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A. Monte Carlos for Stationarity & Unit Root Tests

This appendix uses Monte Carlos to evaluate the accuracy of the panel stationarity and
unit root tests available in Stata. Those that have rejection rates closer to nominal value are
featured in Table 4 in the paper, which presents results for these tests on the KLEMS sample.
The Stata panel tests are the Hadri (2000) Lagrange multiplier test for stationarity & the
Breitung (2000), Harris & Tsavalis (1999), Im, Pesaran & Shin (2003), and Levin, Lin &
Chu (2002) tests for a unit root, as well as Fisher-type tests for a unit root that combine the p-
values from individual Dickey & Fuller (1979) or Phillips & Perron (1988) tests for each time
series in the panel. The Fisher-type tests use four alternative summary statistics of the N p-

values:

(A P=-=2)In(p); Z=—— Z@ (p); L= Zln( b j J—Z[ln(p,-m].

)
I refer to these as Fisher-P, Fisher-Z, Fisher-L and Fisher-Pn. When the regression does not
include lags, the Dickey-Fuller and Phillips-Perron p-values are identical. However, when
lags are included, they differ, and are then distinguished by the initials DF and PP in the
tables below.

The starting point for each simulation is a data generating process (dgp) for which the
tested null is true, parameterized off of the KLEMS samples. When the test is for a unit root,
I estimate the following equation for each KLEMS sample:

(A2) gi) =B+ B, +rit+pg(yi1) +é&;,
where g(vi)) = yir - yir-1 (measured in Ins), f; and f; are industry and year fixed effects, y; is the
industry specific time trend, and p allows for first order autocorrelation. y; and p are only
estimated and included in some dgps. The point estimates, plus iid shocks, are then used to
generate new values for g(yi),! which are cumulated to create a y; series with a unit root for
the subsequent unit root tests. For normal shocks, I estimate (A2) using OLS and set the
standard deviation of the iid Monte Carlo shocks equal to its root mean squared error. For t-
distributed shocks, I estimate (A2) using maximum likelihood based upon the t-distribution
and set the standard deviation and degrees of freedom of the iid Monte Carlo t-distributed
shocks equal to their estimated values. For tests of stationarity, (A2) is estimated using yi; and

vir-1, rather than their first differences, on the left and right hand sides and estimated values

IStep by step through the observations when the lagged value g(yi~;) is a right hand side variable.



and iid normal or t-distributed shocks are used to create the stationary series. Since Table 4 in
the paper reports results for both the In series and its growth rate (first difference), results
below are differentiated by whether y; in (A2) and the dgp is the In series or its growth rate.?
In terms of simulation results, this matters most when autoregression is included in the dgp, as
the estimated autoregressive parameters in (A2) vary greatly depending upon whether y;; is the
In series or its difference.

Table A1 below reports empirical rejection rates at the .05 level of the different tests
in 500 Monte Carlo iterations for specifications that include industry and year fixed effects or
the same plus industry specific time trends. Separate results are reported for the Hadri test
with a heteroskedastic or homoskedastic covariance estimate and for the Im-Pesaran-Shin test
using a finite sample (based upon Monte Carlos by the authors) or asymptotic distribution, as
these are options provided by Stata. Table A2 below adds the lagged value of g(yvir) or yir to
the right-hand side of the baseline estimating equation (A2) and hence to the dgp. The Hadri,
Harris-Tsavalis and Im-Pesaran-Shin with finite sample distribution tests of Table A2 do not
contain a correction for autoregression as an option, as the distributions have not been worked
out for this case. As these tests are featured in the paper, they are included to show how the
accuracy of the tests deteriorates when the dgp is autoregressive. The remaining tests in the
table contain a correction for first order autoregression. Table A3 summarizes the mean and
standard deviation of the empirical rejection probabilities across 12 cells (6 series, with fixed
effects and with fixed effects & time trends) differentiated by whether the shocks are normal
or t-distributed and whether the dgp (and test when available) includes an AR1 process.

Focusing on Table A3 in particular, we see that without an AR1 in the dgp, the Hadri,
HT and IPS (finite sample) tests provide rejection probabilities that are reasonably close to the
.05 nominal value, but when the dgp includes an AR1 they are highly inaccurate. In that case,
the IPS (asymptotic) and Fisher-Z and -L (Dickey-Fuller) tests provide the best performance.
Based on these results, the presentation in the paper reports the results of those six tests on the
KLEMS sample. Table A4 provides results for the KLEMS samples for all the tests
considered in these Monte Carlos. With regards to the Hadri test of stationarity, the Hadri test
with the homoskedastic covariance provides larger p-values for the growth rates of the series

than the heteroskedastic covariance results reported in the paper, where I argued that the

Thus, when the intent is to create a series y; representing growth rates that has a unit root, the estimating
equations in (A2) are based upon the second difference of the In series.



evidence suggested the growth series were stationary. Both tests agree in finding p-values of
.000 for the stationarity of the In series in all specifications. With regards to the unit root
tests, all methods find p-values of .000 (or test statistics well above the critical value for the
IPS finite sample test) in all specifications for the null that growth rates have unit roots (Table
A4). For the In levels of the different series, the results based upon the IPS tests and Fisher-L
DF and -Z DF tests reported in the paper never reject the unit root null and were used in the
paper to argue that the In series contain a unit root. Tables A3 & A4 show that the Breitung
test, which has negative size distortions in the Monte Carlos, similarly never rejects the unit
root null, while tests with large positive size distortions in the Monte Carlos, such as Levin-
Lin-Chu, the Fisher PP based tests, and the Fisher-P DF & Fisher-Pn DF, reject the null of a

unit root in some instances.



Table Al: Unit Root & Stationarity Tests:
Empirical Rejection Rates in 500 Iterations at .05 Level of True Nulls

normal errors

t - errors

FE trend FE trend

normal errors

t - errors

FE trend FE trend

normal errors t - errors

FE trend FE trend

In(TEP)
In(K/L)
In(I/L)
g(TFP)
g(K/L)
g(VL)

In(TEP)
In(K/L)
In(I/L)
g(TFP)
g(K/L)
g(VL)

In(TFP)
In(K/L)
In(I/L)
g(TFP)
g(K/L)
g(I/L)

In(TEP)
In(K/L)
In(I/L)
g(TFP)
g(K/L)
g(/L)

Hadri (heteroskedastic cov)
null = stationary

048 036 .080 .064

048 048 .190 .042

.034  .028 .064 .066
036 .032 .044 .024
052 .048 .036 .022
.044 .024 .036 .050

IPS (asymptotic distribution)

null = has unit root

002 996 .000 .864
.000 932 .000 .846
000 994 012 .844
068 1.00 .026 .980
.034 1.00 .036 .996
064 1.00 .030 .984

Levin-Lin-Chu
null = has unit root

422 862 370 786
304 764 258 764
450 870 494 .790

632 954 574 896
632 934 582  .930
612 964 560 .886
Fisher-L DF & PP
null = has unit root
.000 .002 .014 .012
.000 .004 .002 .022
006 .006 .028 .032

064 .040 .082 .064
050 .040 .084 128
046 .064 .084 .092

Hadri (homoskedastic cov) IPS (finite sample distribution)

null = stationary

048 046 202 .166
.044 056
.040 .034

052 042 114 .090
.060 .054 .100 .088
.044 030 .140 .128

252 142
212 136

Harris-Tsavalis
null = has unit root

.000 986 .000 .988
.000 954 .000 .908
.006 1.00 .010 .992
.044 1.00 .022 1.00
.044 1.00 .008 1.00
026 1.00 .028 1.00

Fisher-P DF & PP
null = has unit root

012 .024 .064 122
002 .020 .036 .140
020 046 .128 .176
.080 .088 .206 .202

108 106 .176 268
096 130 .190

242
Fisher-P,, DF & PP
null = has unit root

012 .030 .074 .128
002 022 .036 .148
026 .050 .136 .182
.086 .088 .210 212
112 108 182 272
102 138 200 250

null = has unit root
.026 .018 .086 .048
.046 .014 .170 .028
026 .008 .062 .040

.030 .016 .032 .020

024  .034 .026 .022
028 118 .038 .032
Breitung

null = has unit root
.002 .002 .002 .008

.000 .004 .000 .012
.006 .008 .018 .032
.084 .058 .064 .052
098 .058 .074 .088

.070 .088 .048 .086

Fisher-Z DF & PP
null = has unit root

.000 .000 .000 .004
.000 .002 .000 .004
.004 006 .004 .006
052 .032  .030 .020
050 .038 .020 .040

.044 050 .022 .028

Notes: Each cell represents the average rejection rate at the .05 level in 500 Monte Carlo iterations. FE = data
generating process and estimating equations include industry & year fixed effects; trend = data generating process
and estimating equations include industry specific time trends in addition to industry & year fixed effects. DF =
Dickey Fuller, PP = Phillips-Perron, IPS = Im-Pesaran-Shin.



