parameters.  (1a) are standard production 

and cost functions.  (1b) is a formalization of what national income accountants implicitly 

measure, not how they actually measure output quantities and prices as, with rare exceptions,2 

these are not measured by examining input quantities and prices, let alone productivity 

parameters.  For this reason, the factor quantity and price arguments in the functions on the 

righthand side of (1b) are true values, even though these might not be measured accurately.  The 

failure to properly appreciate and quantify the degree to which technical change is allowing 

industries to use inputs in novel and more productive ways (fjit) appears as implicit unobserved 

(UO) discrepancies between true and measured factor augmenting productivity, 𝑓௧
ை = 𝑓௧

் /𝑓௧
ெ. 

Differentiating (1) and (2) with respect to time and using the equivalence between 

elasticities and expenditure shares implied by perfect competition, the difference between 

measured and true output quantity and price growth is seen to be 

(2𝑎) 𝑄௧
ெ = 𝑄௧

் − ∑ 𝜃௧𝑓መ௧
ை

ୀଵ  (2𝑏) 𝑃௧
ெ = 𝑃௧

் + ∑ 𝜃௧𝑓መ௧
ை

ୀଵ , 

where θjit is the expenditure share of input j  and ^ denotes a proportional growth rate.  Since 

nominal output is measured correctly, i.e. 𝑃௧
்𝑄௧

் = 𝑃௧
ெ𝑄௧

ெ, offsetting errors in prices and 

quantities arise equally whether national income accountants derive real quantity indices by 

deflating nominal values using constructed price deflators or price indices by dividing nominal 

values by constructed quantity measures.  Furthermore, as the output of each sector is used as an 

input in others, the same errors in disentangling price and quantity are propagated through the 

input-output table.  Thus, when industry n is used as an input in sector i, we have: 

(3)   𝑋௧
ெ − 𝑋௧

் = 𝑄௧
ெ − 𝑄௧

்   & 𝑊௧
ெ − 𝑊௧

் = 𝑃௧
ெ − 𝑃௧

் . 

We order inputs so that the first N correspond to the industry indices i, with the remaining J - N 

consisting of primary factors.   

While the mismeasurement of what we do with computer inputs translates naturally into  

 
2Most notably government, which is not included as an industry in the analysis below. 
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the mismeasurement of the intermediate inputs of downstream sectors, for the purposes of our 

analysis here we assume that primary factor inputs are measured accurately.  Recognizing that 

this assumption may be of concern to readers, in the on-line appendix I estimate 

mismeasurement of primary factor inputs using a similar methodology.  Although point 

estimates suggest that the growth of computer and software capital may be overstated, the results 

are not statistically significant nor robust to changes in the sample.  While one might think that 

the mismeasurement of domestic output found below would result in mismeasurement of the 

growth of capital input, this is not the case, as durable goods computer related capital investment 

is predominantly and increasingly based upon imports, as discussed more fully in the conclusion. 

 While true total factor productivity growth in industry i, i.e. the true growth of output 

minus the factor income share weighted growth of true factor inputs, is  

(4) 𝐴መ௧
் = 𝑄௧

் − ∑ 𝜃௧𝑋௧
்

ୀଵ = ∑ 𝜃௧𝑓መ௧
்

ୀଵ , 

measured total factor productivity growth, equal to measured output growth minus the weighted 

measured growth of inputs, is given by 

(5) 𝐴መ௧
ெ = 𝑄௧

ெ −  𝜃௧𝑋௧
ெ



ୀଵ

= 𝐴መ௧
் + 𝑄௧

ெ − 𝑄௧
் −  𝜃௧(𝑋௧

ெ − 𝑋௧
் )



ୀଵ

 

⇒   𝐴መ௧
ெ = 𝐴መ௧

் −    𝜃௧𝑓መ௧
ை



ୀଵ

+   𝜃௧  𝜃௧𝑓መ௧
ை



ୀଵ

ே

ୀଵ

. 

Mismeasurement of what is done with inputs impacts own industry TFP estimates directly in one 

direction and the TFP estimates of downstream industries indirectly in the opposite direction.   

(b) Estimation framework 

We aim to identify the above by looking at the demand for intermediate inputs, where the 

moving demand and supply curves for the total use of intermediate input Xit follow: 

(6𝑎)  𝑃௧
 = 𝜂

 + 𝜂௧
 −

ଵ

ఙ
𝑋௧

 + 𝜀௧
 (6𝑏)  𝑃௧

ௌ = 𝜂
ௌ + 𝜂௧

ௌ − 𝐴መ௧
் +

ଵ

ఘ
𝑋௧

ௌ + 𝜀௧
ௌ , 

where the η denote industry and time supply and demand fixed effects.  Controlling for industry 

and time fixed effects, growth of input quantity demanded varies inversely with price growth 
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with elasticity of substitution σ, while growth of input quantity supplied varies positively with 

price growth with elasticity of supply ρ.  Under perfect competition total factor productivity 

growth lowers unit costs and the supply curve one-for-one, hence the “−𝐴መ௧
் ” of (6b).  Setting 

demand equal to supply yields the equilibrium solutions: 

(7)  𝑃௧
் =

𝜎(𝜂
 + 𝜂௧

 + 𝜀௧
)

𝜎 + 𝜌
−

𝜌(𝐴መ௧
் − 𝜂

ௌ − 𝜂௧
ௌ − 𝜀௧

ௌ )

𝜎 + 𝜌
 

   𝑋௧
் =

𝜎𝜌(𝐴መ௧
் + 𝜂

 + 𝜂௧
 − 𝜂

ௌ − 𝜂௧
ௌ + 𝜀௧

 − 𝜀௧
ௌ )

𝜎 + 𝜌
. 

As already stated, mismeasurement of total intermediate input use follows that of industry 

output, 𝑋௧
ெ − 𝑋௧

் = 𝑄௧
ெ − 𝑄௧

் . 

 If mismeasurement applies only to the use of input j, (2) & (5) can be simplified to 

(8)  𝑃௧
ெ = 𝑃௧

் + 𝜃௧𝑓መ௧
ை ,   𝑋௧

ெ = 𝑋௧
் − 𝜃௧𝑓መ௧

ை   

&  𝐴መ௧
் = 𝐴መ௧

ெ + 𝜃௧𝑓መ௧
ை −  𝜃௧𝜃௧𝑓መ௧

ை

ே

ୀଵ

, 

so that (7) can be restated as the estimating equations on observables: 

(9)   𝑃௧
ெ = 𝛽ൣ𝐴መ௧

ெ + 𝛾൫𝜃௧ − 𝛺௧൯൧ + 𝛾𝜃௧ + 𝜂
 + 𝜂௧

 + 𝜀௧
  

         𝑋௧
ெ = 𝛽ൣ𝐴መ௧

ெ + 𝛾൫𝜃௧ − 𝛺௧൯൧ − 𝛾𝜃௧ + 𝜂
 + 𝜂௧

 + 𝜀௧
 

            where  𝛽 =
−𝜌

𝜎 + 𝜌
,  𝛽 =

𝜎𝜌

𝜎 + 𝜌
  &  𝛺௧ =  𝜃௧𝜃௧

ே

ୀଵ

, 

and where 𝛾 is the economy-wide average rate of mismeasurement of factor augmenting 

productivity growth in the use of input j.  (9) is a seemingly unrelated system of non-linear 

regressions with observed regressors 𝐴መ௧
ெ, 𝜃௧, & 𝛺௧, as well as industry and time fixed effects ηi 

and ηt.  The parameter of interest is 𝛾, the economy-wide average rate of mismeasurement of 

factor augmenting productivity growth in the use of input j, where we assume that 

(10)   𝑓መ௧
ை = 𝛾 + 𝜁௧,  with  𝐸൫𝜁௧൯ = 0. 

Variation 𝜁௧ of 𝑓መ௧
ை from its average rate 𝛾 is implicitly included in the errors, which, as 𝜁௧ is 

multiplied by 𝜃௧ and 𝛺௧, makes them heteroskedatic.  For consistent estimation the probability 
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limit of the errors times the regressors must be zero, which in this case requires the additional 

assumption that the proportional rate of mismeasurement is independent of the factor shares.  

Similar assumptions are made in all regressions that do not deny the possibility of heterogeneous 

effects.   

(c) Discussion of Identification 

As noted in the Introduction, the identification of mismeasurement in (9) rests on two 

additional assumptions beyond those needed in any regression.  First, that the impact of true total 

factor productivity growth on true price and quantity growth is the same regardless of its factor 

augmenting origin, i.e. a common β.  Second, that expenditure shares have no impact on true 

price and quantity growth other than through their effects on true total factor productivity 

growth. 

Total factor productivity growth impacts many observables within an industry, such as 

the relative use of factors, but these observables are likely to be heavily influenced by the form 

the total factor productivity growth takes.  It is plausible, however, that the form total factor 

productivity growth takes within an industry is not relevant to the downward shift in the supply 

curve or the equilibrium demand in arms-length downstream industries.  In keeping with this 

argument, the measure of Xit used below excludes own industry input demand.  For computer 

expenditure shares not to influence price and quantity other than through total factor productivity 

growth, it is necessary that our conception of price, quantity and productivity include quality 

improvements.  (9) allows for this, as it describes factor-augmenting-technical-change adjusted 

price and quantity as functions of true factor-augmenting-adjusted productivity.  Here we follow 

standard national income accounting principles, re-expressing quality improvements as changes 

in quality adjusted prices per unit of quality adjusted quantity.  

The identification of the slopes of supply and demand curves is a standard econometric 

problem, but of less importance here than the preceding exposition suggests.  In (6) and (7) 

above total factor productivity growth shifts the supply curve, allowing the identification of the 

demand elasticity σ.  The additional assumption that productivity growth shifts the supply curve 
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one for one (under perfect competition) identifies the supply elasticity.  To see this, note that if 

total factor productivity growth shifts the supply function by an unknown amount τ , then in 

moving from (6) to (9) we have 

(11)  𝛽 =
−𝜌𝜏

𝜎 + 𝜌
   &  𝛽 =

𝜎𝜌𝜏

𝜎 + 𝜌
 

and it is still the case that the ratio -βX/βP identifies σ.  The separate identification of the supply 

elasticity ρ from these two coefficients, however, requires that τ be known.  However, as can be 

seen in (9), knowledge of neither ρ nor σ is needed to estimate the value of 𝛾, which depends 

only on βP and βQ and not their decomposition.  Estimates of these elasticities are given below as 

orthogonal matters of interest and a means of evaluating (under the assumption that τ = 1) the 

estimates of βP and βQ. 

 There is also the conventional issue of the endogeneity of regressors, i.e. their correlation 

with the error terms in (9).  With regards to the factor shares 𝜃௧ and 𝛺௧, we are regressing the 

change in prices and quantities between period t and t+1 on the levels of these regressors,3 so any 

endogeneity that exists should rely mostly on the cumulative effects of correlated shocks.  To 

this end, in the analysis below I include lagged values of the dependent variables as regressors to 

“whiten” the residuals.  To avoid size distortions brought about by pre-testing, results with 

different lag structures are presented side-by-side and standard errors always clustered at the 

industry level to correct for any within industry correlation, and of course heteroskedasticity, left 

in any given specification.  Key point estimates for computer intermediates do move somewhat 

towards zero with the addition of lagged dependent variables, and I treat these as more reliable, 

although differences across lag structures are not statistically significant. 

Regarding total factor productivity growth, mismeasurement of this variable due to 

changes in capacity utilization brought about by demand and supply shocks do make it 

 
3To remain consistent with the BEA’s total factor productivity Tornqvist indices, I actually use the average 

value of factor shares in periods t and t+1.  Results in the on-line appendix show that using period t factor shares as 
regressors, point estimates for computer intermediates shrink by about 10% towards zero, but are otherwise 
unchanged for other computer regressors, except in cases with very large standard errors using average factor 
income shares to begin with. 
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endogenous to price and quantity changes.  As a baseline, I address this by including year fixed 

effects to account for business cycle movements of the regressors in general.  These year fixed 

effects do play a role, as absent these the results are statistically less significant and point 

estimates closer to zero, as shown below.  However, further corrections for productivity growth 

mismeasurement, in the form of industry level adjustments for business cycle fluctuations, have 

little effect on point estimates.  Results using long run industry means, where mismeasurement 

due to capacity utilization should be much less of an issue, are also very similar to those found 

using year fixed effects.  As endogeneity in total factor productivity growth will most directly 

bias the estimated βs, I also show that point estimates of the mismeasurement parameter γj are 

robust to very large exogenously imposed changes in the βs, i.e. taking them as known at 

different values.  While the assumption of common βs is used to identify the degree of 

mismeasurement, this is not equivalent to saying that point estimates are very sensitive to the 

estimated values of those β.  In practice they are not and hence any residual endogeneity of total 

factor productivity growth should be of little importance to the results. 

III.  Characteristics of the Data & their Implication for Estimation & Inference 

I use the Bureau of Economic Analysis’s industry level total factor productivity estimates 

covering 61 private sector industries from 1987 to 2021 and input-output tables covering the 

same from 1997 to 2021.  One industry (social assistance) is not used as an intermediate input in 

any industry, while another (hospitals and nursing & residential care) is used as an intermediate 

input only in itself.  Dropping these two and taking the intersection of the two data sets leaves 59 

private sector industries for 1997 to 2021.  The BEA productivity estimates provide factor 

income share and quantity data for 14 inputs, comprised of 9 classes of capital, college and non-

college labour, and energy, service and materials intermediates.  The input-output tables allow 

the more detailed calculation of the intermediate input shares of the domestic 59 private sector 
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industries, giving a total of 73 input categories.4  Our interest lies in those inputs most obviously 

associated with computer technology, namely (i) computer capital, (ii) software capital, (iii) 

computer and electronic intermediates and (iv) computer systems design & related intermediates.  

As the data are available, mismeasurement in the remaining 69 input categories is also examined, 

albeit parenthetically.  The discussion of statistical significance below incorporates multiple 

testing bounds to control the family wise Type I error rate across the computer hypothesis tests. 

