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A.  Monte Carlos for Stationarity & Unit Root Tests 

 This appendix uses Monte Carlos to evaluate the accuracy of the panel 

stationarity and unit root tests available in Stata.  Those that have rejection rates closer 

to nominal value are featured in Table 4 in the paper, which presents results for these 

tests on the KLEMS sample.  The Stata panel tests are the Hadri (2000) Lagrange 

multiplier test for stationarity & the Breitung (2000), Harris & Tsavalis (1999),  Im, 

Pesaran & Shin (2003), and Levin, Lin & Chu (2002) tests for a unit root, as well as 

Fisher-type tests for a unit root that combine the p-values from individual Dickey & 

Fuller (1979) or Phillips & Perron (1988) tests for each time series in the panel.  The 

Fisher-type tests use four alternative summary statistics of the N p-values: 
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I refer to these as Fisher-P, Fisher-Z, Fisher-L and Fisher-Pm.  When the regression 

does not include lags, the Dickey-Fuller and Phillips-Perron p-values are identical.  

However, when lags are included, they differ, and are then distinguished by the 

initials DF and PP in the tables below. 

 The starting point for each simulation is a data generating process (dgp) for 

which the tested null is true, parameterized off of the KLEMS samples.  When the test 

is for a unit root, I estimate the following equation for each KLEMS sample: 

itititiit εygtyg   )()()2A( 1 , 

where g(yit) = yit - yit-1 (measured in lns), βi and βt are industry and year fixed effects, 

γi is the industry specific time trend, and ρ allows for first order autocorrelation.  γi 

and ρ are only estimated and included in some dgps.  The point estimates, plus iid 

shocks, are then used to generate new values for g(yit), which are cumulated to create 
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a yit series with a unit root for the subsequent unit root tests.  For normal shocks, I 

estimate (A2) using OLS and set the standard deviation of the iid Monte Carlo shocks 

equal to its root mean squared error.  For t-distributed shocks, I estimate (A2) using 

maximum likelihood based upon the t-distribution and set the standard deviation and 

degrees of freedom of the iid Monte Carlo t-distributed shocks equal to their estimated 

values.  For tests of stationarity, (A2) is estimated using yit and yit-1, rather than their 

first differences, on the left and right hand sides and estimated values and iid normal 

or t-distributed shocks are used to create the stationary series.  Since Table 4 in the 

paper reports results for both the ln series and its growth rate (first difference), results 

below are differentiated by whether yit in (A2) and the dgp is the ln series or its 

growth rate.  In terms of simulation results, this matters most when autoregression is 

included in the dgp, as the estimated autoregressive parameters in (A2) vary greatly 

depending upon whether yit is the ln series or its difference. 

 Table A1 below reports empirical rejection rates at the .05 level of the 

different tests in 500 Monte Carlo iterations for specifications that include industry 

and year fixed effects or the same plus industry specific time trends.  Separate results 

are reported for the Hadri test with a heteroskedastic or homoskedastic covariance 

estimate and for the Im-Pesaran-Shin test using a finite sample (based upon Monte 

Carlos by the authors) or asymptotic distribution, as these are options provided by 

Stata.  Table A2 below adds the lagged value of g(yit) or yit to the right-hand side of 

the baseline estimating equation (A2) and hence to the dgp.  The Hadri, Harris-

Tsavalis and Im-Pesaran-Shin with finite sample distribution tests of Table A2 do not 

contain a correction for autoregression as an option, as the distributions have not been 

worked out for this case.  As these tests are featured in the paper, they are included to 

show how the accuracy of the tests deteriorates when the dgp is autoregressive.  The 

remaining tests in the table contain a correction for first order autoregression.  Table 

A3 summarizes the mean and standard deviation of the empirical rejection 

probabilities across 12 cells (6 series, with fixed effects and with fixed effects & time 

trends) differentiated by whether the shocks are normal or t-distributed and whether 

the dgp (and test when available) includes an AR1 process.  

 Focusing on Table A3 in particular, we see that without an AR1 in the dgp, the 

Hadri, HT and IPS (finite sample) tests provide rejection probabilities that are 

reasonably close to the .05 nominal value, but when the dgp includes an AR1 they are 

highly inaccurate.  In that case, the IPS (asymptotic) and Fisher-Z and -L (Dickey- 

Fuller) tests provide the best performance.  Based on these results, the presentation in 

the paper reports the results of those six tests on the KLEMS sample.  Table A4 
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Table A1: Unit Root  & Stationarity Tests:  
Empirical Rejection Rates in 500 Iterations at .05 Level of True Nulls 

 normal errors t - errors normal errors t - errors normal errors t - errors 

 FE trend FE trend FE trend FE trend FE trend FE trend 

 
Hadri (heteroskedastic cov) 

null = stationary 
Hadri (homoskedastic cov) 

null = stationary 
IPS (finite sample) 
null = has unit root 

ln(TFP) 
ln(K/L) 
ln(I/L) 

.048 

.048 

.034 

.036 

.048 

.028 

.080 

.190 

.064 

.064 

.042 

.066 

.048 

.044 

.040 

.046 

.056 

.034 

.202 

.252 

.212 

.166 

.142 

.136 

.026 

.046 

.026 

.018 

.014 

.008 

.086 

.170 

.062 

.048 

.028 

.040 

g(TFP) 
g(K/L) 
g(I/L) 

.036 

.052 

.044 

.032 

.048 

.024 

.044 

.036 

.036 

.024 

.022 

.050 

.052 

.060 

.044 

.042 

.054 

.030 

.114 

.100 

.140 

.090 

.088 

.128 

.030 

.024 

.028 

.016 

.034 

.118 

.032 

.026 

.038 

.020 

.022 

.032 

 
IPS (asymptotic) 

null = has unit root 
Harris-Tsavalis 

null = has unit root 
Breitung 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.002 

.000 

.000 

.996 

.932 

.994 

.000 

.000 

.012 

.864 

.846 

.844 

.000 

.000 

.006 

.986 

.954 
1.00 

.000 

.000 

.010 

.988 

.908 

.992 

.002 

.000 

.006 

.002 

.004 

.008 

.002 

.000 

.018 

.008 

.012 

.032 

g(TFP) 
g(K/L) 
g(I/L) 

.068 

.034 

.064 

1.00 
1.00 
1.00 

.026 

.036 

.030 

.980 

.996 

.984 

.044 

.044 

.026 

1.00 
1.00 
1.00 

.022 

.008 

.028 

1.00 
1.00 
1.00 

.084 

.098 

.070 

.058 

.058 

.088 

.064 

.074 

.048 

.052 

.088 

.086 

 
Levin-Lin-Chu  

null = has unit root 
Fisher-P DF & PP 
null = has unit root 

Fisher-Z DF & PP 
null = has unit root 

ln(TFP) 
ln(K/L) 
ln(I/L) 