Table A2: Empirical Rejection Rates in 500 Iterations at .05 Level of True Nulls

with Autoregressive (AR1) Data Generating Processes

normal errors t - errors

FE trend FE trend

normal errors t - errors

FE trend FE trend

normal errors t - errors

FE trend FE trend

Hadri (heteroskedastic cov)
null = stationary

Hadri (homoskedastic cov) IPS (finite sample distribution)

null = stationary

null = has unit root

In(TFP) 1.00 100 100 1.00 100 1.00 1.00 1.00 .010 .060 .000 .004
In(K/L) 1.00 100 100 1.00 100 1.00 1.00 1.00 .000 .000 .000 .000
In(I/L) 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 .168 .490 .012 .000
g(TFP) .000 .000 .018 .002 .002 .000 .086 .016 1.00 1.00 1.00 1.00
g(K/L) 622 384 954 794 666 426 862 722 1.00 1.00 1.00 1.00
g(I/L) .000 .000 .030 .014 .000 .000 .086 .072 1.00 1.00 1.00 1.00
IPS (asymptotic distribution) Harris-Tsavalis Breitung
null = has unit root null = has unit root null = has unit root
In(TFP) .000 .000 .006 .008 .000 .004 .014 .034 .000 .000 .000 .002
In(K/L) .000 .000 .000 .000 .000 .000 .002 .000 .000 .000 .000 .000
In(I/L) .000 .000 .018 .026 .008 .280 .070 .042 .000 .000 .000 .000
g(TFP) 036 046 .036 .044 1.00 .000 1.00 .000 .058 .026 .000 .002
g(K/L) 052  .026 .024 .034 1.00 .000 1.00 .000 .026 .020 .000 .002
g(I/L) 052  .042 .028 .062 1.00 .000 1.00 .002 .036 .032 .000 .004
Levin-Lin-Chu Fisher-P DF Fisher-Z DF
null = has unit root null = has unit root null = has unit root
In(TFP) 366 574 346 542 014 .020 .090 .152 .000 .000 .002 .006
In(K/L) 270 614 294 544 000 .030 .044 .108 .000 .002 .000 .000
In(I/L) 342 522 442 532 032 .028 .152 .176 .002 .000 .008 .010
g(TFP) 220 190 312 332 080 .162 .182 228 .042 .054 .028 .024
g(K/L) 190 076 284 234 096 .120 .132 184 .056 .030 .014 .028
g(I/L) 172 050 228 208 100 .128 .168 208 .054 .050 .014 .030
Fisher-L DF Fisher-P.,, DF Fisher-P PP
null = has unit root null = has unit root null = has unit root
In(TFP) .000 .002 .012 .028 .016 .020 .092 .152 .038 214 .040 .056
In(K/L) .000 .002 .002 .006 .000 .032 .044 .112 .000 .000 .000 .000
In(I/L) .002 .000 .034 .034 .038 .032 .158 .180 .222 .656 .096 .034
g(TFP) 050 .068 .060 .072 086 .166 .192 234 1.00 1.00 .998 1.00
g(K/L) 064 044 064 .072 114 .132 .140 .190 1.00 1.00 .992 1.00
g(I/L) .064 064 .060 .086 .112 .136 .168 210 1.00 1.00 1.00 1.00
Fisher-Z PP Fisher-L PP Fisher-Py, PP
null = has unit root null = has unit root null = has unit root
In(TFP) .004 .024 .000 .004 .004 .034 .002 .006 .044 228 .046 .062
In(K/L) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
In(I/L) .060 .324 .010 .002 .082 342 .018 .002 244 674 .100 .036
g(TFP) 1.00 1.00 98 1.00 100 1.00 .996 100 1.00 1.00 .998 1.00
g(K/L) 1.00 1.00 972 1.00 100 1.00 .978 1.00 1.00 1.00 .992 1.00
g(I/L) 1.00 1.00 100 1.00 100 100 1.00 100 1.00 1.00 1.00 1.00

Notes: Each cell represents the average rejection rate at the .05 level in 500 Monte Carlo iterations. FE = data
generating process and estimating equations include industry & year fixed effects; trend = data generating process
and estimating equations include industry specific time trends in addition to industry & year fixed effects. DF =
Dickey Fuller, PP = Phillips-Perron, IPS = Im-Pesaran-Shin.



Table A3: Mean and Standard Deviation of Empirical .05 Null Rejection Rates

data generating processes data generating processes with

without autoregression first order autoregression

normal errors t errors normal errors t errors

mean sd mean sd mean sd mean  sd

Hadri (heteroskedastic cov) .040 .009 .060 .045 .584 471 651 473
Hadri (homoskedastic cov) .046 .009 .148 .052 591 470 .654 443
Im-Pesaran-Shin (finite sample) .040 .039 .040 .033 561 477 501 521
Im-Pesaran-Shin (asymptotic) .507 .508 482 496 .021 .023 .024 .019
Harris-Tsavalis .025 .045 .044 .049 274 445 264 445
Breitung .014 .019 .002 .004 016 .019 .001 .001
Levin-Lin-Chu 700 226 .658 217 299 .188 358 125
Fisher-P Dickey-Fuller .061 .045 163 .068 .068 .053 152 .052
Fisher-Z Dickey-Fuller .023 .023 .015 .014 .024 .025 .014 011
Fisher-L Dickey-Fuller .027 .026 .054 .040 .030 .031 .044 .028
Fisher-Py, Dickey-Fuller .065 .046 .169 .069 .074 .057 156 .053
Fisher-P Phillips-Perron .061 .045 163 .068 .594 456 518 .502
Fisher-Z Phillips-Perron .023 .023 .015 014 534 494 498 S17
Fisher-L Phillips-Perron 027 .026 .054 .040 .539 490 .500 518
Fisher-Py, Phillips-Perron .065 .046 .169 .069 .599 453 .520 501

Note: Each mean and standard deviation calculated across the relevant 12 cells (six data series, with FE or FE
plus trends) of Tables A1 and A2. When dgp is AR1, test includes AR1 control if the distribution with this
control is available (not available for Hadri, HT & IPS finite sample).



Table A4: Stationarity (Hadri) and Unit Root (all others) Tests by KLEMS Series:
test statistics relative to critical values (IPS finite sample) or p-values (all others)

In levels growth rates
In(TFP) In(K/L) In(I/L) g(TFP) gK/L) gl/L)

(A) without correction for autocorrelation:

Hadri* FE 000 .000 000 000  .000 263
(heteroskedastic cov) trend .000 .000 .000 267 .000 714
Hadri FE 000 .000  .000 .10l 000 .950
(homoskedastic cov) trend .000 .000 .000 959 .000 990
Harris. Teavalio® FE 981 100 023 000  .000  .000
trend 830 100 016  .000  .000 .00

Im-Pesaran-Shin* FE 1.0 0.81 96 3.6 3.0 3.7
(finite sample) trend .97 0.74 98 2.6 2.3 2.7
Im-Pesaran-Shin FE 132 960 341 .000 .000 .000
(asymptotic distribution) trend .000 .089 .000 .000 .000 .000
LevinLin-Cha FE 001 .001  .118 000  .000  .000
trend  .000 799 006 000  .000  .000

Breitun FE 100 1.00 479 000 000  .000

g trend 984 100 988 000  .000  .000

. FE 001 .I158 005 000  .000  .000
Fisher-P DF & PP trend  .005 998 000 000  .000  .000

. FE 039 883 168 000  .000  .000
Fisher-Z DF & PP trend 243 .00 032 000  .000  .000

. FE 044 844 163 000 .000  .000
Fisher-L DF & PP trend 173 1.00 025 000  .000  .000

. FE 000 .58 002 000  .000  .000
Fisher-Pn DF & PP trend  .002 996 000 000  .000  .000

Notes: on following page, at end of table.



