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A.  Monte Carlos for Stationarity & Unit Root Tests 

 This appendix uses Monte Carlos to evaluate the accuracy of the panel stationarity and 

unit root tests available in Stata.  Those that have rejection rates closer to nominal value are 

featured in Table 4 in the paper, which presents results for these tests on the KLEMS sample.  

The Stata panel tests are the Hadri (2000) Lagrange multiplier test for stationarity & the 

Breitung (2000), Harris & Tsavalis (1999),  Im, Pesaran & Shin (2003), and Levin, Lin & 

Chu (2002) tests for a unit root, as well as Fisher-type tests for a unit root that combine the p-

values from individual Dickey & Fuller (1979) or Phillips & Perron (1988) tests for each time 

series in the panel.  The Fisher-type tests use four alternative summary statistics of the N p-

values: 
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I refer to these as Fisher-P, Fisher-Z, Fisher-L and Fisher-Pm.  When the regression does not 

include lags, the Dickey-Fuller and Phillips-Perron p-values are identical.  However, when 

lags are included, they differ, and are then distinguished by the initials DF and PP in the 

tables below. 

 The starting point for each simulation is a data generating process (dgp) for which the 

tested null is true, parameterized off of the KLEMS samples.  When the test is for a unit root, 

I estimate the following equation for each KLEMS sample: 

itititiit εygtyg   )()()2A( 1 , 

where g(yit) = yit - yit-1 (measured in lns), βi and βt are industry and year fixed effects, γi is the 

industry specific time trend, and ρ allows for first order autocorrelation.  γi and ρ are only 

estimated and included in some dgps.  The point estimates, plus iid shocks, are then used to 

generate new values for g(yit),1 which are cumulated to create a yit series with a unit root for 

the subsequent unit root tests.  For normal shocks, I estimate (A2) using OLS and set the 

standard deviation of the iid Monte Carlo shocks equal to its root mean squared error.  For t-

distributed shocks, I estimate (A2) using maximum likelihood based upon the t-distribution 

and set the standard deviation and degrees of freedom of the iid Monte Carlo t-distributed 

shocks equal to their estimated values.  For tests of stationarity, (A2) is estimated using yit and 

yit-1, rather than their first differences, on the left and right hand sides and estimated values 

 
1Step by step through the observations when the lagged value g(yit-1) is a right hand side variable. 
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and iid normal or t-distributed shocks are used to create the stationary series.  Since Table 4 in 

the paper reports results for both the ln series and its growth rate (first difference), results 

below are differentiated by whether yit in (A2) and the dgp is the ln series or its growth rate.2  

In terms of simulation results, this matters most when autoregression is included in the dgp, as 

the estimated autoregressive parameters in (A2) vary greatly depending upon whether yit is the 

ln series or its difference. 

 Table A1 below reports empirical rejection rates at the .05 level of the different tests 

in 500 Monte Carlo iterations for specifications that include industry and year fixed effects or 

the same plus industry specific time trends.  Separate results are reported for the Hadri test 

with a heteroskedastic or homoskedastic covariance estimate and for the Im-Pesaran-Shin test 

using a finite sample (based upon Monte Carlos by the authors) or asymptotic distribution, as 

these are options provided by Stata.  Table A2 below adds the lagged value of g(yit) or yit to 

the right-hand side of the baseline estimating equation (A2) and hence to the dgp.  The Hadri, 

Harris-Tsavalis and Im-Pesaran-Shin with finite sample distribution tests of Table A2 do not 

contain a correction for autoregression as an option, as the distributions have not been worked 

out for this case.  As these tests are featured in the paper, they are included to show how the 

accuracy of the tests deteriorates when the dgp is autoregressive.  The remaining tests in the 

table contain a correction for first order autoregression.  Table A3 summarizes the mean and 

standard deviation of the empirical rejection probabilities across 12 cells (6 series, with fixed 

effects and with fixed effects & time trends) differentiated by whether the shocks are normal 

or t-distributed and whether the dgp (and test when available) includes an AR1 process.  

 Focusing on Table A3 in particular, we see that without an AR1 in the dgp, the Hadri, 

HT and IPS (finite sample) tests provide rejection probabilities that are reasonably close to the 

.05 nominal value, but when the dgp includes an AR1 they are highly inaccurate.  In that case, 

the IPS (asymptotic) and Fisher-Z and -L (Dickey-Fuller) tests provide the best performance.  

Based on these results, the presentation in the paper reports the results of those six tests on the 

KLEMS sample.  Table A4 provides results for the KLEMS samples for all the tests 

considered in these Monte Carlos.  With regards to the Hadri test of stationarity, the Hadri test 

with the homoskedastic covariance provides larger p-values for the growth rates of the series 

than the heteroskedastic covariance results reported in the paper, where I argued that the 
 

2Thus, when the intent is to create a series yit representing growth rates that has a unit root, the estimating 
equations in (A2) are based upon the second difference of the ln series.  
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evidence suggested the growth series were stationary.  Both tests agree in finding p-values of 

.000 for the stationarity of the ln series in all specifications.  With regards to the unit root 

tests, all methods find p-values of .000 (or test statistics well above the critical value for the 

IPS finite sample test) in all specifications for the null that growth rates have unit roots (Table 

A4).  For the ln levels of the different series, the results based upon the IPS tests and Fisher-L 

DF and -Z DF tests reported in the paper never reject the unit root null and were used in the 

paper to argue that the ln series contain a unit root.  Tables A3 & A4 show that the Breitung 

test, which has negative size distortions in the Monte Carlos, similarly never rejects the unit 

root null, while tests with large positive size distortions in the Monte Carlos, such as Levin-

Lin-Chu, the Fisher PP based tests, and the Fisher-P DF & Fisher-Pm DF, reject the null of a 

unit root in some instances. 
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Table A1: Unit Root  & Stationarity Tests:  
Empirical Rejection Rates in 500 Iterations at .05 Level of True Nulls 

 normal errors t - errors normal errors t - errors normal errors t - errors 

 FE trend FE trend FE trend FE trend FE trend FE trend 

 
Hadri (heteroskedastic cov) 

null = stationary 
Hadri (homoskedastic cov) 

null = stationary 
IPS (finite sample distribution) 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.048 

.048 

.034 

.036 

.048 

.028 

.080 

.190 

.064 

.064 

.042 

.066 

.048 

.044 

.040 

.046 

.056 

.034 

.202 

.252 

.212 

.166 

.142 

.136 

.026 

.046 

.026 

.018 

.014 

.008 

.086 

.170 

.062 

.048 

.028 

.040 

g(TFP) 
g(K/L) 
g(I/L) 