.422 

.304 

.450 

.862 

.764 

.870 

.370 

.258 

.494 

.786 

.764 

.790 

.012 

.002 

.020 

.024 

.020 

.046 

.064 

.036 

.128 

.122 

.140 

.176 

.000 

.000 

.004 

.000 

.002 

.006 

.000 

.000 

.004 

.004 

.004 

.006 

g(TFP) 
g(K/L) 
g(I/L) 

.632 

.632 

.612 

.954 

.934 

.964 

.574 

.582 

.560 

.896 

.930 

.886 

.080 

.108 

.096 

.088 

.106 

.130 

.206 

.176 

.190 

.202 

.268 

.242 

.052 

.050 

.044 

.032 

.038 

.050 

.030 

.020 

.022 

.020 

.040 

.028 

 
Fisher-L DF & PP 
null = has unit root 

Fisher-Pm DF & PP 
null = has unit root 

 

ln(TFP) 
ln(K/L) 
ln(I/L) 

.000 

.000 

.006 

.002 

.004 

.006 

.014 

.002 

.028 

.012 

.022 

.032 

.012 

.002 

.026 

.030 

.022 

.050 

.074 

.036 

.136 

.128 

.148 

.182 
    

g(TFP) 
g(K/L) 
g(I/L) 

.064 

.050 

.046 

.040 

.040 

.064 

.082 

.084 

.084 

.064 

.128 

.092 

.086 

.112 

.102 

.088 

.108 

.138 

.210 

.182 

.200 

.212 

.272 

.250 
    

   Notes: Each cell represents the average rejection rate at the .05 level in 500 Monte Carlo iterations.  FE 
= data generating process and estimating equations include industry & year fixed effects; trend = data 
generating process and estimating equations include industry specific time trends in addition to industry & 
year fixed effects.  DF = Dickey Fuller, PP = Phillips-Perron, IPS = Im-Pesaran-Shin. 

provides results for the KLEMS samples for all the tests considered in these Monte 

Carlos.  With regards to the Hadri test of stationarity, the Hadri test with the 

homoskedastic covariance provides larger p-values for the growth rates of the series 

than the heteroskedastic covariance results reported in the paper, where I argued that 

the evidence suggested the growth series were stationary.  Both tests agree in finding 

p-values of .000 for the stationarity of the ln series in all specifications.  With regards 
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Table A2: Empirical Rejection Rates in 500 Iterations at .05 Level of True Nulls  

with Autoregressive (AR1) Data Generating Processes 
 normal errors t - errors normal errors t - errors normal errors t - errors 

 FE trend FE trend FE trend FE trend FE trend FE trend 

 
Hadri (heteroskedastic cov) 

null = stationary 
Hadri (homoskedastic cov) 

null = stationary 
IPS (finite sample)  
null = has unit root 

ln(TFP) 
ln(K/L) 
ln(I/L) 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.010 

.000 

.168 

.060 

.000 

.490 

.000 

.000 

.012 

.004 

.000 

.000 

g(TFP) 
g(K/L) 
g(I/L) 

.000 

.622 

.000 

.000 

.384 

.000 

.018 

.954 

.030 

.002 

.794 

.014 

.002 

.666 

.000 

.000 

.426 

.000 

.086 

.862 

.086 

.016 

.722 

.072 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

 
IPS (asymptotic) 

null = has unit root 
Harris-Tsavalis 

null = has unit root 
Breitung 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.000 

.000 

.000 

.000 

.000 

.000 

.006 

.000 

.018 

.008 

.000 

.026 

.000 

.000 

.008 

.004 

.000 

.280 

.014 

.002 

.070 

.034 

.000 

.042 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.002 

.000 

.000 

g(TFP) 
g(K/L) 
g(I/L) 

.036 

.052 

.052 

.046 

.026 

.042 

.036 

.024 

.028 

.044 

.034 

.062 

1.00 
1.00 
1.00 

.000 

.000 

.000 

1.00 
1.00 
1.00 

.000 

.000 

.002 

.058 

.026 

.036 

.026 

.020 

.032 

.000 

.000 

.000 

.002 

.002 

.004 

 
Levin-Lin-Chu  

null = has unit root 
Fisher-P DF 

null = has unit root 
Fisher-Z DF 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.366 

.270 

.342 

.574 

.614 

.522 

.346 

.294 

.442 

.542 

.544 

.532 

.014 

.000 

.032 

.020 

.030 

.028 

.090 

.044 

.152 

.152 

.108 

.176 

.000 

.000 

.002 

.000 

.002 

.000 

.002 

.000 

.008 

.006 

.000 

.010 

g(TFP) 
g(K/L) 
g(I/L) 

.220 

.190 

.172 

.190 

.076 

.050 

.312 

.284 

.228 

.332 

.234 

.208 

.080 

.096 

.100 

.162 

.120 

.128 

.182 

.132 

.168 

.228 

.184 

.208 

.042 

.056 

.054 

.054 

.030 

.050 

.028 

.014 

.014 

.024 

.028 

.030 

 
Fisher-L DF 

null = has unit root 
Fisher-Pm DF 

null = has unit root 
Fisher-P PP 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.000 

.000 

.002 

.002 

.002 

.000 

.012 

.002 

.034 

.028 

.006 

.034 

.016 

.000 

.038 

.020 

.032 

.032 

.092 

.044 

.158 

.152 

.112 

.180 

.038 

.000 

.222 

.214 

.000 

.656 

.040 

.000 

.096 

.056 

.000 

.034 

g(TFP) 
g(K/L) 
g(I/L) 

.050 

.064 

.064 

.068 

.044 

.064 

.060 

.064 

.060 

.072 

.072 

.086 

.086 

.114 

.112 

.166 

.132 

.136 

.192 

.140 

.168 

.234 

.190 

.210 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.998 

.992 
1.00 

1.00 
1.00 
1.00 

 
Fisher-Z PP 

null = has unit root 
Fisher-L PP 

null = has unit root 
Fisher-Pm PP 

null = has unit root 

ln(TFP) 
ln(K/L) 
ln(I/L) 