Table A4: continued

In levels growth rates
In(TFP) In(K/L) In(I’'L) g(TFP) gK/L) gU/L)

(B) with correction for first order autocorrelation:

Im-Pesaran-Shin* FE 280 877 920 000  .000  .000
(asymptotic distribution) trend 773 998 912 .000 .000 .000
L evinLin-Chu FE 001 .00l 655 000  .000  .000
rend 012 262 376 000  .000  .000
Breitun FE 996 1.00 254 000  .000  .000
g trend 906 991 927 000  .000  .000
. FE 029 378 732 000 000  .000
Fisher-P DF trend 369 .98 326 000  .000  .000
. FE 216 812 929 000  .000  .000

_ ES
Fisher-Z DF trend 778 999 826 000  .000 .00
. FE 239 85 932 000  .000  .000

_ ES
Fisher-L DF trend 771 1.00 810  .000  .000  .000
. FE 023 393 740 000 .000  .000
Fisher-Pn DF trend 383 979 339 000  .000  .000
. FE 001 .185 008 000  .000  .000
Fisher-P PP trend  .003 994 000  .000  .000  .000
. FE 043 862 .18 000  .000  .000
Fisher-Z PP trend 175 1.00 020 000  .000  .000
. FE 046 850 176 000  .000  .000
Fisher-L PP trend 117 1.00 015 .000 .000 .000
. FE 000 .188 004 000  .000  .000
Fisher-Pn PP trend 001 988 .000 .000 .000 .000

Notes: (*) reported in paper based upon greater accuracy in Monte Carlos of Tables A1-A3. DF = Dickey Fuller
& PP = Phillips-Perron, as described in text. above. FE = estimating equations include industry & year fixed
effects as controls; trend = time specific trends in addition to industry & year fixed effects.
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B. (II1.5) and (I11.7) with Average Factor Shares as Second Order Approximations

Equations (IIL.5) and (II1.7) in the paper are based upon instantaneous rates of change.
In the paper I claim that for changes across discrete time periods the same formulae are
correct for second order approximations of the underlying functions if the average across the
two periods of first order approximations of factor shares are used in place of the
instantaneous 0;;. This motivates applying the formulae with average observed shares as a
discrete time approximation. This appendix lays out the argument.

We may re-express the production function (IIL.1) as

(Bl) InQ, =In F' (e g e ey,

Its second order Taylor series (TS2) approximation around the point (In(41.X1),..., In(41X7)) is

given by the translog production function:

/4,

jit

J - - J J - _ - . ~

(B2) InQ** =+ Za JIn(4,X )+ 1/222 B In(4,, X ;)In(4,,X,,), whered, =4
Jj=1 j=1 k=1

_0lnQ, 0JIngQ,

v i ¢ In4 X In 4, X In 4, X
X, =X, /X,, a=InF'(e""", """, .,e"""), a,= = ,
dln4, oJlnX,

0’InQ, _ d’Ing, _ 3’ Ing, _ 8’InQ,
OlnX, 0lnX,, 0ln4,0lnd, OJlnX,0lnd, JlnA4,dlnX, ’

ﬂjk :ﬁkj =

and all derivatives are evaluated at the point (In(41X1),..., In(4:X7)). I note that with perfect
competition the partial of In Qi with respect to In Xj;; equals the factor income share 6y, the

first order Taylor approximation of which at the point (In(41X1),..., In(41X))) is

olnQ, < 9% Ing, ~ = J ~ =
B3) 6%' = Lt U In(4_X,.)=a.+ In(A4,. X,.),
( ) Jit 8ln Xﬁt P 81n intaln int ( kit klt) J ;ﬁ]k ( kit klt)

where all derivatives are again evaluated at (In(41X1),..., In(41X;)). We then see that

olnQ*?
B4) 0 =—"—.
(B9 Oy olnXx,

Finally, we note that

52 L omoB?  olnOB? A,X . 4 9?31 +9'Tlffl A, X
(BS) In Qlész — Z nQn + ant—l In Ji J — z Ji Jit=1 In Ji J
OlnX, JlnX A4, ., X

it—1 Jj=1 Jit—=1%* jit-1 Jj=1

jit-1

mou (g™ ) X, (08T 4,
SO that ln Q, _Z( Jit Jit—1 ln Jit :z Jit Jit—-1 ln Jit ]

752
it-1 Jj=1 2

as was claimed in the paper.
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Turning to the upper rows of (II1.5), we focus on the case of the nested three factor
production function in (II1.6) with E_' given by (II1.7). In this case, the upper rows of (IIL.5)

can be re-expressed as

(B6) E, |:g(A1itXlit /A3itX3it)j| _ |:g(pmA3n /p3itAlit)i|
"L g(Ay Xy /Ay X 5) 8(Pai Ay PyiAryy)

Saie _ St 1 1
"o 0 o) ..
with E, = g g , where s, =—>——for j =l or2.
[ 11 J Siie _ Sair 6, + 0y,
—Puw T _ T
o n
We wish to show that for discrete time periods (B6) with the average of first order Taylor
series approximations of the s;i; is correct for a second order approximation of the profit
maximizing condition (III.3).
We begin by deriving some useful relations. From Euler's theorem and homogeneity
of degree 1 of G' we have

(B7) Gli(A X A2itX2it)AlitX +G§(A X AZitXZit)A XZit:Gi(A XA XZz't)

16X it > lit 1t X it > 2it 16X 1ie > it

d ; , . oG! ) 02G!
—= G, 4,X,,=-G,4,,X,,, where G;' = & G;'k = .
d(4,X,,) 8Ajit X jit 8Ajit X jit 04, X 4,

Profit maximizing firms set the ratio of marginal products equal to the ratio of factor prices.

For the first two factors this implies

G (A X/ A X)) _ DPu /Ay

Gy (A X

(BY)
! A X, 1) pay 1 Ay,

where we use the homogeneity of degree zero of derivatives of G'. Totally differentiating, we

have
d( A4, Xy, J d( pltAZit]
(B9) 4, X GG, — GélGll 4, X5, _ Dy Ay,
4,,X,, GG, 4, X, Py
A4y, Xy, DA
GlilGé N A,X,, G{IG{ i a{pltAzitJ 4, X,
— AlitXlit 2042 2it — AlitXlit G_u‘gziz +‘91it — pZtAlit AZitXZit - _ 1
AZitXZit GéGll AZitXZit Gll 9211 pltilqzlt d A]itXll't o
Paii A,, X5,

Ay Xy Gli o Ay, Xy, G;

. A I
1 1 1 1

4, X Gy _ S - 4, X Gy _ ] 4, X | GGy, sy,

G, G o

A,, X

2it<> 2it
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where we define o as the elasticity of substitution, i.e. the proportional change in the ratio of
effective input 1 (41:X1ir) to effective input 2 (42:X2i;) for a proportional change in the relative
cost per unit of effective input. (B8) also allows us to solve (at least implicitly) for the
effective input 1 to input 2 ratio as a function of the relative costs per effective factor:

A, X, {p, P
BIO L= it g0 i’i .
(BI04 X f[A A J

2it*> 2it 1it 2it
As G' is homogeneous of degree one, this implies the following cost per unit of G'
U |2y i Py Py |, o
BIl) p, =—0|Puy [%—f + Lo,
ar G (f ’1) Alit Alit Azit Azit
In a two stage budgeting procedure, firms first set the ratio of marginal products of G’ to X3;
equal to the ratio of their relative prices

FG(G ,AMXM) _ FG(gitﬂl) _ Pgi, , whereFé — oF F = oF 7&git = y GX 5
3it <™ 3it

Asi:F;(Gi’AmXﬁ:) - A3itF}i(git31) B, oG' "’ aASitXSit

(B12)

and totally differentiating then allows us to define the elasticity of substitution between the G'

aggregate and effective input 3:

Fi(e. .1 i
B13) 28D g g Por
d it P31't /A3it
i Ing, i .
dln[FGi(elng ,l)j d[F G (g”’l)j d[pG‘fj
N F3 (e " ,1) _ F3 (gitﬁl) i — P3” /A3” 8i = —l.
dlng, Fo(gwl) dg,  Po  dg, 7
F;l (git ) 1) B’&it / A3it

With the above results, we turn finally to the second order approximation of (II1.3).