Our dependent variables are the measured growth of total domestic intermediate input 

demand by industry, net of imports and own industry use, and intermediate input prices (taken as 

the growth of the sectoral domestic output deflator in the productivity accounts), while our 

regressors are measured total factor productivity growth by industry, factor and domestic 

intermediate input expenditure shares, and year and industry fixed effects.  Regressing the 

dependent variables on industry & year dummies, I find that the residuals of annual industry 

price and non-own-use domestic intermediate input demand growth have kurtoses of 41 and 37, 

respectively.  This indicates a large deviation from the normal distribution.  The remainder of 

this section shows how alternative likelihoods combined with the bootstrap achieve conservative 

control of size while retaining power in this environment. 

The multivariate t-distribution provides a computationally tractable way of modelling 

heavy-tailed multivariate data taking both positive and negative values on the reals.  If the 

coefficient and covariance estimates for a normal model with common regressors for each 

dependent variable and multivariate normal errors are 𝛃 = (𝐗ᇱ𝐗)ିଵ(𝐗ᇱ𝐘) & 𝚺 = 𝛆ොᇱ𝛆ො/n, where Y 

is the n x m matrix of dependent variables, X the n x k matrix of common regressors, and 𝛆ො the n 

x m matrix of residuals, the corresponding measures for a multivariate t likelihood are weighted 

versions of the same, namely 𝛃 = (𝐗ᇱ𝐖𝐗)ିଵ(𝐗ᇱ𝐖𝐘) and 𝚺 = 𝛆ොᇱ𝐖𝛆ො/sum(𝐖),5 where sum() 

 
4In actuality, the BEA input-output tables are not a single matrix but rather separate supply and use tables for 

commodities.  While the commodity-industry supply tables are largely diagonal, this is not entirely and completely 
the case.  I calculate domestic input shares by dividing an industry’s use of domestically produced commodities 
across industries in proportion to their shares of the supply thereof. 

5The latter isn’t actually the covariance (second central moment) matrix, which equals Σ*ν/(ν-2), with ν equal 
to the degrees of freedom of the distribution. 
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denotes the sum of matrix entries and W is diagonal with elements 𝑤 = [�̂� + 𝛆ො
ᇱ𝚺ିଵ𝛆ො]

ିଵ, with 

𝛆ො the estimated residuals for observation i and �̂� the estimated degrees of freedom.  In 

estimating parameters, the multivariate-t systematically underweights outliers based upon their 

squared Mahalanobis distance 𝛆ො
ᇱ𝚺ିଵ𝛆ො, with the underweighting increasing as the estimated 

degrees of freedom falls.  This makes the point estimates less sensitive to error realizations in the 

heavy-tails of the distribution, as extreme deviations from point estimates are taken as being less 

unusual, and hence less relevant, than is the case with normal errors. 

 Table I below presents baseline maximum likelihood modelling of intermediate input 

price and quantity demanded (net of own use) using the multivariate normal and the multivariate-

t.  Each column includes industry and year fixed effects (ηi, ηt), differing only in the order T of 

lags of the dependent variables included in the vector auto regressions, namely 

(12)  𝑃௧
ெ = (𝐿

 𝑃௧ି
ெ + 𝐿

 𝑋௧ି
ெ )

்

ୀଵ

+ 𝜂
 + 𝜂௧

 + 𝜀௧
  

    𝑋௧
ெ = (𝐿

 𝑃௧ି
ெ + 𝐿

 𝑋௧ି
ெ )

்

ୀଵ

+ 𝜂
 + 𝜂௧

 + 𝜀௧
. 

I refer to the 2x2 matrix of lth lag coefficients as Ll.  Standard error estimates, in parentheses, and 

covariance matrices are clustered and (/) cluster bootstrapped, both at the industry level.  As 

seen, the multivariate t provides a much better fit to the data, with likelihoods that are 1300 to 

1400 ln points higher for each lag structure.  With the normal likelihood tests of the joint 

significance of the matrix of 1st order lag coefficients (L1) do not reject the null of the 2x2 0 

matrix 02x2, but do reject the same null for 2nd and 3rd order lags (L2 and L3).  In contrast, with 

the t-likelihood L1 = 02x2 and L3 = 02x2 are consistently rejected at the .05 level, but L2 = 02x2 is 

not when the bootstrap is used to estimate the covariance matrix.  Specifications with L4, not 

reported in the table, do not reject the null of 02x2 with the t likelihood and either covariance 

estimate and with the normal when bootstrapped.6  As noted earlier, if there is any endogeneity 

of factor shares in period t to price and quantity changes between periods t and t+1, it should  

 
6P-values with the normal likelihood & clustered/clustered bootstrap covariance estimates are .041/.255, 

while the corresponding p-values for the t-likelihood are .238/.327. 
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Table 1: Baseline Maximum Likelihood Modelling & Associated Monte Carlos  
(dependent variables = panel data on growth of prices and non-own-use input demand) 

 multivariate normal errors multivariate-t errors 
 0 lags 1 lag 2 lags 3 lags 0 lags 1 lag 2 lags 3 lags 

ν     
1.38 

(.175/.176) 
1.27 

(.146/.162) 
1.27 

(.139/.146) 
.125 

(.143/.159) 
ln L 3298 3155 3040 2932 4711 4572 4397 4220 
N 1416 1357 1298 1239 1416 1357 1298 1239 

 p - values of joint hypothesis tests: clustered/clustered bootstrapped 
L1 = 02x2 .801/.887 .903/.965 .851/.941  .000/.000 .000/.000 .000/.001 
L2 = 02x2  .000/.005 .000/.000   .000/.065 .000/.067 
L3 = 02x2   .000/.000    .000/.000 

 Monte Carlo probability of rejecting true null regarding Ll: clustered/clustered bootstrapped 
L1  .98/.96 .97/.89 .98/.97  .73/.04 .71/.04 .71/.03 
L2   .99/.93 1.0/.93   .62/.09 .60/.07 
L3    .99/.93    .65/.04 

 Monte Carlo probability of rejecting false null of Ll = 0: clustered/clustered bootstrapped 
L1  1.0/.99 1.0/1.0 1.0/.98  1.0/1.0 1.0/1.0 1.0/1.0 
L2   1.0/1.0 1.0/1.0   1.0/1.0 1.0/1.0 
L3    .99/.97    1.0/1.0 

   Notes: Lags indicates number of lags of the dependent variables included in the regression, as in (12) above.  
lnL =  ln likelihood, N = # of observations, v = estimated degrees of freedom.  Standard error estimates in () 
are clustered/clustered bootstrapped, both at the industry level.  Bootstrapped coefficient standard errors and 
covariance matrices calculated using 99 draws.  Monte Carlo rejection probabilities over 100 runs using data 
generating processes based on the t-likelihood point estimates in the last four columns. 

come from serial correlation in the residuals. Whitening the residuals using lagged dependent 

variables as regressors corrects for any such endogeneity.  Below results are reported for all lag 

specifications and throughout I cluster at the industry level, as is done in Table 1, to allow for 

any unaddressed intertemporal dependence between industry residuals in a given specification. 

The estimated degrees of freedom of the multivariate-t in Table 1 are between 1.25 and 

1.38, implying extremely heavy tailed data with no higher than a first (integer) moment.7  This 

brings into question the accuracy of inference with or without the bootstrap, as higher moments 

are usually specified as sufficient (albeit not necessary) for consistency.  Moreover, with 

extremely low degrees of freedom the t-likelihood often has multiple local maxima, as for a 

given estimate of the degrees of freedom �̂� , different weights 𝑤 = [�̂� + 𝛆ො
ᇱ𝚺ିଵ𝛆ො]

ିଵ allow 

multiple fixed point solutions with 𝛃 = (𝐗ᇱ𝐖𝐗)ିଵ(𝐗ᇱ𝐖𝐘), 𝚺 = 𝛆ොᇱ𝐖𝛆ො/sum(𝐖) & 𝛆ො = 𝐘 − 𝐗𝛃. 

 
7The t-distribution has moments of order up to its degrees of freedom. 
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I address these issues using an estimation algorithm whose accuracy is verified in Monte 

Carlos.  In determining the coefficients 𝛃 for a given t-distribution estimate of the degrees of 

freedom, I set weights initially at one and then iterate least squares recursively to the fixed point, 

in a manner similar to that used in weighted least squares and GMM estimation (which share the 

same issue of potential multiplicity).8  This concentrates the likelihood as a function of the 

degrees of freedom,9 which is generally well behaved, as illustrated in the on-line appendix, so 

that a global maximum is easily found.  I use Monte Carlos to show that this algorithm, in 

combination with the bootstrap, achieves conservative control of size while retaining power, as 

detailed now. 

Panel D of Table 1 above begins by reporting Monte Carlo rejection rates at the .05 level 

of true nulls equal to the parameters of the data generating process (dgp), which is given by the 

parameters and degrees of freedom of the multivariate-t estimates with the corresponding lag 

structure in the last columns of the table.  100 data realizations are made per dgp and 99 industry 

clustered draws used for each bootstrap.  Rejection rates of the true null using the multivariate 

normal likelihood, whether bootstrapped or not, are near 1.0 at the .05 nominal level.  This stems 

from a substantial bias in these estimates that arises with normal estimation of a lag structure 

with such heavy tailed data.  In contrast, when estimated using the multivariate-t, although 

rejection rates using the conventional covariance estimate have large size distortions, the 

bootstrap brings these down close to nominal level while retaining the same 1.0 probability 

(power) of rejecting incorrect nulls of 0 for the lag coefficients. 

Our interest in this paper, however, lies in accurate inference regarding the 

mismeasurement parameters 𝛾  in (9) above.  To this end, Table 2 reports Monte Carlo rejection 

probabilities using data generating processes based upon the t-distribution point estimates of the 

model in (9).  There are 4 computer related and 69 other factor shares, and 4 different lag lengths 

 
8This concentration of the likelihood using iteratively reweighted least squares is essentially the application 

of the EM algorithm (Dempster, Laird & Rubin 1977) to the t-distribution advocated by Liu & Rubin (1995). 

9The non-linear mismeasurement models are linear conditional on the mismeasurement parameter, so in that 
case the likelihood is concentrated as a function of that parameter and the degrees of freedom.  
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(0 … 3), for a total of 73 x 4 = 292 data generating processes.  For each I estimate the 

multivariate-t on the data and then use the estimated parameters as the data generating process, 

using 50 Monte Carlos for each dgp in the case of the four computer related factor shares and 10 

in the case of other input shares.  The table presents average rejection probabilities for the 

mismeasurement parameter across these Monte Carlos using: the conventional industry clustered 

standard error estimate; the bootstrapped standard error estimate (bootstrap-se); the percentiles of 

the bootstrapped coefficient distribution (bootstrap-c); the percentiles of the bootstrap t-

distribution (bootstrap-t); and versions of the bootstrap -se, -c and -t based upon bootstrap sub-

sampling.  The bootstrap-t is known to provide an asymptotic refinement, i.e. faster convergence 

to the true distribution, but in finite samples may provide no benefits if the finite sample standard 

error estimate is inaccurate, as noted by Hall (1992, p. 167).  Sub-sampling asymptotically fixes 

bootstrap failures in some contexts and, with regards to heavy tailed data, Hall & LePage (1996) 

show that sub-sampling M from N observations, with M/N going to zero, the bootstrap-t 

asymptotically allows for accurate inference with no more than first moments in the data 

generating process.  I sub-sample by drawing 30 industry clusters from the 59 of the data.  

Bootstrap p-values are calculated using 99 industry clustered draws, with percentile -c and -t 

methods using the absolute value of the test statistic and a p-value equal to (G+u)/100, where G 

is the number of bootstrapped test statistics greater than that of the original sample and u is a 

draw from the (0,1) uniform distribution.10  Reported in the table are mean rejection probabilities 

of true nulls equal to the parameter of the dgp and false nulls of zero effects, illustrating aspects   
 

10There is a popular misconception that the bootstrap distribution must be approximated with a large number 
of draws to achieve accurate inference.  Hope (1968) noted that with k an integer and m draws from a continuous 
bootstrap distribution, an exact test (relative to the distribution) at level α = k/(m+1) is achieved when the null is 
rejected if k-1 or less draws are greater than the sample test statistic.  Jockel (1986) showed the same is true for 
draws from an arbitrary distribution, if (G+(T+1)*u)/(m+1) is less than α, where T is the number of ties with the 
sample test statistic (the +1 treating the sample test statistic as a tie with itself) and u a draw from the [0,1] uniform 
distribution.  The on-line appendix to Young (2019) shows, rather trivially, that this is true for arbitrary α, i.e. there 
is no need for α(m+1) to be an integer.  In this paper, ties do not occur.  Given the high computation costs, I select 
the smallest number (99) such that integer values of G (0,4, and 9) indicate rejection at the .01, .05 and .1 levels, 
regardless of the draw u (the sample’s tie with itself).  For the bootstrap-se, a degrees of freedom adjustment should 
be made for the sampling distribution of the s.e. estimate, but as the chi-squared distribution is commonly used, 
whose critical values are very close to those of the squared-t with 98 degrees of freedom, I use the chi-squared as 
well. 
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Table 2:  Monte Carlo Tests of Unmeasured Productivity Growth  
(data generating processes based upon t-likelihood point estimates for 292 models) 

 multivariate normal likelihood multivariate-t likelihood 
 clus- 

tered 
bootstrapped sub-sampling clus- 

tered 
bootstrapped sub-sampling 

level se c t se c t se c t se c t 
(A) computer related inputs (4 inputs x 4 lag structures x 50 Monte Carlos) 

 rejection probabilities of true null of the data generating process 
.01 .080 .000 .000 .041 .004 .004 .035 .141 .010 .004 .095 .003 .001 .076 
.05 .141 .014 .010 .079 .014 .009 .064 .201 .033 .024 .174 .013 .006 .170 
.10 .223 .037 .036 .110 .029 .021 .100 .264 .066 .070 .247 .030 .028 .226 

 rejection probabilities of false null of 0 mismeasurement 

.01 .226 .005 .001 .168 .006 .004 .149 .431 .190 .070 .376 .164 .022 .346 

.05 .286 .025 .019 .220 .018 .015 .205 .520 .321 .239 .481 .325 .140 .454 

.10 .344 .061 .049 .263 .041 .039 .253 .578 .407 .367 .541 .427 .263 .520 
 coefficient of variation of true null rejection probabilities 