.004 

.000 

.060 

.024 

.000 

.324 

.000 

.000 

.010 

.004 

.000 

.002 

.004 

.000 

.082 

.034 

.000 

.342 

.002 

.000 

.018 

.006 

.000 

.002 

.044 

.000 

.244 

.228 

.000 

.674 

.046 

.000 

.100 

.062 

.000 

.036 

g(TFP) 
g(K/L) 
g(I/L) 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.986 

.972 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.996 

.978 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.998 

.992 
1.00 

1.00 
1.00 
1.00 

   Notes: Each cell represents the average rejection rate at the .05 level in 500 Monte Carlo iterations.  FE 
= data generating process and estimating equations include industry & year fixed effects; trend = data 
generating process and estimating equations include industry specific time trends in addition to industry & 
year fixed effects. DF = Dickey Fuller, PP = Phillips-Perron, IPS = Im-Pesaran-Shin. 
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Table A3: Mean and Standard Deviation of Empirical .05 Null Rejection Rates 
 data generating processes 

without autoregression 
data generating processes 

with 1st order autoregression 
 normal 

errors 
t errors 

normal 
errors 

t errors 

 mea
n 

sd 
mea

n 
sd 

mea
n 

sd 
mea

n 
sd 

Hadri (heteroskedastic cov) 
Hadri (homoskedastic cov) 
Im-Pesaran-Shin (finite sample) 
Im-Pesaran-Shin (asymptotic) 
Harris-Tsavalis  
Breitung 
Levin-Lin-Chu  
Fisher-P Dickey-Fuller 
Fisher-Z Dickey-Fuller 
Fisher-L Dickey-Fuller 
Fisher-Pm Dickey-Fuller 
Fisher-P Phillips-Perron 
Fisher-Z Phillips-Perron 
Fisher-L Phillips-Perron 
Fisher-Pm Phillips-Perron 

.040 

.046 

.040 

.507 

.025 

.014 

.700 

.061 

.023 

.027 

.065 

.061 

.023 

.027 

.065 

.009 

.009 

.039 

.508 

.045 

.019 

.226 

.045 

.023 

.026 

.046 

.045 

.023 

.026 

.046 

.060 

.148 

.040 

.482 

.044 

.002 

.658 

.163 

.015 

.054 

.169 

.163 

.015 

.054 

.169 

.045 

.052 

.033 

.496 

.049 

.004 

.217 

.068 

.014 

.040 

.069 

.068 

.014 

.040 

.069 

.584 

.591 

.561 

.021 

.274 

.016 

.299 

.068 

.024 

.030 

.074 

.594 

.534 

.539 

.599 

.471 

.470 

.477 

.023 

.445 

.019 

.188 

.053 

.025 

.031 

.057 

.456 

.494 

.490 

.453 

.651 

.654 

.501 

.024 

.264 

.001 

.358 

.152 

.014 

.044 

.156 

.518 

.498 

.500 

.520 

.473 

.443 

.521 

.019 

.445 

.001 

.125 

.052 

.011 

.028 

.053 

.502 

.517 

.518 

.501 
   Note:  Each mean and standard deviation calculated across the relevant 12 cells (six data series, with 
FE or FE plus trends) of Tables A1 and A2.  When dgp is AR1, test includes AR1 control if the 
distribution with this control is available (not available for Hadri, HT & IPS finite sample). 

to the unit root tests, all methods find p-values of .000 (or test statistics well above the 

critical value for the IPS finite sample test) in all specifications for the null that 

growth rates have unit roots (Table A4).  For the ln levels of the different series, the 

results based upon the IPS and Fisher-L DF & -Z DF tests reported in the paper never 

reject the unit root null and were used to argue that the ln series contain a unit root. 

Tables A3 & A4 show that the Breitung test, which has negative size distortions in the 

Monte Carlos, similarly never rejects the unit root null, while tests with large positive 

size distortions in the Monte Carlos, such as Levin-Lin-Chu, the Fisher PP based tests, 

and the Fisher-P DF & Fisher-Pm DF, reject the null of a unit root in some instances. 
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Table A4: Stationarity (Hadri) and Unit Root (all others) Tests by KLEMS Series: 
test statistics relative to critical values (IPS finite sample) or p-values (all others) 

  ln levels growth rates 

  ln(TFP) ln(K/L) ln(I/L) g(TFP) g(K/L) g(I/L) 

 (A) without correction for autocorrelation: 

Hadri* 
(heteroskedastic cov) 

FE 
trend 

.000 

.000 
.000 
.000 

.000 

.000 
.000 
.267 

.000 

.000 
.263 
.714 

Hadri 
(homoskedastic cov) 

FE 
trend 

.000 

.000 
.000 
.000 

.000 

.000 
.101 
.959 

.000 

.000 
.950 
.990 

Harris-Tsavalis* 
FE 

trend 
.981 
.830 

1.00 
1.00 

.023 

.016 
.000 
.000 

.000 

.000 
.000 
.000 

Im-Pesaran-Shin* 
(finite sample) 

FE 
trend 

1.0 
.97 

0.81 
0.74 

.96 

.98 
3.6 
2.6 

3.0 
2.3 

3.7 
2.7 

Im-Pesaran-Shin 
(asymptotic distribution) 

FE 
trend 

.132 

.000 
.960 
.089 

.341 

.000 
.000 
.000 

.000 

.000 
.000 
.000 

Levin-Lin-Chu 
FE 

trend 
.001 
.000 

.001 

.799 
.118 
.006 

.000 

.000 
.000 
.000 

.000 

.000 

Breitung 
FE 

trend 
1.00 
.984 

1.00 
1.00 

.479 

.988 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-P DF & PP 
FE 

trend 
.001 
.005 

.158 

.998 
.005 
.000 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-Z DF & PP 
FE 

trend 
.039 
.243 

.883 
1.00 

.168 

.032 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-L DF & PP 
FE 

trend 
.044 
.173 

.844 
1.00 

.163 

.025 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-Pm DF & PP 
FE 

trend 
.000 
.002 

.158 

.996 
.002 
.000 

.000 

.000 
.000 
.000 

.000 

.000 

 (B) with correction for first order autocorrelation: 

Im-Pesaran-Shin* 
(asymptotic distribution) 

FE 
trend 

.280 

.773 
.877 
.998 

.920 

.912 
.000 
.000 

.000 

.000 
.000 
.000 

Levin-Lin-Chu 
FE 

trend 
.001 
.012 

.001 

.262 
.655 
.376 

.000 

.000 
.000 
.000 

.000 

.000 

Breitung 
FE 

trend 
.996 
.906 

1.00 
.991 

.254 

.927 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-P DF 
FE 

trend 
.029 
.369 

.378 

.986 
.732 
.326 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-Z DF* 
FE 

trend 
.216 
.778 

.812 

.999 
.929 
.826 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-L DF* 
FE 

trend 
.239 
.771 

.865 
1.00 

.932 

.810 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-Pm DF 
FE 

trend 
.023 
.383 

.393 

.979 
.740 
.339 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-P PP 
FE 

trend 
.001 
.003 

.185 

.994 
.008 
.000 

.000 

.000 
.000 
.000 

.000 

.000 
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Table A4: continued 
  ln levels growth rates 

  ln(TFP) ln(K/L) ln(I/L) g(TFP) g(K/L) g(I/L) 

