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Table A1: Notation used in Appendix A (also reviewed as introduced in the appendix) 

(1) Sequences of real vectors: ),...,( 1 NxxX  & ),...,( 1 NddD  , with T a row permutation of X. 

(2) Sample demeaned vector sequences:  ,
~

ΟTT   where  /NNNN 11IΟ  , with IN the NxN identity 

matrix and 1N an Nx1 vector of ones. 

(3) Sample standardized and orthogonalized vector sequences:  ½)/
~~
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(4) Sample standardized vector sequences:  ½)/
~~

(
~  NDg TTTT


, where Dg(Z) denotes a diagonal matrix 

with diagonal elements equal to those of Z. 
(5) Vector of pair-wise root-N correlations: n, with elements npq denoting the correlation of the pth and qth 

columns of T
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, as in 
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(7) Expectation across row permutations T of one of the τth joint moments of n: 
TE , as in 
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where p1 ... pτ & q1 ... qτ denote columns of T


and D


. 

(8) Summation across m indices excluding ties between them:  mii ,...,1
, as in 
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(9) Partition of the τ npq used in 
TE  into m groupings that tie elements together through their i indices: 

{e1}, ... ,{em}, as in: 
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(10) Component of 
TE  based upon summation across unequal i indices for a given partition:  
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(11) Summation across p and q indices which together cover all m elements in the partition:  
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and at least one cg (dh) equal to every integer in 1...p (1...q) .  The 2m indices cg and dh connect the 

2m different elements to p ≤ m and q ≤ m counters in the summations.   

(12) "mean" based upon τth absolute powers of absolute values of elements in npq: 
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(13) Asymptotically equal to: “~”. 
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A.  Multivariate Extension of Theorem I 

 Following the presentation in the paper, let ),...,( 1 NxxX  and ),...,( 1 NddD  denote sequences 

of P x 1 and Q x 1 real vectors, respectively, and  /NNNN 11IΟ  the centering matrix.  We wish to show 

that across the row permutations T of X:    
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where ΟHH ~
, denotes the Kronecker product and   the row-by-row Kronecker or face-splitting 
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holds for all column combinations p and q of X and D and the matrices N/
~~
XX and N/

~~
DD  are bounded 

with determinant > γ > 0 for all N sufficiently large.  Hoeffding (1951) provides a proof for a broader, but 

univariate, permutation problem.  The generalization to the multivariate case requires additional notation 

and consideration of cases, but otherwise I keep the presentation as close as possible to Hoeffding's so that 

the proof can be checked against his original contribution if desired. 
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For the element npq of the vector n based on the product of the pth and qth columns of T and D  
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We shall show that all of the moments of the vector n converge to those of the mean zero multivariate 

normal with identity covariance matrix.  

 We begin by showing how the moments of the permuted variables are calculated.  As T is the row 

permutation of X, ½)/
~~
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is simply the row permutation of ½)/

~~
(

~  NXXXX


 and the sample 

moments of T
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likely, expectations across the row permutations T are given by  
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while if i1 ≠ i2 we have   
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T
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where we use the notation j1,j2,... to denote summation across multiple indices, excluding ties between 

them.  Similarly, if p1 ≠ p2 
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Next, we compute the 1st and 2nd moments of the elements npq of the vector n:   
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These examples illustrate, in a manner that hopefully makes the later exposition intelligible, how the 

calculation of expectations produces sums of summations, with those that are across unequal indices in 

turn expressible as further sums of summations.  In the more immediate sense, (A.8) shows that the first 

moment of the vector n made up of PQ npq elements is 0PQ, while its second moments asymptotically 

equal the identity matrix, as desired.  The next few pages focus on the higher moments. 

 Let 
TE  denote one of the τth moments of the joint distribution of n across the row permutations T 
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where the indices may reference the same columns of T and D, i.e. pi = pj or qi = qj for some i ≠ j, so that 

the moment is across combinations of powers of the npq.  As can be seen from the second line of (A.8) 

earlier above, 
TE  needs to be separated into components based upon whether the i indices are identical or 

not, which leads to elements of the form 
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and  mii ,...,1
denotes the summation across each of m indices, excluding ties between the indices, the sets 

{e1}, ... ,{em} constitute a partition of the τ npq used in 
TE , with the notation ei without {} denoting the 

number of elements in {ei}, and the }{ iet


and }{ ied


denoting the product of the elements within each set {ei}.  

The {ei} groupings tie elements together through their i indices.  Thus, for example, we might have 
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which in turn can be expressed as the sum and difference of terms of the form 
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and at least one cg (dh) equal to every integer in 1..p (1...q) .  The 2m indices cg and dh connect the 2m 

different elements to p ≤ m and q ≤ m counters in the summations.  The third line of (A.8) earlier provides 

an example of how expectations add summations across j to each I(τ,...), while the fourth and fifth lines 

show how the I(τ,...) are re-expressed as the sum of J(τ,...) forms. 

 Each J can be written as the product of subset J's 
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We assume that each J is subdivided into the greatest possible number of factors. In the fourth line of 

(A.8) above, for example, we have: 
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while all three terms in the fifth line are indivisible because the i, j counters for the t
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connect at least one element of 
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every one of the numbers in 1...pk and 1...qk, so we may conclude that  
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 Next, we take the absolute value, apply an inequality associated with that, and then apply Hӧlder's 
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where the reader is reminded that ekg denotes the number of npq in{ekg}, with kkge  , allowing the 

application of Hӧlder's Inequality in the manner shown.  We now decompose the set {ekg} into its 

constituent parts.  Let 1..r, r ≤ τ, index the unique npq variables across which the expectation 
TE  is taken, 

so that 
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where, as earlier above, in the first product different values of k may reference the same npq, but in the 

second product each a references a unique npq and each fa is > 0. Let f1kg ... frkg (some of which are possibly 

0) denote the power the unique npq in (A.21) are raised to in the grouping {ekg}.  We can then apply 

Hӧlder's Inequality once again1 

                                                 
1The use of Hӧlder's Inequality in the third line requires additional explanation.  Holder's inequality 
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Applying the bound to each element on the right hand side of (A.15), we then have 
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 Let us now assume (to be proven later) that assumption (A2) and the associated assumptions on 

N/
~~
XX and N/
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DD earlier above are sufficient to guarantee that 
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From this we see that if τk is even and greater than 2, then ),( pqk nM  → 0.  If τk is odd and greater than 1, 

we can apply the Cauchy-Schwarz inequality 
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To apply to (A.22), begin by defining l = 1..N2, and using it to count through the ij indices in (A.22), so 
that (i1,j1) = (1,1), (i2,j2) = (1,2) ... (iN+1,jN+1) = (2,1) ... , and 
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where in the last we drop multiplication by terms raised to a power fakg = 0 (as those terms equal 1).  We 
now apply the inequality  

,
1

/

1 1

/

)0:{  11 )0:{  

//
22

   
    




















r

a

ef
N

i

N

j
iqjp

ef

faa

N

l
qipj

N

l faa

ef
qi

ef
pj

kgakg

k

a

k

a

kgakg

akg

k

al

k

al

akg

kgkakg

al

kgkakg

al
dtdtdt    

where in the last we reintroduce multiplication by terms raised to a power fakg = 0, as these equal 1.  In 
sum, by removing and then bringing back in terms raised to the power 0, Hӧlder's inequality can be 
applied here (and in other instances below as well). 
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 Combining these results with (A.23), and the fact that p+q ≤ s+m, we see that if τk ≥ 2 for all k in 1..s and 

(a) τk > 2 for any k or (b) τk = 2 for all k and p+q < s+m, then ...)(2/  JN m  asymptotically equals 0.   
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have mk = pk = qk =1, and J(τk...) is given by 
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from which it follows that ...)(2/  JN m = 0 for all N.  Hence, the only case where ...)(2/  JN m  may not 

be identically or asymptotically zero is where τk = 2 for all k. This means that each J(τk,pk,qk,{ek1},...,{ekm}) 

involves two elements, 
11qpn and 

22qpn , divided into mk = 1 or 2 groups.  If mk = 2, then pk + qk ≤ 3.  If  pk + 

qk = 3, then J(τk...) is given by 
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both of which are zero.  If pk + qk = 2 for any k, then p + q + s - m < 0, and by the results of the previous 

paragraph ...)(2/  JN m  is asymptotically zero.   

 From the above, we see that the only case where ...)(2/  JN m may not be identically or 

asymptotically zero is when for each subcomponent J(τk...) we have τk = 2 and mk = pk = qk =1 (as pk ≤ mk , 

qk ≤ mk), i.e. there is only one grouping of two npq, summed across one index for i and one for j, i.e. 
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which equals N  2 if p1 = p2 and q1 = q2 and 0 otherwise.  Since J(τ...) is a product of J(τk...), we then know 
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TE  is made up of the sum of I(τ,...) which tie the τ npq elements (possibly repeating) into m groups 

through the indices i and j.  To not be identically or asymptotically zero, the I(τ,...) must involve powers of 

2 of each npq, so the only asymptotically non-zero 
TE  is that where the powers to which the r unique npq 

are raised, f1, ... ,fr , as well as τ = ∑fa , are all even.  The number of ways in which fa objects can be tied 

together in pairs is (fa -1)!! (where !! denotes the double factorial).  Consequently, we have shown that for 

all τ > 2 
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which are the higher moments of a vector of independent mean zero standard normals! 
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so that assumption (A2) may be re-expressed as 
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However, for any odd τ = 2η+1, we note that by Hӧlder's inequality 
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so (A.34)' in fact applies for all τ = 3, 4, ... .2  We also note that 
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where Dg(Z) denotes a diagonal matrix with diagonal elements equal to those of Z.  The elements of A 

and B are asymptotically bounded as for all N sufficiently large  
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(()()37A.( 1½½ PΔPDgtraceDgtracetrace XXXXXXXXXXAA  

where Δ and γ are the asymptotic upper bound on the diagonal elements and lower bound on the 

determinant of N/
~~
XX , respectively, with the same (with Q in place of P) in the case of B.  To see the 

                                                 
2When τ = 3 and η = 1, the second square root on the right-hand side of (A35) equals 1 while the first goes 

to 0; in all other cases both square roots on the right hand side go to zero. 
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last, note that the largest eigenvalue of ( N/
~~
XX )-1 is the inverse of the smallest eigenvalue of N/

~~
XX , 

which by the trace and determinant property of eigenvalues is greater than or equal to γ/(ΔP)P-1.  The trace 

of N/
~~
XX is bounded by ΔP.  Using the fact that for real positive semi-definite matrices the trace of a 

matrix product is less than or equal to the maximum eigenvalue of one times the trace of the other (Fang, 

Loparo & Feng 1994), then gives the bound specified above. 

 With these results in mind, we complete the proof using properties of the absolute value and 

Hӧlder's inequality to show that 
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where we use a and b to denote the elements of A and B as defined in (A36), in the second line we change 

double summations to single summations by introducing the subscripts k = 1..PQ and l = 1..N2 which we 

use on e & f and i & j to capture the movement through the original double summations of these,3 in the 

third line we apply the multinomial expansion using the notation   PQgg ....1 to denote the summation 

across all sets of PQ non-negative integers that sum to τ, in the fourth line we apply Hӧlder's Inequality, 

and in the fifth line we make use of the boundedness of the elements a and b of A and B. 

                                                 
3That is, (e1,f1) = (1,1), (e2,f2) = (1,2) ... (eQ,fQ) = (1, Q), (eQ+1,fQ+1) = (2,1) ... (ePQ,fPQ) = (P,Q), with a similar 

sequence for l. 
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Table B1: Notation used in Appendices B & C (also reviewed as introduced in the appendices) 

(1) Regression model: εγZyεZγβXy W  or     where Z+ = (XW,Z) and γ'+ = (β',γ').  Estimated 

parameters denoted by ˄.  XW is NxPQ, Z NxK and Z+ NxK+. 