.01 1.3 . . 1.4 2.1 2.9 1.6 1.0 1.3 2.1 0.9 2.7 4.0 1.2 

.05 1.0 1.5 1.5 1.1 1.3 1.9 1.4 0.8 0.9 1.0 0.7 1.5 1.9 0.8 

.10 0.8 0.8 0.9 1.0 0.8 1.1 1.0 0.6 0.7 0.7 0.6 1.1 1.2 0.6 
  coefficient of variation of false null rejection probabilities 

.01 1.5 2.3 200.0 80.9 1.9 2.9 1.7 0.9 1.3 1.9 1.1 1.4 2.7 1.1 

.05 1.1 1.2 59.9 68.9 1.2 1.4 1.5 0.7 1.0 1.1 0.7 0.9 1.5 0.8 

.10 0.9 0.8 40.3 60.2 0.9 1.1 1.3 0.6 0.8 0.8 0.6 0.8 1.0 0.6 

(B) other inputs (69 inputs x 4 lag structures x 10 Monte Carlos) 

 rejection probabilities of true null of the data generating process 

.01 .052 .003 .002 .011 .003 .001 .008 .099 .010 .005 .051 .004 .002 .042 

.05 .111 .020 .018 .047 .015 .013 .034 .167 .036 .033 .126 .015 .010 .114 

.10 .170 .043 .054 .087 .034 .037 .063 .229 .068 .074 .184 .030 .035 .173 

 rejection probabilities of false null of 0 mismeasurement 

.01 .095 .013 .007 .029 .005 .002 .021 .346 .137 .082 .220 .178 .032 .199 

.05 .158 .040 .042 .082 .024 .021 .063 .451 .223 .204 .361 .254 .126 .345 

.10 .235 .073 .093 .133 .047 .058 .107 .519 .279 .303 .442 .307 .204 .436 

 coefficient of variation of true null rejection probabilities 

.01 1.8 5.5 6.7 3.2 5.8 8.3 3.9 1.4 3.2 4.3 1.5 4.9 6.7 1.8 

.05 1.1 2.2 2.4 1.7 2.7 2.7 2.0 1.0 1.7 1.8 1.0 2.5 3.1 1.1 

.10 0.8 1.5 1.4 1.2 1.9 1.7 1.4 0.8 1.4 1.2 0.8 2.0 1.9 0.8 

  coefficient of variation of false null rejection probabilities 

.01 1.6 3.5 44.2 24.8 4.2 7.4 3.0 0.9 1.8 2.2 1.1 1.5 3.3 1.1 

.05 1.1 2.0 20.5 15.5 2.3 2.4 1.8 0.7 1.4 1.4 0.8 1.2 1.8 0.8 

.10 0.8 1.5 14.2 11.5 1.6 1.5 1.3 0.6 1.1 1.1 0.6 1.1 1.4 0.7 
  Notes:  Rejection probabilities calculated across 50 (10) realizations of each of 16 (276) dgps in panel A 
(B).  Coefficient of variation is across the average rejection rate in 50 (10) iterations of each dgp.  Standard 
error estimates cluster at the industry level, bootstraps use 99 industry clustered draws, and sub-sampling 
draws 30 of 59 industry clusters with replacement.   
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of size and power.  Also reported is the coefficient of variation of the average rejection rate in 50 

draws each of 16 computer-related dgps in panel A and 10 draws each of 276 dgps for other 

inputs in panel B.  If the tests had true null rejection probabilities equal to nominal level in each 

and every dgp, at the .01, .05 and .1 levels these should be 1.4, 0.8, and 0.4 in panel A and 3.1, 

1.4 and 0.9 in panel B. 

 Two patterns are immediately apparent in the table.  First, use of the mis-specified 

normal likelihood on this heavy tailed data results in low and inconsistent power.  While normal 

likelihood rejection probabilities of the true mismeasurement parameters less than or equal to 

nominal value can be achieved with the use of the bootstrap, the volatility of the normal 

coefficient estimates is so great that the false null of zero is also rejected with low average 

frequency.  In addition, both true and false null rejection probabilities vary greatly from one dgp 

to another, as shown by the coefficients of variation.  Estimation and inference using the 

multivariate normal in the presence of extremely heavy tailed data is not a sensible empirical 

strategy.  Results using the familiar normal likelihood are presented below to assure the reader 

that point estimates for key results are of the same sign and magnitude as found using the 

multivariate-t, but their bootstrapped standard errors are much larger. 

 Second, the table indicates that the simplest bootstrap, the -se, provides conservative 

control of the true null rejection probability, while (in the case of the multivariate-t) retaining 

power and showing a variability across dgps close to what might be expected from an exact 

 test.  True null rejection probabilities with the conventional industry clustered covariance  

estimate are well above nominal value, as are those using the bootstrap-t (for the t likelihood), 

notwithstanding its asymptotic properties.11  Again, despite its asymptotic virtues, sub-sampling 

provides no systematic advantages in finite sample mean rejection probabilities, but, in the case 

of the t-likelihood, has more variable true null rejection probabilities, indicating less consistent 

performance across dgps.  The bootstrap-se and -c have similar performance, although the -c has 

 
11This mirrors results found for 2SLS in Young (2022) where, because the standard error estimate is very 

poor, the bootstrap-t works worse than the -c in finite samples, as was anticipated by Hall (1992). 
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less power at low p-values, which matters a great deal with Bonferroni-Holm multiple testing 

adjustments made below.  Given these advantages, and as it allows the conventional presentation 

of results in coefficient (standard error) form, I adopt the bootstrap-se as the baseline approach in 

tables below.12  However, for key results I also report p-values using all inference methods 

described in Table 2, as well as additional details on their Monte Carlos. 

To summarize, with heavy tailed data in tests of the mismeasurement parameter the 

bootstrapped normal likelihood controls size at the expense of power to reject false nulls of 0 

effects that is often below nominal level as well.  However, using the simplest bootstrap, the 

bootstrap-se, the t-likelihood achieves conservative control of the true null rejection probability, 

while retaining power to reject false nulls that is a multiple of the nominal level.  These results 

are achieved using a maximization algorithm that avoids multiplicity of local maxima found by 

selecting coefficients to minimize the weights on individual observations by, for a given degrees 

of freedom, setting weights initially at 1 and iteratively reweighting least squares until the 

weights converge, a procedure analogous to that used in weighted least squared and GMM 

estimation.  This concentrates the likelihood and, as shown in Monte Carlos, despite the lack of 

higher than first integer moments in the data generating process, with standard errors calculated 

using the bootstrap-se maintains conservative control of true null rejection probabilities while 

retaining substantive power. 

IV. Results 

Table 3 reports estimated mismeasurement rates for computer related inputs using 

multivariate normal and t likelihoods.  The estimating equations follow (9) above, augmented 

with 0 to 3 lags of the vectors of dependent variables as in (12).  Each cell reports the 

mismeasurement parameter γj for a separately estimated model, its bootstrap-se standard error 

estimate in (), and the delete-one-industry-at-a-time min to max coefficient range in [].  With the   

 
12The reader should keep in mind, however, that the coefficients may not have second moments.  The 

reported standard error is merely a bootstrapped number which, when multiplied by percentiles of the normal 
distribution and added and subtracted from the point estimate, conservatively covers the true parameter value. 
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Table 3: Mismeasurement Associated with Computer Technology 
(each cell a separately estimated model) 

 normal likelihood t likelihood 

 no lags 1 lag 2 lags 3 lags no lags 1 lag 2 lags 3 lags 

computer  
hardware 

capital 

-.36  
(.56) 

[-.43/-.25] 

-.10 
(1.1) 

[-.19/.08] 

-.32 
(1.4) 

[-.43/.06] 

-.38 
(1.1) 

[-.90/.16] 

-.22 
(.29) 

[-.64/-.19] 

-.10 
(.18) 

[-.23/-.08] 

-.11 
(.19) 

[-.28/-.08] 

-.07 
(.22) 

[-.17/-.04] 

software 
capital 

.00 
(.40) 

[-.14/.33] 

.22 
(.49) 

[-.02/.67] 

.02 
(.62) 

[-.12/.84] 

-.39 
(.69) 

[-.60/.53] 

-.30 
(.16) 

[-.36/-.26] 

-.11 
(.18) 

[-.17/-.05] 

-.11 
(.18) 

[-.25/-.04] 

-.10 
(.21) 

[-.18/.01] 

computer & 
electronic 

intermediates 

-.49 
(.22) 

[-.51/-.32] 

-.51 
(.24) 

[-.86/-.45] 

-.64 
(.33) 

[-1.1/-.53] 

-.48 
(.21) 

[-.64/-.42] 

-.48 
(.12) 

[-.48/-.46] 

-.35 
(.10) 

[-.46/-.34] 

-.44 
(.13) 

[-.51/-.41] 

-.33 
(.10) 

[-.39/-.30] 

computer 
systems design 
intermediates 

2.8 
(2.2) 

[.61/3.9] 

4.2 
(2.8) 

[.96/5.4] 

3.5 
(2.7) 

[.84/4.8] 

2.2 
(2.2) 

[.67/3.1] 

.16 
(1.1) 

[-.89/.56] 

.30 
(.87) 

[-.51/.50] 

.18 
(.72) 

[-.58/.39] 

.17 
(.63) 

[-.38/.33] 
   Notes:  Mismeasurement parameters as in the systems estimation (9) above augmented with lag vectors as in 
(12).  Bootstrap-se standard errors in () based upon 99 industry-clustered draws; min-max delete-one industry 
coefficient range in [].  59 industries x 24 years = 1416 observations without lags, reduced by 59 for each lag.   

exception of computer systems design intermediates and software capital in some specifications, 

all point estimates are negative, implying that national income accountants implicitly 

overestimate computer augmenting technical change.  However, aside from the estimates for 

computer and electronic intermediates, all point estimates are statistically insignificant, with t-

stats less than 1 in absolute value or, when somewhat higher, easily reduced below 1 through a 

change in the number of lags.  The delete-one min to max coefficient range for computer capital, 

software capital and computer systems design is also negative to positive with the normal and/or 

t likelihood, showing that point estimates, and particularly the positive point estimates of systems 

design, are not at all robust. 

In contrast, the results for computer and electronics intermediates are consistently 

significant, with t-stats of -2 with the normal likelihood and -4 to -3 with more powerful t-

likelihood estimation.  Point estimates with the t-likelihood in this case are also quite stable, 

ranging between -.5 and -.3 across all lag structures and all delete-one industry min-max bounds.  

Estimates with the normal likelihood are more negative and volatile, with point estimates ranging 

from -.6 to -.5 and delete-one industry min-max bounds of -1.1 to -.3 across all lag structures.  
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Throughout the presentation below, normal likelihood results follow those with the t-likelihood, 

but with larger standard errors and point estimate volatility, in keeping with the lower precision 

and power of these estimates shown in Monte Carlos.  In the interest of transparency, these 

results are presented, but I view estimates with the multivariate t as much more reliable and 

focus the discussion on these. 

The results for computer & electronics intermediates are not only unique amongst 

computer related inputs; they are unique across all 73 primary and intermediate inputs tested in 

this paper.  Table 4 reports the results for the remaining five categories of capital, two categories 

of labour and three broad intermediate input factor income share categories given in the BEA 

total factor productivity data base.  For R&D capital with normal estimation, point estimates are 

positive with some t-stats as high as 1.8, but these largely vanish, with a positive to negative 

delete-one industry min-max range, when the t-likelihood is used.  Otherwise, no t-stat is much 

greater than 1 in absolute value and the min-max delete-one industry coefficient range generally 

includes zero with at least one lag structure.  The bottom three rows of the table report results for 

the three detailed domestic intermediate input industry categories, out of the remaining 57 non-

computer categories taken from the input output tables, which have an absolute t-stat greater than 

1.9 in some specification.  For machinery and management of companies & enterprises 

intermediates this t-stat appears with normal estimation, but point estimates are near zero with t-

likelihood estimation.  For amusement, gambling and recreation intermediates, the absurdly large 

point estimates for these inputs seem most easily explained by the equally large standard errors.  

Needless to say, with any adjustment for the vast amount of multiple testing underlying this 

table, all results are statistically insignificant at the .05 or .1 levels.  