Fisher-Z PP 
FE 

trend 
.043 
.175 

.862 
1.00 

.186 

.020 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-L PP 
FE 

trend 
.046 
.117 

.850 
1.00 

.176 

.015 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-Pm PP 
FE 

trend 
.000 
.001 

.188 

.988 
.004 
.000 

.000 

.000 
.000 
.000 

.000 

.000 
  Notes: (*) reported in paper based upon greater accuracy in Monte Carlos of Tables A1-A3.  DF = 
Dickey Fuller & PP = Phillips-Perron, as described in text. above.  FE = estimating equations include 
industry & year fixed effects as controls; trend = time specific trends in addition to industry & year fixed 
effects. 
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B. (III.5) & (III.7) with Average Factor Shares as Second Order Approximations 

 Equations (III.5) and (III.7) in the paper are based upon instantaneous rates of 

change.  In the paper I claim that for changes across discrete time periods the same 

formulae are correct for second order approximations of the underlying functions if 

the average across the two periods of first order approximations of factor shares are 

used in place of the instantaneous θit.  This motivates applying the formulae with 

average observed shares as a discrete time approximation.  This appendix lays out the 

argument. 
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 We may re-express the production function (III.1) as  
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Its second order Taylor series (TS2) approximation around the point (ln(A1X1),..., 
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and all derivatives are evaluated at the point (ln(A1X1),..., ln(AJXJ)).  I note that with 

perfect competition the partial of ln Qit with respect to ln Xjit equals the factor income 

share θjit, the first order Taylor approximation of which at the point (ln(A1X1),..., 

ln(AJXJ)) is 
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where all derivatives are again evaluated at (ln(A1X1),..., ln(AJXJ)).  We then see that 
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as was claimed in the paper.  

 Turning to the upper rows of (III.5), we focus on the case of the nested three 

factor production function in (III.6) with 1
itE given by (III.7).  In this case, the upper 

rows of (III.5) can be re-expressed as 
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We wish to show that for discrete time periods (B6) with the average of first order 

Taylor series approximations of the sjit is correct for a second order approximation of 

the profit maximizing condition (III.3). 

 We begin by deriving some useful relations.  From Euler's theorem and 

homogeneity of degree 1 of Gi we have 
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Profit maximizing firms set the ratio of marginal products equal to the ratio of factor 

prices.  For the first two factors this implies 
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where we use the homogeneity of degree zero of derivatives of Gi.  Differentiating: 
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where we define σ as the elasticity of substitution, i.e. the proportional change in the 

ratio of effective input 1 (A1itX1it) to effective input 2 (A2itX2it) for a proportional 

change in the relative cost per unit of effective input.   (B8) also allows us to solve (at 

least implicitly) for the effective input 1 to input 2 ratio as a function of the relative 

costs per effective factor: 
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As Gi is homogeneous of degree one, this implies the following cost per unit of Gi 
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In a two stage budgeting procedure, firms first set the ratio of marginal products of Gi 

to X3it equal to the ratio of their relative prices 
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and totally differentiating then allows us to define the elasticity of substitution 

between the Gi aggregate and effective input 3: 
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 With the above results, we turn finally to the second order approximation of 

(III.3).  For j = 1 or 2 and X3it as the "numeraire" factor we can express the jth row of 

(III.3) as  
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where we make use of the results in (B9) and (B13).  As the elasticities are constant 

across the range of the data (i.e. region of approximation), we have  
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where we have kept in mind that as sjit is a function of ln x1it/x2it, and s1it+s2it = 1 
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 The second order Taylor series approximation of (III.3) is then given by: 
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where the superscripted * denote values at the point of expansion ),( *
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Taking the ln difference across two time periods of (B20) 
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and it is similarly easily seen that 
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so that across discrete time periods the upper part of (III.5) can be approximated as: 
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as was our objective to show.  

C. Consistency with Factor Price Growth and Factor Shares as Regressors 

 As noted in the paper, the endogeneity of relative factor price growth does not 

inhibit consistency of the estimation procedure as long as year fixed effects are 

included, even though with non-constant factor shares factor price growth still affects 

(albeit in practice minimally) elasticity estimates in finite samples.  This appendix 

uses a simplified version of the model to establish this principle theoretically with the 

minimum algebra possible, showing that independence of the factor augmenting 

shocks from the levels of factor shares is sufficient to ensure that the derivatives of a 

normal likelihood asymptotically equal zero at the true parameter values.  The growth 

rate of factor shares, however, is affected by the factor augmenting shocks, and this 

induces a very slight correlation between the level of factor shares and the shocks, 

raising the possibility of inconsistency due to this relation.  To alleviate such 

concerns, this appendix uses Monte Carlos to establish that for the elasticities 

estimated in the paper these correlations do not inhibit root-N convergence of 

parameters (& N super convergence of cointegration parameters) to materially trivial 

levels of mean squared error.  The factor prices in these Monte Carlos are 

endogenous, and hence they illustrate (more generally than the specific example in the 

theoretical proof) that this does not inhibit consistency.  I begin with the Monte 

Carlos, as these are the easiest to absorb. 
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(i) Monte Carlos 

 I use the point estimates of models 1 & 2 of Section IV of the paper to 

establish the data generating process.  From these models we get estimates of the 

industry x factor fixed effects, year x factor fixed effects, diagonal variance of year x 

industry factor augmenting shocks, elasticities, coefficients on lagged values of 

shocks, and, where applicable, degrees of freedom of the t-distribution governing the 

factor augmenting shocks and the cointegration parameters β and α.  I use all of these 

as is, except for the fixed effects, for which I calculate the (unrestricted) covariance 

across factors and then use independent draws from the multivariate normal1 to create 

new industry x factor and time x factor fixed effects for the expanding industry x time 

samples below.  Thus, the data generating process for factor augmenting technical 

change is, as in the models of the paper: 
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and where hats indicate values estimated in the paper, V(x) indicates the covariance 

matrix of vector x, and while the covariance matrix of the fixed effects ηt & ηi is 

unrestricted, the covariance matrix of the factor augmenting shocks εit is made 

diagonal.  The means of the fixed effects are set equal to zero (contrary to their 

estimated means) so as to avoid a tendency of factor shares to gravitate to corners (0 

or 1) as the number of time periods grows. 