(2) AB and  denote the row by row Kronecker product, AB = AB.  This appears in the form of NxP 

treatment variables X multiplied by NxQ interaction covariates W (XW) and the multiplication of W 

with errors ε (Wε). BA denotes the Kronecker product. 

(3) The N observations are divided into M treatment groupings, with all observations in a treatment 

grouping receiving the same treatment value.  We denote the MxP matrix of treatment values by X 

and its row permutation by T, with T denoting the consequent NxP matrix of observation level 

treatment values.  We use subscripted m or i to identify the mth or ith row of X and X, as in mx  and 

ix .  We use scripted notation as well for non-treatment matrices to distinguish those with M rows 

from those with N, as in D versus D.  Whereas in the treatment matrices the mth element represents 

the common treatment given to all elements i in the mth grouping, in the case of other variables the 

scripted matrix refers to the sum of all elements i in the mth grouping, i.e. dmq = Σiϵmdiq . 

(4) 0, )(
0

βXTyy WWβT   denotes the counterfactual value of y under the null β0 following the row 

permutation T of X and the application of these values to observation groupings to form T. 
0,

ˆ
βTβ are 

the associated parameter estimates. 

(5)  In addition to the M ≤ N treatment groupings, the practitioner divides the sample into C ≤ N cluster 

groups, within which the errors might be correlated, and O ≤ N other groupings in which other 

regressors might be correlated. U ≤ N denotes the largest number of groups the sample can be 

divided into such that the observations associated with each treatment m, cluster c, or regressor o 

grouping reside in at most one union grouping u.  While errors and regressors within each union 

grouping may be arbitrarily correlated, they are independent across union groupings.  We define 

intersection groupings v as the largest observational grouping such that all observations belong to at 

most one cluster grouping c and one treatment grouping m, with the number of such groupings V ≤ 

N.   

(6) Notation Σiϵu denotes the sum across observations i in union grouping u (or cluster, treatment or 

intersection groupings c, m or v), and similarly Σ um  denotes the sum across treatment groupings (or, 

similarly, cluster or intersection groupings c or v) in union grouping u. 

(7) id  refers to the ith row of matrix D and Du, Dc, Dm, & Dv to the rows of D associated with the 

subscripted union, cluster, treatment or intersection grouping.  dij refers to the ijth element of D, 

while duj (or similarly cj, mj or vj) refers to the rows of the jth column of D associated with the union 

grouping u. 

(8) "Means" are calculated by dividing by M, and in addition to means across all observations, we also 

have means across subscripted groupings, defined as follows:  
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for g = c, u, or v and G = C, U or V.  ω() denotes the mean across M elements, as in 
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(9) 1M & 0M denote Mx1 vectors of 1s & 0s, 0QxQ a QxQ matrix of 0s & IM the MxM identity matrix. 

(10) We use the ~ notation to denoted demeaned M matrices and their elements, as in XΟX 
~

 where 

MMMM /11I Ο . 

(11) tWk and xWl denote the kth and lth columns of WT and WX , with the ith elements of these vectors given 

by )()( kiqkip wt and )()( liqlip wx , where p(j) and q(j) denote the columns of T (or X) and W associated 

with the jth column of TW (or XW). 

(12) 
..sa

  denotes convergence almost surely across the probability law governing the data D = (XW,Z,ε).  
p

  & 
d

  denote convergence in probability and distribution across permutations T of X almost 

surely across the distribution of  the data D.  E() denotes the expectation across the data D. 

(13) nPQ denotes the multivariate iid standard normal, indicated by nPQ ~ N(0PQ,IPQ).  

B.  Generalizing the Results to Allow for Clustering and Grouped Treatment 

 This appendix generalizes the results to include grouped treatment and standard errors which are 

homoskedastic, heteroskedasticity robust, or clustered at, below, above and across treatment groupings 

(i.e. at any level).  As in the paper, we have  

 ,)1.B( εZγβXy W   

where WXXW   and • denotes the row by row Kronecker or "face-splitting" product of two matrices, 

while y and ɛ are N x 1 vectors of outcomes and residuals, Z and γ the N x K matrix of covariates and K x 

1 vector of associated parameters, X an N x P matrix of treatment variables, W an N x Q matrix of 

interaction covariates, and β the PQ x 1 vector of parameters of interest.  The sample is divided into M ≤ 

N groupings of observations, with all observations i in grouping m in X receiving the same treatment row 

vector.  We use the matrix X to denote the M x P matrix of grouped treatments underlying X, T any of the 

M! equally likely row permutations of X, and T the N x P matrix of treatments associated with the 

allocation of T to the corresponding M observational groupings.  Stratification is considered in a later 

appendix. 

 As before, we combine the treatment and non-treatment regressors into more compact notation, 

describing our regression model as 

,level)n observatio (at theor     )2.B( iiiy   γzεγZy  

where ),(  and  ),( γβγZXZ W   denote the full matrix of regressors and parameters and iz the 1 x K+ 

vector representing the ith row of Z+.  White (1980) assumes that ),( ii z is a sequence of independent but 
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not necessarily identically distributed random vectors.  To generalize his work, assume that in addition to 

the M ≤ N treatment groupings, the practitioner divides the sample into C ≤ N cluster groups, within which 

the errors might be correlated, and O ≤ N other groupings in which other regressors might be correlated, 

and let U ≤ N denote the largest number of groups the sample can be divided into such that the 

observations associated with each treatment m, cluster c, or regressor o grouping reside in at most one 

union grouping u.  While errors and regressors within each union grouping may be arbitrarily correlated, 

they are independent across union groupings.  Further below we will also have need to make use of 

intersection groupings v, defined as the largest observational grouping such that all observations belong to 

at most one cluster grouping c and one treatment grouping m, with the number of such groupings V ≤ N.  

In the case where errors, treatment and other regressors are independent at the observation level, C = M = 

U = V = N. 

 We will need a substantial amount of additional notation.  As before, id  refers to the ith row of 

matrix D, while we now use Du, Dc, Dm, and Dv to refer to the rows of D associated with the subscripted 

union, cluster, treatment or intersection grouping.  dij refers to the ijth element of D, while duj (or similarly 

cj, mj or vj) refers to the rows of the jth column of D associated with the union grouping u.  We use the 

notation Σiϵu to denote the sum across observations i in union grouping u (or cluster, treatment or 

intersection groupings c, m or v), and similarly Σ um  denotes the sum across treatment groupings (or, 

similarly, cluster or intersection groupings c or v) in union grouping u.  All "means" are calculated by 

dividing by M, and in addition to means across all observations, we also have means across subscripted 

groupings, defined as follows:  





 

   





G

g gi

ii
N

i

ii
iigii

G

g gi gj

ji
jig

G

g gi

ii
iig

N

i

ii
ii

M

dd

M

dd
ddmddm

M

dd
ddm

M

dd
ddm

M

dd
ddm

1

21

1

21
2121

1

21
21

1

21
21

1

21
21

  as  )()(      where                    

,),(  &  ,)(  ,)()3.B(

 

and where g = c, m or v and G = C, M or V.  The reader will see that the mc, mm and mv means for two 

variables are the divide-by-M means of the product of the variables summed at the c, m or v level (i.e. 

each "observation" for a variable equaling a sum across all observations i in a c, m or v grouping).  As 

(B.3) shows, m(di1di2) = mg(di1di2), but no such relation necessarily holds for summation across two 

groupings, as in mg(di1,dj2).  To distinguish matrices with M rows from those with N, we use scripted 

notation, as in the matrices X and T versus X and T defined above.  We further distinguish between the 

two by using subscripted m or i to identify the mth or ith row in each, as in mx  and ix .  We shall need to 

define other M matrices that are a function of the N matrices for non-treatment variables, as in D versus D.  

Whereas in the treatment matrices the mth element represents the common treatment given to all elements i 

in the mth grouping, in the case of other variables the scripted matrix refers to the sum of all elements i in 

the mth grouping, i.e. dmq = Σiϵmdiq .  We use the notation ω() to denote the mean across M elements, as in 
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We note that for non treatment variables d, ω(dmq) = m(diq) & ω(xmpdmq) = m(xipdiq), as xmp = xip for all i in 

grouping m, but ω(xmp) does not necessarily equal m(xip).  We shall use the ~ notation only with respect to 

demeaned M matrices and their elements, as in XΟX 
~

 where MMMM /11I Ο  

 Within this framework, we make the following White-type assumptions 

(U1) (a) ),( uu εZ is a sequence of independent but not necessarily identically distributed random 

matrices.  (b)   KiiE 0z )(  for all i. 

(U2) There exist positive finite constants δ, Δ and γ such that (a) for all u, ΔE uu   )|(| 1 εε  and 

ΔE ukuj  
 )|(| 1 zz  for all j, k = 1...K+; (b) MU = U-1 

U

u 1 )( uuE  ZZ is non-singular for all U 

sufficiently large, with determinant MU > γ > 0. 

(U3) There exist positive finite constants δ, Δ and γ such that (a) for all u, ΔE uuujuj  
 )|(| 1 εεzz  for 

all j = 1...K+; (b) VU = U-1 

U

u 1 )( uuuuE   ZεεZ is non-singular for all U sufficiently large, with 

determinant VU > γ > 0. 

(U4) There exist positive finite constants δ and Δ such that for all u & j  = 1...K+ ΔE ujuj  
 )|)((| 12 zz . 

(U5) (a) If using the homoskedastic covariance estimate )ˆ( γVh , the errors are iid with 22 )|(  iiE z  

for all i & E( jiji  zz ,| ) = 0 for all j ≠ i; (b) If using the heteroskedasticity (but not clustered) 

robust covariance estimate )ˆ( γVr , the errors are independently but not necessarily identically 

distributed with E( jljiik zz   ) = 0 for all k & l = 1...K+ if  j ≠ i; (c) If using the clustered robust 

covariance estimate )ˆ( γVcl , the errors are independently distributed across clusters with 

E(
2211 ckccjc εzεz   ) = 0 for all j, k = 1...K+ if cluster c1 ≠ c2. 

U1 - U4 are a straightforward extension of White's work to allow for correlated regressors and errors 

across observation groupings and hence the following lemma is easily proven (in the next appendix): 

Lemma B1:  Assumptions U1 - U4 guarantee that for all U sufficiently large γ̂ exists,   γγ
..

ˆ
sa

, and 

)ˆ(   γγU is asymptotically (across the data generating process for the data sequence Z+,ε) 

normally distributed with mean K0 and covariance matrix 11 
UUU MVM .  If U5a holds, 

11
..

)ˆ(ˆ 
  UUU

sa

h MVMγV ; if U5b holds, 11
..

)ˆ(ˆ 
  UUU

sa

r MVMγV ; and if U5c holds, 11
..

)ˆ(ˆ 
  UUU

sa

cl MVMγV . 

Obviously, within the framework of the regression model, heteroskedasticity is just the case where the 

number of clusters C = N and hence can be subsumed under clustering.  However, in developing the 

randomization results further below, clusters that are larger than one observation generate additional 

complications in proofs (especially in Appendix C) as clustering can be below, above, at the same level as, 

or across treatment groupings.  Consequently, I treat the heteroskedastic case as separate from clustering, 

even though at some points the exposition is redundant.  

 In addition to U1 - U5, we make four randomization inference specific assumptions 
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(A1) GM =  

M

m 1 ME mm /)( xx  - 

M

m 1 ME m /)(x  

M

m 1 ME m /)(x  is non-singular for all M sufficiently 

large with determinant GM > γ > 0.  