The results above use bootstrap-se standard errors, as these were found in the Monte 

Carlos of section III to conservatively control size, retain power and provide the most uniform 

results across data generating processes patterned on the models tested in these tables.  Table 5 

focuses in more narrowly on estimates for computer & electronics intermediates, reporting the 

Monte Carlo simulation rejection rates and p-values in the sample using all inference techniques
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Table 4: Mismeasurement Estimates for Non-Computer Inputs 
 normal likelihood t-likelihood 
 no lags 1 lag 2 lags 3 lags no lags 1 lag 2 lags 3 lags 

r & d capital 
.40 (.23) 
[.14/.50] 

.44 (.24) 
[.22/.56] 

.51 (.29) 
[.19/.66] 

.34 (.28) 
[.05/.46] 

.28 (.23) 
[-.12/.41] 

.23 (.18) 
[-.06/.32] 

.20 (.20) 
[-.10/.35] 

.22 (.17) 
[-.05/.31] 

communications capital 
.62 (.83) 
[.27/1.1] 

.67 (1.0) 
[.37/1.4] 

.28 (1.0) 
[-.02/.83] 

-.13 (.93) 
[-.51/.41] 

-.30 (.47) 
[-.46/.00] 

.03 (.34) 
[-.09/.19] 

-.15 (.38) 
[-.36/.10] 

-.38 (.36) 
[-.56/-.15] 

instruments capital 
1.2 (1.6) 
[.10/2.0] 

2.4 (2.1) 
[1.2/3.4] 

3.1 (2.4) 
[1.6/4.3] 

2.8 (2.2) 
[1.6/3.7] 

-.33 (.90) 
[-.76/-.06] 

.12 (.85) 
[-.15/.56] 

.21 (.88) 
[-.21/.65] 

.30 (.82) 
[.02/.83] 

transport equipment 
-.07 (.33) 
[-.23/.22] 

.08 (.52) 
[-.09/.57] 

.11 (.64) 
[-.10/.79] 

.18 (.50) 
[.02/.70] 

-.04 (.24) 
[-.23/.03] 

-.16 (.20) 
[-.25/.02] 

-.01 (.23) 
[-.10/.07] 

-.06 (.21) 
[-.13/.08] 

other equipment 
.14 (.40) 
[-.01/.21] 

.38 (.38) 
[.22/.46] 

.43 (.48) 
[.25/.56] 

.51 (.43) 
[.34/.70] 

.12 (.11) 
[.10/.14] 

.08 (.09) 
[.05/.11] 

.20 (.17) 
[.17/.23] 

.16 (.11) 
[.13/.19] 

art capital 
-.17 (.23) 
[-.24/-.08] 

-.06 (.26) 
[-.20/.05] 

-.12 (.33) 
[-.32/.03] 

-.06 (.23) 
[-.23/.04] 

.02 (.11) 
[-.04/.13] 

.07 (.11) 
[.01/.21] 

.02 (.11) 
[-.05/.18] 

.03 (.10) 
[-.04/.12] 

structures capital 
-.08 (.11) 
[-.12/.05] 

-.11 (.12) 
[-.15/.04] 

.01 (.11) 
[-.02/.07] 

.05 (.11) 
[.00/.09] 

.06 (.04) 
[.04/.07] 

.00 (.03) 
[-.01/.01] 

.05 (.04) 
[.04/.07] 

.05 (.03) 
[.04/.07] 

college labour 
.21 (.14) 
[.12/.24] 

.23 (.14) 
[.14/.27] 

.23 (.18) 
[.14/.28] 

.09 (.15) 
[.02/.13] 

.02 (.07) 
[-.03/.04] 

.03 (.06) 
[.00/.04] 

.03 (.06) 
[-.01/.05] 

.03 (.04) 
[.00/.04] 

non-college labour 
-.03 (.18) 
[-.12/.02] 

-.12 (.20) 
[-.26/-.01] 

-.20 (.34) 
[-.39/-.02] 

-.17 (.26) 
[-.32/-.03] 

.03 (.05) 
[.00/.05] 

.03 (.03) 
[.02/.04] 

.01 (.04) 
[-.01/.03] 

.01 (.04) 
[-.01/.02] 

energy intermediates 
.00 (.16) 
[-.08/.10] 

-.01 (.15) 
[-.09/.09] 

-.02 (.18) 
[-.12/.06] 

.08 (.18) 
[-.04/.16] 

-.04 (.08) 
[-.06/.00] 

-.04 (.05) 
[-.05/.00] 

-.05 (.05) 
[-.07/-.03] 

-.05 (.05) 
[-.07/-.03] 

materials intermediates 
-.06 (.08) 
[-.11/.04] 

-.08 (.08) 
[-.13/.01] 

-.11 (.10) 
[-.15/.00] 

-.05 (.10) 
[-.12/.04] 

-.04 (.08) 
[-.05/.04] 

-.06 (.06) 
[-.07/.00] 

-.06 (.07) 
[-.08/.00] 

-.08 (.06) 
[-.09/-.02] 

services intermediates 
-.01 (.05) 
[-.03/.01] 

.00 (.05) 
[-.02/.02] 

-.04 (.05) 
[-.06/-.01] 

-.03 (.05) 
[-.05/.00] 

-.02 (.02) 
[-.03/-.01] 

.00 (.02) 
[.00/.01] 

-.01 (.02) 
[-.02/-.01] 

-.01 (.02) 
[-.01/.00] 

         

machinery 
1.5 (.92) 
[.74/2.2] 

1.3 (.82) 
[.72/1.9] 

1.2 (.80) 
[.56/1.7] 

2.1 (.88) 
[1.4/2.6] 

-.32 (.48) 
[-.50/-.06] 

-.47 (.32) 
[-.56/-.25] 

-.46 (.54) 
[-.58/-.21] 

.03 (.53) 
[-.15/.38] 

management of 
companies & enterprises 

-.47 (.32) 
[-.58/-.30] 

-.89 (.46) 
[-1.0/-.33] 

-1.3 (.65) 
[-1.5/-.51] 

-.79 (.41) 
[-.95/-.41] 

-.23 (.17) 
[-.31/-.18] 

-.07 (.13) 
[-.10/-.03] 

-.08 (.66) 
[-.11/-.01] 

-.19 (.14) 
[-.24/-.11] 

amusements, gambling & 
recreation intermediates 

-20.4 (29.5) 
[-48.6/-12.1] 

-21.6 (31.1) 
[-49.0/-15.7] 

-28.6 (33.0) 
[-58.2/-21.5] 

-25.3 (32.2) 
[-53.9/-19.6] 

-14.3 (7.2) 
[-21.5/-12.6] 

-11.6 (6.4) 
[-15.9/-9.9] 

-10.3 (5.9) 
[-14.3/-8.8] 

-10.6 (6.0) 
[-14.7/-9.3] 

   Notes:  as in Table 3.       
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Table 5: Monte Carlo Rejection Rates & Alternative P-Values for Mismeasurement 
(computer & electronics intermediates) 

 Monte Carlo rejection probabilities at .01 level 
p-values in the sample 

 true nulls = parameter false nulls = 0 effects 

 0 lags 1 lag 2 lags 3 lags 0 lags 1 lag 2 lags 3 lags 0 lags 1 lag 2 lags 3 lags 

 multivariate t – likelihood 

clustered t-stat 
bootstrap-se 
bootstrap-c 
bootstrap-t 

subsampling-se 
subsampling-c 
subsampling-t 

.38 

.00 

.00 

.22 

.00 

.00 

.22 

.44 

.00 

.00 

.32 

.00 

.00 

.26 

.28 

.00 

.00 

.16 

.00 

.00 

.18 

.32 

.00 

.00 

.22 

.00 

.00 

.18 

1.0 
.70 
.22 
1.0 
.34 
.06 
1.0 

1.0 
.42 
.04 
.98 
.14 
.00 
.94 

1.0 
.46 
.08 
.98 
.10 
.00 
.98 

1.0 
.12 
.00 
1.0 
.00 
.00 
.90 

.0000 

.0000 

.0100 

.0000 

.0194 

.0200 

.0000 

.0000 

.0007 

.0300 

.0100 

.0413 

.1000 

.0000 

.0000 

.0011 

.0300 

.0000 

.0149 

.0500 

.0000 

.0000 

.0015 

.0300 

.0000 

.0347 

.0600 

.0000 

 multivariate normal likelihood 

clustered t-stat 
bootstrap-se 
bootstrap-c 
bootstrap-t 

subsampling-se 
subsampling-c 
subsampling-t 

.24 

.00 

.00 

.12 

.00 

.00 

.08 

.26 

.00 

.00 

.12 

.00 

.00 

.14 

.28 

.00 

.00 

.18 

.00 

.00 

.14 

.20 

.00 

.00 

.12 

.00 

.00 

.14 

.86 

.00 

.00 

.74 

.00 

.00 

.70 

.76 

.00 

.00 

.64 

.00 

.00 

.56 

.80 

.00 

.00 

.56 

.00 

.00 

.56 

.72 

.02 

.00 

.52 

.00 

.00 

.48 

.0000 

.0277 

.0600 

.0000 

.1219 

.1300 

.0000 

.0000 

.0364 

.0500 

.0000 

.0822 

.0600 

.0000 

.0000 

.0517 

.0600 

.0100 

.0958 

.1000 

.0200 

.0000 

.0200 

.0300 

.0100 

.1041 

.1100 

.0100 
   Notes: Monte Carlo rejection rates in 50 draws from dgps patterned after the multivariate-t sample point 
estimates, as in Table 2 earlier.  Bootstraps use 99 industry-clustered draws from the bootstrap distribution. 

examined earlier above.  As seen in the table, with the multivariate t the conventional 

clustered t-stat, the bootstrap-t and the sub-sampling bootstrap-t all have a great deal of 

power to reject the false null of 0 effects when the dgp has the parameter of the point 

estimate, but also have large size distortions with true null rejection probabilities that are 16 

to 44 times the .01 nominal level.  In contrast, the -se & -c based techniques are extremely 

conservative, with true null rejection probabilities near zero.  Power for these methods with 

the t-likelihood declines as lags are added, with the bootstrap-se being the only technique that 

combines conservative control of size with non-vanishing power.  Empirical rejection rates 

for the normal likelihood show less power, as was the case in the broader Monte Carlos 

above, with a zero probability of rejecting the false null of zero effects outside of t-stat based 

methods with size distortions. 

Table 5 also reports p-values for computer & electronics intermediates in the sample 

itself using the different methods.  The clustered t-stat and bootstrap-se methods report a p-

value based upon the chi2 distribution, while the percentile -c & -t methods report a p-value 

equal to the number of greater (G) bootstrap occurrences divided by 100, dropping the (0,1) 
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uniform random variable in the p-value formula (G+u)/100 for clarity.  As can be seen, the 

sample p-values mirror the relative power of the different methods more than their relative 

size distortions.  While the .00 to .01 p-values of t-likelihood t-stat based methods might be 

attributed to either power or size, the frequent rejections of the null using -se and -c methods 

are unlikely to be Type-I errors given the zero frequency of these in the Monte Carlos.  

Instead, the t-likelihood -se & -c p-values follow their simulated relative power, drifting up as 

lags are added.  P-values for the same using the normal likelihood are systematically higher, 

in keeping with their lower simulated power, but still below .05 in a few instances. 

The impact of multiple testing adjustments on the above results is easily seen.  The 

conservative Bonferroni adjustment to control the family wise error rate, i.e. the probability 

of one or more Type-I errors in a set of tests, multiplies the p-values by the number of tests.13  

By this criterion, we should multiply the computer intermediates p-values for each lag 

structure by 4 to control error probabilities across the four computer categories tested in 

Table 3.  For the percentile -c & -t bootstrap methods, we need to keep in mind the addition 

of a random draw from the (0,1) uniform distribution divided by 100.  Thus, for example, 

with 1 lag using the t-likelihood bootstrap-t one would reject the null at the .05 level using a 4 

test adjustment with .25 probability, as (.01+.0025)*4 = .05.   

With these adjustments in mind, we see that putting aside -t methods with severe 

excess Type-I rejection probabilities, only the t-likelihood bootstrap-se results remain 

consistently significant at the .01 level (.012 in the case of 3 lags) with a four test adjustment. 

Once one moves beyond 0 lags, the bootstrap-c and subsampling-se and -c results are not 

significant at the .05 or .1 levels with a Bonferroni adjustment.14  However, to reject the 

multiple testing null at these levels one needs to be able to reject the single-test null at about a 

 
13There are step-down procedures to control the family wise error rate (Holm 1979) or the false discovery 

rate (Benjamini & Hochberg 1985) having made an initial rejection using the lowest p-value, but they are not 
relevant as all other individual mismeasurement p-values are already insignificant without adjustment for 
multiple testing, or easily made so with a change in the number of lags. 

14For the bootstrap percentile methods, one can follow Westfall-Young (1993) and use the joint 
distribution of the bootstraps to calculate the distribution of the minimum p-value across tests, as is done in the 
on-line appendix.  While the adjusted p-values are lower than with Bonferroni, it makes no difference to the 
evaluation of the -c results as insignificant at the.10 level arrived at by multiplying the numbers above by 4.  
Similarly, while percentile -t methods for the most part reject the null at the .05 level, this again is no different 
than what is easily seen in Table 5 with a Bonferroni adjustment. 
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.01 or .02 level which, as the Monte Carlos show, these tests have an evanescent probability 

of achieving as lags are added when the 0 null is actually false and the mismeasurement 

parameter equals its estimated value. 

 The credibility of results also rests on their robustness to changes in the specification.  

To this end, the tables above use alternative likelihoods, vary the lag structure, and report the 

min-max delete-one industry coefficient range.  Table 6 considers additional specification 

checks.  Row 1 of the table repeats the baseline t-likelihood estimates of Table 3 with both 

year and industry fixed effects, with rows 2 through 4 reporting results removing year fixed 

effects, industry fixed effects and both fixed effects.  All point estimates are negative across 

all lag structures and, excepting the removal of year fixed effects with longer lag structures in 

row 2 alone, retain t-statistics of between -4 and -2 and delete-one industry min to max 

ranges that remain negative to negative, excluding zero.  Results removing fixed effects for 

the normal likelihood, in rows 5 through 8 of the table, show similar patterns.  The ln t-

likelihood, given in {}, falls by 400 points with the removal of the 20+ year fixed effects and 

using these to control for business cycle induced correlations between price, quantity and 

total factor productivity growth (also mismeasured due to changes in capacity utilization), 

seems appropriate.  However, the table shows that this specification is by and large not an 

essential determinant of the results. 