.036 

.052 

.044 

.032 

.048 

.024 

.044 

.036 

.036 

.024 

.022 

.050 

.052 

.060 

.044 

.042 

.054 

.030 

.114 

.100 

.140 

.090 

.088 

.128 

.030 

.024 

.028 

.016 

.034 

.118 

.032 

.026 

.038 

.020 

.022 

.032 

 
IPS (asymptotic distribution) 

null = has unit root 
Harris-Tsavalis 

null = has unit root 
Breitung 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.002 

.000 

.000 

.996 

.932 

.994 

.000 

.000 

.012 

.864 

.846 

.844 

.000 

.000 

.006 

.986 

.954 
1.00 

.000 

.000 

.010 

.988 

.908 

.992 

.002 

.000 

.006 

.002 

.004 

.008 

.002 

.000 

.018 

.008 

.012 

.032 

g(TFP) 
g(K/L) 
g(I/L) 

.068 

.034 

.064 

1.00 
1.00 
1.00 

.026 

.036 

.030 

.980 

.996 

.984 

.044 

.044 

.026 

1.00 
1.00 
1.00 

.022 

.008 

.028 

1.00 
1.00 
1.00 

.084 

.098 

.070 

.058 

.058 

.088 

.064 

.074 

.048 

.052 

.088 

.086 

 
Levin-Lin-Chu  

null = has unit root 
Fisher-P DF & PP 
null = has unit root 

Fisher-Z DF & PP 
null = has unit root 

ln(TFP) 
ln(K/L) 
ln(I/L) 

.422 

.304 

.450 

.862 

.764 

.870 

.370 

.258 

.494 

.786 

.764 

.790 

.012 

.002 

.020 

.024 

.020 

.046 

.064 

.036 

.128 

.122 

.140 

.176 

.000 

.000 

.004 

.000 

.002 

.006 

.000 

.000 

.004 

.004 

.004 

.006 

g(TFP) 
g(K/L) 
g(I/L) 

.632 

.632 

.612 

.954 

.934 

.964 

.574 

.582 

.560 

.896 

.930 

.886 

.080 

.108 

.096 

.088 

.106 

.130 

.206 

.176 

.190 

.202 

.268 

.242 

.052 

.050 

.044 

.032 

.038 

.050 

.030 

.020 

.022 

.020 

.040 

.028 

 
Fisher-L DF & PP 
null = has unit root 

Fisher-Pm DF & PP 
null = has unit root 

    

ln(TFP) 
ln(K/L) 
ln(I/L) 

.000 

.000 

.006 

.002 

.004 

.006 

.014 

.002 

.028 

.012 

.022 

.032 

.012 

.002 

.026 

.030 

.022 

.050 

.074 

.036 

.136 

.128 

.148 

.182 
    

g(TFP) 
g(K/L) 
g(I/L) 

.064 

.050 

.046 

.040 

.040 

.064 

.082 

.084 

.084 

.064 

.128 

.092 

.086 

.112 

.102 

.088 

.108 

.138 

.210 

.182 

.200 

.212 

.272 

.250 
    

   Notes: Each cell represents the average rejection rate at the .05 level in 500 Monte Carlo iterations.  FE = data 
generating process and estimating equations include industry & year fixed effects; trend = data generating process 
and estimating equations include industry specific time trends in addition to industry & year fixed effects.  DF = 
Dickey Fuller, PP = Phillips-Perron, IPS = Im-Pesaran-Shin. 
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Table A2: Empirical Rejection Rates in 500 Iterations at .05 Level of True Nulls  

with Autoregressive (AR1) Data Generating Processes 
 normal errors t - errors normal errors t - errors normal errors t - errors 

 FE trend FE trend FE trend FE trend FE trend FE trend 

 
Hadri (heteroskedastic cov) 

null = stationary 
Hadri (homoskedastic cov) 

null = stationary 
IPS (finite sample distribution) 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.010 

.000 

.168 

.060 

.000 

.490 

.000 

.000 

.012 

.004 

.000 

.000 

g(TFP) 
g(K/L) 
g(I/L) 

.000 

.622 

.000 

.000 

.384 

.000 

.018 

.954 

.030 

.002 

.794 

.014 

.002 

.666 

.000 

.000 

.426 

.000 

.086 

.862 

.086 

.016 

.722 

.072 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

 
IPS (asymptotic distribution) 

null = has unit root 
Harris-Tsavalis 

null = has unit root 
Breitung 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.000 

.000 

.000 

.000 

.000 

.000 

.006 

.000 

.018 

.008 

.000 

.026 

.000 

.000 

.008 

.004 

.000 

.280 

.014 

.002 

.070 

.034 

.000 

.042 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.002 

.000 

.000 

g(TFP) 
g(K/L) 
g(I/L) 

.036 

.052 

.052 

.046 

.026 

.042 

.036 

.024 

.028 

.044 

.034 

.062 

1.00 
1.00 
1.00 

.000 

.000 

.000 

1.00 
1.00 
1.00 

.000 

.000 

.002 

.058 

.026 

.036 

.026 

.020 

.032 

.000 

.000 

.000 

.002 

.002 

.004 

 
Levin-Lin-Chu  

null = has unit root 
Fisher-P DF 

null = has unit root 
Fisher-Z DF 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.366 

.270 

.342 

.574 

.614 

.522 

.346 

.294 

.442 

.542 

.544 

.532 

.014 

.000 

.032 

.020 

.030 

.028 

.090 

.044 

.152 

.152 

.108 

.176 

.000 

.000 

.002 

.000 

.002 

.000 

.002 

.000 

.008 

.006 

.000 

.010 

g(TFP) 
g(K/L) 
g(I/L) 

.220 

.190 

.172 

.190 

.076 

.050 

.312 

.284 

.228 

.332 

.234 

.208 

.080 

.096 

.100 

.162 

.120 

.128 

.182 

.132 

.168 

.228 

.184 

.208 

.042 

.056 

.054 

.054 

.030 

.050 

.028 

.014 

.014 

.024 

.028 

.030 

 
Fisher-L DF 

null = has unit root 
Fisher-Pm DF 

null = has unit root 
Fisher-P PP 

null = has unit root 
ln(TFP) 
ln(K/L) 
ln(I/L) 

.000 

.000 

.002 

.002 

.002 

.000 

.012 

.002 

.034 

.028 

.006 

.034 

.016 

.000 

.038 

.020 

.032 

.032 

.092 

.044 

.158 

.152 

.112 

.180 

.038 

.000 

.222 

.214 

.000 

.656 

.040 

.000 

.096 

.056 

.000 

.034 

g(TFP) 
g(K/L) 
g(I/L) 