For j =1 or 2 and X3 as the "numeraire" factor we can express the j row of (II1.3) as

i( AlitXlit A3itX3it IJF(; (g 1)
/ ’ it?
(B14) hf[ AlitXlz‘t A2itX2it J — ’ A3itX3it Azi;Xzit _ Pj /Ajl-t
it ) ; ,
A3itX3it A3itX3it F3 (gl.,, 1) D /Xm
where g, = Gi[ 4 Xy Ay Xy j
it .
A3itX 3it ASiIX 3it

and where we make use of the homogeneity of degree zero of first derivatives and the

homogeneity of degree one of G'. Define

A. X, A X, G ;
(B15) x, =l Xoit =AM & 8y = =G (X5 X5:) 5
45, X5, 45, X5, A5, X5,
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so that we may write
ic Ing,
(B16) In A: (elnxlr, lnxz,) ll’lG ( In x;;,—In x,;, 1)+1 Fq(el , 1) '
F;l(eng[,’ 1)

We now define and note
ic Ing,
In FG,- (eln | ,1) |
£, )Gx, _ 1 1

S0 " Stp»
(o2

1, Inxy _Inx,, i
_Olnp(e™™,e™™) _ Gy, xy N
i
Olnx,, G, xy, dlng, &

o _ k("™ Gy, | F (")) ) Gix,, R S

2 Olnx,, G| xy, ding, 8it o™ "
i Ing;

FE".))Gx, 1 1

=S~ St

(B17) 7'

Inxy; lnx‘ i
% _ alnh (e et ) Gy Xy, N
1 e
Olnx,, G, x,, ding, 8

ir Ing,
ln( FG (e ’ 1)

2 _ Olnh; (elnx“, lnxz,) G§1 X F;i(elng”’l)j G;le-, _ l !

2 =—— -t =TS T Saas

Olnx,, Gé Xou ding, 8 o

where we make use of the results in (B9) and (B13). As the elasticities are constant across the

range of the data (i.e. region of approximation), we have

O Y Gl W W S RC

(B18) > =
0" Inx,, o 0lnx,;, ndlnx,
i o lnhilt(elnm’elnx“) :i 08y, 1 Oy
. & Inx,, o dlnx,, ndlnx,,’
}/11‘ _ o’ lnhilt(elnxm,elnxz‘b’) :l 08, _l 085, :_l 08, _l Jsy;, _ o’ lnhilt(elnxmaelnx“) _ i
' dlnx,dlnx, o dlnx, ndlnx, odlnx, 7ndlnx, dlnx,,01nx,, ?
2 OCInh;(em e ) _ 1 &5, 1 0,
! o’ Inx,, o dlnx, ndlnx,
2 0’ Inh’ ("M, e ) =_l Oy, 1 Osy,
2 o Inx,, o dlnx,, 7dlnx,,
L _ 62 11’1 hj (elnx“, ’elnxzi,) _ _i 8Sm _l as,z” _ l asm _l &S,m _ 82 11’1 hj (elnx“, ,elnxzn) _ 7/21'
2 dlnx,,01nx,, o dlnx, ndlnx, odlnx, 7ndlnx, dlnx,,01nx,, .

where we have kept in mind that as s;;; is a function of In x1:/x2ir, and s1;ts2ir = 1

(B19) %, == il O =— 0y & sy, - 0S5, .
olnx,  dlnx,, 0lnx, dlnx,  dlnx,  JOlnx,

The second order Taylor series approximation of (II1.3) is then given by:
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) " . X . X
(B20) InA/™? =Inh’”" + y/ In=L + yJ In =2
X X,
e Xy Xy e X X . Xy X,
+ Yoy In“In = 4+ Yoyl In 2 In 22 + p/0 In = In 2
X X X, Xy X Xy

where the superscripted * denote values at the point of expansion (x,,x,). Similarly, the first
order Taylor expansions of s1;; & s2i are given by

Os.. X, Os. - X, 0s.,. X, .
TST _ % o it Dt o PPNt 1, 220 TS _ * 2it lit
(B21) sy, _S1i+al In—; +81 In—=F & 555 _S2i+81 In—; +81 In
nx,;, X nx,, X nx, X nx,, X

Taking the In difference across two time periods of (B20)

R 1( olnk/™? olnh/"? x, 1 olnn"™? olnh/"?
i [ ] ln L + — L —+ d ln

(B22) In—"—=— —+ : . .
h7 2\ 0ln(x,,/x) Oln(x,,/x)) x,, 2\ 0l(x,/x,) OJln(x,,  /x,)
where
1752
(B23) Olnh, ) ey xli’ "I xzi,
Oln(x, /x,) X X
__ls*. —lS*. _l as;t _l aS;, lnh_’_ _l aSZit _l Gsll.t lnh
o ! oodlnx, nolnx,) x o 0dlnx,, nolx,, | x
_Sw_Sw
o n
and it is similarly easily seen that
OlnA™ sy sy OB st sy Olm™ sy 53

( )aln(le.,/x;)_a n oln(x,/x) o 5 = dln(x,/xy) o 7

so that across discrete time periods the upper part of (I11.5) can be approximated as:

(B25) E, {ln(xm /'xlitl):| _ { In(p,;, 4y, / Py Ay) —In(pyy Aoy ! Py Aiiny) :l
" InCxy, / x,1) In(p,, 4y, / p3iiAyi) —In(pyy Asiy 1 Psiy 1Ay r)
V(s +550n) V(S + Sy [l ~ lj[ Son + S5 j
. o n o n 2
with E, =
" 1 1Y s+, Va(syy sin)  Ya(sy, 3l
o n 2 o n

as was our objective to show.

14



C. Consistency with Factor Price Growth and Factor Shares as Regressors

As noted in the paper, the endogeneity of relative factor price growth does not inhibit
consistency of the estimation procedure as long as year fixed effects are included, even
though with non-constant factor shares factor price growth still affects (albeit in practice
minimally) elasticity estimates in finite samples. This appendix uses a simplified version of
the model to establish this principle theoretically with the minimum algebra possible, showing
that independence of the factor augmenting shocks from the levels of factor shares is
sufficient to ensure that the derivatives of a normal likelihood asymptotically equal zero at the
true parameter values. The growth rate of factor shares, however, is affected by the factor
augmenting shocks, and this induces a very slight correlation between the level of factor
shares and the shocks, raising the possibility of inconsistency due to this relation. To alleviate
such concerns, this appendix uses Monte Carlos to establish that for the elasticities estimated
in the paper these correlations do not inhibit root-N convergence of parameters (& N super
convergence of cointegration parameters) to materially trivial levels of mean squared error.
The factor prices in these Monte Carlos are endogenous, and hence they illustrate (more
generally than the specific theoretical proof) that this does not inhibit consistency. I begin
with the Monte Carlos, as these are the easiest to absorb.
(i) Monte Carlos