Row 9 of Table 6 considers whether the statistical significance of the computer input 

mismeasurement parameter in other regressions spuriously proxies for industry heterogeneity 

in the elasticity of supply and demand.  To this end, it runs a specification that allows for 

industry heterogeneity (βi) in the impact of total factor productivity growth on prices and 

quantities: 

(13)  𝑃௧
ெ = 𝛽

ൣ𝐴መ௧
ெ + 𝛾൫𝜃௧ − 𝛺௧൯൧ + 𝛾𝜃௧ + 𝜂

 + 𝜂௧
 + 𝜀௧

  

    𝑋௧
ெ = 𝛽

ൣ𝐴መ௧
ெ + 𝛾൫𝜃௧ − 𝛺௧൯൧ − 𝛾𝜃௧ + 𝜂

 + 𝜂௧
 + 𝜀௧

 , 

augmented, of course, with vector auto-regression lags of the lefthand side variables, as in 

(12) earlier.  As seen in the table, allowing industry specific heterogeneity in the β’s has very 

little effect on the results.  Point estimates and the delete-one industry min to max bounds 

with the t-likelihood across all lag structures range from -.27 to -.53 and are very similar to   
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Table 6: Specification Checks 

 (computer & electronics intermediates: each cell a separately estimated model) 
 no lags 1 lag 2 lags 3 lags 

impact of fixed effects (t-likelihoods) 

(1) baseline 
t likelihood 

-.48 (.12) 
[-.48/-.46] {4823} 

-.35 (.10) 
[-.46/-.34] {4666} 

-.44 (.14) 
[-.51/-.41] {4488} 

-.33 (.10) 
[-.39/-.30] {4304} 

(2) no year  
fixed effects 

-.41 (.11) 
[-.41/-.28] {4403} 

-.29 (.11) 
[-.31/-.12] {4275} 

-.30 (.17) 
[-.31/.01] {4104} 

-.22 (.17) 
[-.23/.09] {3940} 

(3) no industry 
fixed effects 

-.43 (.08) 
[-.47/-.42] {4579} 

-.24 (.07) 
[-.31/-.22] {4495} 

-.26 (.09) 
[-.35/-.24] {4300} 

-.16 (.07) 
[-.25/-.15] {4149} 

(4) no fixed  
effects 

-.41 (.09) 
[-.49/-.40] {4202} 

-.19 (.05) 
[-.23/-.18] {4141} 

-.21 (.06) 
[-.27/-.19] {3953} 

-.14 (.06) 
[-.22/-.13] {3811} 

impact of fixed effects (normal likelihoods) 

(5) baseline 
normal likelihood 

-.49 (.22) 
[-.51/-.32] {3429} 

-.51 (.24) 
[-.86/-.45] {3285} 

-.64 (.33) 
[-1.1/-.53] {3164} 

-.48 (.21) 
[-.64/-.42] {3044} 

(6) no year  
fixed effects 

-.44 (.17) 
[-.45/-.27] {3151} 

-.36 (.20) 
[-.38/.00] {3022} 

-.41 (.33) 
[-.43/.23] {2918} 

-.26 (.45) 
[-.29/.67] {2804} 

(7) no industry 
fixed effects 

-.45 (.09) 
[-.48/-.40] {3370} 

-.45 (.10) 
[-.51/-.40] {3225} 

-.56 (.13) 
[-.60/-.46] {3096} 

-.38 (.08) 
[-.40/-.34] {2995} 

(8) no fixed 
effects 

-.43 (.09) 
[-.46/-.38] {3099} 

-.40 (.08) 
[-.42/-.37] {2970} 

-.48 (.10) 
[-.50/-.42] {2858} 

-.31 (.08) 
[-.32/-.28] {2758} 

heterogeneity in the response of prices and quantities to TFP growth (industry-specific β) 

(9) t-likelihood 
-.53 (.13) 

[-.53/-.51] {5092} 
-.46 (.11) 

[-.51/-.41] {4953} 
-.40 (.14) 

[-.49/-.39] {4740} 
-.32 (.14) 

[-.34/-.27] {4567} 

(10) normal 
likelihood 

-.49 (.24) 
[-.51/-.47] {3878} 

-.44 (.23) 
[-.91/-.40] {3758} 

-.49 (.29) 
[-1.1/-.39] {3590} 

-.39 (.30) 
[-.92/-.32] {3441} 

thick tailed distributions based on normal likelihoods with scaled covariance matrices 

(11) industry 
scaled 

-.47 (.15) 
[-.48/-.28] {5043} 

-.36 (.12) 
[-.37/-.30] {4858} 

-.36 (.14) 
[-.38/-.31] {4645} 

-.30 (.13) 
[-.31/-.14] {4457} 

(12) year 
scaled 

-.45 (.26) 
[-.48/.07] {3838} 

-.43 (.20) 
[-.45/-.17] {3706} 

-.51 (.25) 
[-.55/-.26] {3599} 

-.41 (.23) 
[-.44/.00] {3501} 

(13) industry  
and year scaled 

-.47 (.20) 
[-.48/-.07] {5294} 

-.32 (.13) 
[-.33/-.10] {5137} 

-.34 (.15) 
[-.35/-.10] {4920} 

-.29 (.18) 
[-.31/.04] {4728} 

industry level unemployment controls (unemployment level or change) 

(14) U level 
t-likelihood 

-.46 (.21) 
[-.47/-.35] {4962} 

-.40 (.15) 
[-.41/-.38] {4791} 

-.45 (.19) 
[-.46/-.43] {4639} 

-.40 (.17) 
[-.41/-.37] {4459} 

(15) U change 
t-likelihood 

-.47 (.14) 
[-.47/-.33] {5047} 

-.37 (.12) 
[-.38/-.32] {4927} 

-.39 (.13) 
[-.40/-.35] {4738} 

-.33 (.15) 
[-.36/-.01] {4554} 

(16) U level 
normal likelihood 

-.47 (.36) 
[-.50/.06] {3482} 

-.52 (.27) 
[-.58/-.45] {3352} 

-.66 (.37) 
[-.80/-.55] {3230} 

-.48 (.32) 
[-.50/-.42] {3105} 

(17) U change 
normal likelihood 

-.49 (.25) 
[-.51/-.15] {3730} 

-.49 (.23) 
[-.72/-.44] {3605} 

-.55 (.30) 
[-.87/-.47] {3456} 

-.34 (.17) 
[-.39/-.33] {3365} 

estimation using industry mean data (no lags) 

(18) t - likelihood 
-.46 (.23) 

[-.49/-.38] {348} 
(19) normal likelihood 

-.47 (.14) 
[-.52/-.45] {339} 

   Notes:  Unless otherwise noted, as in Table 3.  {} = ln likelihood.  Scaled (2x2) covariance matrices are 
scalar multiples of each other, as described in the text.   
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those found in the baseline specification in the first row of the table.  Point estimates with the 

normal likelihood, in row 10, all remain negative, as do the min to max delete one bounds, 

but with larger standard errors and coefficients which shrink toward zero with lags, are no 

longer significant at the .05 level with lags.  Relative to the baseline specifications in rows (1) 

and (5) of the table, likelihoods rise by hundreds of points and likelihood ratio tests reject the 

null that all 𝛽
 and 𝛽

 are identical with a p-value that is basically 0,15 but the industry-

specific β are estimated with great imprecision and the implied point estimates of elasticities 

of supply and demand are often negative, so I place preference on the pooled estimates of the 

baseline t-likelihood specification.  Rows 9 and 10 show, however, that heterogeneity in the 

industry level response of price and quantity to total factor productivity growth is not creating 

the spurious appearance of mismeasurement. 

 Rows 11 - 13 of Table 6 consider alternative heavy tailed distributions.  The 

multivariate t is the distribution of a normal vector which on each industry x time draw has its 

covariance matrix multiplied by the inverse square root of an independently drawn chi-

squared variable.  This suggests the possibility of creating a heavy-tailed distribution by 

multiplying the covariance matrix of a multivariate normal vector by only industry, year, or 

industry & year fixed effects, i.e. one in which the covariance matrix for industry i in period t 

equals λi*Σ, λt*Σ, or λi* λt*Σ, with λi and λt suitably normalized to equal 1 in some base 

industry and year.  Maximum likelihood estimation of this model, like that of the t-likelihood, 

easily finds multiple maxima, as coefficient estimates are once again weighted OLS estimates 

based upon covariance matrices whose relative magnitude is in turn determined by the OLS 

residuals.  I follow the procedure used in estimating the multivariate-t: for each possible 

value of the mismeasurement parameter computing a ln-likelihood by setting initial weights 

to 1 and iteratively reweighting until the coefficient and covariance matrix estimates 

converge to a fixed point. 

 As seen in Table 6, results using the normal likelihood with industry and year scaled 

covariance matrices closely resemble those with the multivariate-t.  Point estimates range 

 
15As there are as many coefficients as clusters used in the construction of covariance estimates, Wald 

tests cannot be used to assess the significance of differences in these coefficients. 
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from -.5 to -.3 and, with the exception of year scaling factors combined with 0 or 3 lags, the 

delete-one industry min-max range is consistently negative and t-statistics are greater than 2 

in absolute value.  The 58 estimated industry scaling factors in row 11 are particularly 

important, increasing the unscaled normal likelihood in row 5 by 150 to 200 ln points more 

than the multivariate-t in row 1, while the 20+ year scaling factors in row 12 are less 

effective, having ln likelihoods 800 to 1000 points less than the baseline multivariate-t.  

Estimates for these models, as well as those with industry specific βi
  in row 9, are difficult & 

costly to compute, while bootstrap draws often do not converge,16 so I am unable to evaluate 

the accuracy of these procedures using Monte Carlos.  For this reason the baseline results 

focus on the multivariate-t (with just industry and year fixed effects), which models heavy-

tailed data with a parsimonious number of parameters (one), remaining tractable and 

computable while consistently showing likelihoods 1300 to 1400 ln points above the normal, 

as noted earlier.17   

Changes in capacity utilization with the business cycle or demand shocks create 

mismeasurement of TFP growth, which potentially makes this righthand side variable 

endogenous to quantity and price shocks, biasing the estimates of βP & βX and hence, 

perhaps, the mismeasurement parameter 𝛾.  While the inclusion of year fixed effects offers a 

baseline correction for these forces, the remaining rows of Table 6 address this issue further.  

First, in rows 14 and 16 I add the national unemployment rate interacted with an industry 

indicator to the righthand side, so that the specification (not counting lags of the dependent 

variables) becomes 

(14)  𝑃௧
ெ = 𝛽ൣ𝐴መ௧

ெ + 𝛾൫𝜃௧ − 𝛺௧൯൧ + 𝛾𝜃௧ + 𝛿
𝑈௧ + 𝜂

 + 𝜂௧
 + 𝜀௧

  

 
16For these models, starting with initial weights of 1, about 1/5 of the time (1/3 in some instances) the 

iteratively reweighting procedure generates zero residuals for groups of observations, producing near singular 
covariance matrices whose determinant eventually exceeds machine precision and produces undefined 
likelihoods.  This only happens in about 1 in 100 bootstrap draws with the multivariate-t in the baseline 
specification.  In all tables and Monte Carlos above, bootstrap draws which do not converge are discarded until 
99 convergent draws are found.  For the rare instances when these issues arise in the calculation of the delete-
one industry min-max range, likelihoods that do not converge using the iteratively reweighted concentrated 
likelihood procedure are simultaneously maximized across all parameters, converging to some local maximum. 

17In addition to rows 11 – 13 in Table 6 I have tried the multivariate generalized gaussian distribution 
(Pascal et al 2017), for which the weights are the inverse of the squared Mahalanobis distance alone, without the 
addition of the t degrees of freedom v.  For my heavy tailed data, estimation using this distribution is utterly 
hopeless, as no matter the algorithm used the weights move to infinity for one group of observations or another. 
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    𝑋௧
ெ = 𝛽ൣ𝐴መ௧

ெ + 𝛾൫𝜃௧ − 𝛺௧൯൧ − 𝛾𝜃௧ + 𝛿
𝑈௧ + 𝜂

 + 𝜂௧
 + 𝜀௧

 , 

where Ut is the national unemployment rate and the δi are industry specific responses to the 

business cycle.  Rows 15 and 17 use a similar specification, with the change in the 

unemployment rate, Ut - Ut-1, as the regressor.  These specifications move beyond common 

year fixed effects in removing industry specific business cycle variation from the 

identification of βP & βX .  As seen in the table, the specification with the change in the 

unemployment rate fits the data better (with higher ln likelihoods) and moves the normal 

likelihood point estimates closer to those of the t-likelihood, which however change little 

from the baseline specification with year fixed effects in row (1).  Although standard errors 

increase, absolute t-stats with the t-likelihood remain greater than 2 or 3 and all delete one 

industry min-max ranges are negative.   

Rows 18 and 19 of Table 6 consider a more radical adjustment, running the analysis 

using the 24 year industry averages of the variables, which should eliminate any substantive 

effect from changes in capacity utilization.  Naturally, the industry and year fixed effects are 

dropped, so the specification is 

(15)  𝑃
ெ = 𝛽ൣ𝐴መ

ெ + 𝛾൫𝜃 − 𝛺൯൧ + 𝛾𝜃 + 𝑐 + 𝜀
 

    𝑋
ெ = 𝛽ൣ𝐴መ

ெ + 𝛾൫𝜃 − 𝛺൯൧ − 𝛾𝜃 + 𝑐 + 𝜀
 , 

where cP and cX are constants and all variables are industry averages.  As shown in the table,  

the t- and normal likelihood point estimates are all but identical to their baseline 

specifications, as well as to each other, and despite having only 59 observations, have 

bootstrapped-se based t-stats of -2 and -3.4, respectively.  Shortly below I give evidence that 

point estimates are largely invariant across an enormous range of elasticities of supply and 

demand determining βP & βX, further confirming that they cannot possibly be heavily 

influenced by any bias in βP & βX due to changes in capacity utilization and endogenous total 

factor productivity growth.  

Table 7 below reports the estimated response of intermediate input prices and demand 

(βP and βX) to total factor productivity growth in the baseline, unemployment change 

augmented, industry scaled and industry mean models of Table 6.  One can infer from these    
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Table 7: Estimates of βP and βX and Implied Demand (σ) & Supply (ρ) Elasticities  
(computer & electronics intermediates) 

 baseline model industry scaled 
covariance matrices  t - likelihood normal likelihood 

 no lags 3 lags no lags 3 lags no lags 3 lags 

βP 
-.19 (.05) 
[-.21/-.17] 

-.22 (.07) 
[-.25/-.19] 

-.44 (.21) 
[-.50/-.20] 

-.40 (.18) 
[-.46/-.20] 

-.18 (.05) 
[-.21/-.17] 

-.21 (.07) 
[-.23/-.18] 

βX 
.46 (.08) 
[.43/.50] 

.60 (.16) 
[.50/.65] 

.68 (.21) 
[.60/.76] 

.68 (.20) 
[.58/.77] 

.55 (.15) 
[.50/.64] 

.64 (.16) 
[.59/.72] 

σ 
2.5 (.81) 
[2.3/2.7] 

2.8 (2.2)  
[2.5/3.2] 

1.5 (1.7) 
[1.3/3.7] 

1.7 (1.5)  
[1.3/3.6] 

3.0 (.91) 
[2.7/3.3] 

3.1 (1.6) 
[2.9/3.6] 

ρ 
.57 (.11) 
[.53/.62] 

.77 (.21) 
[.62/.83] 

1.2 (2.1) 
[.92/1.5] 

1.1 (.67) 
[.93/1.4] 

.67 (.20) 
[.61/.80] 

.81 (.24) 
[.75/.93] 

 unemployment change controls industry means 

 t - likelihood normal likelihood 
t - likelihood 

normal 
likelihood  no lags 3 lags no lags 3 lags 

βP 
-.16 (.05) 
[-.18/-.15] 

-.20 (.06) 
[-.26/-.18] 

-.42 (.19) 
[-.48/-.21] 

-.48 (.22) 
[-.57/-.25] 

-.89 (.26) 
[-.96/-.81] 

-.66 (.18) 
[-.81/-.60] 

βX 
.46 (.09) 
[.42/.52] 

.81 (.14) 
[.54/.84] 

.60 (.19) 
[.51/.68] 

.61 (.18) 
[.52/.70] 

1.5 (.55) 
[1.2/1.6] 

1.0 (.47) 
[.87/1.2] 

σ 
2.8 (1.0) 
[2.6/3.1] 

4.1 (1.9) 
[2.1/4.5] 

1.4 (1.1) 
[1.1/3.2] 

1.3 (1.1)  
[1.1/2.7] 

1.7 (1.1) 
[1.4/1.8] 

1.5 (.77) 
[1.3/1.8] 

ρ 
.55 (.11) 
[.50/.63] 

1.0 (.19) 
[.70/1.1] 

1.0 (.82) 
[.82/1.3] 

1.2 (1.8) 
[.91/1.6] 

14.2 (49.7) 
[6.6/34.4] 

3.8 (13.5) 
[2.2/6.5] 

   Notes:  Results for models estimated in rows of Table 6 above: baseline (1 & 5), industry scaled (11), 
unemployment change controls (15 & 17), & industry means (18 & 19).  Otherwise, as in Table 3.   

the elasticities of relative demand (σ) and supply (ρ), as σ = - βX/βP  and, under the assumption 

that total factor productivity growth shifts the supply curve down one for one,  ρ = βX/(1+ βP).  