(A2) Either the matrix W is part of Z, i.e. the interactions with treatment in XW are entered separately 

as covariates in the regression, or PmE 0)(x . 

(A3) There exist positive finite constants θ, θ*, Δ and γ, with θ(1+2θ*) > 1, such that (a) for all m, q = 

1...Q and p = 1...P, E(| mqmmmq wεεw  |1+θ) < Δ and ΔE mp  )|(| *14 x ; (b) WM =  
 M

m mmmmEM
1

1 )( WεεW  

is non-singular for all M sufficiently large, with determinant WM > γ > 0. 

(A4) The maximum number of observations in a union grouping u, and by implication in a treatment 

grouping m or error correlation grouping c, is bounded from above by N . 

Assumptions A1, A2 and A3a are extensions of those given in the paper for observation level treatment to 

treatment groupings.  As in the paper, we base the proofs on the version of A2 which states that W is part 

of Z, as the alternative assumption is unlikely to hold.  The condition A3b on WM rules out cases where 

the average expectation of union grouped products as in VU in U3b is positive definite but the average 

expectation of treatment grouped products as in A3b is not.  A4 rules out asymptotically infinitely large 

cluster or treatment groupings, or overlaps across the two that generate infinite chains.  It ensures that C, 

M, U and N are all of the same order, so that matrices that are positive definite when divided by one 

measure do not converge to matrices of 0s when divided by another and → ∞ for one has the equivalent 

implication for the others.  The formal asymptotics below are all stated as the units of treatment M → ∞ as 

key elements are in terms of that measure.  

 With the assumptions given above, result (R1) in the text can be modified to read: 

(R1) Given assumptions U1 - U4 and A1 - A4, for any 0β in a finite M neighbourhood of β, i.e. such 

that )()( 00 ββββ M < Δ (a constant) < ∞, as M → ∞ almost surely across the data generating 

process for (Z+,ε) the distribution of )ˆ( 0, 0
ββ βT M across permutations T of X converges to that of 

the multivariate normal with mean 0PQ and almost surely bounded covariance matrix CM, while 

depending upon which of U5a, U5b or U5c hold, the homoskedastic, heteroskedasticity robust and 

clustered covariance estimates )ˆ(ˆ
0,βTβV converge in probability to CM, so that the Wald statistic 

τ(T,β0) is asymptotically distributed chi-squared with PQ degrees of freedom and in probability 

converges to the value for the true null β0 = β  

.0),(),(&),()5.B(
),,.(.|)(

0
2

),,.(.|)(

0

εZXTεZXT WW

βTβTβT
sap

PQ

sad

χ     

Given Lemma B1, results (R2) - (R5) in the paper and its appendix then follow as before from (R1), as the 

Wald statistics for the original regression and for permutations T of X for tests of any subset or linear 

combination of parameters are both asymptotically distributed chi-squared with k degrees of freedom.  

The remainder of this appendix is dedicated to proving (R1).  We begin by laying out some basic theorems 

and lemmas, and then examine the asymptotic distribution of coefficient estimates produced by 
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permutations T of X and the probability limit of their covariance estimates.  Proofs of all lemmas used 

below are in Appendix C. 

 (a) Base Theorems and Lemmas 

 We restate Theorem's I and III in terms of the treatment groupings in which they will be applied: 

Theorem I for Grouped Treatment: 

 Let x' = (x1, ... , xM) and d' = (d1, ... , dM) denote sequences of real numbers, not all equal, and t' = 

(t1, ... , tM) any of the M! equally likely permutations of x.  Then as M → ∞, the distribution of the 

random variable 
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as calculated across the realizations of t converges to that of the standard normal if for all integer τ > 2 
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If ),...,( 1 MxxX  and ),...,( 1 MddD  are sequences of vectors, and T any of the row permutations of 

X, then the distribution of   
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where denotes the Kronecker product and  as above the row-by-row Kronecker or face-splitting 

product, is distributed multivariate iid standard normal if (Ib) holds for all pairwise combinations of the 

elements of the columns of X and D and the matrices M/
~~ XX and M/

~~
DD   are bounded with 

determinant > γ > 0 for all M sufficiently large. 

Theorem III for Grouped Treatment: 

 Let x' = (x1, ... , xM) and d' = (d1, ... , dM) denote sequences of real numbers, possibly all equal, and 

t' = (t1, ... , tM) any of the M! equally likely permutations of x.  Then as M → ∞, across the 

permutations t of x the random variable  
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If cM is a sequence that converges to zero and the stronger condition  
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boundedally asymptotic is 
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holds, then across the permutations t of x 
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The changes from the theorems given in the text are merely notational (using groupings of observations) 

and these theorems have already been proven in the paper and the appendix above.  Theorem II in the 

paper also continues to hold, so that if conditions (Ib) and (IIIb) hold almost surely for the data sequence 

(Z+,ε), we can say that almost surely (across the data) n(tm,dm) converges in distribution and ω(tmdm) 

converges in probability across the row permutations T of X.  As in the paper, with the exception of the 

clustered extension of White's result in Lemma B1 above, references to almost surely are with respect to 

the probability distribution governing the data sequence, whereas references to in distribution and in 

probability are with respect to the permutations T of X. 

 The following lemma will be useful below: 

Lemma B2:  Define Wε as the M x Q matrix whose mqth element wmqε is the sum of the 

observational elements corresponding to the mth treatment group in the N x Q matrix Wε (i.e. 

wmqε =∑iϵmwiqεi .  If assumptions U1 - U4 and A1 - A4 hold, then: 
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~~ XX   & M/εε WW are almost surely positive definite with determinant 
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|mv(di1di2,di3di4)| are all almost surely bounded, as are 1)/(  MZZ , 1)/(  MWW , 
1)/

~~
(  MXX , 1)/(  Mεε WW  & 1)/~~(  Mεε WW . 

(d) Let  

n

k mk1
x denote the product of  n > 4 elements from the columns of X and di1di2 and di3di4 

each the product of the elements of two columns of (Z+,ε), with at most one in each case being 

ε.  Then for some a such that ½ > a > 0 
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(b) Asymptotic Distribution of Coefficient Estimates 

 The counterfactual outcome is given by 0, )(
0

βWXWTyy βT   and consequently, with 

ZZZZIM  1)(  denoting the residual maker with respect to Z, similar to the paper we have 
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0, )ˆ()B.6(
0

, 

where )( 0ββr  M .  This expression can be analyzed using the following lemma: 

Lemma B3:  Given assumptions U1 - U4 and A1 - A4: 

(a) Condition IIIc of Theorem III almost surely holds for the mean of the product of the elements 

of one or two of the columns of T with the elements of two columns of D = (XW,Z,ε) , no 

more than one of which is εi, so that in particular  
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From Lemma B2c ω(xmp), ω(xmpxmq) and m(dijdik) are known to be almost surely bounded. 

(b) xmp & wmqε almost surely satisfy condition Ib of Theorem I for all column pairs of X and Wε, 

while MM /~~&/
~~

εεWWXX  are almost surely bounded with determinant > γ > 0 for all M 

sufficiently large, so that across the row permutations T of X we have 
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(~~~~ -½

PQPQPQPQ

d
PQ

MMM
I0nn

1εεε 









 


 WTWWXX . 

 Moving forward, let tWk and xWl denote the kth and lth columns of WT and WX , with the ith 

elements of these vectors given by )()( kiqkip wt  and )()( liqlip wx , where p(j) and q(j) denote the columns of T 

(or X) and W associated with the jth column of TW (or XW).  With this notation, we see that the klth 

element of M/WWMTT  can be expressed as 
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where ))(,...),(()( )()(1)()()()( iKkiqkipikiqkipikiqkip zwtmzwtmwt zm  and we use the fact that as 

Nw kqikiq /)( )()( Zwzm  , where )(kqw is the q(k) th column of W which is included in the covariates Z 

(assumption A2), so for all N sufficiently large that M/ZZ is guaranteed to be invertible 1
)( )(  ZZZw kq is 

a row vector of zeros with a 1 in the column corresponding to the position of )(kqw in Z.  Similarly, the klth 

element of M/WWMXT  can be expressed as4 
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where we again make use of the assumption that W is included in Z.  Combining these results, we have: 
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Finite values of )( 0ββr  M , multiplied by M/WWMXT , asymptotically have no influence in (B.6).   

 The remaining part of (B.6) is the vector M/MεTW , the kth term of which equals: 

                                                 
4In applying the Lemmas, keep in mind that )()( lipliq xw are the elements of one column of XW. 
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so the only term that asymptotically is non-zero is vk , which equals 
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which is the kth element of MPQ /)~~
( 1ε WT .  Applying Lemma B3b we then see that 
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 (c) Probability Limit of the Homoskedastic Covariance Estimate 

 The estimated residuals are given by 
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so using the fact that MM = M we see that the average squared residual equals 
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where )( 0ββr  M  and )ˆ(ˆ 0, 0
ββr βT  M .  From Lemma B2, (B.9) & (B.13) above, and the fact that 

M/N ≤ 1, we have 
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Consequently, for the homoskedastic covariance estimate )/ˆˆ()()ˆ(ˆ
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 We now note the following lemma: 

Lemma B4:  If as in U5a the errors are iid and homoskedastic, with 22 )|(  iiE z  & 

0),|(  jijiE zz  for all i and j ≠ i, then QxQ

sa

NMM 0εεWWεε

..

)/)(/(/~~ WW . 

From Lemma B4, (B.13) & (B.17) we see that when the errors are iid, )ˆ(ˆ
0,βTβVhM converges in probability 

to the asymptotic covariance matrix of normally distributed )ˆ( 0, 0
ββ βT M , so the Wald statistic is 

asymptotically distributed chi-squared with PQ degrees of freedom.  Moreover, every appearance of r in 

the Wald statistic τ(T,β0) is multiplied by a term that almost surely across (Z+,ε) in probability across 

permutations T converges to 0, so that in probability τ(T,β0) converges to τ(T,β), as stated in (R1). 

 (d) Probability Limit of the Heteroskedasticity Robust Covariance Estimate 

 For the heteroskedasticity robust covariance estimate we have 
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using the formula for 
0βT,ε̂  from (B.14) earlier with )( 0ββr  M , )ˆ(ˆ 0, 0

ββr βT  M ,  

kk WtZZZδ  1)(ˆ , kk WxZZZτ  1)(ˆ and εZZZη  1)(ˆ .  From Lemmas B2b and B2c we have 

K

a.s.

0ηˆ and from B2c know that the limit of kτ̂ is almost surely bounded.   As for kδ̂  its plim across the 

distribution of T is bounded as 
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As for all N sufficiently large )(
1)( kqwZZZ   is a vector of zeros with a 1 in the row corresponding to the 

column position of wq(k) in Z and )( )(kmpx is known to be bounded by Lemma B2c, plim ak̂ = 0 unless a is 

the column position of wq(k) in Z, in which case plim 0)(ˆ
)(  kmpak x .  The elements of r are finite and 

of r̂ are asymptotically multivariate normal, so when divided by any positive power of M have a 

probability limit of zero. 

 When the terms in (B.19) are multiplied out, most involve a product with an element of M/r , 

M/r̂ , or η̂ that has a plim of zero, parameters ̂  and ̂  with bounded probability limits, and the mean 

of the product of the elements of 0 to 4 columns of T and the elements of 4 columns of D = (XW,Z,ε) (no 

more than two of which are εi).  The following lemma allows us to conclude that the plim of all such terms 

is zero: 

Lemma B5:  Assumptions U1 - U4 and the additional A1 - A4 ensure that for some a in (0,½) 

condition IIIb of Theorem III almost surely holds for the mean of the product of the elements of n = 1, 

2, 3, or 4 columns of T divided by )0,2max( naN  with the elements of four columns of D = (XW,Z,ε) , no 

more than two of which are ε, so that across the permutations T of X 
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 x . 