.050 

.064 

.064 

.068 

.044 

.064 

.060 

.064 

.060 

.072 

.072 

.086 

.086 

.114 

.112 

.166 

.132 

.136 

.192 

.140 

.168 

.234 

.190 

.210 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.998 

.992 
1.00 

1.00 
1.00 
1.00 

 
Fisher-Z PP 

null = has unit root 
Fisher-L PP 

null = has unit root 
Fisher-Pm PP 

null = has unit root 

ln(TFP) 
ln(K/L) 
ln(I/L) 

.004 

.000 

.060 

.024 

.000 

.324 

.000 

.000 

.010 

.004 

.000 

.002 

.004 

.000 

.082 

.034 

.000 

.342 

.002 

.000 

.018 

.006 

.000 

.002 

.044 

.000 

.244 

.228 

.000 

.674 

.046 

.000 

.100 

.062 

.000 

.036 

g(TFP) 
g(K/L) 
g(I/L) 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.986 

.972 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.996 

.978 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

1.00 
1.00 
1.00 

.998 

.992 
1.00 

1.00 
1.00 
1.00 

   Notes: Each cell represents the average rejection rate at the .05 level in 500 Monte Carlo iterations.  FE = data 
generating process and estimating equations include industry & year fixed effects; trend = data generating process 
and estimating equations include industry specific time trends in addition to industry & year fixed effects. DF = 
Dickey Fuller, PP = Phillips-Perron, IPS = Im-Pesaran-Shin. 
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Table A3: Mean and Standard Deviation of Empirical .05 Null Rejection Rates 
 data generating processes 

without autoregression 
data generating processes with 

first order autoregression 
 normal errors t errors normal errors t errors 
 mean sd mean sd mean sd mean sd 
Hadri (heteroskedastic cov) 
Hadri (homoskedastic cov) 
Im-Pesaran-Shin (finite sample) 
Im-Pesaran-Shin (asymptotic) 
Harris-Tsavalis  
Breitung 
Levin-Lin-Chu  
Fisher-P Dickey-Fuller 
Fisher-Z Dickey-Fuller 
Fisher-L Dickey-Fuller 
Fisher-Pm Dickey-Fuller 
Fisher-P Phillips-Perron 
Fisher-Z Phillips-Perron 
Fisher-L Phillips-Perron 
Fisher-Pm Phillips-Perron 

.040 

.046 

.040 

.507 

.025 

.014 

.700 

.061 

.023 

.027 

.065 

.061 

.023 

.027 

.065 

.009 

.009 

.039 

.508 

.045 

.019 

.226 

.045 

.023 

.026 

.046 

.045 

.023 

.026 

.046 

.060 

.148 

.040 

.482 

.044 

.002 

.658 

.163 

.015 

.054 

.169 

.163 

.015 

.054 

.169 

.045 

.052 

.033 

.496 

.049 

.004 

.217 

.068 

.014 

.040 

.069 

.068 

.014 

.040 

.069 

.584 

.591 

.561 

.021 

.274 

.016 

.299 

.068 

.024 

.030 

.074 

.594 

.534 

.539 

.599 

.471 

.470 

.477 

.023 

.445 

.019 

.188 

.053 

.025 

.031 

.057 

.456 

.494 

.490 

.453 

.651 

.654 

.501 

.024 

.264 

.001 

.358 

.152 

.014 

.044 

.156 

.518 

.498 

.500 

.520 

.473 

.443 

.521 

.019 

.445 

.001 

.125 

.052 

.011 

.028 

.053 

.502 

.517 

.518 

.501 
   Note:  Each mean and standard deviation calculated across the relevant 12 cells (six data series, with FE or FE 
plus trends) of Tables A1 and A2.  When dgp is AR1, test includes AR1 control if the distribution with this 
control is available (not available for Hadri, HT & IPS finite sample). 
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Table A4: Stationarity (Hadri) and Unit Root (all others) Tests by KLEMS Series: 
test statistics relative to critical values (IPS finite sample) or p-values (all others) 

  ln levels growth rates 

  ln(TFP) ln(K/L) ln(I/L) g(TFP) g(K/L) g(I/L) 

 (A) without correction for autocorrelation: 

Hadri* 
(heteroskedastic cov) 

FE 
trend 

.000 

.000 
.000 
.000 

.000 

.000 
.000 
.267 

.000 

.000 
.263 
.714 

Hadri 
(homoskedastic cov) 

FE 
trend 

.000 

.000 
.000 
.000 

.000 

.000 
.101 
.959 

.000 

.000 
.950 
.990 

Harris-Tsavalis* 
FE 

trend 
.981 
.830 

1.00 
1.00 

.023 

.016 
.000 
.000 

.000 

.000 
.000 
.000 

Im-Pesaran-Shin* 
(finite sample) 

FE 
trend 

1.0 
.97 

0.81 
0.74 

.96 

.98 
3.6 
2.6 

3.0 
2.3 

3.7 
2.7 

Im-Pesaran-Shin 
(asymptotic distribution) 

FE 
trend 

.132 

.000 
.960 
.089 

.341 

.000 
.000 
.000 

.000 

.000 
.000 
.000 

Levin-Lin-Chu 
FE 

trend 
.001 
.000 

.001 

.799 
.118 
.006 

.000 

.000 
.000 
.000 

.000 

.000 

Breitung 
FE 

trend 
1.00 
.984 

1.00 
1.00 

.479 

.988 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-P DF & PP 
FE 

trend 
.001 
.005 

.158 

.998 
.005 
.000 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-Z DF & PP 
FE 

trend 
.039 
.243 

.883 
1.00 

.168 

.032 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-L DF & PP 
FE 

trend 
.044 
.173 

.844 
1.00 

.163 

.025 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-Pm DF & PP 
FE 

trend 
.000 
.002 

.158 

.996 
.002 
.000 

.000 

.000 
.000 
.000 

.000 

.000 
Notes: on following page, at end of table. 