I use the point estimates of models 1 & 2 of Section IV of the paper to establish the
data generating process. From these models we get estimates of the industry x factor fixed
effects, year x factor fixed effects, diagonal variance of year x industry factor augmenting
shocks, elasticities, coefficients on lagged values of shocks, and, where applicable, degrees of
freedom of the t-distribution governing the factor augmenting shocks and the cointegration
parameters B and a. I use all of these as is, except for the fixed effects, for which I calculate
the (unrestricted) covariance across factors and then use independent draws from the
multivariate normal® to create new industry x factor and time x factor fixed effects for the
expanding industry x time samples below. Thus, the data generating process for factor

augmenting technical change is, as in the models of the paper:

3For most factors the kurtosis of these estimated fixed effects is not exceptionally different from the
normal, and hence I do not assume that they are distributed multivariate t.
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(Cla) g(4,,) =Tg(4,.)+n,+,+,
(Clb) g(4,,) =Tg(4,. ) +apIn(4,_)+n, +n, +¢,

wheren, ~ N(0,V(q,)), n, ~ N(0,V(R,)), and €, ~ N(0,V(¢,))or~1 (0,V(E,)),
and where hats indicate values estimated in the paper, V(x) indicates the covariance matrix of
vector X, and while the covariance matrix of the fixed effects 1 & n; is unrestricted, the
covariance matrix of the factor augmenting shocks ¢&; is made diagonal. The means of the
fixed effects are set equal to zero (contrary to their estimated means) so as to avoid a tendency
of factor shares to gravitate to corners (0 or 1) as the number of time periods grows.

Factor augmenting productivity growth is, of course, treated as unobserved. The
observed data consist of vectors of relative factor input growth, total factor productivity

growth, relative factor price changes and factor shares. As in the paper, we have

g( Xy / X5 -1 -E'-L.Ei, +i g(4,;,)
(€2) | g(Xy /Xy, |= {E }{g(””/ ””)} R (PP

0 Py, o
g(TFP,) 2 g(py/ psy,) 0 2(4,,)
where
(C3) | D 1 _ {_ 6'521‘: _7z§1it (6'__ ﬁ)gh_t }
! 0, + 0y, (6-m0, -6, —nob,,

and where superscripted bars denote averages between periods t-1 and t of factor shares and
hats again indicate elasticities estimated in the paper. Relative factor prices are determined by
matching supply to changes in average relative factor demand with a relative supply growth
curve with slope 1. Average relative factor demand growth is either determined by the
average of all industries, a "small industry" model, or by one single dominant industry, a
"large industry" model, so we have:

N
1 ;g(Xm [ X5)

(C4) smallindustries: [ggi“ //1;3’))} =Vla
o Zg(XZit/XSit)

i=1

one large industry : |:g(plt /p3t):| _ [g(X“, /X311)}

g(py /Py ] | 8Ny,  Xsy,)

where N denotes the number of industries. In the small industry model, the influence of
individual industries on the growth of relative prices goes to zero, which asymptotically are
driven solely by year fixed effects common to all industries. In the large industry model,
although there are N industries which contribute data, factor augmenting productivity growth

in industry #1, which is large, determines factor price changes, so that relative price growth is
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always influenced by both the year fixed effects (common to all industries) and the industry
fixed effects and iid shocks specific to industry 1.

Factor shares in period 1 are set by taking three independent draws from the (0,1)
uniform distribution for each industry, multiplying them by 2, 3 and 5, and dividing by their
total, so that the initial shares for capital, labour and intermediates have an expected value of
.2,.3 & .5 (as is roughly found in the data). Factor shares then evolve according to the

formula:

(CS) |:g(61it /63it):| _[g(plt /p3t):|+|:g(X1it /X3it):|‘

g(0,,16,,) B g(p,/ ps) g(Xy, 1 X5,)

Given the complex dependence of factor augmenting productivity growth g(4;i;) on past
values and cumulated past values in (C1) above, 500 initial periods (which are then discarded)
are used to initiate the system and ensure that the distribution of initial rates of factor
augmenting productivity growth is close to its ergodic distribution.

Table C1 reports the root mean squared error of key parameter estimates across 50
data generating process realizations for the VAR, VECI1, normal and t versions of the two
models. The ratio of years to industries is set at 3:6, reflecting the ratio found in the 61
industry 1987-2021 BEA US KLEMS data in the paper, with each multiplied by 10 as the
sample increases. Reported in the table are the mean squared error for the elasticities, the t-
degrees of freedom and the cointegrating factors f and a. As expected of a consistent
estimator, root mean squared error for most parameters is inversely proportional to the root
number of observations, i.e. falls by an order of magnitude with a 100 fold increase in the
sample size. The exceptions are the estimates of f which, by virtue of being multiplied by the
non-stationary levels of factor augmenting productivity, are known to be superconsistent
(Johansen 1995) with root mean square error inversely proportional to the number of
observations, as shown in the table. In sum, as claimed earlier, despite the endogeneity of
factor price movements and the levels of factor shares, with year and & industry fixed effects
the estimates appear to be consistent in exactly the fashion expected of VAR & VEC models.

This is true for both the "small" and "large" industry models.
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Table C1: Root Mean Squared Error Across 50 DGP Iterations of Key Parameter Estimates
(Monte Carlos based on point estimates of models 1 & 2)

model VAR VEC1
years x industries| o n dof o n dof i b ox or oq

(A) small industry model: relative price growth determined by average industry relative demand growth
model #1, normal distribution

30 x 60 .0147 .0145 .0144 0167 1250 .2082 .0441 .0150 .0338
300 x 600 .0012 .0011 .0010 .0011 .0021 .0034 .0030 .0010 .0027
model #2, normal distribution
30 x 60 0123 .0285 .0120 .0298 1319 .5702 .0339 .0102 .0211
300 x 600 .0012 .0023 .0010 .0022 .0020 .0079 .0026 .0005 .0017

model #1, t distribution
30 x 60 0167 .0162 .1579 .0163 .0175 .1610 .1586 .1551 .0076 .0050 .0055
300 x 600 .0012 .0018 .0141 .0009 .0029 .0146 .0039 .0060 .0004 .0002 .0002

model #2, t distribution
30 x 60 0127 .0377 .1525 .0133 .0384 .1524 .1531 .4503 .0063 .0029 .0045
300 x 600 .0010 .0025 .0164 .0013 .0030 .0186 .0037 .0189 .0003 .0001 .0002

(B) large industry model: relative price growth determined by relative demand growth in one industry

model #1, normal distribution

30 x 60 .0143 .0135 .0137 .0155 1251 2068 .0441 .0150 .0338
300 x 600 .0011 .0014 .0009 .0010 .0021 .0035 .0030 .0010 .0027
model #2, normal distribution
30 x 60 0117 .0256 0116 .0271 1329 5665 .0339 .0102 .0211
300 x 600 .0013 .0025 .0010 .0019 .0020 .0084 .0026 .0005 .0017

model #1, t distribution

30 x 60 0152 .0124 .1579 .0149 .0143 .1610 .1579 .1557 .0076 .0049 .0054
300 x 600 .0011 .0012 .0144 .0011 .0018 .0146 .0043 .0072 .0003 .0002 .0002
model #2, t distribution

30x 60 .0120 .0300 .1526 .0124 .0309 .1526 .1455 .4514 .0063 .0029 .0044
300 x 600 .0012 .0022 .0190 .0017 .0026 .0182 .0033 .0308 .0003 .0002 .0004

Notes: Root mean squared error calculated across 50 dgp iterations, in some t cases dropping one or two
instances where the likelihood did not converge. dof = multivariate t-distribution degrees of freedom.

(b) Formal Proof
For a formal proof that the endogeneity of relative price changes does not prevent
consistency, I simplify so as to make the point with minimal algebraic complexity. I examine
a two factor model estimated with the normal distribution, no cointegration, and only year
fixed effects, in which the number of industries goes to infinity but the number of years is
constant. For this framework, E;' equals o, the elasticity of substitution, and the model is
. &
€0 “oeny |- [omn [ 8500
Cy

) [g(Xm 1 Xy,)+0og(p,/p,,)
withy, =

& A"t :C; it?
o(TFP) } Bl =Gy
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where we define the matrix C;; and y; to reduce clutter below. Factor augmenting
productivity growth depends only on year fixed effects and iid shocks:

(C7) g(4;,)=m,+g,,
We assume that the first moment of E(g,)=0, E(g,g,) =V, where V is diagonal, there exists
ay>1 suchthat E£ ((g;.,)V ) exists, and that g; is independent of 0;;. For a given value of &,
g(4jir) can be calculated from (C6). We use the notation g(4,,(5)) to distinguish between
these estimated values and the true values g(4,,) .