 From Lemma B2c we know that the sample means of the product of the elements of one through 

four columns of X or four columns of D are almost surely bounded, so the probability limit in Lemma B5 

is bounded when n = 1 or 2 and 0 when n = 3 or 4.  Consequently, in (B.19) every term that involves the 

product of an element of M/r , M/r̂ , or η̂  that has a plim of zero with the mean of the product of four 

columns of D with zero, one or two columns of T has a probability limit of zero.  Every term in (B.19) 

that involves the product of n = 3 or 4 columns of T with four columns of D also includes at least 

n - 2 M/r̂ terms which can be re-expressed as )1()/ˆ( -½ aa /MMr for some a in (0,½).  The a/M1 parts can 

be used to satisfy Lemma B5, while the aM -½/r̂ part converges in probability to 0.  Thus, all such terms 

also have a plim of 0. 

 The above only leaves terms in (B.19) that involve the product of two or less columns of T and do 

not include an element of M/r , M/r̂ , or η̂ , namely 
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where we use the boundedness of means of products of up to four terms (Lemma B2c) and the fact noted 

above that plim ak̂ = 0 unless a is the column position of )(kqw in Z, in which case plim 0)(ˆ
)(  kmpak x  

and )(kiqia wz  . This allows us to state that  
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and consequently for the heteroskedasticity robust covariance estimate we have  
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 We now note the following lemma: 

Lemma B6:  If as in U5b the errors are independently but not identically distributed, with E( jljiik zz   ) 

= 0 for all k & l = 1...K+ if  j ≠ i, then QxQ

sa

MM 0WW εεεε

..

)/(/~~ WW . 

From Lemma B6, (B.13) & (B.23) we see that when the errors are heteroskedastic but not clustered, 

)ˆ(ˆ
0,βTβVrM converges in probability to the asymptotic covariance matrix of normally distributed 

)ˆ( 0, 0
ββ βT M , so the Wald statistic is asymptotically distributed chi-squared with PQ degrees of 

freedom.  Moreover, every appearance of r in the equation for the Wald statistic τ(T,β0) is multiplied by a 

term that almost surely across (Z+,ε) in probability across permutations T converges to 0, so that in 

probability τ(T,β0) converges to τ(T,β), as stated in (R1). 

 (e) Probability Limit of the Clustered Robust Covariance Estimate 

 For the clustered robust covariance estimate we again use the sandwich formula (B.18), but this 

time with the klth element of A given by 
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and where, as before, the notation ci denotes the summation across the set of observations i in cluster c.  

The following lemma is useful (the reader is reminded that subscript v in mv denotes the treatment cross 

cluster intersection grouping, as described earlier above): 

Lemma B7:  Let ti1...ti4 denote columns of T and vi1 and vj2 each the product of the elements of 

two columns of D = (Z+,ε), no more than one of which in each case is ε.  Given assumptions U1 

- U4 and A1- A4, for some a in (0,½) 
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)(
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n

k mkx for n = 1 to 4, mc(vi1,vj2) & mv(vi1,vj2) are almost surely bounded (Lemma B2c). 

 As in the case of the robust covariance calculation earlier above, when multiplied out most of the 

terms in (B.24) involve an element of M/r , M/r̂ , or η̂  whose plim is zero, multiplied possibly by a 

parameter from τ̂  and δ̂  whose plim is bounded, times one of the mc terms described in Lemma 7 or 

simply ),( 21 jic vvm .  From Lemma B2c we know that the ω() sample means of the product of the elements 

of n = one through four columns of X and the mc() sample means of the product of the elements of four 

columns of (Z+,ε) (no more than two of which are ε) are almost surely bounded.  Consequently, in (B.24) 

every term that involves the product of an element of M/r , M/r̂ , or η̂  that has a plim of zero with 

the mean of the product of four columns of D with zero, one or two columns of T has a probability limit of 

zero.  Every term in (B.24) that involves the product of n = three or four columns of T with four columns 

of D also includes at least n - 2 M/r̂ terms which can be re-expressed as )1()/ˆ( -½ aa /MMr for some a in 

(0,½).  The a/M1 parts can be used to satisfy Lemma B7c, while the aM -½/r̂ part converges in probability 

to 0.  Consequently, the plim of all such terms is 0 and we need only focus on terms in (B.24) which do 

not involve an element of M/r , M/r̂ , or η̂ .  These are 
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so using Lemma B7 we see that 

,0),()]()()([(B.26) )()()()()()(

p

jljqikiqvlmpkmplmpkmpkl wwm   xxxxA  

where we once again use the fact that plim ak̂ is only non-zero in the "a" column position of )(kqw in Z, with 

plim )(ˆ
)(kmpak x  and )(kiqia wz  . Consequently, for the clustered robust covariance estimate 
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We now note the following lemma: 

Lemma B8:  If as in U5c E(
2211 ckccjc εzεz   ) = 0 for all j, k = 1...K+ if cluster c1 ≠ c2, 

then QxQ

sa

MM 0εεε

..

//~~  WWWW . 

From Lemma B8, (B.13) & (B.27) we see that when the errors are clustered, )ˆ(ˆ
0,βTβVclM converges in 

probability to the asymptotic covariance matrix of normally distributed )ˆ( 0, 0
ββ βT M , so the Wald 

statistic is asymptotically distributed chi-squared with PQ degrees of freedom.  Moreover, every 

appearance of r in the equation for the Wald statistic τ(T,β0) is multiplied by a term that almost surely 

across (Z+,ε) in probability across T converges to 0, so that in probability τ(T,β0) converges to τ(T,β), as 

stated in (R1).
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C.  Proofs of Lemmas used in Appendix B 

 We make use below of the corollaries to Markov's Law of Large Numbers, the Continuous 

Mapping Theorem and the Borel-Cantelli Lemma given in Appendix C in the paper.  In applying the 

corollaries, we can treat the random variables generated by vector inner products as a single observation, 

as in uuεε or mmεε .  An issue that arises, however, is that the Markov Corollary is stated in terms of 

independent random variables.  Given assumption U1 above, this is always true for observations made by 

the inner product of union groupings u, but it need not necessarily be true for observations made by the 

inner product of groupings based upon m, c or v, as these are subsets of u.  We can, however, apply a 

Corollary to a Law of Large Numbers for Heterogeneous Dependent Sequences (hereafter, LLNHDS) 

given by White (1984): 

LLNHDS Corollary:  For the Borel field generated by the random variable di(ω), i = n .. n + m & ω 

in Ω, let ),...,( mnn
mn

n ddB 
   be the smallest σ - field of subsets of Ω with respect to which di(ω), i 

= n .. n + m, are measureable.  Let )(..., n
n iB  be the smallest collection of subsets of Ω that 

contains the union of the σ - fields aBn
a  as and ,...)( mnmn iB 


  be the smallest collection of 

subsets of Ω that contains the union of the σ - fields  aBa
mn  as .  Let G and H be σ-fields and 

define |)()|(|sup),( }0)(,,{ HPGHPGPHG   HGHG . Define the mixing coefficients 

 ),(sup)( 
 mn

n
n BBm  .  Let {di} be a sequence with ϕ(m) = O(m-λ) for λ > r/(2r-1), r a real 

number with 1≤ r ≤∞, such that E(|di|
r+δ) < Δ < ∞ for some δ > 0 and all i.  Then 
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In the case of variables which are γ independent, i.e. di is independent of di-τ for all τ > γ and all i, ϕ(m) = 0 

for all m > γ, r is 1, and the requirement for the result becomes E(|di|
1+δ) < Δ < ∞ for some δ > 0 and all i.  

In this case, the requirement for the Strong Law is the same as used in the Markov Corollary in the paper.  

Since by assumption U1 ),( uu εZ is a sequence of independent random matrices, and each union grouping 

has no more than N observations, we see that all variables are N  independent.  This allows us to apply 

the LLNHDS Corollary with r = 1 to the means of groupings below the union level, such as mmεε . 

 Lemma B1:  The proof of this lemma follows proofs given in White (1980), with notation and 

cases adapted to our specific framework.  All variables are independent across union groupings, so 

assumption U2a and the Markov Corollary guarantee that  

.
)(

)C1.1(
..

11



















xKK

saU

u

uu
U

u

uu
U U

E

UU
0

ZZZZ
M

ZZ  

MU is almost surely positive definite for all U sufficiently large with determinant greater than some γ > 0 

(assumption U2b), so by the Continuous Mapping Theorem Corollary U/ZZ  is almost surely positive 

definite for all U sufficiently large with determinant greater than γ > 0.  Consequently, γ̂ exists for all U 

sufficiently large.  U3a implies that 
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for all j, k = 1...K+.  Using this and Jensen's Inequality then ensures that for all u and j 
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which along with the Markov Corollary and U1b indicates that 
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This guarantees that  
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 U/εZ  is a vector with expectation and variance: 
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where we make use of the fact that by U1 observations are independent across u with   KuuE 0εZ )( .  

Since VU is positive definite for all U sufficiently large (assumption U3b), let E denote its eigenvectors 

and Λ its diagonal matrix of positive eigenvalues, and define EEΛV  -½-½
U , where Λ-½ is a diagonal 

matrix with entries equal to the inverse of the square root of the eigenvalues in Λ.  The largest eigenvalue 

of -½-½-1
UUU VVV  is the inverse of the smallest eigenvalue of VU.  Since the determinant of VU is > γ > 0 for 

all U sufficiently large, and by Jensen's Inequality and (C1.2) its diagonal elements are bounded by Δ1/(1+δ), 

by the trace and determinant property of eigenvalues we know that the smallest eigenvalue of VU, λmin, is 

greater than γ/(K+Δ1/(1+δ))^(K+-1).  

 As noted in White (1980, p. 829 - see also White 1980a and Hoadley 1971), given (C1.6) a 

multivariate Liapounov Central Limit theorem implies UU /-½ εZV  is asymptotically distributed 

N(0K+,IK+) provided that for all κ in ℝK+ and some δ > 0 
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UVκφ  , and note that by the properties of the Rayleigh quotient min/ κκφφ  , i.e. for any 

given κ the elements φ of k are bounded.  By Minkowski's Inequality and (C1.2)  
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so (C1.7) holds and using (C1.1), we can say that )ˆ(-½
  γγMV UUU is asymptotically distributed 

N(0K+,IK+). 

 We now show that )ˆ(ˆ
γVU , for the three covariance estimates considered in U5, converges 

almost surely to the asymptotic covariance matrix 11 
UUU MVM of )ˆ(   γγU .  Depending upon whether 

assumption U5a, U5b or U5c hold, we have 

 U5c).(if  
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All of these expressions are positive definite for sufficiently large U (by U3b).  They are also bounded, as 

examining the diagonal terms we see 
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For the homoskedastic covariance estimate, assuming U5a and using )ˆ(ˆ   γγZεε  we have 

 

holds),  U5a(if    where,)ˆ(ˆ so

,)ˆ()ˆ()ˆ(2
ˆˆ

  where,
ˆˆ

)ˆ(ˆ)C1.11(

2111
..

21

2
..

(C1.5)by (C1.10a) & (C1.1)by 
bounded) a.s. 

(C1.5)by 
1

(C1.5)by 
(C1.4)by 

1

Law Strong sMarkov'
by  

1

......
..