 Factor augmenting productivity growth is, of course, treated as unobserved.  

The observed data consist of vectors of relative factor input growth, total factor 

productivity growth, relative factor price changes and factor shares.  As in the paper: 
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and where superscripted bars denote averages between periods t-1 and t of factor 

shares and hats again indicate elasticities estimated in the paper.  Relative factor 

prices are determined by matching supply to changes in average relative factor 

demand with a relative supply growth curve with slope 1.  Average relative factor 
                                                 

1For most factors the kurtosis of these estimated fixed effects is not exceptionally different from 
the normal, and hence I do not assume that they are distributed multivariate t. 
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demand growth is either determined by the average of all industries, a "small 

industry" model, or by one single dominant industry, a "large industry" model, so: 
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where N denotes the number of industries.  In the small industry model, the influence 

of individual industries on the growth of relative prices goes to zero, which 

asymptotically are driven solely by year fixed effects common to all industries.  In the 

large industry model, although there are N industries which contribute data, factor 

augmenting productivity growth in industry #1, which is large, determines factor price 

changes, so that relative price growth is always influenced by both the year fixed 

effects (common to all industries) and the industry fixed effects and iid shocks 

specific to industry 1. 

 Factor shares in period 1 are set by taking three independent draws from the 

(0,1) uniform distribution for each industry, multiplying them by 2, 3 and 5, and 

dividing by their total, so that the initial shares for capital, labour and intermediates 

have an expected value of .2, .3 & .5 (as is roughly found in the data).  Factor shares 

then evolve according to the formula: 
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Given the complex dependence of factor augmenting productivity growth g(Ajit) on 

past values and cumulated past values in (C1) above, 500 initial periods (which are 

then discarded) are used to initiate the system and ensure that the distribution of initial 

rates of factor augmenting productivity growth is close to its ergodic distribution. 

 Table C1 reports the root mean squared error of key parameter estimates 

across 50 data generating process realizations for the VAR, VEC1, normal and t 

versions of the top two models.  The ratio of years to industries is set at 3:6, reflecting 

the ratio found in the 61 industry 1987-2021 BEA US KLEMS data in the paper, with 

each multiplied by 10 as the sample increases.  Reported in the table are the mean 

squared error for the elasticities, the t-degrees of freedom and the cointegrating factors 

β and α.   As expected of a consistent estimator, root mean squared error for most 

parameters is inversely proportional to the root number of observations, i.e. falls by an 

order of magnitude with a 100 fold increase in the sample size.  The exceptions are 

the estimates of β which, by virtue of being multiplied by the non-stationary levels of 

factor augmenting productivity, are known to be superconsistent (Johansen 1995) with 

root mean square error inversely proportional to the number of observations, as shown  
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Table C1: Root Mean Squared Error Across 50 DGP Iterations of Key Parameter Estimates 

(Monte Carlos based on point estimates of models 1 & 2) 
model VAR VEC1 
years x 

industries 
σ η dof σ η dof βL βI αK αL αI 

(A) small industry model: price growth determined by average industry demand growth 

    model #1, normal distribution 
30 x 60 

300 x 600 
.0147 
.0012 

.0145 

.0011 
 .0144 

.0010 
.0167 
.0011 

 .1250 
.0021 

.2082 

.0034 
.0441 
.0030 

.0150 

.0010 
.0338 
.0027 

    model #2, normal distribution 
30 x 60 

300 x 600 
.0123 
.0012 

.0285 

.0023 
 .0120 

.0010 
.0298 
.0022 

 .1319 
.0020 

.5702 

.0079 
.0339 
.0026 

.0102 

.0005 
.0211 
.0017 

    model #1, t distribution 
30 x 60 

300 x 600 
.0167 
.0012 

.0162 

.0018 
.1579 
.0141 

.0163 

.0009 
.0175 
.0029 

.1610 

.0146 
.1586 
.0039 

.1551 

.0060 
.0076 
.0004 

.0050 

.0002 
.0055 
.0002 

    model #2, t distribution 
30 x 60 

300 x 600 
.0127 
.0010 

.0377 

.0025 
.1525 
.0164 

.0133 

.0013 
.0384 
.0030 

.1524 

.0186 
.1531 
.0037 

.4503 

.0189 
.0063 
.0003 

.0029 

.0001 
.0045 
.0002 

(B) large industry model: price growth determined by demand growth in one industry 

    model #1, normal distribution 
30 x 60 

300 x 600 
.0143 
.0011 

.0135 

.0014 
 .0137 

.0009 
.0155 
.0010 

 .1251 
.0021 

.2068 

.0035 
.0441 
.0030 

.0150 

.0010 
.0338 
.0027 

    model #2, normal distribution 
30 x 60 

300 x 600 
.0117 
.0013 

.0256 

.0025 
 .0116 

.0010 
.0271 
.0019 

 .1329 
.0020 

.5665 

.0084 
.0339 
.0026 

.0102 

.0005 
.0211 
.0017 

    model #1, t distribution 
30 x 60 

300 x 600 
.0152 
.0011 

.0124 

.0012 
.1579 
.0144 

.0149 

.0011 
.0143 
.0018 

.1610 

.0146 
.1579 
.0043 

.1557 

.0072 
.0076 
.0003 

.0049 

.0002 
.0054 
.0002 

    model #2, t distribution 
30 x 60 

300 x 600 
.0120 
.0012 

.0300 

.0022 
.1526 
.0190 

.0124 

.0017 
.0309 
.0026 

.1526 

.0182 
.1455 
.0033 

.4514 

.0308 
.0063 
.0003 

.0029 

.0002 
.0044 
.0004 

   Notes:  Root mean squared error calculated across 50 dgp iterations, in some t cases dropping one or two 
instances where the likelihood did not converge. dof = multivariate t-distribution degrees of freedom. 

in the table.  In sum, as claimed earlier, despite the endogeneity of factor price 

movements and the levels of factor shares, with year and & industry fixed effects the 

estimates appear to be consistent in exactly the fashion expected of VAR & VEC 

models.  This is true for both the "small" and "large" industry models. 

 (b) Formal Proof 

 For a formal proof that the endogeneity of relative price changes does not 

prevent consistency, I simplify so as to make the point with minimal algebraic 

complexity.  I examine a two factor model estimated with the normal distribution, no 

cointegration, and only year fixed effects, in which the number of industries goes to 
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infinity but the number of years is constant.  For this framework, 1
itE  equals σ, the 

elasticity of substitution, and the model is 
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where we define the matrix Cit and yit to reduce clutter below.  Factor augmenting 

productivity growth depends only on year fixed effects and iid shocks: 

ittjitA εηg )()C7( , 

We assume that the first moment of 0ε )( itE , Vεε  )( ititE , where V is diagonal, 

there exists a γ > 1 such that ))(( 2  jitE exists, and that εit is independent of θit.  For a 

given value of ̂ , g(Ajit) can be calculated from (C6).  We use the notation ))ˆ(( jitAg  

to distinguish between these estimated values and the true values )( jitAg . 