Where 3 lags of the left hand side variables are included in the estimating equation, I report 

the estimated long run response of price and quantity to total factor productivity growth, 

equal to (I2-L1-L2-L3)-1β, were the Ll are the 2x2 matrices of coefficients on lags of order l of 

the dependent variables and I2 is the 2x2 identity matrix.  The reported elasticities in this case 

are those implied by these long run responses to total factor productivity growth. 

As seen in the table, estimated elasticities of demand using industry x year data range 

from 1.3 to 4.1, while elasticities of supply range from .6 to 1.2.  Point estimates with 

multivariate normal likelihoods are lower for the elasticity of demand and higher for the 

elasticity of supply than those with t-likelihoods or with industry scaled covariances, but 

standard errors are sufficiently large that all estimates aren’t meaningfully different from each 

other.  Industry mean data for 1997-2021 find much flatter industry relative supply curves, 
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with a t-likelihood supply elasticity of 14.2 and normal likelihood supply elasticity of 3.8, but 

with only 59 observations and standard errors of 50 and 14, respectively, these are not 

meaningfully different from the other results or indeed relatively extreme alternatives. 

 There are relatively few empirical estimates of the elasticity of relative demand or 

supply between industry classifications such as are used in this paper.  Using the annual BEA 

input output data and military expenditures as an instrument, Atalay (2017) finds an elasticity 

of substitution across industries of .2 or less, while Miranda-Pinto (2021) using the same data 

and instrument finds an elasticity of substitution across industry inputs of 0 in manufacturing 

and .5 in services.  In contrast, Peter and Ruane (2025), using India’s trade liberalization as a 

natural experiment, find an elasticity of substitution across industry groups in that country of 

2.5 over a seven year horizon, which is in line with what is found in this paper.  As shown by 

the much higher ln likelihood of the specification with heterogeneity in βP and βX in Table 6 

earlier, there is considerable cross industry heterogeneity in σ and ρ, and hence variation 

induced by changes in military expenditures, which only impacts certain industries, may not 

yield an estimate that is representative of average industry level elasticities.  The estimates 

given in this paper treat total factor productivity growth as a broad instrument and, as shown 

in Table 6, do not change when adjustments for endogeneity due to business cycle capacity 

utilization are made.  Nevertheless, to further address concerns about the possible impact of 

bias in the estimation of the demand and supply elasticities, Table 8 estimates the 

mismeasurement parameter across the whole range of possible elasticities.  

Specifically, Table 8 estimates the baseline model (9) for computer and electronics 

 intermediates using the t-likelihood with “known” values of the elasticity of relative demand 

(σ) and supply (ρ), and by implication known values of βP and βX.  I consider values of σ and 

ρ equal to 0, .25, .5, .75, 1, 2, 5, 10, 1000, and 100000, which should run the gamut of 

possible priors, and estimate the mismeasurement parameter for all possible binary 

combinations of these,18 as well as all three lag structures.  As can be seen, the estimated 

mismeasurement parameter remains solidly negative across all possibilities within each lag 

structure.  Moreover, for elasticities of demand less than or equal to .50, the estimates hardly 
 

18Except σ=ρ=0, when the supply and demand curves are both vertical and the model is unidentified. 
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Table 8: Estimated Computer & Electronics Intermediates Mismeasurement  
Parameters for Different “Known” Values of σ and ρ (t-likelihood) 

by ρ: 0 .25 .50 .75 1 2 5 10 1000 100000 
by σ no lags 

0 
.25 
.50 
.75 
1 
2 
5 
10 

1000 
100000 

 
-.48# 
-.48# 
-.48# 
-.48# 
-.48# 
-.48# 
-.48# 
-.48# 
-.48# 

-.45 
-.47# 
-.48# 
-.49# 
-.49# 
-.49# 
-.50# 
-.50# 
-.49# 
-.49# 

-.45 
-.47 
-.48# 
-.49# 
-.49# 
-.50# 
-.51# 
-.52# 
-.52# 
-.52# 

-.45 
-.47# 
-.47# 
-.48* 
-.49* 
-.50* 
-.53* 
-.54* 
-.55* 
-.55* 

-.45# 
-.47# 
-.47# 
-.48* 
-.48* 
-.50* 
-.53* 
-.56* 
-.60* 
-.60* 

-.45 
-.47 
-.48 
-.48# 
-.48# 
-.48# 
-.49* 
-.52# 
-.54# 
-.54# 

-.45 
-.47 
-.48 
-.49 
-.49 
-.49 
-.48# 
-.48* 
-.48* 
-.48* 

-.45# 
-.47# 
-.48 
-.49# 
-.49# 
-.51# 
-.48* 
-.48* 
-.48* 
-.48* 

-.45# 
-.47# 
-.48# 
-.49# 
-.50 
-.51 
-.48# 
-.47* 
-.46* 
-.46* 

-.45 
-.47 
-.48 
-.49 
-.50 
-.51 
-.48# 
-.47# 
-.46# 
-.46# 

 1 lag 
0 

.25 

.50 

.75 
1 
2 
5 
10 

1000 
100000 

 
-.44* 
-.44* 
-.44* 
-.44* 
-.44* 
-.44* 
-.44* 
-.44* 
-.44* 

-.35 
-.37 
-.43# 
-.44# 
-.44# 
-.44# 
-.44# 
-.43# 
-.43# 
-.43# 

-.35 
-.35 
-.37 
-.41 
-.43# 
-.44# 
-.43* 
-.42* 
-.41* 
-.41* 

-.35 
-.34 
-.35 
-.37 
-.40# 
-.43* 
-.42* 
-.41* 
-.39* 
-.39* 

-.35 
-.34 
-.35 
-.36 
-.37 
-.41* 
-.41* 
-.39* 
-.38* 
-.38* 

-.35 
-.35 
-.34 
-.35 
-.35 
-.36 
-.35# 
-.36# 
-.40* 
-.40* 

-.35 
-.35 
-.35 
-.35 
-.35 
-.34 
-.35 
-.37# 
-.37* 
-.37* 

-.35 
-.35 
-.36 
-.36 
-.36 
-.35 
-.33 
-.33# 
-.34* 
-.34* 

-.35 
-.36 
-.36 
-.36 
-.37 
-.36 
-.34 
-.34# 
-.35# 
-.35# 

-.35 
-.36 
-.36 
-.36 
-.37 
-.36 
-.34 
-.34 
-.35# 
-.35# 

 2 lags 
0 

.25 

.50 

.75 
1 
2 
5 
10 

1000 
100000 

 
-.45# 
-.45# 
-.45# 
-.45# 
-.45# 
-.45# 
-.45# 
-.45# 
-.45# 

-.40 
-.43 
-.45 
-.47# 
-.47# 
-.47# 
-.46# 
-.46# 
-.45# 
-.45# 

-.40 
-.41 
-.43 
-.43 
-.45# 
-.47# 
-.46* 
-.46# 
-.45# 
-.45# 

-.40 
-.43 
-.43 
-.43 
-.43 
-.47* 
-.46* 
-.45* 
-.43* 
-.43* 

-.40 
-.42 
-.43 
-.43 
-.43 
-.43# 
-.46* 
-.44* 
-.41* 
-.41* 

-.40 
-.41 
-.44 
-.44 
-.44 
-.42 
-.40# 
-.40# 
-.46* 
-.46* 

-.40 
-.41 
-.43 
-.45 
-.46 
-.45 
-.44 
-.44# 
-.45* 
-.45* 

-.40 
-.41 
-.43 
-.44 
-.46 
-.48 
-.45 
-.45# 
-.44* 
-.44* 

-.40 
-.41 
-.43 
-.45 
-.47 
-.47 
-.43 
-.42# 
-.41# 
-.41# 

-.40 
-.41 
-.43 
-.45 
-.47 
-.47 
-.43 
-.42# 
-.41# 
-.41# 

 3 lags 
0 

.25 

.50 

.75 
1 
2 
5 
10 

1000 
100000 

 
-.27 
-.27 
-.27 
-.27 
-.27 
-.27 
-.27 
-.27 
-.27 

-.32 
-.33 
-.34# 
-.34# 
-.33# 
-.31# 
-.28 
-.27 
-.26 
-.26 

-.32 
-.33 
-.33 
-.35 
-.35 
-.35# 
-.31# 
-.27# 
-.24 
-.24 

-.32 
-.32 
-.33 
-.34 
-.35# 
-.36* 
-.35* 
-.33# 
-.28# 
-.28# 

-.32 
-.31 
-.33 
-.34# 
-.35 
-.37* 
-.38* 
-.36* 
-.32* 
-.32* 

-.32 
-.32 
-.32 
-.34 
-.34 
-.36 
-.37# 
-.39* 
-.36# 
-.36# 

-.32 
-.32 
-.33 
-.33 
-.34 
-.32 
-.34 
-.33# 
-.35# 
-.35# 

-.32 
-.32 
-.33 
-.34 
-.35 
-.34 
-.30 
-.34 
-.34# 
-.34# 

-.32 
-.32 
-.33 
-.35 
-.37 
-.37 
-.29 
-.33 
-.32# 
-.32# 

-.32 
-.32 
-.33 
-.35 
-.37 
-.37 
-.29 
-.33 
-.32# 
-.32# 

   Notes: results based upon (9) augmented with lags as in (12), with the exception that βP and βX are not 
estimated, but rather taken as given by the values implied by σ and ρ.  Absolute value of t-statistic (*) greater 
than 3; (#) greater than 2. 
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vary at all from those of the baseline results, ranging from -.48 to -.45 with no lags and from 

-.34 to -.27 with 3 lags across all elasticities of supply.  Thus, while the point estimates of the 

elasticity of substitution underlying the results above are more similar to those of Peter and 

Ruane (2025) than those of Atalay (2017) and Miranda-Pinto (2021), the estimate of the 

mismeasurement parameter would be virtually identical if the reader were to impose a value 

of σ equal to the point estimates of Atalay & Miranda-Pinto and any value of ρ they like.19 

That said, it is not the case that the estimates of the elasticities & β’s do not matter.  

The reader will note that many of the point estimates in Table 8, when evaluated using the 

bootstrap-se standard error, do not have absolute t-statistics larger than 3 or even 2 (denoted 

by * and #, respectively), despite the fact that the baseline estimates in row 1 of Table 6 have 

absolute t-statistics of 4 or 3.  This stems from the significant cross-industry heterogeneity in 

the β’s (and by implication σ’s and ρ’s) found in the model of rows 9 and 10 of Table 6.  

When the β’s are taken as unknown, the estimated values vary with each bootstrap sample of 

industries, and this limits the variation in the estimate of the mismeasurement parameter, 

which stays relatively constant across subsamples.  In contrast, when the β’s are taken as 

known and fixed across industry samples, greater variation in the estimate of the 

mismeasurement parameter emerges.  t-statistics of -4.1, -3.4, -3.3, and -3.2 with 0 through 3  

lags in the baseline estimates of row 1 of Table 6, which allow β to vary across bootstrap 

samples, become -2.6, -2.8, -3.3, and -2.7, respectively, if one takes the point estimates of βP 

and βX found in each specification and imposes it on the subsequent bootstrap.20 

 To summarize, the results above show that movements of intermediate input price and 

non-own-use quantity demanded, net of movements implied by total factor productivity 

growth in the intermediate input producing industry, vary systematically with the share of 

computer and electronics inputs in an industry’s cost structure.  This result is robust to the use 

of alternative normal or thick tailed likelihoods and multiple lags of the dependent variables.  

 
19The on-line appendix presents a similar table using the normal likelihood, finding that the estimate of 

the mismeasurement parameter is always solidly negative and for σ < .5 ranges from -.46 to -.41 with 0 lags and 
from -.44 to -.33 with 3 lags. 

20 Similarly, with normal likelihood estimation, t-stats of -2.2, -2.1, -1.9, -2.3 in the baseline specification 
with 0 through 3 lags become -1.8, -1.4, -1.7, and -1.9, respectively, if the point estimates of the β found in each 
specification are imposed on the subsequent bootstrap. 
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It is found with industry and year fixed effects (using within industry variation) and when 

estimated across industry means alone (using cross industry variation).  It is robust to deleting 

individual industries from the sample, so it is not determined by any industry.  It is robust to 

allowing heterogeneity across intermediate input producing industries in the response of price 

and quantity demanded to total factor productivity growth; in fact, heterogeneity in the 

elasticities plays an important role in the bootstrap, as the mismeasurement estimate varies 

less when the average sample response to total factor productivity growth is allowed to vary 

across industry samples.  It is not driven by any bias due to endogeneity of total factor 

productivity growth through capacity utilization mismeasurement, as the result is robust to 

adjustments for business cycle variation and, furthermore, holds for long run industry 

averages, where capacity utilization is hardly relevant.  Finally, the point estimates are stable 

across the full range of possible elasticity of demand and supply combinations, although, as 

already noted, bootstrapped significance depends upon acknowledging that the average 

sample elasticity does vary with the industries considered.  Put simply, the greater the input 

share of computer and electronics inputs, the more price and quantity growth deviates from 

predicted values based upon measured total factor productivity growth.  No such robust 

relationship is found for any other input. 