2
..




























































 








UUUUxKK

sa

Uh

sa

h

U

UN

U

UN

U

NN

KN

N

NU
U

K

sa

K

sa

K

sa

K

sasa

MMVM0MγV

γγ
ZZ

γγγγ
Zεεεεε

εεZZ
γV

000
0







 

and where we use the fact that (C1.1) and the Continuous Mapping Theorem Corollary imply that 
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11)/( .  For the heteroskedasticity robust covariance estimate we have 
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The last two terms of Ajk converge almost surely to 0 as   γγ ˆ , which converges almost surely to zero, is 

multiplied by terms which are asymptotically almost surely bounded: 
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The expectation of  
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ui iikij zz  is bounded as 
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where ui denotes the union grouping to which observation i belongs.  Consequently, given U5b, by the 

Markov Corollary 
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For the clustered robust covariance estimate we have 
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Again, the last two terms of Ajk converge almost surely to 0 as   γγ ˆ , which converges almost surely to 

zero, is multiplied by terms which are asymptotically almost surely bounded: 
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The expectation of 
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where uc denotes the union grouping to which cluster group c belongs.  Consequently, given U5c, by the 

Markov Corollary 
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which completes the proof of the lemma. 

 Lemma B2a:  As U/M is bounded from above by 1, (C1.1) above allows us to state that  

.)C2.1(
..




 
xKK

sa

UM

U

M
0M

ZZ  



 30 

As MU is almost surely positive definite for all U (equivalently, by A4, M) sufficiently large with 

determinant greater than some γ > 0 (U2b), and U/M is bounded from below by 1N (assumption A4), by 

the Continuous Mapping Theorem Corollary M/ZZ  is almost surely positive definite for all M 

sufficiently large with determinant greater than 1N  > 0.  Since the trace of MU is bounded from above 

by Δ1/(1+δ)K+ (C1.10a above), by the trace and determinant property of eigenvalues we know that for 

sufficiently large N its smallest eigenvalue is almost surely greater than λ= γ/(K+Δ1/(1+δ))^(K+-1) > 0.  It 

follows that almost surely for all M sufficiently large the smallest eigenvalue of M/ZZ  is greater than 
1N λ.  Since Z and W are part of Z+ (assumption A2), it follows from the properties of the Rayleigh 

quotient that the minimum eigenvalues of the sub-matrices M/ZZ  and M/WW are greater than or equal 

to that of M/ ZZ .  Consequently, for sufficiently large M both matrices are almost surely positive 

definite with determinants > KKN   and QQN  , respectively.  By Jensen's Inequality the assumption 

ΔE ip  )|(| *14 x  in A3a implies that 4/1 )|(| nn
ip ΔE x  for n = 1...3, so by the LLNHDS Corollary above 

PxP

saM

i

m
M

i

m
M

m

mmMM
M M

E

M

E

M

E

MMMM
0

11
G

..

111

)()()(
~~

)2C2.( 






 










 





 



xxxxXXXXXX
, 

and from A1a for all M sufficiently large the determinant of GM is almost surely greater than γ > 0, so 

using the Continuous Mapping Theorem Corollary the same can be said of M/XX ~~ . 

 By Hölder's Inequality and A3a, E(| mrmmmq wεεw  |1+θ) ≤ E(| mqmmmq wεεw  |1+θ)½ E(| mrmmmr wεεw  |1+θ)½ < 

Δ for all q & r = 1...Q.  Consequently, using the LLNHDS Corollary once again 
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where by A3b WM is positive definite for all M sufficiently large with determinant > γ > 0, and so by the 

Continuous Mapping Theorem Corollary the same is true of M/εε WW .   As U/M is bounded, from (C1.4) 

we know that: 
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Since W is included in Z+ and Wε1 ε  WM , the implication, as indicated in the lemma, is that 

.)C2.5(
..~~

QxQ

sa

MMMMMM
0

WεεW εεεεεεεε 



 WWWWWWWW

 

 Lemma B2b:  As Z and XW are part of Z+, (C1.4) and (C2.4) above establish this lemma.   

 Lemma B2c:  With regards to the matrix inverses in the Lemma, for an invertible positive definite 

matrix A the largest eigenvalue of 1A is equal to the inverse of the smallest eigenvalue of A.  From the 

proof of B2a we know that each of the matrices in Lemma B2c is invertible with a smallest eigenvalue 

almost surely greater than some λ > 0 for all N sufficiently large, so it follows that the elements of their 

inverses are all almost surely bounded.  For the means of products of columns of X, by Jensen's Inequality 

the assumption ΔE mp  )|(| *14 x  in A3a implies that 4/*1 )|(| nn
mp ΔE x  and *)1(4/|)(|  nn

mp ΔE x for n = 1, 

2, 3 or 4, and by the LLNHDS Corollary 0))(()(
..sa

n
mp

n
mp E  xx   , which tells us the means of powers up 
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to 4 of x are bounded.  The sample mean of products of 2, 3 or 4 different columns of X can then be 

bounded by repeated application of the Cauchy-Schwarz Inequality: 
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Turning to |m(di1di2)|, where di1di2 is the product of the elements of two columns of (Z+,ε), let duj denote 

the group u observations of the jth column of (Z+,ε) and dij the ith observation of that column.  Then  
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so the mean of the product of 2 elements from the columns of (Z+,ε) is also almost surely bounded.  Next, we 

note that U3a and U4 imply that for any duj and duk denoting u group column elements of (Z+,ε), with no 

more than one of these referring to ε, there exist positive finite constants δ and Δ such that for all u 
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When one of the duj denotes elements of ε, (C2.8) is merely a restatement of U3a.  When both duj denote 

elements of Z+, we use Hӧlder's Inequality & U4 to show that : 
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Similarly, for mc, mm and mv, let the letter g (G) denote either c, m or v (C, M or V), so 
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Together (C2.10) & (2.11) establish that m(di1di2di3di4), mc(di1di2,dj3dj4), mm(di1di2,dj3dj4) & mv(di1di2,dj3dj4) 

are all almost surely bounded, which completes the proof of the lemma.  

 Lemma B2d:  When looking at the product of n > 4 column elements of X, we have 
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where we make use of Hӧlder's Inequality.  As for the mc, mm and mv mentioned in the lemma, with g (G) 

denoting c, m or v (C, M, or V), we can say 
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where N from A4 is the maximum union grouping size.  Since Lemma B2c showed that )(
4

1 k mkx is 

bounded, while the average of 4433 uuuu dddd  is as seen in (C2.11) similarly bounded, we need only show  
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From A3 and (C2.8) above, we know that for all m, u, j, k & p there exist finite positive constants δ and Δ 

such that ΔE mp  )|(| 14 x  and ΔE ukukujuj   )|(| 1 dddd .  Applying Markov's Inequality 
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So, following the Borel-Cantelli Corollary, both MmpMm /Max 2x  and 222 / Max Mdd ikijNi  
2/Max UukukujujUu dddd    are almost surely bounded for γ > ½(1+δ)-1, and consequently for all a in (γ,½) 

(C2.14) holds, proving the lemma. 



 33 

 Lemma B3a:  For n = 1 or 2 we need to show that the following is bounded: 
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All of these were shown to be bounded in the proof of Lemma B2c. 

 Lemma B3b:  Lemmas B2a and B2c already established that MM /~~&/
~~

εεWWXX  are almost 

surely bounded with determinant > γ > 0 for all M sufficiently large, so all that remains is condition Ib.  
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With regards to the denominator in the last expression, by the Schur-Horn Theorem the smallest diagonal 

element of a symmetric real matrix is greater than or equal to its smallest eigenvalue.  Lemmas B2a and 

B2c established that MM /~~&/
~~

εεWWXX  are almost surely bounded with determinant > γ > 0 for all M 

sufficiently large.  For a K x K matrix with determinant > γ > 0 and non-negative diagonal elements 

bounded from above by Δ', by the trace and determinant property of eigenvalues the smallest eigenvalue is 

bounded from below by λ(K)= γ/(KΔ')^(K-1).  Consequently, the denominator in the last expression is 

almost surely > λ(P)λ(Q) > 0 for all N sufficiently large. 

 Turning to the numerator, since for dm = xmp or wmqε 
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and Lemma B2c showed that both ω(xmp) & ω(wmqε) = m(wiqεi) converge almost surely to the bounded 

mean values of E(xmp) & E(wmqε), respectively, to prove (Ib) all that remains is to show that 
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Both conditions can be met with a > 0, b > 0 and a + b < 1 if θ(1+2θ*) > 1 as 
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where we recall that we use the notation iw  to denote the ith row of W.  As W is part of Z+ (assumption 

A2), from U2a and the Markov Corollary we have: 
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lemma. 

 Lemma B5:  We need to show that for n = 1...4, di1di2 and dj3dj4 each equal to the product of the 

elements of two columns of (Z+,ε) with no more than one in each case equal to ε, and some a in (0,½) 
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The m() means of any 4 columns of (Z+,ε) (no more than two of which are ε)  have already been shown to 

be almost surely bounded (Lemma B2c), while from Lemmas B2c and B2d we know that the ω() mean of 

n = 1..4 columns of X times M  
-amax(n-2,0) and the ω() mean of  2n = 2, 4, 6, or 8 columns of X times 

M  

-2amax(n-2,0) are all almost surely bounded.  So all that is needed to establish (C5.1) is to show that: 
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MNN / is bounded by 2N  and )( 2
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2
3 jj ddm is almost surely bounded by Lemma B2c.  From (C2.8) earlier 

we know that  ΔddE ikij )|(| 122   for some δ > 0, so applying Markov's Inequality 
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thereby proving Lemma B6. 

 Lemma B7:  We cannot directly invoke Theorem III, as the expressions in the lemma involve 

cluster groupings and generate somewhat different results, but the method of proof will be similar.  To 

minimize clutter, for the purposes of this proof we change notation and let tm1,  tm2, ... (or generically tmk) 

each denote the product of 1 or 2 columns of T, with xm1,  xm2 ... (xmk) and ti1, ti2, ... (tik) denoting the 

products of corresponding columns of X and T.  We also let vi1 and vj2 each denote the product of two 

columns of (Z+,ε).  In addition, define mi as the group m associated with observation i, and I ig mm   a (0,1) 

indicator function for whether mg = mi, and note that, since for all m tmk has the same expectation across 

the row permutations T of X, )()( mkkm EE
i

tt TT  , with similar results for higher moments.  We begin by 

using the symmetry and equal likelihood of permutations to calculate the expectation of tmk and products 

of tmk across the row permutations T of X: 
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We then use these to calculate the expectation across row permutations T of the expression in (L7a):   
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where the last follows by the fact that xm1 is at most the product of elements of two columns of X, while vi1 

and vj2 are always the product of elements of two columns of (Z+,ε), so ),(&),(),( 21
2
11 jicmm vvmxx   are 

by Lemma B2c bounded, while using the Cauchy-Schwarz Inequality and the bound N on the size of 

clusters we see that 
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So the expressions in (L7a) converge in mean square, and hence in probability to zero, as stated in the 

Lemma.5 

 Turning to (L7b), we first calculate the expectation: 
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5When comparing results in this section with the Lemma, keep in mind that in the proof ti1 may denote 1 or 

the product of 2 columns of T, but in the statement of the Lemma it only denotes one column. 
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where we use the notation oa.s.(1) to denote sequences which almost surely converge to zero and make use 

of the fact (Lemma B2c) that the ω() mean for products of up to 4 elements of X are known to be almost 

surely bounded, as are mc(vi1,vj2) and mv(vi1,vj2).  Calculating the second moment is considerably more 

complicated. 