 With a normal likelihood, the ln likelihood of the model is given by: 
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where V̂  is diagonal with entries ( 21 ˆ,ˆ vv ) estimating the diagonal covariance matrix of 

the shocks, itĈ is the estimate of Cit based upon the estimate ̂  of  , itŷ and 

))ˆ(( jitAg are based upon itĈ and (C6) above, ∑it denotes summation across both 

industry and time indices, N the number of industries,  & T the number of time 

periods, we define the average likelihood L  and use the fact that 

)ˆˆ(tdeterminan ititCC  = (̂ -1)2.   

 I will establish conditions under which 0ˆ/  L  when ̂ = , satisfying the 

first order condition for a maximum.  This does not guarantee convergence of the 

estimate of ̂  to  , which depends upon global (within the parameter range specified 

by the model) concavity of the objective function, but it does establish that the growth 

of relative prices does not prevent consistency of the estimator.  In the paper I 

concentrate the likelihoods of the models as a function of the elasticities of 

substitution and (where applicable) degrees of freedom of the t-distribution and 

conduct systematic grid searches across these spaces.  As noted therein, in all cases 

(i.e. twelve models each in their VAR, VEC1, VEC2, normal & t forms) I find the 

likelihood is single peaked within the specified elasticity of substitution restrictions. 
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 Using the envelope theorem and the fact that we are maximizing with respect 

to the other parameters, we take the derivative of the average likelihood with respect 

to ̂ : 
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Substituting for g(Ajit) and rearranging, we have: 
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The two (alternative) formulations cover two possibilities discussed further below.  

Using the maximum likelihood solutions for tη̂  and jv̂ , we have 
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where as before ∑it denotes summation across both industry and time indices, while 

∑i & ∑t denote summation across the industry or time indices alone.  From the strong 

law of large numbers, as N  
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In addition, for a and b equal to 1 or 2 
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where the last line follows from the fact that for i ≠ j E(θaitθajtεbitεbjt) = 

E(θaitθajt)E(εbitεbjt) = E(θaitθajt)*0, and throughout we make use of the fact that 0 ≤ 

E(θait) ≤ 1 & 0 ≤ E(θaitθajt) ≤ 1.  From (C13), we see that ∑iθaitεbit/N converges in 

mean square, and hence in probability, to 0.  Similarly, for b ≠ c 
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and hence ∑iθaitεbitεcit/N also converges in probability to 0.   

 The only remaining term in (C10) is that appearing in the lower-right hand 

corner, where for a and b equal to 1 or 2, we have 
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From Jamison, Orey & Pruitt's (1965) Theorem 1 on the convergence of weighted 

averages of independent variables, we know that  
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where F is the cumulative distribution function of 2
bit .  Condition (a) is assured, as if 

it does not hold (say) for a = 1, as θ2it = 1 - θ1it we can simply switch to the "or" 

version of (C.10) and ensure that it does.  As θait ≤ 1, condition (b) follows.  If for 

some γ > 0 ))(( 2 bitE exists, as is true for the normal, then (c) follows from Markov's 

Inequality and (d) as well.2  Consequently, we have: 
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 From the above results, we see that depending upon whether we follow the  

second or third equality in (C10): 

                                                 
2Jamison, Orey & Pruitt treat wi as non-stochastic, but their proof follows through provided it is 

independent of the weighted variable and conditions (a) and (b) are always satisfied, as is true here. 
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as was claimed earlier.   
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D.  Monte Carlos for Johansen Type Asymptotically Valid Cointegration Tests  

 This appendix shows that Johansen's (1995) cointegration (trace) test and 

Larsson, Lyhagen & Löthgren's (2001) extension to panel data have very large size 

distortions when evaluated using their asymptotic distributions.  I apply the tests to 

data generating processes based upon my industry x year panels for K/L, I/L and TFP 

growth.  For the test of whether any co-integration exists at all (in a single industry i), 

Johansen compares the likelihoods of vector auto-regression and full rank 

cointegration models: 

)VEC()()()(

)VAR()()()D1(

11

1

itiitjitijitijit

itiitjitijit

yyy

yy

εγzlnΠgΓg
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
 

where j denotes any of the 3 measures, Г and Π are 3x3 matrices, zit either constants 

for each j or constants plus time trends, and εit is a Jx1 vector of errors.  Johansen's 

test is designed for a single time series, so below I test each time series separately and 

report the average rejection rate.  Larsson et al (2001) extend the test to panel data by 

using the normalized mean of the individual time series likelihood ratios.3 

 I begin by estimating the VAR in (D1), i.e. running a specification that 

imposes the null.  The VAR is run assuming the errors are multivariate normal or 

(using maximum likelihood techniques) distributed multivariate t.  The covariance 

and (in the case of the t-) degrees of freedom estimates are then used to create new 

multivariate iid (across it) errors, which are added to the point estimates to create new 

data.  Table D1 below reports the average empirical rejection rates of the true null of 

no cointegration across 500 draws of new data.  As shown, size distortions in 

Johansen's test are large, with the empirical rejection probability of the true null at the 

nominal .01 and .05 levels varying from .060 to .165 & .192 to .294, respectively, 

with rejection rates systematically higher when both the data generating process and  

 
                                                 

3Both methods also allow for testing rank > 0 levels of cointegration, but I concentrate here on 
results for the test of rank = 0, i.e. is there any cointegration at all. 
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Table D1: Monte Carlo Rejection Probabilities of True Null  
of No Cointegration among ln(TFP), ln(K/L), ln(I/L) 

 
(a) Johansen's (1995) trace test 
conducted industry by industry 

(b) Larsson et al (2001)  panel 
normalized mean trace test 

 constant + trend constant + trend 
 .01 .05 .01 .05 .01 .05 .01 .05 

normal errors 
t-distributed errors 

.060 

.143 
.192 
.252 

.096 

.165 
.252 
.294 

.670 

.604 
.728 
.644 

.830 

.752 
.860 
.780 

    Notes: Reported Johansen rejection rates are the average of the 61 industry level rejection rates 
for 500 Monte Carlos each, while Larsson et al rejection rates are based on 500 Monte Carlos for all 
industries together. Test statistics evaluated using asymptotic critical values, means & variances 
calculated by Osterwald-Lenum (1992). 