With a normal likelihood, the In likelihood of the model is given by:
(C8) Y InL,=-NTInQ2x)-%> In(det(C,VC,)-%> (§, -C.A,)C,'V'C,', -C.A,)

— . A (SN -1 l\'}—l 4 (EN—n
or L= X0 ——n(2) = (G <17 4InG i) ~14Y (&4, () "f)NT(g( #(ODN)
it it

where V is diagonal with entries (V,,V,) estimating the diagonal covariance matrix of the

shocks, é,-t is the estimate of C;; based upon the estimate 6 of o, y, and g(4,,(5)) are based

Jjit
upon éit and (C6) above, ) i denotes summation across both industry and time indices, N the
number of industries, & 7 the number of time periods, we define the average likelihood L
and use the fact that determinant(C,C),)= (6 -1)%.

I will establish conditions under which 0L /6 =0 when & =o , satisfying the first
order condition for a maximum. This does not guarantee convergence of the estimate of & to
o , which depends upon global (within the parameter range specified by the model) concavity
of the objective function, but it does establish that the growth of relative prices does not
prevent consistency of the estimator. In the paper I concentrate the likelihoods of the models
as a function of the elasticities of substitution and (where applicable) degrees of freedom of
the t-distribution and conduct systematic grid searches across these spaces. As noted therein,
in all cases (i.e. twelve models each in their VAR, VEC1, VEC2, normal & t forms) I find the
likelihood is single peaked within the specified elasticity of substitution restrictions.

Using the envelope theorem and the fact that we are maximizing with respect to the

other parameters, we take the derivative of the average likelihood with respect to & :
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B G g4, (8-

(C9) oL(S) _ (?'1)2 Y=l . with
06 ((7-1) it NT
0g(4,,(6)) _ 92” (61> 08Xy /Xy)+S8(p,/Py) {921, (& -1) I}F(pl,/ pzt)}
o6 6,/(6-1" 0 g(TFP,)) 6, /(1-0) 1 0
\—\/—J
oc;' /06 om
0g(4,,(c) [-6, (c-1)* 0 [0_1 1—0}[g(A )} [6’ /(o - 1)}
th t Jl — 2it 1it 2it /
oAt 756 0. (-1 0| Ou O | g(d)|T| 6, /1) 8P/ P2)
_ g(4,;)—g(4y,) {_ 02iti|+ g(py /pZI)[ 0y, jl
o—1 elzt o-1 _elit

Substituting for g(4;i) and rearranging, we have:

1+ Ol =1 + 61— €20 )60 _Z 0l =1 + 610 — 620160
C10) AL(o) _ 1 7 NTY, 7 NTV,
06 o-l z g/ P20 z g/ P28
NTV, P’ NTV,
My =T — g(plt /pZt)( 92it(€‘lit elzthzt
_l+ —
1 Z T LZ‘ N9, 2N N,
ol 1 <le, —&,)E (61— €] 60 €
L5 i~ Eulé N Gl — € S | G
Syl phlcnld b

My =1 — g(plt /pZt)( 92it‘§1it lethit
_1+ —
1 2 T =N =,

or :—l
C- [&,, — &, 1€ 0,.le. —¢&,.,] 6. &.
+ it 1it 1% 2it 2itL<1it 2it i‘f‘i
P R T

i

The two (alternative) formulations cover two possibilities discussed further below. Using the

maximum likelihood solutions for ¢, and v,, we have

A o 1 NI S - 1 ’
(Cll) & _g(Ajit(G))_nt _ait_ﬁzilait & V; _;W_;W_Z(ﬁzsﬁj >

where as before ) ;; denotes summation across both industry and time indices, while > & >
denote summation across the industry or time indices alone. From the strong law of large

numbers, as N — o

a.s.

(C12) Z 250, zgmgz" 5o, Z mf—w & #,~>v, fora=lor2.

In addition, for @ and b equal to 1 or 2
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(C13) E(Zean]\‘jbwjzz E( alt?f(gblt) ZE( mt)”‘Oz0

i

aztgblt a]tgbjt E(eaztebjtgmtgbjt ) _ ( ait )E(gb”)
Z Z Z N2 B Z N? B ﬁ ’

ij

where the last line follows from the fact that for i # j E(QuiOujniccnit) = E(OuitOuj) E(Ebiccnjc) =
E(64i04j1)*0, and throughout we make use of the fact that 0 < E(6ui) < 1 & 0 < E(Ouillajr) < 1.
From (C13), we see that Y 0.i€pi/ N converges in mean square, and hence in probability, to 0.

Similarly, for b # ¢

(C14) E(z Hatt‘g]‘f}t cztj z ( azt)E(]‘c"vbzt)E(gczt) Z E( att])v 0 0 — 0

1

0. ¢ & 0 &, E@.0 ¢ ¢ €. & E(6>)E(s} )E(é‘)
E ait < bit Clt ajt bﬂ gt ait aﬂ bit™ bjt“ cit b]t — ait bit cit
D e u

i J

H
i

and hence ) iOuieniccis/ N also converges in probability to 0.
The only remaining term in (C10) is that appearing in the lower-right hand corner,

where for a and b equal to 1 or 2, we have

(C15) Z ””gb” Z ””Z b”, wherew, =60, & W, Z -

From Jamison, Orey & Pruitt's (1965) Theorem 1 on the convergence of weighted averages of

independent variables, we know that

(C16) If and onlyif (a) hm W, z =, (b) }/1230 wy/W,, =0, (c) ;igiT*Prob[g,fit >T1=0,

ait
2 p
& (d) hm _[5;; dF exists, then zw"t—gb”—>E &),
5,,,<T i WN
where F is the cumulative distribution function of ¢,,. Condition (a) is assured, as if it does
not hold (say) for a = 1, as 62 = 1 - 61;; we can simply switch to the "or" version of (C.10) and
ensure that it does. As 6. < 1, condition (b) follows. If for some y >0 E((¢;,)) exists, i.e.
epir has slightly higher than second moments, as was assumed above, then (c) follows from
Markov's Inequality and (d) as well.* Consequently, we have:

o 1 2
o Rk g Oty tul Ly e Ly |

i i Vo i
(R—;
<1

4Jamison, Orey & Pruitt treat w; as non-stochastic, but their proof follows through provided it is
independent of the weighted variable and conditions (a) and (b) are automatically satisfied, as is true in our case.
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From the above results, we see that depending upon whether we follow the second or

third equality in (C10):
7 p 7 p
gy L@ 1 1 —1+Zlﬁ _0or L@ 7 1 —1+Zlv—2 =0,
06 o-1 — T v, 06 o-1 — T v,
as was claimed earlier.
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D. Monte Carlos for Johansen (1995) Type Asymptotically Valid Cointegration Tests

This appendix shows that Johansen's (1995) cointegration (trace) test and Larsson,
Lyhagen & Lothgren's (2001) extension to panel data have very large size distortions when
evaluated using their asymptotic distributions. I apply the tests to data generating processes
based upon my industry x year panels for K/L, I/L. and TFP growth. For the test of whether
any co-integration exists at all (in a single industry i), Johansen compares the likelihoods of
vector auto-regression and full rank cointegration models:

(DD g(v;i) =T,8(y;1) +2,7; +&, (VAR)
g8y )=Tgy; )+ In(y, ) +z,y,+¢, (VEC)
where j denotes any of the 3 measures, I' and II are 3x3 matrices, z; either constants for each
j or constants plus time trends, and & is a Jx1 vector of errors. Johansen's test is designed for
a single time series, so below I test each time series separately and report the average rejection
rate. Larsson et al (2001) extend the test to panel data by using the normalized mean of the
individual time series likelihood ratios.’