 We begin by calculating the expectation of the product of four arbitrary tm1... tm4, varying by 

whether indices do or don't match 
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where  

4

)(1 vk mkt denotes the product of across k = 1 through 4, excluding v (or w & v if ≠ w,v), and where 

the oa.s.(1) terms incorporate all elements whose limit based upon Lemmas B2c and B2d are known to be 

0, taking into account that each tmk is at most the product of two columns of X.  (C7.5) retains terms which 

might be unbounded.  For example, if each tmk is the product of two columns, then )( 4321 mmmm xxxx is the 

mean of the product of 8 columns, and bounds on this have not been established, but Lemma B2d tells us 

it will almost surely converge to 0 if divided by M 

2a.   Using (C7.5) we calculate the second moment: 
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and where the oa.s.(1) emerges from the product of the oa.s.(1) terms in (C7.5) with the ∑ I terms in (C7.6) 

which, making frequent use of the Cauchy-Schwarz Inequality are all shown to be almost surely bounded: 
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keeping in mind that vg1 & vg2 are always the product of elements of two columns of (Z+,ε), so by Lemma 

B2d we know that when divided by M all mc and mv terms involving the square of these converge to 0.   

 If each tik involves only nk = 1 columns of T, then all the ω in (C7.6) are known to be bounded, 

and hence vanish if multiplied by something that converges to 0, so using (C7.7) we can simplify to 
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and see that the expression in (L7b) converges in mean square and hence in probability to 0.  When n1 + n2 

> 2, so that at least one of the tik involves more than one column of T, the mean )( 2
2

2
1 mm xx  in (C7.6) 

involves the product of more than 4 columns of X, as will at least one of )( 2
2
1 mm xx  and )( 2

21 mm xx , and 

hence we don't know if these means are bounded.  However, from Lemma B2d we know that if multiplied 

by )422( 21  nnaM their limit is 0, as for b1 and b2 each equal to 1 or 2:6 
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 Hence, in this case we multiply ),( 2211 jjiic vtvtm  by )2( 21  nnaM  and see that 
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thereby ensuring convergence in mean square and probability to zero, verifying the claim in (L7c). 

 Lemma B8:  From the proof of Lemma B2a we know that QxQ

sa

MM 0Wεε

..

/~~ WW .  When using 

the clustered covariance estimate the random vectors wiεi and wjεj are independent with expectation 0Q if 

in different clusters (U1b, U5c), so with intersection groupings v defined as the largest observational 

grouping such that all observations belong to at most one cluster grouping c and one treatment grouping 

m, with the number of such groupings V ≤ N:   
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where uv denotes the union grouping to which intersection grouping v belongs.  Since W is a part of Z+ 

(assumption A2), applying the LLNHDS Corollary and the fact that V/M is bounded between 1 and N  

(assumption A4), it then follows that   

                                                 
6In applying Lemma B2d here, as b1 and b2 are 1 or 2, I put 2n1 and 2n2 in the exponent on M to ensure that 

the lemma is satisfied (nk denoting the number of columns of T in tik and hence the number of columns of X in xmk). 
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thereby proving the lemma. 
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Table D1: Notation used in Appendices D & E (also reviewed as introduced in the appendices) 

(1) Regression model: εγZyεZγβXy W  or     where Z+ = (XW,Z) and γ'+ = (β',γ').  Estimated 

parameters denoted by ˄.  X is NxPQ, Z NxK and Z+ NxK+. 

(2) AB and  denote the row by row Kronecker product, AB = AB.  This appears in the form of NxP 

treatment variables X multiplied by NxQ interaction covariates W (XW) and the multiplication of W 

with errors ε (Wε). BA denotes the Kronecker product. 

(3) tWk and xWl denote the kth and lth columns of WT and WX , with the ith elements of these vectors given 

by )()( kiqkip wt and )()( liqlip wx , where p(j) and q(j) denote the columns of T (or X) and W associated 

with the jth column of TW (or XW). 

(4) Sample of N observations divided into S strata with Ns observations in stratum s.  Subscript s denotes 

the sub-matrix associated with stratum s, as in Xs and Wεs. si denotes summation across 

observations i in stratum s. 

(5) T denotes a stratified row permutation of X. 

(6) 0, )(
0

βXTyy WWβT   denotes the counterfactual value of y following stratified row permutation T 

of X under the null β0, 0,
ˆ

βTβ the associated parameter estimates. 

(7) 1N & 0N denote Nx1 vectors of 1s & 0s, 0QxQ a QxQ matrix of 0s & IQ the QxQ identity matrix. 

(8) Sample and stratum demeaned variables: .)/(
~

&)/(
~

ssNNNsNNN NN
sss

T11ITT11IT    

(9) m() and ms() denote full sample and stratum means, i.e. 

.)()(&,)(,)(
11
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s
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ip

si s

ip
ips

N

i

ip
ip xm

N

N
xm

N

x
xm

N

x
xm  

)( ixm  & )( ixm  are column and row vector versions of these. 

(10) 
..sa

  & 
Dp

denote convergence almost surely and in probability across the probability law governing 

the data D = (XW,Z,ε).  
p

  & 
d

  denote convergence in probability and distribution across 

stratified permutations T of X in probability given the data D.  E() denotes the expectation across 

the data D. 

(11) nPQ denotes the multivariate iid standard normal, indicated by nPQ ~ N(0PQ,IPQ).  
 

D.  Stratification of Treatment 

 This appendix generalizes the results to allow for the stratified application of treatment.  

Specifically, it shows that White's assumptions justify the use of covariance estimates without adjustment 

for stratification (as is done universally in the published papers reviewed in Young 2019) and notes 

sufficient additional conditions for use of the distribution of coefficients and covariance estimates based 

upon within stratum permutations of treatment to yield asymptotically accurate inference.  To minimize 

notational complexity, the analysis is done in the context of the framework presented in the paper, with 

treatment applied at the observation level and heteroskedasticity robust covariance estimates.  Extension 
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to the grouped treatment/clustered covariances of Appendix B above is straightforward but uses much 

more notation. 

 The baseline regression model remains as in the paper 

εγZyεZγβXy W  or    )1.D( , 

where Z+ = (XW,Z) and γ'+ = (β',γ').  We now assume that the data are divided into a finite number S of 

strata, with the subscript s denoting the Ns rows of each matrix or vector associated with observations in 

stratum s, as in Zs.  The notation T now denotes the stratified permutations of treatment X, i.e. an outcome 

observed when permuting treatment within strata. We use the notation Σiϵs to denote the sum across all 

observations i in stratum s, and m() and ms() to denote the full sample and stratum means, as in: 
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With N = 

S

s 1
Ns denoting the total number of observations in the regression, we assume that for all s Ns/N 

> Δ > 0 for all N sufficiently large, so that N → ∞ implies (and is of course implied by) Ns → ∞ for all s.7  

All discussion below of limits is with respect to N → ∞, and hence Ns → ∞ in all strata. 

 In addition to the above, we assume: 

(S1) White's assumptions W1 - W4 and the additional randomization specific assumptions A1 - A3 

given in the paper hold for the entire sample.  In addition, for all strata s Σiϵs siii NE /)( 2ww  is non-

singular with determinant > γ > 0 for all Ns sufficiently large. 

(S2) While the expectation of non-treatment variables may differ systematically across strata, the 

asymptotic strata average first and second moments of treatment variables are almost surely 

identical, i.e. 

...1, allfor 
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White's assumption W3b (given in the paper) ensured that the condition on the determinant in S1 holds for 

the average across the entire sample.  The proofs later on require that it hold for individual strata as well. 

Assumption S2 corresponds to the A5 mentioned in the conclusion of the paper.  It allows, but limits, 

heterogeneity of treatment across strata. 

 Since White's assumptions all hold, his result holds as well, and )ˆ(   γγN is asymptotically 

(across the data generating process for the data sequence Z+,ε) normally distributed with mean 
K0 and 

positive definite covariance matrix 11 
NNN MVM  (as defined in W1-W4 in the paper), to which N times the 

heteroskedasticity robust covariance estimate calculated without consideration of the strata almost surely 

converges, 


 
 xKK

sa

NNNhN 0MVMγV
..

11)ˆ(ˆ  (see White 1980 or the more general proof for clustering in 

Appendix C above).  As noted in the paper, White's assumptions in particular imply that average linear 

treatment effects do not vary systematically across strata, as a common parameter vector γ+ applies to all 

                                                 
7Given White's assumptions, strata for which this does not apply asymptotically almost surely have zero 

influence on coefficient and covariance estimates and can be ignored. 
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observations and E(z+iεi) = 0K+ for all i.  As in the non-stratified framework considered in the paper, 

White's assumption that the variables are independently distributed can be reconciled with dependence 

between observations within strata brought about by the application of a given distribution of treatment to 

the observations by appealing to O'Neill's (2009) de Finetti result that if the cumulative distribution 

function Fx of treatment within strata converges to a given distribution the exchangeable random variables 

asymptotically have an iid distribution.   

 Assumptions S1 and S2 ensure that the following hold: 

Lemma D1: Across the probability distribution of the data generating process for D = (XW,Z,ε): 

(a) NNNN /
~~

&/
~~

,/,/ εεWWXXWWZZ   are all almost surely strictly positive definite with 

determinant > γ  > 0 for all N sufficiently large, as are sss N/
~~
XX and sss N/

~~
εε WW for all strata s, 

while QxQ
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 . 
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NN 0εX0εZ W   

(c) The full sample and strata means of the product of the elements of one, two, three or four 

columns of X or the elements of one, two or four columns of D (no more than two of which are 

εi) are almost surely bounded, as are ,)/
~~

(,)/
~~

(,)/(,)/( 1111   NNNN εεWWXXWWZZ  
1)/

~~
(  sss NXX  and 1)/

~~
(  sss Nεε WW . 

(d) For p and q denoting columns of X & W used to make any column of XW:  
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(e) For p and q denoting columns of X & W used to make any column of XW: 
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In the paper, and generally in this on-line appendix, convergence almost surely is with reference to the 

probability distribution of the data while convergence in probability or distribution is with respect to the 

permutations T of X.  However, there are some instances in this appendix, such as in Lemma D1, where 

convergence in probability is with respect to the distribution of the data D, which I note by using the 

notation pD.  Because of this, result (R1) in the paper is now stated in terms of in probability, rather than 

almost surely, across the distribution of the data.  Stronger assumptions ensure almost sure convergence, 

but convergence in probability is sufficient for the objective of this appendix.  Lemmas D1d and D1e are 

used later on in proofs of the following Lemma: 

Lemma D2: In probability, across the distribution of the data D = (XW,Z,ε), the following hold across 

the probability distribution generated by stratified permutations T of treatment X:  

(a) With no more than one of the dij denoting εi,  

0.)()()(  ,0)()()(
p

ikijiqipikijiqip

p

ikijipikijip ddmxxmddttmddmxmddtm   

(b) For n = 1, 2, 3, or 4 and not more than two of the dij denoting εi, for some a in (0,½) 
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(c) For p and q denoting columns of X & W used to make any column of XW: 
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The proofs of the lemmas are given in Appendix E. 

 With Lemmas D1 and D2 in hand, one can follow the steps used in the paper's appendix and 

prove that in probability across the distribution of the data D for a finite )( 0ββr  N , asymptotically 

)ˆ(ˆ 0, 0
ββr βT  N  is, across stratified permutations T of X, distributed multivariate mean zero normal 

with a covariance matrix equal to N times the probability limit of the heteroskedasticity robust covariance 

estimate )ˆ(ˆ
0,βTβVr , result (R1) in the paper.  Results (R2) - (R5) then follow as in the paper's appendix.  

For the sake of completeness, the two sections below prove (R1), although the steps are nearly identical to 

those used in the paper's appendix. 