test include time trends.  Rejection rates for Larsson et al's panel normalized mean 

trace test are remarkable, ranging from .604 to .830 and .644 to .860 at the .01 and .05 

levels, respectively 

 Neither of these tests is suitable for testing cointegration in my panel model, 

where the dependent variables are transformations of implicit variables which may be 

cointegrated and the model includes additional non-standard parameters such as 

elasticities of substitution.  The Monte Carlos in Table D1 suggest, however, that 

asymptotic theory for my panel model is unlikely to be of much use in the sample 

sizes encountered in the paper.  For that reason, I make use of the wild bootstrap for 

inference, showing in the next appendix that when estimation is done using the 

multivariate-t distribution it consistently delivers reasonably accurate null rejection 

probabilities. 
References 

Johansen, Soren (1995).  Likelihood-Based Inference in Cointegrated Vector 
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E.  Structural Model Cointegration Tests using the Wild Bootstrap  

 This appendix reports Monte Carlos for the wild bootstrap-based cointegration 

tests I implement for the structural models in the paper.  Panel cointegration tests 

based upon asymptotic distributions, examined in the appendix above, have nominal 

.01 level empirical rejection rates in my sample sizes of over .6 (Table D1).  

Moreover, they do not cover the models used in the paper, where we are testing the 

level of cointegration of an underlying latent variable that is unobserved but related to 
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observables through matrices determined by observed factor input shares and 

estimated elasticities of substitution.  For these reasons, I implement a wild bootstrap 

based upon transformations of the residuals of the null hypothesis.  Although by no 

means perfect, when implemented using a t-distributed likelihood, which 

underweights outliers, these tests afford rejection probabilities that are much closer to 

nominal value than found using asymptotic theory.  As in the cointegration tests 

described in appendix D, I follow Johansen (1995) and use the difference in the ln 

likelihood of the model of full cointegration (i.e. the number of cointegrating relations 

equaling the number of dependent variables) and that of cointegration of level r as the 

test statistic. 

 I begin each test by estimating the model of the null hypothsis.  As in the 

paper, we have: 
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itE depends upon factor shares and 

elasticities of substitution.  In the case of the three factor model of the paper, for 

instance, it is given by 
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Estimated elasticities of substitution uncover the latent factor augmenting change, 

which is modelled as having either a VAR or VEC form with factor x year & factor x 

time fixed effects and mutually orthogonal iid shocks: 
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 The baseline null hypothesis is the VAR or a VEC model with r cointegrating 

equations.  I then either multiply the individual estimated residuals jit̂  by an iid 

variable that is ±1 with 50/50 probabilities, generating mutually orthogonal iid shocks, 

or I multiply the observation specific vector of residuals itε̂ by a common ±1, retaining 

the empirical off-diagonal covariance of the iid vectors of shocks.  These are then 

added to estimated fixed effects tη̂  & iη̂  and cumulated forward using the estimated 

lag & cointegration parameters Γ̂ , α̂  & β̂ .  "Pre-sample" values of ln(Aji0) and g(Aji0) 

do not change and are set at those used in the original estimation, i.e. 0 and the value 

uncovered by )]/()([ˆ
0J000

1
0 ppy jijii gBgC  , respectively.  The bootstrapped latent 
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variables are then transformed into observed data g(yjit) using (E1) above and the 

estimated values (based on estimated elasticities of substitution) of 1ˆ 
itE .  Original 

factor input shares are kept as fixed data/regressors.  The ln likelihoods for this new 

data of a model of full cointegration and the restricted model of the null hypothesis 

are then calculated and their difference compared to that found in the original data.  In 

the paper I use 200 bootstrap draws to calculate the probability of a test statistic 

greater than that observed under the null. 

 The above describes the wild bootstrap test procedure.  To evaluate the 

accuracy of the procedure, I need artificial data that is similar to my sample.  To that 

end, I similarly begin by taking point estimates for each model and generating 

artificial data.  Instead of using actual residuals, however, I use normally or t-

distributed errors with either an orthogonal covariance matrix or unrestricted 

covariance matrix and degrees of freedom equal to that estimated on the residuals of 

the original sample.  I then estimate the model on this artificially generated data and 

use estimated residuals to conduct the wild bootstrap using 200 data bootstrap 

iterations.  Thus, for a test of r = 0 cointegration (i.e. a VAR) the Monte Carlo 

procedure is: 

(1) Estimate VAR model parameters on original data.  
(2) Use those VAR parameters to generate data that has normally or t-distributed iid mutually 

orthogonal or correlated error vectors. 
(3) Estimate the model on the data in (2) and calculate the VAR vs full cointegration test statistic for 

the data. 
(4) Use the newly estimated VAR parameters and residuals to implement the wild bootstrap, using 200 

iterations to calculate the p-value of the test statistic calculated in (3). 

For the VEC1 model, following Johansen's (1995) sequential testing procedure, I: 

(1) Estimate VEC1 model parameters on original data.  
(2) Use those parameters to generate cointegrated data that has normally or t-distributed iid mutually 

orthogonal or correlated error vectors. 
(3) Estimate the VAR model on the data in (2) and calculate the VAR vs full cointegration test statistic 

for the data. 
(4) Use the newly estimated VAR parameters and residuals to implement the wild bootstrap, using 200 

iterations to calculate the p-value of the test statistic calculated in (3). 
(5) If rejecting at the nominal level in (4), estimate the VEC1 model on the data in (2 and calculate the 

VEC1 vs full cointegration test statistic for the data. 
(6) Use the newly estimated VEC1 parameters and residuals to implement the wild bootstrap, using 200 

iterations to calculate the p-value of the test statistic calculated in (5). 

I refer to each run through of (1)-(4) or (1)-(6) as a "sample".  