 



 

8 

 
Table A4: continued 

  ln levels growth rates 

  ln(TFP) ln(K/L) ln(I/L) g(TFP) g(K/L) g(I/L) 

 (B) with correction for first order autocorrelation: 

Im-Pesaran-Shin* 
(asymptotic distribution) 

FE 
trend 

.280 

.773 
.877 
.998 

.920 

.912 
.000 
.000 

.000 

.000 
.000 
.000 

Levin-Lin-Chu 
FE 

trend 
.001 
.012 

.001 

.262 
.655 
.376 

.000 

.000 
.000 
.000 

.000 

.000 

Breitung 
FE 

trend 
.996 
.906 

1.00 
.991 

.254 

.927 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-P DF 
FE 

trend 
.029 
.369 

.378 

.986 
.732 
.326 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-Z DF* 
FE 

trend 
.216 
.778 

.812 

.999 
.929 
.826 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-L DF* 
FE 

trend 
.239 
.771 

.865 
1.00 

.932 

.810 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-Pm DF 
FE 

trend 
.023 
.383 

.393 

.979 
.740 
.339 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-P PP 
FE 

trend 
.001 
.003 

.185 

.994 
.008 
.000 

.000 

.000 
.000 
.000 

.000 

.000 

Fisher-Z PP 
FE 

trend 
.043 
.175 

.862 
1.00 

.186 

.020 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-L PP 
FE 

trend 
.046 
.117 

.850 
1.00 

.176 

.015 
.000 
.000 

.000 

.000 
.000 
.000 

Fisher-Pm PP 
FE 

trend 
.000 
.001 

.188 

.988 
.004 
.000 

.000 

.000 
.000 
.000 

.000 

.000 
  Notes: (*) reported in paper based upon greater accuracy in Monte Carlos of Tables A1-A3.  DF = Dickey Fuller 
& PP = Phillips-Perron, as described in text. above.  FE = estimating equations include industry & year fixed 
effects as controls; trend = time specific trends in addition to industry & year fixed effects. 
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B. (III.5) and (III.7) with Average Factor Shares as Second Order Approximations 

 Equations (III.5) and (III.7) in the paper are based upon instantaneous rates of change.  

In the paper I claim that for changes across discrete time periods the same formulae are 

correct for second order approximations of the underlying functions if the average across the 

two periods of first order approximations of factor shares are used in place of the 

instantaneous θit.  This motivates applying the formulae with average observed shares as a 

discrete time approximation.  This appendix lays out the argument. 

 We may re-express the production function (III.1) as  

),...,,(lnln)1B( JJ2211 lnlnln itititititit XAXAXAi
it eeeFQ  . 

Its second order Taylor series (TS2) approximation around the point (ln(A1X1),..., ln(AJXJ)) is 
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and all derivatives are evaluated at the point (ln(A1X1),..., ln(AJXJ)).  I note that with perfect 

competition the partial of ln Qit with respect to ln Xjit equals the factor income share θjit, the 

first order Taylor approximation of which at the point (ln(A1X1),..., ln(AJXJ)) is 
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as was claimed in the paper.  
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 Turning to the upper rows of (III.5), we focus on the case of the nested three factor 

production function in (III.6) with 1
itE given by (III.7).  In this case, the upper rows of (III.5) 

can be re-expressed as 
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We wish to show that for discrete time periods (B6) with the average of first order Taylor 

series approximations of the sjit is correct for a second order approximation of the profit 

maximizing condition (III.3). 

 We begin by deriving some useful relations.  From Euler's theorem and homogeneity 

of degree 1 of Gi we have 
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where we define σ as the elasticity of substitution, i.e. the proportional change in the ratio of 

effective input 1 (A1itX1it) to effective input 2 (A2itX2it) for a proportional change in the relative 

cost per unit of effective input.   (B8) also allows us to solve (at least implicitly) for the 

effective input 1 to input 2 ratio as a function of the relative costs per effective factor: 
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As Gi is homogeneous of degree one, this implies the following cost per unit of Gi 
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In a two stage budgeting procedure, firms first set the ratio of marginal products of Gi to X3it 

equal to the ratio of their relative prices 
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and totally differentiating then allows us to define the elasticity of substitution between the Gi 

aggregate and effective input 3: 
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 With the above results, we turn finally to the second order approximation of (III.3).  

For j = 1 or 2 and X3it as the "numeraire" factor we can express the jth row of (III.3) as  
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so that we may write 
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where we make use of the results in (B9) and (B13).  As the elasticities are constant across the 

range of the data (i.e. region of approximation), we have  
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where we have kept in mind that as sjit is a function of ln x1it/x2it, and s1it+s2it = 1 
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 The second order Taylor series approximation of (III.3) is then given by: 
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Taking the ln difference across two time periods of (B20) 
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and it is similarly easily seen that 
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so that across discrete time periods the upper part of (III.5) can be approximated as: 
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as was our objective to show. 
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C. Consistency with Factor Price Growth and Factor Shares as Regressors 

 As noted in the paper, the endogeneity of relative factor price growth does not inhibit 

consistency of the estimation procedure as long as year fixed effects are included, even 

though with non-constant factor shares factor price growth still affects (albeit in practice 

minimally) elasticity estimates in finite samples.  This appendix uses a simplified version of 

the model to establish this principle theoretically with the minimum algebra possible, showing 

that independence of the factor augmenting shocks from the levels of factor shares is 

sufficient to ensure that the derivatives of a normal likelihood asymptotically equal zero at the 

true parameter values.  The growth rate of factor shares, however, is affected by the factor 

augmenting shocks, and this induces a very slight correlation between the level of factor 

shares and the shocks, raising the possibility of inconsistency due to this relation.  To alleviate 

such concerns, this appendix uses Monte Carlos to establish that for the elasticities estimated 

in the paper these correlations do not inhibit root-N convergence of parameters (& N super 

convergence of cointegration parameters) to materially trivial levels of mean squared error.  

The factor prices in these Monte Carlos are endogenous, and hence they illustrate (more 

generally than the specific theoretical proof) that this does not inhibit consistency.  I begin 

with the Monte Carlos, as these are the easiest to absorb. 

(i) Monte Carlos 

 I use the point estimates of models 1 & 2 of Section IV of the paper to establish the 

data generating process.  From these models we get estimates of the industry x factor fixed 

effects, year x factor fixed effects, diagonal variance of year x industry factor augmenting 

shocks, elasticities, coefficients on lagged values of shocks, and, where applicable, degrees of 

freedom of the t-distribution governing the factor augmenting shocks and the cointegration 

parameters β and α.  I use all of these as is, except for the fixed effects, for which I calculate 

the (unrestricted) covariance across factors and then use independent draws from the 

multivariate normal3 to create new industry x factor and time x factor fixed effects for the 

expanding industry x time samples below.  Thus, the data generating process for factor 

augmenting technical change is, as in the models of the paper: 

 
3For most factors the kurtosis of these estimated fixed effects is not exceptionally different from the 

normal, and hence I do not assume that they are distributed multivariate t. 
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and where hats indicate values estimated in the paper, V(x) indicates the covariance matrix of 

vector x, and while the covariance matrix of the fixed effects ηt & ηi is unrestricted, the 

covariance matrix of the factor augmenting shocks εit is made diagonal.  The means of the 

fixed effects are set equal to zero (contrary to their estimated means) so as to avoid a tendency 

of factor shares to gravitate to corners (0 or 1) as the number of time periods grows. 