 (a) Asymptotic Distribution of Coefficient Estimates  

 As in the text, counterfactual output is given by 

000, )()()D.3(
0

βTεZγββXβWXWTyy WWβT  , 

the only difference being that the permutations T of X are stratified (i.e. treatment is permuted within 

strata).  Consequently, as before we have 
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0, )ˆ()D.4(
0

 

where )( 0ββr  N .  Let tWk and xWl denote the kth and lth columns of WT and WX , with the ith elements 

of these vectors given by )()( kiqkip wt and )()( liqlip wx , where p(j) and q(j) denote the columns of T (or X) and 

W associated with the jth column of TW (or XW).  With this notation, we see that the klth element of 

N/WWMTT  can be expressed as 
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where ))(,...),(()( )()(1)()()()( iKkiqkipikiqkipikiqkip zwtmzwtmwt zm , and in the third line we use the fact that as 

Nw kqikiq /),( )()( Zwzm  , where wq(k) is the q(k)th column of W which is included in the covariates Z 

(assumption A2), so for all N sufficiently large that N/ZZ is guaranteed to be invertible 1
)( )(  ZZZw kq is 

a row vector of zeros with a 1 in the column corresponding to the position of wq(k) in Z.  Similarly, the klth  

element of N/WWMXT  can be expressed as 
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where in the last line we again use the assumption that W is included in Z. 

 Combining these results, we have: 
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Finite values of )( 0ββr  N , multiplied by N/WWMXT , asymptotically have no influence in (D.4).  

As can be seen, assumption A2 that W is a part of Z (or the less plausible alternative that the mean of the 

xip are asymptotically zero) is key to this result. 

 The remaining part of (D.4) is the vector N/MεTW , the kth term of which equals: 
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The only term that asymptotically is non-zero is vk which, as )()( )()( kipkip xmtm  , equals the kth element of 
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( 1WT ε  .  Applying Lemma D2d we then see that 
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 (b) Probability Limit of the Heteroskedasticity Robust Covariance Estimate 

 For the heteroskedasticity robust covariance estimate we have 
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As for all N sufficiently large )(
1)( kqwZZZ   is a vector of zeros with a 1 in the row corresponding to the 

column position of wq(k) in Z and m(xip(k)) is known to be bounded by Lemma D1c, plim ak̂ = 0 unless a is 

the column position of wq(k) in Z, in which case plim 0)(ˆ
)(  kipak xm .  The elements of r are finite and of 

r̂ are asymptotically normal with bounded variance, so when divided by a positive power of N have a plim 

of zero. 

 When the terms in (D.12) are multiplied out, most involve a product with an element of N/r , 

N/r̂ , or η̂  that has a plim of zero, 0 to 4 parameters ̂  and ̂  with bounded probability limits, and the 

mean of the product of the elements of 0 to 4 columns of T and the elements of 4 columns of D = 

(XW,Z,ε) (no more than two of which are εi).  From Lemma D1c we know that the sample means of the 

product of the elements of one through four columns of X or four columns of D are almost surely 

bounded.  Consequently, in (D.12) every term that involves the product of an element of N/r , N/r̂ , 

or η̂  that has a plim of zero with the mean of the product of four columns of D with zero, one or two 

columns of T has, using Lemma D2a, a probability limit of zero.  Every term in (D.12) that involves the 

product of n = three or four columns of T with four columns of D also includes at least n - 2 N/r̂ terms 

which can be re-expressed as )1()/ˆ( -½ aa /NNr for some a in (0,½).  The a/N1 parts satisfy Lemma D2b, 

while the aN -½/r̂ parts converge in probability to 0.  Thus, all such terms also have a plim of 0. 

 The above only leaves terms in (D.12) that involve the product of two or less columns of T and do 

not include an element of N/r , N/r̂ , or η̂ , namely 
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where we use the boundedness of means of products of up to four terms (Lemma D1c) and the fact noted 

above that plim ak̂ = 0 unless a is the column position of wq(k) in Z, in which case plim )(ˆ
kipak xm  and 

)(kiqia wz  .  This allows us to state that  

PQxPQ

p

NN
0

WWXX
A εε 







~~
 (D.15)  

and consequently for the heteroskedasticity robust covariance estimate we have  
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which from (D.10) is seen to be the asymptotic covariance matrix of normally distributed )ˆ( 0, 0
ββ βT N .   
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E. Proofs of Lemmas used in Appendix D 

 This appendix references the Markov Corollary presented in the paper.   

 Lemma D1a-D1c:  In the paper's appendix proofs for Lemma 1 in the paper the statements 

regarding the full sample in Lemma D1a - D1c were proven without reference to permutations, and simply 

using the assumptions regarding observation level moments and the determinants of sample average 

matrices of expectations given in assumptions W1-W4 and A1-A3.  Consequently, all of these results 

continue to hold.  Given the assumption in S1 on the determinant of strata level Σiϵs siii NE /)( 2ww   and on 

the moments of xi in S2 along with assumption A1, the results for sss N/
~~

εε WW and sss N/
~~
XX can be 

proven using the same techniques as was used for the full sample.  The results regarding bounded sample 

means in D1c were proven in the paper's appendix using the Markov Corollary and the uniform bounds on 

the observation level moments of the X and D variables.  As we assume that N → ∞ implies Ns → ∞, 

these results hold at the stratum level as well. 

 Lemma D1d:  For the random vector μN = N/εZ , we have: 
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From assumption W3 and Jensen's Inequality we have E(| 222
ikiji zz  |) < Δ1/(1+δ), so the covariance matrix of 

μN is bounded.  Consequently, by Chebyshev's Inequality the elements of μN are bounded in probability.  

The proof of Lemma 1c in the paper's appendix showed that the elements of 1)/(  NZZ are almost surely 

bounded.  

 Assumption A3 combined with Jensen's Inequality tells us that for n = 1, 2, 3 or 4, E(| n
ipx |1+θ*) < 

Δn/4.  Using Hölder's Inequality, and with p(1) ... p(n) denoting arbitrary columns of X, these uniform 

bounds apply to the product of different column elements: 
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Consequently, applying the Markov Corollary at both the stratum and full sample level, and making use of 

Assumption S2 and the assumption that N → ∞ implies Ns → ∞, 
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We will make use of (E.3) further below as well.  In the present context, we have  
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In sum, 
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and hence the entire expression converges in probability across the distribution of the data D to zero. 

 Lemma D1e:  

  We define the random variable τpq and calculate its expectation: 
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where, as elsewhere in the paper, we use subscripted i, j to denote the summation across both indices, 

excluding ties between them, and we recall assumption W1's statement that the observations are 

independent with E(z+iεi) = 0K+, so )( iiqip wxE   and )( iiqwE   equal 0 as both XW and W are part of Z+, and 

the fact that expectations of powers less than 4 of xip are bounded by A3 and Jensen's Inequality as for n = 

1, 2, 3 or 4, E(| n
ipx |) < Δn/4(1+θ*). The variance of τpq is given by: 
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In the last line we simplify by making use of the fact that observations are independent and, as already 

noted, )( iiqipwxE   and )( iiqwE   equal 0 and expectations of first and second powers of xip are bounded, as 

is )( 2
iiqipwxE  , as by A3, W3a and Jensen's Inequality  

.)()(|)(||)(|)E.8( )1/(1*)1/(1

Inequality sHolder'
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Consequently, all non-zero expectations in the first line of (E.7) must contain an 2
i , which rules out all 

cases where the h and j indices in the first line do not tie, leading to the expression in the second line. 

 In calculating the expectations in the second line of (E.7), it will once again be necessary to 

consider cases where the various indices do or don't tie.  Since observational level expectations are 

bounded and cases that involve one or more ties are divided by powers of N, the latter vanish 

asymptotically, leaving only expectations in which there are no ties.  Expectations that involve no ties will 

cancel.  We can conclude that the variance of τpq converges to zero, and so it converges in mean square 

and hence in probability to the expectation given in (E.6), i.e. 0.  As these statements are difficult to 

confirm without experience with such problems, the details are worked out for the reader below. 
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 We begin by calculating the expectations in the second line of (E.7), paying careful attention to 

potential ties between indices:  
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where, (i) as elsewhere, subscripted s,t or g,h,i or h,i denote summations across the indices excluding ties 

between them; (ii) we simplify at the end of each expression using the fact that since all of the 

expectations are uniformly bounded those that are divided by any positive power of N or Ns are o(1); and 

(iii) as the first term following the equal sign from the second line down in (E.9c) is identical (subject to a 

modification of the denominator) to (E.9b), we simply substitute using the results from that earlier 

calculation towards the end of (E.9c). 

 Combining the results of (E.9a) - (E.9c), we have: 
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Consequently, τpq converges in mean square and in probability to zero, as claimed in the lemma. 

 Lemma D2a:  The proof of Lemma 1d in the paper's appendix only involves the observation level 

moment conditions in W1 - W4 & A1 - A3.  These lemmas now hold at the stratum level, with stratum 

means ms() and Ns → ∞ taking the place of sample means m() and N → ∞.  So:  
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 Lemma D2b:  Again, the proof of Lemma 2 in the paper's appendix only involves observation 

level moment conditions, and hence now holds at the stratum level as well.  As Ns → ∞: 
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Using the fact that Ns/N is bounded between 0 and 1, and that sample and stratum means are almost surely 

bounded (Lemma D1c) 
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 Lemma D2c:  From Lemma 1d in the paper, which now holds within strata, if  
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For any cN, we can define cNs = cN, based upon the value of Ns corresponding to N.  Since 

 sNN for all s = 1..S, if cN → 0 as N → ∞, we can also comfortably say cNs → 0 as Ns → ∞.  

The elements of )/()/( 1 NN εZZZ   , which from Lemma D1b and D1c are known to converge almost 

surely to 0, are one such cN.  We now note that the expression in the Lemma can be decomposed into: 
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Consequently, in probability across the data sequences D the expression in D2c converges in probability 

(across the permutations T of X) to 0, as stated in the Lemma. 

 Lemma D2d:  We use superscripted ~ to denote either sample demeaned )
~

(T or strata demeaned 

)
~

( sT variables, with the presence of the subscript s indicating the intent.  Since the moment conditions in 

W1-W4 & A1-A3 apply to all observations, from the proof of Lemma 1e in the paper's appendix we know 

that across the stratified permutations Ts of Xs, as Ns → ∞ 
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provided the matrices sss N/
~~

εε WW  and sss N/
~~
XX , following their counterparts for the entire sample, are 

almost surely positive definite with determinant greater than some γ for all Ns sufficiently large (which is 

true by Lemma D1a).  The nPQs are clearly independent across strata, as the observations and permutations 

of each strata are independent of the others.  The kth element of v = NN /)
~~

( 1WT ε  equals:  
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Consequently, the covariance matrix of S independent nPQs random variables each multiplied by  
½)/

~~
/
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(/ sssssss NNNN εε WWXX  converges almost surely to NN /
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as stated in the Lemma.  
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F. Papers used in Section V’s Analysis of a Practical Sample & Alternative Figures Retaining 
Regressions and Papers Otherwise Dropped on the Basis of Growing Number of Strata or 
Unbalanced Stratification  

Given below are the 39 papers whose OLS regressions are analyzed in Section V & in this 

appendix.  The acronym at the beginning of each reference is the code used to identify the paper in the 

public use do-files.  As noted in the text, I remove papers in the 53 paper Young (2019) sample without 

OLS regressions or where treatment is calculated from sample characteristics or applied using multiple 

cross-cutting criteria in a fashion that does not allow for counterfactual permutation.  These papers 

(identified by the acronym used in Young 2019) are: 

(i) No OLS regressions: CC1, CC2, CHKL, CILS, ER, FJP, LL, S, VDR. 
(ii) Treatment does not allow counterfactual permutation:  D, DR2, FG, GKN, MMW.  