I begin by estimating the VAR in (D1), i.e. running a specification that imposes the
null. The VAR is run assuming the errors are multivariate normal or (using maximum
likelihood techniques) distributed multivariate t. The covariance and (in the case of the t-)
degrees of freedom estimates are then used to create new multivariate iid (across it) errors,
which are added to the point estimates to create new data. Table D1 below reports the
average empirical rejection rates of the true null of no cointegration across 500 draws of new
data. As shown, size distortions in Johansen's test are large, with the empirical rejection
probability of the true null at the nominal .01 and .05 levels varying from .060 to .165 & .192
to .294, respectively, with rejection rates systematically higher when both the data generating
process and test include time trends. Rejection rates for Larsson et al's panel normalized
mean trace test are remarkable, ranging from .604 to .830 and .644 to .860 at the .01 and .05
levels, respectively

Neither of these tests is suitable for testing cointegration in my panel model, where the
dependent variables are transformations of implicit variables which may be cointegrated and

the model includes additional non-standard parameters such as elasticities of substitution.

SBoth methods also allow for testing rank > 0 levels of cointegration, but I concentrate here on results for
the test of rank = 0, i.e. is there any cointegration at all.
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Table D1: Monte Carlo Rejection Probabilities of True Null
of No Cointegration among In(TFP), In(K/L), In(I/L)

(a) Johansen's (1995) trace test (b) Larsson, Lyhagen & Lothgren

conducted industry by industry (2001) normalized mean trace test
constant + trend constant + trend
01 .05 01 .05 .01 .05 01 .05

normal errors .060 192 .096 252 670 728 .830 .860
t-distributed errors  .143 252 165 294 .604 .644 152 780

Notes: Reported Johansen rejection rates are the average of the 61 industry level rejection rates for 500 Monte
Carlos each, while Larsson et al rejection rates are based on 500 Monte Carlos for all industries together. Test
statistics evaluated using asymptotic critical values, means & variances calculated by Osterwald-Lenum (1992).

The Monte Carlos in Table D1 suggest, however, that asymptotic theory for my panel model
is unlikely to be of much use in the sample sizes encountered in the paper. For that reason, I
make use of the wild bootstrap for inference, showing in the next appendix that when
estimation is done using the multivariate-t distribution it consistently delivers reasonably

accurate null rejection probabilities.
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E. Monte Carlos for Structural Model Cointegration Tests using the Wild Bootstrap

This appendix reports Monte Carlos for the wild bootstrap-based cointegration tests I
implement for the structural models in the paper. Panel cointegration tests based upon
asymptotic distributions, examined in the appendix above, have nominal .01 level empirical
rejection rates in my sample sizes of over .6 (Table D1). Moreover, they do not cover the
models used in the paper, where we are testing the level of cointegration of an underlying
latent variable that is unobserved but related to observables through matrices determined by
observed factor input shares and estimated elasticities of substitution. For these reasons, |
implement a wild bootstrap based upon transformations of the residuals of the null hypothesis.
Although by no means perfect, when implemented using a t-distributed likelihood, which
underweights outliers, these tests afford rejection probabilities that are much closer to
nominal value than found using asymptotic theory. As in the cointegration tests described in
appendix D, I follow Johansen (1995) and use the difference in the In likelihood of the model
of full cointegration (i.e. the number of cointegrating relations equaling the number of
dependent variables) and that of cointegration of level r as the test statistic.

I begin each test by estimating the model of the null hypothsis. As in the paper, we

have:
g(X'it/XJit) E! —Egl—l_,E;i_ +i,_
EDgy)=| = [0 }g@,, / Pu)+ T T ey,
g(TFF,) - 9,
B, C; ‘

so that the unobserved latent variables are related to the observables by g(4,,) =
C.'[g(y )~ B,g(p,/p,)]. The matrix E,' depends upon factor shares and elasticities of

substitution. In the case of the three factor model of the paper, for instance, it is given by

_ 1 -06,,—n6,., (c—-n)b, }
E2 E»l — 2it lit 2it .
( ) " o + 92” [ ((7 - 77)91;'; B Gelit - 7792it

lit
Estimated elasticities of substitution uncover the latent factor augmenting change, which is
modelled as having either a VAR or VEC form with factor x year & factor x time fixed
effects and mutually orthogonal iid shocks:

(E3a) VAR: g(Aﬁ,) = Fg(Aﬁ,_l) +1,+1n, +¢,

(E3b) VEC: g(4,,)=Tg(4

it jit—1

)+ aB'ln(Ajit—l) +nN, N &,
The baseline null hypothesis is the VAR or a VEC model with r cointegrating

equations. I then either multiply the individual estimated residuals ¢, by an iid variable that

25



is =1 with 50/50 probabilities, generating mutually orthogonal iid shocks, or I multiply the
observation specific vector of residuals €, by a common +1, retaining the empirical oft-
diagonal covariance of the iid vectors of shocks. These are then added to estimated fixed
effects 1), & 1), and cumulated forward using the estimated lag & cointegration parameters
I,a& |§ . "Pre-sample" values of In(4;ip) and g(4,i0) do not change and are set at those used
in the original estimation, i.e. 0 and the value uncovered by C,.[g(y i0)— B8P0/ Pio)ls
respectively. The bootstrapped latent variables are then transformed into observed data g(y;i/)
using (E1) above and the estimated values (based on estimated elasticities of substitution) of
E;l . Original factor input shares are kept as fixed data/regressors. The In likelihoods for this
new data of a model of full cointegration and the restricted model of the null hypothesis are
then calculated and their difference compared to that found in the original data. In the paper I
use 200 bootstrap draws to calculate the probability of a test statistic greater than that
observed under the null.

The above describes the wild bootstrap test procedure. To evaluate the accuracy of the
procedure, I need artificial data that is similar to my sample. To that end, I similarly begin by
taking point estimates for each model and generating artificial data. Instead of using actual
residuals, however, I use normally or t-distributed errors with either an orthogonal covariance
matrix or unrestricted covariance matrix and degrees of freedom equal to that estimated on the
residuals of the original sample. I then estimate the model on this artificially generated data
and use estimated residuals to conduct the wild bootstrap using 200 data bootstrap iterations.

Thus, for a test of r = 0 cointegration (i.e. a VAR) the Monte Carlo procedure is:

(1) Estimate VAR model parameters on original data.

(2) Use those VAR parameters to generate data that has normally or t-distributed iid mutually orthogonal or
correlated error vectors.

(3) Estimate the model on the data in (2) and calculate the VAR vs full cointegration test statistic for the data.

(4) Use the newly estimated VAR parameters and residuals to implement the wild bootstrap, using 200 iterations
to calculate the p-value of the test statistic calculated in (3).

For the VEC1 model, I follow Johansen's (1995) sequential testing procedure. That is:

(1) Estimate VEC1 model parameters on original data.

(2) Use those parameters to generate cointegrated data that has normally or t-distributed iid mutually orthogonal
or correlated error vectors.

(3) Estimate the VAR model on the data in (2) and calculate the VAR vs full cointegration test statistic for the
data.

(4) Use the newly estimated VAR parameters and residuals to implement the wild bootstrap, using 200 iterations
to calculate the p-value of the test statistic calculated in (3).

(5) If rejecting at the nominal level in (4), estimate the VEC1 model on the data in (2 and calculate the VEC1 vs
full cointegration test statistic for the data.