 Factor augmenting productivity growth is, of course, treated as unobserved.  The 

observed data consist of vectors of relative factor input growth, total factor productivity 

growth, relative factor price changes and factor shares.  As in the paper, we have  
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and where superscripted bars denote averages between periods t-1 and t of factor shares and 

hats again indicate elasticities estimated in the paper.  Relative factor prices are determined by 

matching supply to changes in average relative factor demand with a relative supply growth 

curve with slope 1.  Average relative factor demand growth is either determined by the 

average of all industries, a "small industry" model, or by one single dominant industry, a 

"large industry" model, so we have: 
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where N denotes the number of industries.  In the small industry model, the influence of 

individual industries on the growth of relative prices goes to zero, which asymptotically are 

driven solely by year fixed effects common to all industries.  In the large industry model, 

although there are N industries which contribute data, factor augmenting productivity growth 

in industry #1, which is large, determines factor price changes, so that relative price growth is 
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always influenced by both the year fixed effects (common to all industries) and the industry 

fixed effects and iid shocks specific to industry 1. 

 Factor shares in period 1 are set by taking three independent draws from the (0,1) 

uniform distribution for each industry, multiplying them by 2, 3 and 5, and dividing by their 

total, so that the initial shares for capital, labour and intermediates have an expected value of 

.2, .3 & .5 (as is roughly found in the data).  Factor shares then evolve according to the 

formula: 
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Given the complex dependence of factor augmenting productivity growth g(Ajit) on past 

values and cumulated past values in (C1) above, 500 initial periods (which are then discarded) 

are used to initiate the system and ensure that the distribution of initial rates of factor 

augmenting productivity growth is close to its ergodic distribution. 

 Table C1 reports the root mean squared error of key parameter estimates across 50 

data generating process realizations for the VAR, VEC1, normal and t versions of the two 

models.  The ratio of years to industries is set at 3:6, reflecting the ratio found in the 61 

industry 1987-2021 BEA US KLEMS data in the paper, with each multiplied by 10 as the 

sample increases.  Reported in the table are the mean squared error for the elasticities, the t-

degrees of freedom and the cointegrating factors β and α.   As expected of a consistent 

estimator, root mean squared error for most parameters is inversely proportional to the root 

number of observations, i.e. falls by an order of magnitude with a 100 fold increase in the 

sample size.  The exceptions are the estimates of β which, by virtue of being multiplied by the 

non-stationary levels of factor augmenting productivity, are known to be superconsistent 

(Johansen 1995) with root mean square error inversely proportional to the number of 

observations, as shown in the table.  In sum, as claimed earlier, despite the endogeneity of 

factor price movements and the levels of factor shares, with year and & industry fixed effects 

the estimates appear to be consistent in exactly the fashion expected of VAR & VEC models.  

This is true for both the "small" and "large" industry models. 
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Table C1: Root Mean Squared Error Across 50 DGP Iterations of Key Parameter Estimates 

(Monte Carlos based on point estimates of models 1 & 2) 
model VAR VEC1 

years x industries σ η dof σ η dof βL βI αK αL αI 

(A) small industry model: relative price growth determined by average industry relative demand growth 

    model #1, normal distribution 
30 x 60 

300 x 600 
.0147 
.0012 

.0145 

.0011 
 .0144 

.0010 
.0167 
.0011 

 .1250 
.0021 

.2082 

.0034 
.0441 
.0030 

.0150 

.0010 
.0338 
.0027 

    model #2, normal distribution 
30 x 60 

300 x 600 
.0123 
.0012 

.0285 

.0023 
 .0120 

.0010 
.0298 
.0022 

 .1319 
.0020 

.5702 

.0079 
.0339 
.0026 

.0102 

.0005 
.0211 
.0017 

    model #1, t distribution 
30 x 60 

300 x 600 
.0167 
.0012 

.0162 

.0018 
.1579 
.0141 

.0163 

.0009 
.0175 
.0029 

.1610 

.0146 
.1586 
.0039 

.1551 

.0060 
.0076 
.0004 

.0050 

.0002 
.0055 
.0002 

    model #2, t distribution 
30 x 60 

300 x 600 
.0127 
.0010 

.0377 

.0025 
.1525 
.0164 

.0133 

.0013 
.0384 
.0030 

.1524 

.0186 
.1531 
.0037 

.4503 

.0189 
.0063 
.0003 

.0029 

.0001 
.0045 
.0002 

(B) large industry model: relative price growth determined by relative demand growth in one industry 

    model #1, normal distribution 
30 x 60 

300 x 600 
.0143 
.0011 

.0135 

.0014 
 .0137 

.0009 
.0155 
.0010 

 .1251 
.0021 

.2068 

.0035 
.0441 
.0030 

.0150 

.0010 
.0338 
.0027 

    model #2, normal distribution 
30 x 60 

300 x 600 
.0117 
.0013 

.0256 

.0025 
 .0116 

.0010 
.0271 
.0019 

 .1329 
.0020 

.5665 

.0084 
.0339 
.0026 

.0102 

.0005 
.0211 
.0017 

    model #1, t distribution 
30 x 60 

300 x 600 
.0152 
.0011 

.0124 

.0012 
.1579 
.0144 

.0149 

.0011 
.0143 
.0018 

.1610 

.0146 
.1579 
.0043 

.1557 

.0072 
.0076 
.0003 

.0049 

.0002 
.0054 
.0002 

    model #2, t distribution 
30 x 60 

300 x 600 
.0120 
.0012 

.0300 

.0022 
.1526 
.0190 

.0124 

.0017 
.0309 
.0026 

.1526 

.0182 
.1455 
.0033 

.4514 

.0308 
.0063 
.0003 

.0029 

.0002 
.0044 
.0004 

   Notes:  Root mean squared error calculated across 50 dgp iterations, in some t cases dropping one or two 
instances where the likelihood did not converge. dof = multivariate t-distribution degrees of freedom. 

 (b) Formal Proof 

 For a formal proof that the endogeneity of relative price changes does not prevent 

consistency, I simplify so as to make the point with minimal algebraic complexity.  I examine 

a two factor model estimated with the normal distribution, no cointegration, and only year 

fixed effects, in which the number of industries goes to infinity but the number of years is 

constant.  For this framework, 1
itE  equals σ, the elasticity of substitution, and the model is 
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where we define the matrix Cit and yit to reduce clutter below.  Factor augmenting 

productivity growth depends only on year fixed effects and iid shocks: 

ittjitA εηg )()C7( , 

We assume that the first moment of 0ε )( itE , Vεε  )( ititE , where V is diagonal, there exists 

a γ > 1 such that ))(( 2  jitE exists, and that εit is independent of θit.  For a given value of ̂ , 

g(Ajit) can be calculated from (C6).  We use the notation ))ˆ(( jitAg  to distinguish between 

these estimated values and the true values )( jitAg . 