V.  Confirmatory Evidence from TFP Growth Projected on Factor Shares 

The variation underlying the preceding results is admittedly difficult to intuit.  At the 

 least squares solution which maximizes each likelihood, the “regressors” are the derivatives 

of the non-linear equations with respect to each parameter:  

(16)  
𝜕𝑃௧

ெ

𝜕𝛽
= 𝐴መ௧

ெ + 𝛾൫𝜃௧ − 𝛺௧൯,  
𝜕𝑃௧

ெ

𝜕𝛾
= 𝛽൫𝜃௧ − 𝛺௧൯ + 𝜃௧  

           
𝜕𝑋௧

ெ

𝜕𝛽
= 𝐴መ௧

ெ + 𝛾൫𝜃௧ − 𝛺௧൯,  
𝜕𝑋௧

ெ

𝜕𝛾
= 𝛽൫𝜃௧ − 𝛺௧൯ − 𝜃௧ . 

Thus, at the point estimates, the mismeasurement parameter is determined by the variation of 

𝛽൫𝜃௧ − 𝛺௧൯ ± 𝜃௧  with 𝑃௧
ெ & 𝑋௧

ெ that is orthogonal to unobserved true total factor 

productivity growth 𝐴መ௧
ெ + 𝛾൫𝜃௧ − 𝛺௧൯.  Unfortunately, little credibility is likely to be 

gained by pointing readers to variation that is orthogonal to constructed variation.  One might 
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be tempted to gain some insight by regressing 𝑃௧
ெ & 𝑋௧

ெ on 𝐴መ௧
ெ, 𝜃௧ and 𝛺௧, but this is 

senseless, because the whole point of mismeasurement is that it affects 𝐴መ௧
ெ, so not much can 

credibly be learnt from variation of factor shares that is orthogonal to measured total factor 

productivity growth.  

 We can, instead, look for confirmation in variation in factor shares that is not 

orthogonal to measured total factor productivity growth.  Specifically, consider running 

measured total factor productivity growth on own and upstream factor shares plus industry & 

year fixed effects 

(17)  𝐴መ௧
ெ = 𝛽ఏ𝜃௧ + 𝛽ఆ𝛺௧ + 𝜂

 + 𝜂௧
 + 𝜀௧. 

The mismeasurement model predicts that 𝛽ఏ = −𝛽ఆ(= −𝛾), mismeasurement of what users 

accomplish with computer inputs should result in opposite effects on measured productivity 

growth in users of users.  While proponents of the benefits associated with computer related 

inputs would expect to find a positive coefficient on own factor shares 𝜃௧, non-zero effects 

of the opposite sign on the concatenated computer factor shares of upstream industries 

𝛺௧ are hard to explain as a benefit of computer use.  If the mismeasurement model is true, 

efficiency can be gained by imposing the constraint  𝛽ఏ = −𝛽ఆ and estimating 

(18)  𝐴መ௧
ெ = 𝛽ఏିఆ൫𝜃௧ − 𝛺௧൯ + 𝜂

 + 𝜂௧
 + 𝜀௧. 

Table 9 below reports such estimates for computer capital and intermediate inputs, 

augmented with 0, 1 or 2 lags of total factor productivity growth on the righthand side.21  

Reported coefficients with lags are the long run effect on TFP growth, i.e. the estimated 

effect divided by 1 minus the sum of lag coefficients.  Also reported are results using industry 

mean data and just constant terms and factor shares as regressors.  Standard errors are based 

upon the bootstrap-se with industry clustered draws. 

As seen in the table, the results for computer & electronics intermediates are 

consistent with the mismeasurement model, albeit with somewhat more imprecision and 

higher p-values than found with systems estimation earlier.  The coefficients on 𝜃௧ are all  
  

 
21Using normal and t-likelihoods a 3rd lag is estimated to have a near zero coefficient of .012 & .007 and 

bootstrap-se p-values of .807 & .857, respectively, while the normal likelihood finds .05 level bootstrap-se 
significant 1st and 2nd lag coefficients of -.17 to -.13 in specifications with 1 through 3 lags, while the t-
likelihood finds .05 significant 1st lags of -.06 to -.08 in similar specifications. 
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Table 9: Measured Total Factor Productivity Growth Projected on Computer Input Shares 

 normal likelihood t likelihood 

 means no lags 1 lag 2 lags Means no lags 1 lag 2 lags 

 computer hardware capital 

βθ 
-.03 (.25) 
[-.17/.11] 

-.26 (.22) 
[-.30/.02] 

-.31 (.25) 
[-.36/-.03] 

-.50 (.38) 
[-.57/-.35] 

-.15 (.31) 
[-.32/.17] 

-.28 (.27) 
[-.33/-.04] 

-.48 (.35) 
[-.55/-.38] 

-.60 (.43) 
[-.76/-.38] 

βΩ 
.39 (1.2) 
[-.11/1.1] 

-1.8 (2.5) 
[-2.5/.54] 

-2.9 (2.5) 
[-3.9/-.75] 

-3.7 (2.3) 
[-4.9/-2.1] 

.48 (1.2) 
[-.13/.91] 

1.7 (1.8) 
[.53/2.4] 

1.9 (1.7) 
[.87/2.3] 

.38 (1.5) 
[-.29/.91] 

βθ = -βΩ .746 .401 .185 .068 .755 .405 .383 .885 

βθ-Ω 
-.02 (.25) 
[-.17/.11] 

-.23 (.28) 
[-.29/.06] 

-.27 (.32) 
[-.34/.05] 

-.45 (.45) 
[-.52/-.28] 

-.12 (.29) 
[-.30/.17] 

-.28 (.30) 
[-.35/-.02] 

-.49 (.36) 
[-.57/-.40] 

-.59 (.41) 
[-.75/-.38] 

 computer software capital 

βθ 
.15 (.17) 
[.08/.20] 

.07 (.20) 
[.02/.15] 

.13 (.21) 
[.07/.22] 

.02 (.27) 
[-.05/.18] 

.10 (.11) 
[.02/.11] 

.04 (.30) 
[-.05/.21] 

-.08 (.52) 
[-.20/.24] 

-.05 (.45) 
[-.24/.23] 

βΩ 
-.34 (.63) 
[-.52/.10] 

.48 (.63) 
[.16/.69] 

.13 (.68) 
[-.23/.36] 

-.14 (.75) 
[-.55/.07] 

-.27 (.47) 
[-.35/.04] 

.18 (1.0) 
[-.53/.86] 

.29 (1.1) 
[-.60/.64] 

-.16 (1.1) 
[-.91/.28] 

βθ = -βΩ .772 .321 .666 .862 .681 .799 .773 .791 

βθ-Ω 
.13 (.14) 
[.08/.17] 

.07 (.21) 
[.02/.15] 

.13 (.22) 
[.06/.22] 

.02 (.26) 
[-.05/.17] 

.08 (.10) 
[.01/.10] 

.04 (.32) 
[-.04/.19] 

-.07 (.52) 
[-.19/.23] 

-.05 (.44) 
[-.24/.23] 

 computer & electronics intermediates 

βθ 
.53 (.23) 
[.47/.59] 

.68 (.33) 
[.59/.85] 

.67 (.32) 
[.58/.84] 

.67 (.31) 
[.46/.78] 

.52 (.17) 
[.32/.58] 

.56 (.27) 
[.51/.68] 

.57 (.25) 
[.52/.66] 

.62 (.26) 
[.48/.68] 

βΩ 
-.92 (.61) 
[-1.2/-.63] 

-1.4 (.75) 
[-1.9/-1.1] 

-1.3 (.78) 
[-1.8/-1.0] 

-1.3 (.72) 
[-1.7/-1.1] 

-.87 (.47) 
[-1.2/-.44] 

-.92 (.54) 
[-1.1/-.75] 

-.96 (.52) 
[-1.2/-.79] 

-1.1 (.60) 
[-1.3/-.86] 

βθ = -βΩ .321 .185 .235 .219 .260 .345 .309 .268 

βθ-Ω 
.42 (.10) 
[.29/.43] 

.36 (.28) 
[.35/.55] 

.36 (.27) 
[.35/.59] 

.35 (.23) 
[.29/.37] 

.42 (.10) 
[.25/.43] 

.40 (.26) 
[.39/.57] 

.39 (.24) 
[.38/.58] 

.43 (.22) 
[.35/.44] 

 computer systems design intermediates 

βθ 
.41 (.28) 
[.32/.54] 

-.50 (1.1) 
[-.77/.27] 

-.76 (.99) 
[-1.0/-.05] 

-.87 (.91) 
[-1.2/-.36] 

.34 (.32) 
[.15/.51] 

.46 (1.3) 
[.00/1.6] 

.34 (1.3) 
[-.15/1.6] 

.11 (1.2) 
[-.30/1.3] 

βΩ 
-.19 (.96) 
[-.48/.07] 

.20 (2.5) 
[-1.2/1.1] 

-.44 (2.4) 
[-1.7/.16] 

-.85 (2.8) 
[-2.4/-.18] 

-.29 (.72) 
[-1.0/-.06] 

-1.9 (2.9) 
[-3.1/-.53] 

-2.0 (2.3) 
[-3.1/-.95] 

-1.9 (1.9) 
[-3.0/-1.2] 

βθ = -βΩ .817 .895 .615 .535 .948 .578 .387 .274 

βθ-Ω 
.40 (.27) 
[.31/.53] 

-.51 (1.1) 
[-.75/.26] 

-.77 (.99) 
[-1.0/-.05] 

-.89 (.89) 
[-1.1/-.35] 

.33 (.29) 
[.17/.49] 

.46 (1.3) 
[.07/1.6] 

.38 (1.3) 
[-.04/1.7] 

.14 (1.1) 
[-.24/1.3] 

   Notes:  Estimating equations as in (17) for βθ & βΩ and (18) for βθ-Ω, with a constant term for industry means 
specification, or industry & year fixed effects plus indicated number of lags of TFP growth otherwise.  59 
observations with industry means, 1416 minus number of lags*59 otherwise.  Bootstrap-se standard errors in () 
based upon 99 industry-clustered draws; min-max delete-one industry coefficient range in [].  βθ = - βΩ: p-value 
of the test based upon bootstrap-se covariance matrix & chi2 distribution. 

positive with t-stats of between 2 and 3, the coefficients on 𝛺௧ are all negative with t-stats of 

between -1.5 and -2, and the delete-one-industry min to max ranges for the two coefficients 

are positive to positive and negative to negative, respectively, across all likelihoods and lag 

orders.  The restriction 𝛽ఏ = −𝛽ఆ is not rejected and point estimates of 𝛽ఏିఆ found when the 
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constraint is imposed are very similar to those found for -𝛾 earlier above, ranging between 

.35 and .43 across the normal and t-likelihoods with various lags, and between .25 and .59 

across all min to max delete-one-industry ranges.  In contrast, for the other computer inputs, 

while the restriction 𝛽ఏ = −𝛽ఆ is also not rejected, we find that the point estimates of 

𝛽ఏ& 𝛽ఆ are of the same sign in a few specifications and these, along with 𝛽ఏିఆ, vary in sign 

across the min-max delete-one-industry range.  In fact, when these same specifications are 

run across all 59 input-output intermediate inputs and 14 BEA total factor productivity input 

shares described earlier above, computer & electronics intermediates are one of only three for 

which the signs of 𝛽ఏ& 𝛽ఆ are opposite and, along with 𝛽ఏିఆ, do not vary across 

specifications, and the only across all 73 inputs for which the signs of 𝛽ఏ, 𝛽ఆ  & 𝛽ఏିఆ do not 

vary in any delete-one-industry min-max range for any of the eight normal and t-likelihood 

specifications of Table 9.  The computer & electronics intermediates results, while not always 

statistically significant, are unique in the robustness of their sign (and even their magnitude, 

as seen in the table) to the likelihood and lag specification and delete-one-industry range. 

Table 10 runs some of the same specification checks considered earlier for computer 

& electronics intermediates.  We see that when the regressions are run without industry, year, 

or industry and year fixed effects the estimated values of 𝛽ఏିఆ, with the constraint  𝛽ఏ =

−𝛽ఆ imposed, change little from what is found with both fixed effects in Table 9, with point 

estimates from .39 to .43 and a delete-one-industry min to max range of .31 to .51 across both 

likelihoods and three lag structures.  Without industry or industry and year fixed effects, the 

point estimates and min-max delete-one-industry ranges of 𝛽ఏ and 𝛽ఆ are always positive 

and negative respectively.  However, as in the case of systems estimation earlier, the year 

fixed effects do play a greater role in the results, as without these the t-stats on 𝛽ఏିఆ fall 

below 2 and the estimated values of 𝛽ఆ turn positive.  As argued earlier, controlling for 

business cycle mismeasurement and variation with year fixed effects seems reasonable.  

Additional controls for industry specific business cycle responses through industry specific 

unemployment controls, in the bottom panels of the table, have no substantive effects on the 

baseline estimates with year fixed effects, as was the case with systems estimation earlier. 
  