(6) Use the newly estimated VEC1 parameters and residuals to implement the wild bootstrap, using 200
iterations to calculate the p-value of the test statistic calculated in (5).
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Table E1: Monte Carlo Empirical Rejection Probabilities of True Nulls
Regarding Cointegration among Factor Augmenting Productivities by Level of Test

cointegration data generating likelihood nominal level

in dgp process model .01 .02 .05
0 (VAR) t-distributed t-distributed .025 .042 119
1 (VEC1) diagonal shocks diagonal covariance 026 026 A11
0 (VAR) t-distributed t-distributed .050 .092 158
1 (VEC1) correlated shocks diagonal covariance 017 .043 A11
0 (VAR) t-distributed t-distributed .025 .068 136
1 (VECI) diagonal shocks unrestricted covariance  .026 .034 077
0 (VAR) t-distributed t-distributed .050 .075 133
1 (VEC1) correlated shocks unrestricted covariance  .051 .060 .085
0 (VAR) normally distributed normally distributed 188 265 444
1 (VEC1) diagonal shocks diagonal covariance 017 .034 076
0 (VAR) t-distributed normally distributed 283 317 492
1 (VECI) diagonal shocks diagonal covariance 235 193 151

Notes: Test rejects any given null when the fraction of wild bootstrap iterations with a test statistic greater than
that of the sample is less than or equal to the nominal level. Test for VEC1 dgp follows Johansen’s sequential
procedure, testing VAR null and then testing VEC1 null if VAR is rejected. Reported rejection probability is 1 —
probability of accepting the true null in the sequential procedure.

I refer to each run through of (1)-(4) or (1)-(6) as a "sample".

Table E1 reports the Monte Carlo rejection probabilities of true null at nominal levels
.01, .02 & .05. Trun 10 samples for each of the 12 models examined in Section IV of the
paper. In a few samples the likelihood fails to converge in steps (3) or (5) above, and those
are excluded from the calculations, as are wild bootstrap runs which fail to converge in steps
(4) or (6) above. In testing accuracy for a true VAR, the table reports the probability the wild
bootstrap selected in favour of r > 0 cointegration. In testing accuracy for a true VECI, the
table reports the probability the wild bootstrap accepted the null of no cointegration (VAR) or
rejected that null but subsequently also rejected the VEC1 null in favour of r > 1
cointegration, as this represents the error rate of Johansen's sequential testing procedure. It is
possible for empirical rejection rates at a higher nominal level to be lower in testing a true
VECI because of a reduced failure to reject in the first step test of a VAR.

As can be seen, with a normal likelihood and either normal or heavy tailed t -
distributed data, the wild bootstrap performs poorly and inconsistently. However, results
using a t-likelihood (which underweights outliers) on heavy-tailed data, as encountered in the
paper, are much more reliable. In particular, a .01 nominal level ensures a rejection

probability not greater than .051 even when the wild bootstrap dgp is misspecified, imposing
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a diagonal covariance when the dgp is non-diagonal or allowing off-diagonal covariance
when the dgp is diagonal. For this reason, in the paper I use a nominal level of .01 to evaluate

the t-distribution Johansen sequential test for the actual sample.
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Table F1: Ratio of Wild Bootstrap Standard Error Estimates for Results in Table 7(A):
Retaining Empirical Off-Diagonal Covariance of Shocks/Imposing Diagonal Covariance Matrix
(z - VECI estimates)

dof i3 b1 0K or o1 DKL DKI pLI
1: 1.02 1.19 1.23 1.03 0.96 0.99 0.96 0.90 0.84
2: 1.08 0.86 0.88 1.01 0.96 0.78 0.98 1.06 0.97
3: 1.06 0.89 1.10 0.95 0.91 0.84 0.98 0.96 1.03
4: 1.00 2.00 1.51 0.86 0.76 0.86 1.02 1.02 1.19
5: 1.10 1.64 1.50 1.04 1.13 0.95 0.99 0.94 0.94
6: 1.17 4.70 4.42 1.28 1.35 1.23 0.91 0.96 0.98
7: 1.02 1.10 1.25 1.02 1.34 1.24 1.23 0.96 1.20
8: 1.17 0.58 0.55 1.25 1.11 1.10 0.99 0.95 1.22
9: 1.13 1.64 1.33 1.07 1.26 1.06 0.93 0.93 0.95
10: 1.08 1.17 1.26 1.15 1.24 1.14 0.90 0.93 1.12
11: 1.00 1.43 1.26 1.03 1.04 0.97 0.89 0.87 0.84
12: 1.21 0.78 0.70 1.05 1.98 1.19 0.91 0.98 1,12

Notes: Variables as defined in the paper. 1-12 denotes models described in Table 5 of the paper.

F. Supplementary Table for Section IV

Standard errors in panel (A) of Table 7 of the paper are based upon a wild bootstrap
that imposes a diagonal covariance matrix by multiplying each factor augmenting shock by an
independent +1 variable. The table notes indicates that standard error estimates based upon a
bootstrap that retains the off-diagonal covariance of the shocks by multiplying each it three-
tuple of shocks by a common %1 are very similar. Table F1 reports the ratio of the standard
error estimate using the wild bootstrap that retains the off-diagonal covariance to that of the
wild bootstrap that imposes a diagonal covariance matrix. As shown, most of the ratios are

near onc.
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G Estimation using the Multivariate t as Equivalent to Weighted Estimation

This appendix shows that estimation using the multivariate-t produces the same
parameter estimates as a weighted version of the multivariate normal, where the weights are
determined by the degrees of freedom and the inverse covariance matrix weighted deviations
of the observation residuals from predicted values. I1illustrate this with a seemingly unrelated
system of equations with the same regressors used for each dependent variable, although the
same results apply to the non-linear VEC models estimated in the paper.

The In likelihood for the multivariate normal is:
J 1 1 ' ' -1 !
(Gl) InL= Z[— Eln(27r )— Eln(det(V)) - E(yn -x;,B)V (y,—-B X,-t)} ,
it

where subscript it denotes the industry i X year ¢ observation, ¥;; indicates summation across
all such observations, y; is a Jx1 vector of dependent variables, x;; a Kx1 vector of regressors,
and V JxJ (symmetric) & P KxJ matrices of parameters, respectively. The first order
conditions for maximizing the In likelihood are:
OlnL - ' ’ - —1yr '
(G2) P 0= > [~V +(yi —xiBXVT),(V )iy, —B'x,)]=0
it

Jk

OlnL ~ ’
:0:>zxﬂt(V l)k(yjt_ﬁxil‘):o
B P

where (V))x and (V1) denote the k™ column and jk™ element of V-!. The solutions to these

equations are given by:

-1
0 ' ' C 1 0’ ' "0
(G3) ﬁ=(Zx,-,x,-,j 2xY, & V= Dy, — B ), - xiB)

When V is constrained to be diagonal, the solution is the same except that we set the off-
diagonal elements of V to 0.

The corresponding In likelihood for the multivariate t is

_ L 1n@7)+ Zin(r)— 5 In(det(V)) + In r(’ -/ j “In r(ﬁj
2 2 2
(G4) InL=Y)

_(T —’Z_len[r + (ygr - X;rﬁ)‘771 (yit - ﬁlxit )]

where 7 is the degrees of freedom & I' is the gamma function. Taking r momentarily as given,

we have the first order conditions
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v, —X;B)(V), (Vi (y, -Bx,) 0o
T+ (y:t _X;tB)V71 (y[t _B'Xit)

OlnL N z xj:'t (V7’ )k (yi‘tl _B’Xit)’ _

aﬂjk T Ty, —x.BV (v, -Bx,)

Gs) AL o z[—(v-l)jk +(r+J)

OV 7

and solutions
-1
0 ' ' - 1 0/ ' ! D
(G6) ﬁ = (z Witxitxitj z WX Y & V= ﬁz Wi (Yiz‘ - ﬁ Xit)(yit - XitB)’
it it it

(z+J) & Zw =NT
T+(y;t _X;tB)V71 (y[t _B'Xit) it l

and where again if V is constrained to be diagonal we set the off-diagonal terms of Vo 0.

where w, =

Thus, for a given 7 the solution for the other parameters looks like a weighted version of the
standard solution for multivariate normal errors, where the weights 7 + J divided by the
degrees of freedom plus the inverse covariance matrix weighted deviation from means. As
goes to infinity and the distribution converges to the multivariate normal, these weights

converge to 1. Given these solutions, the likelihood can then be maximized with respect to .
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