 With a normal likelihood, the ln likelihood of the model is given by: 
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where V̂  is diagonal with entries ( 21 ˆ,ˆ vv ) estimating the diagonal covariance matrix of the 

shocks, itĈ is the estimate of Cit based upon the estimate ̂  of  , itŷ and ))ˆ(( jitAg are based 

upon itĈ and (C6) above, ∑it denotes summation across both industry and time indices, N the 

number of industries,  & T the number of time periods, we define the average likelihood L  

and use the fact that )ˆˆ(tdeterminan ititCC  = (̂ -1)2.   

 I will establish conditions under which 0ˆ/  L  when ̂ = , satisfying the first 

order condition for a maximum.  This does not guarantee convergence of the estimate of ̂  to 

 , which depends upon global (within the parameter range specified by the model) concavity 

of the objective function, but it does establish that the growth of relative prices does not 

prevent consistency of the estimator.  In the paper I concentrate the likelihoods of the models 

as a function of the elasticities of substitution and (where applicable) degrees of freedom of 

the t-distribution and conduct systematic grid searches across these spaces.  As noted therein, 

in all cases (i.e. twelve models each in their VAR, VEC1, VEC2, normal & t forms) I find the 

likelihood is single peaked within the specified elasticity of substitution restrictions. 

 Using the envelope theorem and the fact that we are maximizing with respect to the 

other parameters, we take the derivative of the average likelihood with respect to ̂ : 
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Substituting for g(Ajit) and rearranging, we have: 
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The two (alternative) formulations cover two possibilities discussed further below.  Using the 

maximum likelihood solutions for tη̂  and jv̂ , we have 
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where as before ∑it denotes summation across both industry and time indices, while ∑i & ∑t 

denote summation across the industry or time indices alone.  From the strong law of large 

numbers, as N  
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....2..

21
..

  avvv
NNN a

sa

aa

sa

i

ait
sa

i

itit
sa

i

it 
00

ε
 

In addition, for a and b equal to 1 or 2 
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where the last line follows from the fact that for i ≠ j E(θaitθajtεbitεbjt) = E(θaitθajt)E(εbitεbjt) = 

E(θaitθajt)*0, and throughout we make use of the fact that 0 ≤ E(θait) ≤ 1 & 0 ≤ E(θaitθajt) ≤ 1.  

From (C13), we see that ∑iθaitεbit/N converges in mean square, and hence in probability, to 0.  

Similarly, for b ≠ c 
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and hence ∑iθaitεbitεcit/N also converges in probability to 0.   

 The only remaining term in (C10) is that appearing in the lower-right hand corner, 

where for a and b equal to 1 or 2, we have 
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From Jamison, Orey & Pruitt's (1965) Theorem 1 on the convergence of weighted averages of 

independent variables, we know that  
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where F is the cumulative distribution function of 2
bit .  Condition (a) is assured, as if it does 

not hold (say) for a = 1, as θ2it = 1 - θ1it we can simply switch to the "or" version of (C.10) and 

ensure that it does.  As θait ≤ 1, condition (b) follows.  If for some γ > 0 ))(( 2 bitE exists, i.e. 

εbit has slightly higher than second moments, as was assumed above, then (c) follows from 

Markov's Inequality and (d) as well.4  Consequently, we have: 
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4Jamison, Orey & Pruitt treat wi as non-stochastic, but their proof follows through provided it is 

independent of the weighted variable and conditions (a) and (b) are automatically satisfied, as is true in our case. 
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 From the above results, we see that depending upon whether we follow the second or 

third equality in (C10): 
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as was claimed earlier.   
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D.  Monte Carlos for Johansen (1995) Type Asymptotically Valid Cointegration Tests  

 This appendix shows that Johansen's (1995) cointegration (trace) test and Larsson, 

Lyhagen & Löthgren's (2001) extension to panel data have very large size distortions when 

evaluated using their asymptotic distributions.  I apply the tests to data generating processes 

based upon my industry x year panels for K/L, I/L and TFP growth.  For the test of whether 

any co-integration exists at all (in a single industry i), Johansen compares the likelihoods of 

vector auto-regression and full rank cointegration models: 

)VEC()()()(

)VAR()()()D1(

11

1

itiitjitijitijit

itiitjitijit

yyy

yy

εγzlnΠgΓg

εγzgΓg








 

where j denotes any of the 3 measures, Г and Π are 3x3 matrices, zit either constants for each 

j or constants plus time trends, and εit is a Jx1 vector of errors.  Johansen's test is designed for 

a single time series, so below I test each time series separately and report the average rejection 

rate.  Larsson et al (2001) extend the test to panel data by using the normalized mean of the 

individual time series likelihood ratios.5 

 I begin by estimating the VAR in (D1), i.e. running a specification that imposes the 

null.  The VAR is run assuming the errors are multivariate normal or (using maximum 

likelihood techniques) distributed multivariate t.  The covariance and (in the case of the t-) 

degrees of freedom estimates are then used to create new multivariate iid (across it) errors, 

which are added to the point estimates to create new data.  Table D1 below reports the 

average empirical rejection rates of the true null of no cointegration across 500 draws of new 

data.  As shown, size distortions in Johansen's test are large, with the empirical rejection 

probability of the true null at the nominal .01 and .05 levels varying from .060 to .165 & .192 

to .294, respectively, with rejection rates systematically higher when both the data generating 

process and test include time trends.  Rejection rates for Larsson et al's panel normalized 

mean trace test are remarkable, ranging from .604 to .830 and .644 to .860 at the .01 and .05 

levels, respectively 

 Neither of these tests is suitable for testing cointegration in my panel model, where the 

dependent variables are transformations of implicit variables which may be cointegrated and 

the model includes additional non-standard parameters such as elasticities of substitution.   
 

 
5Both methods also allow for testing rank > 0 levels of cointegration, but I concentrate here on results for 

the test of rank = 0, i.e. is there any cointegration at all. 
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Table D1: Monte Carlo Rejection Probabilities of True Null  
of No Cointegration among ln(TFP), ln(K/L), ln(I/L) 

 
(a) Johansen's (1995) trace test 
conducted industry by industry 

(b) Larsson, Lyhagen & Löthgren 
(2001) normalized mean trace test 

 constant + trend constant + trend 
 .01 .05 .01 .05 .01 .05 .01 .05 

normal errors 
t-distributed errors 

.060 

.143 
.192 
.252 

.096 

.165 
.252 
.294 

.670 

.604 
.728 
.644 

.830 

.752 
.860 
.780 

    Notes: Reported Johansen rejection rates are the average of the 61 industry level rejection rates for 500 Monte 
Carlos each, while Larsson et al rejection rates are based on 500 Monte Carlos for all industries together. Test 
statistics evaluated using asymptotic critical values, means & variances calculated by Osterwald-Lenum (1992). 