39 

 
Table 10: Specification Checks: Measured Total Factor Productivity Growth  

Projected on Computer & Electronics Intermediate Input Shares 
 normal likelihood t likelihood 

 no lags 1 lag 2 lags no lags 1 lag 2 lags 

 no industry fixed effects 

βθ 
.55 (.14) 
[.53/.60] 

.55 (.16) 
[.53/.65] 

.55 (.17) 
[.53/.64] 

.52 (.17) 
[.50/.63] 

.52 (.19) 
[.51/.67] 

.53 (.20) 
[.50/.68] 

βΩ 
-1.0 (.34) 
[-1.2/-.93] 

-.97 (.37) 
[-1.2/-.91] 

-1.0 (.39) 
[-1.2/-.89] 

-.90 (.40) 
[-1.2/-.76] 

-.90 (.42) 
[-1.2/-.79] 

-.95 (.48) 
[-1.3/-.70] 

βθ = -βΩ .036 .055 .060 .123 .129 .179 

βθ-Ω 
.41 (.08) 
[.31/.42] 

.42 (.08) 
[.36/.43] 

.42 (.09) 
[.35/.44] 

.41 (.08) 
[.34/.43] 

.42 (.08) 
[.37/.43] 

.43 (.10) 
[.37/.45] 

 no year fixed effects 

βθ 
.40 (.31) 
[.33/.49] 

.39 (.30) 
[.31/.50] 

.37 (.31) 
[.21/.44] 

.25 (.26) 
[.16/.40] 

.19 (.26) 
[.11/.40] 

.18 (.26) 
[.02/.33] 

βΩ 
-.44 (.58) 
[-.59/-.23] 

-.39 (.55) 
[-.57/-.15] 

-.33 (.54) 
[-.53/-.02] 

.08 (.38) 
[-.06/.36] 

.34 (.38) 
[.19/.60] 

.52 (.54) 
[.28/1.1] 

βθ = -βΩ  .933 .994 .919 .208 .039 .062 

βθ-Ω 
.39 (.28) 
[.38/.49] 

.39 (.27) 
[.39/.51] 

.39 (.27) 
[.22/.40] 

.41 (.26) 
[.41/.45] 

.42 (.25) 
[.42/.45] 

.45 (.22) 
[.37/.46] 

 no year or industry fixed effects 

βθ 
.48 (.14) 
[.40/.50] 

.49 (.15) 
[.45/.50] 

.49 (.15) 
[.45/.51] 

.46 (.13) 
[.42/.48] 

.45 (.14) 
[.43/.46] 

.46 (.16) 
[.42/.48] 

βΩ 
-.71 (.32) 
[-.81/-.58] 

-.70 (.33) 
[-.76/-.61] 

-.72 (.33) 
[-.80/-.59] 

-.61 (.31) 
[-.68/-.42] 

-.56 (.32) 
[-.62/-.40] 

-.59 (.37) 
[-.66/-.30] 

βθ = -βΩ .247 .283 .248 .444 .586 .606 

βθ-Ω 
.41 (.08) 
[.31/.43] 

.42 (.08) 
[.35/.43] 

.42 (.09) 
[.35/.44] 

.42 (.08) 
[.33/.43] 

.42 (.08) 
[.36/.44] 

.43 (.10) 
[.36/.45] 

 both fixed effects with additional industry specific unemployment levels controls 

βθ 
.76 (.38) 
[.66/.96] 

.77 (.37) 
[.68/.99] 

.77 (.36) 
[.52/.93] 

.57 (.31) 
[.38/.62] 

.57 (.33) 
[.25/.63] 

.66 (.33) 
[.27/.74] 

βΩ 
-1.6 (.77) 
[-2.2/-1.4] 

-1.7 (.83) 
[-2.3/-1.4] 

-1.7 (.79) 
[-2.2/-1.4] 

-.98 (.62) 
[-1.2/-.77] 

-1.0 (.61) 
[-1.2/-.65] 

-1.2 (.67) 
[-1.5/-.89] 

βθ = -βΩ .098 .126 .125 .376 .316 .239 

βθ-Ω 
.34 (.33) 
[.33/.53] 

.34 (.31) 
[.33/.52] 

.35 (.27) 
[.34/.37] 

.37 (.30) 
[.27/.38] 

.38 (.30) 
[.16/.39] 

.44 (.26) 
[.18/.45] 

 both fixed effects with additional industry specific unemployment changes controls 

βθ 
.64 (.34) 
[.52/.80] 

.61 (.33) 
[.51/.78] 

.60 (.33) 
[.26/.71] 

.49 (.23) 
[.35/.54] 

.48 (.24) 
[.37/.56] 

.54 (.31) 
[.27/.59] 

βΩ 
-1.2 (.79) 
[-1.7/-.91] 

-1.2 (.84) 
[-1.7/-.85] 

-1.2 (.79) 
[-1.5/-.87] 

-.73 (.51) 
[-.91/-.58] 

-.74 (.54) 
[-1.0/-.57] 

-.92 (.68) 
[-1.1/-.64] 

βθ = -βΩ .266 .345 .332 .538 .537 .460 

βθ-Ω 
.35 (.25) 
[.33/.35] 

.35 (.23) 
[.34/.38] 

.34 (.23) 
[.10/.35] 

.37 (.22) 
[.24/.38] 

.37 (.21) 
[.29/.38] 

40 (.26) 
[.14/.41] 

   Notes:  Industry specific unemployment controls as in (14) earlier.  Otherwise, as in Table 9. 
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In sum, when measured total factor productivity growth is projected on computer and 

electronics intermediates expenditure shares, it is robustly positively correlated with own 

expenditure on those inputs and negatively correlated with upstream expenditure on those 

inputs.  Moreover, when the mismeasurement constraint is imposed on the coefficients of this 

regression, the combined point estimate is very close to that found in the earlier price and 

quantity regressions.   

VI.  Summary 

In the above, the coefficient 𝛽ఏିఆ found when projecting measured productivity 

growth  𝐴መ௧
ெ on own minus concatenated upstream factor shares  𝜃௧ − 𝛺௧, for j = computer 

& electronics intermediates, is very close to the negative of the mismeasurement parameter 

𝛾  that adjusts prices and downstream intermediate input demand quantities, 𝑃௧
் =  𝑃௧

ெ −

𝛾𝜃௧ & 𝑋௧
் = 𝑋௧

ெ + 𝛾𝜃௧, to make their relation to adjusted productivity growth 𝐴መ௧
் =

𝐴መ௧
ெ + 𝛾൫𝜃௧ − 𝛺௧൯ consistent across varying levels of use 𝜃௧ and use of users 𝛺௧.  Thus, 

putting each estimate into the equations of the other, if 𝛽ఏିఆ adjusted price & quantity 

 (𝑃௧
ெ + 𝛽ఏିఆ𝜃௧ & 𝑋௧

ெ − 𝛽ఏିఆ𝜃௧) are projected on 𝛽ఏିఆ adjusted productivity 

[𝐴መ௧
ெ − 𝛽ఏିఆ൫𝜃௧ − 𝛺௧൯], the relationship requires no further adjustment to be consistent 

across levels of  𝜃௧ & 𝛺௧, while if  𝛾 adjusted productivity growth [𝐴መ௧
ெ + 𝛾൫𝜃௧ − 𝛺௧൯] 

is projected on 𝜃௧ & 𝛺௧, no significant productivity effects are found from the use of 

computer inputs. Two completely different estimation methodologies, using different 

dependent variables and identification from completely different variation, give roughly the 

same answer: productivity growth attributable to computer & electronics intermediates is 

overestimated by about .3 to .4 per percentage expenditure on those inputs.  These results are 

robust to a broad range of likelihood, specification and sample changes. 

Table 11 reports the 1997-2021 mismeasurement adjustments of BEA industry level 

gross output and value added growth based upon the estimated  -.33 mismeasurement rate of 

computer and electronics intermediates factor augmenting productivity growth found in the 

baseline specification with 3 lags in Table 3 earlier.22  As one might expect, the largest    
 

22The adjustment of output growth is -.33θjit, while the adjustment of value added growth is -.33*(θjit-Ωjit) 
times the ratio of gross output to value added. 



41 

Table 11: Average Annual Mismeasurement Adjustment 1997-2021 by Industry 
 measured growth adjustment 

 gross 
output 

value 
added 

gross 
output 

value 
added 

computer & electronic products .041 .107 -.051 -.080 

other transportation equipment .011 .017 -.018 -.023 

motor vehicles, bodies & trailers & parts .015 .031 -.010 -.018 

electrical equipment, appliances & components -.008 .005 -.010 -.014 

machinery -.001 .008 -.007 -.009 

broadcasting & telecommunications .041 .051 -.007 -.008 

fabricated metal products -.004 -.002 -.005 -.007 

computer systems design & related services .068 .089 -.005 -.005 

⁞  ⁞ ⁞ ⁞ ⁞ 

support activities for mining .033 .042 .000 .001 

farms .011 .015 .000 .001 

mining, except oil & gas -.011 -.008 .000 .001 

pipeline transportation .008 .049 .000 .001 

securities, commodity contracts & investments .034 .021 .000 .002 

apparel, leather & allied products -.067 -.046 .000 .002 

food services & drinking places .022 .015 .000 .002 

water transportation .000 .011 .000 .006 

     

private sector gross domestic product:     .023  -.003 
   Notes: Based on -.33 mismeasurement parameter in computer & electronics intermediates with 3 lags in 
Table 3.  Adjustment of output growth = -.33θjit; adjustment of value added growth =  -.33*(θjit-Ωjit) times 
the ratio of gross output to value added. 

negative gross output and value added adjustments are in durables goods industries that use 

these inputs directly in production, while positive value added adjustments occur in non-

durable goods industries whose upstream suppliers use these inputs.  The biggest adjustment 

is for computer & electronics products, itself a big user of its own inputs, but as has been 

repeatedly emphasized above, the point estimates do not depend heavily upon any individual 

industry, including this one.  While the adjustments of computer and electronics output may 

seem large, Aizcorbe & Ripperger-Suhler (2024), specialists within the BEA itself, estimate 

that chain drift in hedonic price indices has resulted in these overstating the 2011-2020 

decline in computer & notebook prices by 6 and 8 percent per annum, respectively.   

As noted in Table 11, a -.33 exaggeration of factor augmenting technical change in 

the use of computer & electronics intermediates implies that annual private sector GDP 

growth is overestimated by .003, or about ⅛th of the .023 growth per annum recorded 
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between 1997 and 2021.  As private sector total factor productivity growth during this period 

averages .006 per annum, absent any adjustment for mismeasurement of the growth of capital 

inputs, this would also imply a 50 percent reduction in estimated total factor productivity 

growth.  Unfortunately, the estimates above provide little guidance as to potential 

mismeasurement of the growth of capital goods in the BEA productivity accounts, as US 

equipment investment is increasingly sourced from other countries.  According to the input-

output tables, while the nominal value of computer & electronics output used in gross fixed 

investment in equipment rose from $142 billion in 1997 to $208 billion in 2021, during the 

same period imports of computer & electronics for that purpose rose from $37 billion to $131 

billion, so that the share of domestically sourced computers & electronics in investment fell 

from 74% to 37%.  The estimates above are based upon domestically sourced computer & 

electronics intermediates used in domestic production which, again based upon the input-

output tables, have accounted for more than 94% of total computer & electronics 

intermediates used in domestic production in every year from 1997 to 2021.  While they 

provide insight into mismeasurement associated with domestically produced intermediates, 

they have little to say regarding mismeasurement of the growth of computer & electronics 

capital equipment in the BEA productivity accounts, as in recent decades these are driven by 

imported goods.  As noted earlier, point estimates in the on-line appendix of mismeasurement 

of the growth of primary inputs using a related dark matter methodology indicate an 

overstatement of computer and software capital growth.  But all are statistically 

indistinguishable from 0 and sensitive to the specification and the removal of individual 

industries from the sample. 

 While this paper is not about the methodology of price indices, some perspective on 

the results above can be found by considering two characteristics of durable goods that impart 

a downward bias to model matching and hedonic price indices, two common price deflation 

techniques used in the US.23  First, as emphasized by Harper (2007), the prices of durable 

 
23A third technique used heavily in the evaluation of automobiles and other products with frequent model 

changes (see Groshen et al 2017) asks manufacturers to identify the cost increment associated with new 
characteristics and treats that cost increment as quality, i.e. assumes cost per unit quality remains constant.  This 
is problematic, not least because it treats government mandated features such as catalytic converters and fuel 
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goods reflect the net present value of the flow of quasi-rents from their use.  However, as 

technology progresses durable goods become obsolete because of issues with interoperability 

and the shadow value of complementary resources.  Thus, old computers are regularly 

scraped not because they wear out but because they lack the capacity needed to interface with 

more modern software and, most importantly, because the growing capabilities of alternatives 

raises the shadow value of users’ time.  Obsolescence means that the same physical product 

purchased in later years is not the same product from the point of view of consumers, as it has 

a shorter expected life.  This leads hedonic price indices to overstate the value of increasing 

characteristics, as there is a hidden characteristic (expected service life) that is correlated with 

quality, and hence overstate price deflation.  Similarly, matching the “same” product through 

time overstates deflation as later versions of the same good embody a shorter stream of 

expected rents.  The use of the flow rental as the price for the flow value of durable goods 

services would address this issue, but unfortunately, outside of housing, in our national 

accounts the benefits of durables are measured using their sales prices and not their rentals. 

 Second, as emphasized by Aizcorbe and Copeland (2007), durable goods are 

purchased intermittently and have a product life cycle.  When initially introduced higher 

quality models are purchased by consumers who place the highest valuation on quality.  As 

prices decline over time, either due to cost reducing learning by doing or price discrimination, 

consumers who place a lower valuation on quality purchase them.  Model matching price 

indices will overstate gains from price declines because those who place a low value on 

quality only gain from the part of the price decline that is below their low initial reservation 

value, while those with a high reservation value may not gain from price declines at all if they 

go on to purchase newer high quality vintages.  Hedonic price indices will also overstate the 

value of quality and produce downward biased price trends because when comparing the 

prices and characteristics of contemporaneously sold vintages there is an omitted variable, the 

value of quality to those buying the goods, that is positively correlated with goods 

characteristics. 

 
efficiency as providing quality gains to individual consumers equal to their costs, which would make such 
mandates unnecessary in the first place. 
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 Methods such as model matching and hedonic price indices are well suited to 

measuring price and quality changes in environments where all consumers literally 

“consume” all products all of the time.  Once one allows that products are durable and 

purchased intermittently by consumers whose characteristics vary systematically with the 

product life cycle, it is not hard to see that such techniques could easily produce upward 

biased estimates of quality-adjusted output growth.  Since in the modern era computer 

intermediates are intimately tied to improvements in the characteristics and quality of goods, 

these biases could produce the exaggeration of the benefits of computer intermediate use 

found in this paper.  
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