 Table E1 reports the Monte Carlo rejection probabilities of true null at 

nominal levels .01, .02 & .05.  I run 10 samples for each of the 12 models examined in 

Section IV of the paper.  In a few samples the likelihood fails to converge in steps (3) 

or (5) above, and those are excluded from the calculations, as are wild bootstrap runs 

which fail to converge in steps (4) or (6) above.  In testing accuracy for a true VAR,  
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 Table E1: Monte Carlo Empirical Rejection Probabilities of True Nulls 
Regarding Cointegration among Factor Augmenting Productivities by Level of Test 

nominal level cointegration 
in dgp 

data generating 
process 

likelihood 
model .01 .02 .05 

0 (VAR) 
1 (VEC1) 

t-distributed 
diagonal shocks 

t-distributed 
diagonal covariance 

.025 

.026 
.042 
.026 

.119 

.111 
0 (VAR) 
1 (VEC1) 

t-distributed 
correlated shocks 

t-distributed 
diagonal covariance 

.050 

.017 
.092 
.043 

.158 

.111 

0 (VAR) 
1 (VEC1) 

t-distributed 
diagonal shocks 

t-distributed 
unrestricted covariance 

.025 

.026 
.068 
.034 

.136 

.077 
0 (VAR) 
1 (VEC1) 

t-distributed 
correlated shocks 

t-distributed 
unrestricted covariance 

.050 

.051 
.075 
.060 

.133 

.085 
0 (VAR) 
1 (VEC1) 

normally distributed 
diagonal shocks 

normally distributed 
diagonal covariance 

.188 

.017 
.265 
.034 

.444 

.076 

0 (VAR) 
1 (VEC1) 

t-distributed 
diagonal shocks 

normally distributed 
diagonal covariance 

.283 

.235 
.317 
.193 

.492 

.151 
    Notes: Test rejects any given null when the fraction of wild bootstrap iterations with a test statistic 
greater than that of the sample is less than or equal to the nominal level.  Test for VEC1 dgp follows 
Johansen’s sequential procedure, testing VAR null and then testing VEC1 null if VAR is rejected.  
Reported rejection probability is 1 – probability of accepting the true null in the sequential procedure. 

the table reports the probability the wild bootstrap selected in favour of r > 0 

cointegration.  In testing accuracy for a true VEC1, the table reports the probability 

the wild bootstrap accepted the null of no cointegration (VAR) or rejected that null 

but subsequently also rejected the VEC1 null in favour of r > 1 cointegration, as this 

represents the error rate of Johansen's sequential testing procedure.  It is possible for 

empirical rejection rates at a higher nominal level to be lower in testing a true VEC1 

because of a reduced failure to reject in the first step test of a VAR.  

 As can be seen, with a normal likelihood and either normal or heavy tailed t - 

distributed data, the wild bootstrap performs poorly and inconsistently.  However, 

results using a t-likelihood (which underweights outliers) on heavy-tailed data, as 

encountered in the paper, are much more reliable.  In particular, a .01 nominal level 

ensures a rejection probability not greater than .051 even when the wild bootstrap dgp 

is misspecified, imposing a diagonal covariance when the dgp is non-diagonal or 

allowing off-diagonal covariance when the dgp is diagonal.  For this reason, I use a 

nominal level of .01 to evaluate the t-distribution Johansen sequential test for the 

actual sample in the paper. 

F.  Supplementary Table for Section IV 

 Standard errors in panel (A) of Table 7 of the paper are based upon a wild 

bootstrap that imposes a diagonal covariance matrix by multiplying each factor  
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Table F1: Ratio of Wild Bootstrap Standard Error Estimates for Table 7(A):  

Empirical Off-Diagonal Covariance of Shocks/Imposing Diagonal Covariance Matrix  
 βL βI αK αL αI ρKL ρKI ρLI 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

1.19 
0.86 
0.89 
2.00 
1.64 
4.70 
1.10 
0.58 
1.64 
1.17 
1.43 
0.78 

1.23 
0.88 
1.10 
1.51 
1.50 
4.42 
1.25 
0.55 
1.33 
1.26 
1.26 
0.70 

1.03 
1.01 
0.95 
0.86 
1.04 
1.28 
1.02 
1.25 
1.07 
1.15 
1.03 
1.05 

0.96 
0.96 
0.91 
0.76 
1.13 
1.35 
1.34 
1.11 
1.26 
1.24 
1.04 
1.98 

0.99 
0.78 
0.84 
0.86 
0.95 
1.23 
1.24 
1.10 
1.06 
1.14 
0.97 
1.19 

0.96 
0.98 
0.98 
1.02 
0.99 
0.91 
1.23 
0.99 
0.93 
0.90 
0.89 
0.91 

0.90 
1.06 
0.96 
1.02 
0.94 
0.96 
0.96 
0.95 
0.93 
0.93 
0.87 
0.98 

0.84 
0.97 
1.03 
1.19 
0.94 
0.98 
1.20 
1.22 
0.95 
1.12 
0.84 
1,12 

   Notes:  Variables as defined in the paper.  1-12 denotes models described in Table 5 of the paper. 

augmenting shock by an independent ±1 variable.  The table notes indicates 

thatstandard error estimates based upon a bootstrap that retains the off-diagonal 

covariance of the shocks by multiplying each it three-tuple of shocks by a common ±1 

are very similar.  Table F1 reports the ratio of the standard error estimate using the 

wild bootstrap that retains the off-diagonal covariance to that of the wild bootstrap 

that imposes a diagonal covariance matrix.  As shown, most of the ratios are near one.   

G  Estimation using the Multivariate t as Equivalent to Weighted Estimation 

 This appendix shows that estimation using the multivariate-t produces the 

same parameter estimates as a weighted version of the multivariate normal, where the 

weights are determined by the degrees of freedom and the inverse covariance matrix 

weighted deviations of the observation residuals from predicted values.  I illustrate 

this with a seemingly unrelated system of equations with the same regressors used for 

each dependent variable, although the same results apply to the non-linear VEC 

models estimated in the paper.   

 The ln likelihood for the multivariate normal is: 

 



  

it
itititit

J
L )()(

2

1
))ln(det(

2

1
)2ln(

2
ln)1G( 1 xβyVβxyV , 

where subscript it denotes the industry i x year t observation, Σit indicates summation 

across all such observations, yit is a Jx1 vector of dependent variables, xit a Kx1 vector 

of regressors, and V JxJ (symmetric) & β KxJ matrices of parameters, respectively.  

The first order conditions for maximizing the ln likelihood are: 
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where (V-1)k and (V-1)jk denote the kth column and jkth element of V-1.  The solutions to 

these equations are given by: 
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When V is constrained to be diagonal, the solution is the same except that we set the 

off-diagonal elements of V̂ to 0.   

 The corresponding ln likelihood for the multivariate t is 
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where τ is the degrees of freedom & Γ is the gamma function.  Taking τ momentarily 

as given, we have the first order conditions 
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and solutions  
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and where again if V is constrained to be diagonal we set the off-diagonal terms of 

V̂ to 0.  Thus, for a given τ the solution for the other parameters looks like a weighted 

version of the standard solution for multivariate normal errors, where the weights τ + 

J divided by the degrees of freedom plus the inverse covariance matrix weighted 

deviation from means.  As τ goes to infinity and the distribution converges to the 

multivariate normal, these weights converge to 1.  Given these solutions, the 

likelihood can then be maximized with respect to τ. 

  