 

The Monte Carlos in Table D1 suggest, however, that asymptotic theory for my panel model 

is unlikely to be of much use in the sample sizes encountered in the paper.  For that reason, I 

make use of the wild bootstrap for inference, showing in the next appendix that when 

estimation is done using the multivariate-t distribution it consistently delivers reasonably 

accurate null rejection probabilities. 
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E.  Monte Carlos for Structural Model Cointegration Tests using the Wild Bootstrap  

 This appendix reports Monte Carlos for the wild bootstrap-based cointegration tests I 

implement for the structural models in the paper.  Panel cointegration tests based upon 

asymptotic distributions, examined in the appendix above, have nominal .01 level empirical 

rejection rates in my sample sizes of over .6 (Table D1).  Moreover, they do not cover the 

models used in the paper, where we are testing the level of cointegration of an underlying 

latent variable that is unobserved but related to observables through matrices determined by 

observed factor input shares and estimated elasticities of substitution.  For these reasons, I 

implement a wild bootstrap based upon transformations of the residuals of the null hypothesis.  

Although by no means perfect, when implemented using a t-distributed likelihood, which 

underweights outliers, these tests afford rejection probabilities that are much closer to 

nominal value than found using asymptotic theory.  As in the cointegration tests described in 

appendix D, I follow Johansen (1995) and use the difference in the ln likelihood of the model 

of full cointegration (i.e. the number of cointegrating relations equaling the number of 

dependent variables) and that of cointegration of level r as the test statistic. 

 I begin each test by estimating the model of the null hypothsis.  As in the paper, we 

have: 
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so that the unobserved latent variables are related to the observables by )( jitAg  

)]/()([ J
1

tjtitjitit ppy gBgC  .  The matrix 1
itE depends upon factor shares and elasticities of 

substitution.  In the case of the three factor model of the paper, for instance, it is given by 
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Estimated elasticities of substitution uncover the latent factor augmenting change, which is 

modelled as having either a VAR or VEC form with factor x year & factor x time fixed 

effects and mutually orthogonal iid shocks: 
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 The baseline null hypothesis is the VAR or a VEC model with r cointegrating 

equations.  I then either multiply the individual estimated residuals jit̂  by an iid variable that 
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is ±1 with 50/50 probabilities, generating mutually orthogonal iid shocks, or I multiply the 

observation specific vector of residuals itε̂ by a common ±1, retaining the empirical off-

diagonal covariance of the iid vectors of shocks.  These are then added to estimated fixed 

effects tη̂  & iη̂  and cumulated forward using the estimated lag & cointegration parameters 

Γ̂ , α̂  & β̂ .  "Pre-sample" values of ln(Aji0) and g(Aji0) do not change and are set at those used 

in the original estimation, i.e. 0 and the value uncovered by )]/()([ˆ
0J000

1
0 ppy jijii gBgC  , 

respectively.  The bootstrapped latent variables are then transformed into observed data g(yjit) 

using (E1) above and the estimated values (based on estimated elasticities of substitution) of 

1ˆ 
itE .  Original factor input shares are kept as fixed data/regressors.  The ln likelihoods for this 

new data of a model of full cointegration and the restricted model of the null hypothesis are 

then calculated and their difference compared to that found in the original data.  In the paper I 

use 200 bootstrap draws to calculate the probability of a test statistic greater than that 

observed under the null. 

 The above describes the wild bootstrap test procedure.  To evaluate the accuracy of the 

procedure, I need artificial data that is similar to my sample.  To that end, I similarly begin by 

taking point estimates for each model and generating artificial data.  Instead of using actual 

residuals, however, I use normally or t-distributed errors with either an orthogonal covariance 

matrix or unrestricted covariance matrix and degrees of freedom equal to that estimated on the 

residuals of the original sample.  I then estimate the model on this artificially generated data 

and use estimated residuals to conduct the wild bootstrap using 200 data bootstrap iterations.  

Thus, for a test of r = 0 cointegration (i.e. a VAR) the Monte Carlo procedure is: 

(1) Estimate VAR model parameters on original data.  
(2) Use those VAR parameters to generate data that has normally or t-distributed iid mutually orthogonal or 

correlated error vectors. 
(3) Estimate the model on the data in (2) and calculate the VAR vs full cointegration test statistic for the data. 
(4) Use the newly estimated VAR parameters and residuals to implement the wild bootstrap, using 200 iterations 

to calculate the p-value of the test statistic calculated in (3). 

For the VEC1 model, I follow Johansen's (1995) sequential testing procedure.  That is: 

(1) Estimate VEC1 model parameters on original data.  
(2) Use those parameters to generate cointegrated data that has normally or t-distributed iid mutually orthogonal 

or correlated error vectors. 
(3) Estimate the VAR model on the data in (2) and calculate the VAR vs full cointegration test statistic for the 

data. 
(4) Use the newly estimated VAR parameters and residuals to implement the wild bootstrap, using 200 iterations 

to calculate the p-value of the test statistic calculated in (3). 
(5) If rejecting at the nominal level in (4), estimate the VEC1 model on the data in (2 and calculate the VEC1 vs 

full cointegration test statistic for the data. 
(6) Use the newly estimated VEC1 parameters and residuals to implement the wild bootstrap, using 200 

iterations to calculate the p-value of the test statistic calculated in (5).  
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 Table E1: Monte Carlo Empirical Rejection Probabilities of True Nulls 
Regarding Cointegration among Factor Augmenting Productivities by Level of Test 

cointegration 
in dgp 

data generating 
process 

likelihood 
model 

nominal level 
.01 .02 .05 

0 (VAR) 
1 (VEC1) 

t-distributed 
diagonal shocks 

t-distributed 
diagonal covariance 

.025 

.026 
.042 
.026 

.119 

.111 
0 (VAR) 
1 (VEC1) 

t-distributed 
correlated shocks 

t-distributed 
diagonal covariance 

.050 

.017 
.092 
.043 

.158 

.111 

0 (VAR) 
1 (VEC1) 

t-distributed 
diagonal shocks 

t-distributed 
unrestricted covariance 

.025 

.026 
.068 
.034 

.136 

.077 
0 (VAR) 
1 (VEC1) 

t-distributed 
correlated shocks 

t-distributed 
unrestricted covariance 

.050 

.051 
.075 
.060 

.133 

.085 
0 (VAR) 
1 (VEC1) 

normally distributed 
diagonal shocks 

normally distributed 
diagonal covariance 

.188 

.017 
.265 
.034 

.444 

.076 

0 (VAR) 
1 (VEC1) 

t-distributed 
diagonal shocks 

normally distributed 
diagonal covariance 

.283 

.235 
.317 
.193 

.492 

.151 
    Notes: Test rejects any given null when the fraction of wild bootstrap iterations with a test statistic greater than 
that of the sample is less than or equal to the nominal level.  Test for VEC1 dgp follows Johansen’s sequential 
procedure, testing VAR null and then testing VEC1 null if VAR is rejected.  Reported rejection probability is 1 – 
probability of accepting the true null in the sequential procedure. 

 

I refer to each run through of (1)-(4) or (1)-(6) as a "sample".  

 Table E1 reports the Monte Carlo rejection probabilities of true null at nominal levels 

.01, .02 & .05.  I run 10 samples for each of the 12 models examined in Section IV of the 

paper.  In a few samples the likelihood fails to converge in steps (3) or (5) above, and those 

are excluded from the calculations, as are wild bootstrap runs which fail to converge in steps 

(4) or (6) above.  In testing accuracy for a true VAR, the table reports the probability the wild 

bootstrap selected in favour of r > 0 cointegration.  In testing accuracy for a true VEC1, the 

table reports the probability the wild bootstrap accepted the null of no cointegration (VAR) or 

rejected that null but subsequently also rejected the VEC1 null in favour of r > 1 

cointegration, as this represents the error rate of Johansen's sequential testing procedure.  It is 

possible for empirical rejection rates at a higher nominal level to be lower in testing a true 

VEC1 because of a reduced failure to reject in the first step test of a VAR.  

 As can be seen, with a normal likelihood and either normal or heavy tailed t - 

distributed data, the wild bootstrap performs poorly and inconsistently.  However, results 

using a t-likelihood (which underweights outliers) on heavy-tailed data, as encountered in the 

paper, are much more reliable.  In particular, a .01 nominal level ensures a rejection 

probability not greater than .051 even when the wild bootstrap dgp is misspecified, imposing 
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a diagonal covariance when the dgp is non-diagonal or allowing off-diagonal covariance 

when the dgp is diagonal.  For this reason, in the paper I use a nominal level of .01 to evaluate 

the t-distribution Johansen sequential test for the actual sample. 
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Table F1: Ratio of Wild Bootstrap Standard Error Estimates for Results in Table 7(A):  

Retaining Empirical Off-Diagonal Covariance of Shocks/Imposing Diagonal Covariance Matrix  
(t - VEC1 estimates) 

 dof βL βI αK αL αI ρKL ρKI ρLI 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

1.02 
1.08 
1.06 
1.00 
1.10 
1.17 
1.02 
1.17 
1.13 
1.08 
1.00 
1.21 

1.19 
0.86 
0.89 
2.00 
1.64 
4.70 
1.10 
0.58 
1.64 
1.17 
1.43 
0.78 

1.23 
0.88 
1.10 
1.51 
1.50 
4.42 
1.25 
0.55 
1.33 
1.26 
1.26 
0.70 

1.03 
1.01 
0.95 
0.86 
1.04 
1.28 
1.02 
1.25 
1.07 
1.15 
1.03 
1.05 

0.96 
0.96 
0.91 
0.76 
1.13 
1.35 
1.34 
1.11 
1.26 
1.24 
1.04 
1.98 

0.99 
0.78 
0.84 
0.86 
0.95 
1.23 
1.24 
1.10 
1.06 
1.14 
0.97 
1.19 

0.96 
0.98 
0.98 
1.02 
0.99 
0.91 
1.23 
0.99 
0.93 
0.90 
0.89 
0.91 

0.90 
1.06 
0.96 
1.02 
0.94 
0.96 
0.96 
0.95 
0.93 
0.93 
0.87 
0.98 

0.84 
0.97 
1.03 
1.19 
0.94 
0.98 
1.20 
1.22 
0.95 
1.12 
0.84 
1,12 

   Notes:  Variables as defined in the paper.  1-12 denotes models described in Table 5 of the paper. 

F.  Supplementary Table for Section IV 

 Standard errors in panel (A) of Table 7 of the paper are based upon a wild bootstrap 

that imposes a diagonal covariance matrix by multiplying each factor augmenting shock by an 

independent ±1 variable.  The table notes indicates that standard error estimates based upon a 

bootstrap that retains the off-diagonal covariance of the shocks by multiplying each it three-

tuple of shocks by a common ±1 are very similar.  Table F1 reports the ratio of the standard 

error estimate using the wild bootstrap that retains the off-diagonal covariance to that of the 

wild bootstrap that imposes a diagonal covariance matrix.  As shown, most of the ratios are 

near one.   
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G  Estimation using the Multivariate t as Equivalent to Weighted Estimation 

 This appendix shows that estimation using the multivariate-t produces the same 

parameter estimates as a weighted version of the multivariate normal, where the weights are 

determined by the degrees of freedom and the inverse covariance matrix weighted deviations 

of the observation residuals from predicted values.  I illustrate this with a seemingly unrelated 

system of equations with the same regressors used for each dependent variable, although the 

same results apply to the non-linear VEC models estimated in the paper.   

 The ln likelihood for the multivariate normal is: 
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where subscript it denotes the industry i x year t observation, Σit indicates summation across 

all such observations, yit is a Jx1 vector of dependent variables, xit a Kx1 vector of regressors, 

and V JxJ (symmetric) & β KxJ matrices of parameters, respectively.  The first order 

conditions for maximizing the ln likelihood are: 
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where (V-1)k and (V-1)jk denote the kth column and jkth element of V-1.  The solutions to these 

equations are given by: 
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When V is constrained to be diagonal, the solution is the same except that we set the off-

diagonal elements of V̂ to 0.   

 The corresponding ln likelihood for the multivariate t is 
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where τ is the degrees of freedom & Γ is the gamma function.  Taking τ momentarily as given, 

we have the first order conditions 
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and where again if V is constrained to be diagonal we set the off-diagonal terms of V̂ to 0.  

Thus, for a given τ the solution for the other parameters looks like a weighted version of the 

standard solution for multivariate normal errors, where the weights τ + J divided by the 

degrees of freedom plus the inverse covariance matrix weighted deviation from means.  As τ 

goes to infinity and the distribution converges to the multivariate normal, these weights 

converge to 1.  Given these solutions, the likelihood can then be maximized with respect to τ. 

  