Some OLS regressions in ABHOT, DDK and DKR are removed on the basis of (ii) as well.  In the figures 

in the text, I also remove papers where procedures are such that the number of strata grows with the 

sample size (AL & MMW2) and regressions with stratified treatment that is not, at least in principle, 

asymptotically balanced for asymptotically non-negligible strata (all of the regressions in GRS and KMP, 

some in BBLP, CGTTTV, DKR & FL).  The results presented in Figures I-III & V in the paper are based 

upon the remaining regressions in 35 papers.  Figures F1-F4 below include all regressions dropped for 

stratification issues and as can be seen are virtually identical to Figures I-III & V given in the paper.  

Figures F1 & F2 are based upon 3213 coefficients in 1066 regressions in 39 papers.  Figure F3 is based 

upon 1730 coefficients in 467 regressions in 28 papers where the other-treatment-stratification 

permutation distribution for coefficients in multi-treatment equations is not degenerate.  No regressions 

are dropped because of stratification issues in Figure IV of the paper.  Figure F4 duplicates Figure V in the 

paper.  With the addition of regressions dropped from Figure V for stratification reasons, the sample now 

consists of 2712 coefficients in 565 regressions with more than one treatment effect in 32 papers.  This is 

the only case where there is any discernible difference with results given in the paper, showing more cases 

where low p-values and low leverage regressions have big increases in their p-values in the unconstrained 

max (panels a & c, compare with Figure V in the paper). 
 

List of papers 
 
(AFGH)  Abeler, Johannes, Armin Falk, Lorenz Goette, and David Huffman.  2011.  “Reference Points 

and Effort Provision.”  American Economic Review 101 (2): 470–49. 
 
(AKL)  Aker, Jenny C., Christopher Ksoll, and Travis J. Lybbert.  2012.  “Can Mobile Phones Improve 

Learning?  Evidence from a Field Experiment in Niger.”  American Economic Journal: Applied 
Economics 4 (4): 94–120. 

 
(ABHOT)  Alatas, Vivi, Abhijit Banerjee, Rema Hanna, Benjamin A. Olken, and Julia Tobias.  2012.  

“Targeting the Poor:  Evidence from a Field Experiment in Indonesia.”  American Economic 
Review 102 (4): 1206–1240. 
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(ALO)  Angrist, Joshua, Daniel Lang, and Philip Oreopoulos.  2009.  “Incentives and Services for College 
Achievement: Evidence from a Randomized Trial.”  American Economic Journal: Applied 
Economics 1 (1): 136–163. 

 
(AL)  Angrist, Joshua, and Victor Lavy.  2009.  “The Effects of High Stakes High School Achievement 

Awards:  Evidence from a Randomized Trial.”  American Economic Review 99 (4): 1384–1414. 
 
(A)  Ashraf, Nava.  2009.  “Spousal Control and Intra-Household Decision Making: An Experimental 

Study in the Philippines.”  American Economic Review 99 (4): 1245–1277. 
 
(ABS)  Ashraf, Nava, James Berry, and Jesse M. Shapiro.  2010.  “Can Higher Prices Stimulate Product 

Use?  Evidence from a Field Experiment in Zambia.”  American Economic Review 100 (5): 2383–
2413. 

 
(BBLP)  Barrera-Osorio, Felipe, Marianne Bertrand, Leigh L. Linden, and Francisco Perez-Calle.  2011.  

“Improving the Design of Conditional Transfer Programs: Evidence from a Randomized Education 
Experiment in Colombia.”  American Economic Journal: Applied Economics 3 (2): 167–195 

 
(BM)  Beaman, Lori and Jeremy Magruder.  2012.  “Who Gets the Job Referral?  Evidence from a Social 

Networks Experiment.”  American Economic Review 102 (7): 3574–3593. 
 
(BL)  Burde, Dana and Leigh L. Linden.  2013.  “Bringing Education to Afghan Girls: A Randomized 

Controlled Trial of Village-Based Schools.”  American Economic Journal: Applied Economics 5 
(3): 27–40. 

 
(CCF)  Cai, Hongbin, Yuyu Chen, and Hanming Fang.  2009.  “Observational Learning: Evidence from a 

Randomized Natural Field Experiment.”  American Economic Review 99 (3): 864–882. 
 
(CMS)  Carpenter, Jeffrey, Peter Hans Matthews, and John Schirm.  2010.  “Tournaments and Office 

Politics: Evidence from a Real Effort Experiment.”  American Economic Review 100 (1): 504–517. 
 
(CL)  Chen, Yan and Sherry Xin Li.  2009.  “Group Identity and Social Preferences.”  American 

Economic Review 99 (1): 431–457. 
 
(CGTTTV)  Cole, Shawn, Xavier Giné, Jeremy Tobacman, Petia Topalova, Robert Townsend, and James 

Vickery.  2013.  “Barriers to Household Risk Management: Evidence from India.”  American 
Economic Journal: Applied Economics 5 (1): 104–135. 

 
(DDK)  Duflo, Esther, Pascaline Dupas, and Michael Kremer.  2011.  “Peer Effects, Teacher Incentives, 

and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya.”  American 
Economic Review 101 (5): 1739–1774. 

 
(DKR)  Duflo, Esther, Michael Kremer, and Jonathan Robinson.  2011.  “Nudging Farmers to Use 

Fertilizer: Theory and Experimental Evidence from Kenya.”  American Economic Review 101 (6): 
2350–2390. 

 
(DHR)  Duflo, Esther, Rema Hanna, and Stephen P. Ryan.  2012.  “Incentives Work: Getting Teachers to 

Come to School.” American Economic Review 102 (4): 1241–1278. 
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(DR)  Dupas, Pascaline and Jonathan Robinson.  2013.  “Savings Constraints and Microenterprise 
Development: Evidence from a Field Experiment in Kenya.”  American Economic Journal: Applied 
Economics 5 (1): 163–192. 

 
(EGN)  Erkal, Nisvan, Lata Gangadharan, and Nikos Nikiforakis.  2011.  “Relative Earnings and Giving 

in a Real-Effort Experiment.”  American Economic Review 101 (7): 3330–3348. 
 
(FPPR)  Field, Erica, Rohini Pande, John Papp, and Natalia Rigol.  2013.  “Does the Classic Microfinance 

Model Discourage Entrepreneurship Among the Poor? Experimental Evidence from India.”  
American Economic Review 103 (6): 2196–2226. 

 
(FL)  Fong, Christina M. and Erzo F. P. Luttmer.  2009.  “What Determines Giving to Hurricane Katrina 

Victims? Experimental Evidence on Racial Group Loyalty.”  American Economic Journal: Applied 
Economics 1 (2): 64–87. 

 
(GJKM)  Giné, Xavier, Pamela Jakiela, Dean Karlan, and Jonathan Morduch.  2010.  "Microfinance 

Games."  American Economic Journal: Applied Economics 2 (3): 60-95. 
 
(GKB)  Gerber, Alan S., Dean Karlan, and Daniel Bergan.  2009.  “Does the Media Matter? A Field 

Experiment Measuring the Effect of Newspapers on Voting Behavior and Political Opinions.”  
American Economic Journal: Applied Economics 1 (2): 35–52. 

 
(GMR)  Gertler, Paul J., Sebastian W. Martinez, and Marta Rubio-Codina.  2012.  “Investing Cash 

Transfers to Raise Long-Term Living Standards.”  American Economic Journal: Applied 
Economics 4 (1): 164–192. 

 
(GGY)  Giné, Xavier, Jessica Goldberg, and Dean Yang.  2012.  “Credit Market Consequences of 

Improved Personal Identification: Field Experimental Evidence from Malawi.”  American 
Economic Review 102 (6): 2923–2954. 

 
(GRS)  Galiani, Sebastian, Martín A. Rossi, and Ernesto Schargrodsky.  2011.  “Conscription and Crime:  

Evidence from the Argentine Draft Lottery.”  American Economic Journal: Applied Economics 3 
(2): 119–136. 

 
(HS)  Heffetz, Ori and Moses Shayo.  2009.  “How Large Are Non-Budget-Constraint Effects of Prices on 

Demand?”  American Economic Journal: Applied Economics 1 (4): 170–199. 
 
(IZ)  Ifcher, John and Homa Zarghamee.  2011.  “Happiness and Time Preference: The Effect of Positive 

Affect in a Random-Assignment Experiment.”  American Economic Review 101 (7): 3109–3129. 
 
(KL)  Karlan, Dean and John A. List.  2007.  “Does Price Matter in Charitable Giving? Evidence from a 

Large-Scale Natural Field Experiment.”  American Economic Review 97 (5): 1774-1793. 
 
(KMP)  Kube, Sebastian, Michel André Maréchal, and Clemens Puppe.  2012.  “The Currency of 

Reciprocity: Gift Exchange in the Workplace.”  American Economic Review 102 (4): 1644–1662. 
  
(KN)  Kosfeld, Michael and Susanne Neckermann.  2011.  “Getting More Work for Nothing? Symbolic 

Awards and Worker Performance.”  American Economic Journal: Microeconomics 3 (3): 86–99. 
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(LLLPR)  Landry, Craig E., Andreas Lange, John A. List, Michael K. Price, and Nicholas G. Rupp.  “Is a 
Donor in Hand Better than Two in the Bush? Evidence from a Natural Field Experiment.”  
American Economic Review 100 (3): 958–983. 

 
(LMW)  Lazear, Edward P., Ulrike Malmendier, and Roberto A. Weber.  2012.  “Sorting in Experiments 

with Application to Social Preferences.”  American Economic Journal: Applied Economics 4 (1): 
136–163. 

 
(MSV)  Macours, Karen, Norbert Schady, and Renos Vakis.  2012.  “Cash Transfers, Behavioral Changes, 

and Cognitive Development in Early Childhood: Evidence from a Randomized Experiment.”  
American Economic Journal: Applied Economics 4 (2): 247–273. 

 
(MMW2)  de Mel, Suresh, David McKenzie, and Christopher Woodruff.  2013.  “The Demand for, and 

Consequences of, Formalization among Informal Firms in Sri Lanka.”  American Economic 
Journal: Applied Economics 5 (2): 122–150. 

 
(OT)  Oster, Emily and Rebecca Thornton.  2011.  “Menstruation, Sanitary Products, and School 

Attendance: Evidence from a Randomized Evaluation.”  American Economic Journal: Applied 
Economics 3 (1): 91–100. 

 
(R)  Robinson, Jonathan.  2012.  “Limited Insurance within the Household: Evidence from a Field 

Experiment in Kenya.”  American Economic Journal: Applied Economics 4 (4): 140–164. 
 
(T)  Thornton, Rebecca L.  2008.  “The Demand for, and Impact of, Learning HIV Status.”  American 

Economic Review 98 (5): 1829–1863. 
 
(WDL)  Wisdom, Jessica, Julie S. Downs, and George Loewenstein.  2010.  “Promoting Healthy Choices: 

Information versus Convenience.”  American Economic Journal: Applied Economics 2 (2): 164–
178. 
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Appendix Figure F1: Sensitivity Test for Figure I in Paper
Overlap/Union of .95 Conventional and Randomization Confidence Intervals
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Appendix Figure F3: Sensitivity Test for Figure III in Paper
Randomization Inference using Other-Treatment-Stratification Compared with Other Methods

(b) Confidence intervals and p-values compared to those of conventional inference
by maximum coefficient leverage of a single cluster/treatment grouping
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(2712 individual treatment effects in 565 multi-treatment estimating equations)
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G.  Observations versus Leverage as Predictors of Differences in Conventional and 
Randomization Inference 

 Section V of the paper notes that while both the log number of treatment groupings and the 

maximum leverage share of a single treatment grouping are related to differences between conventional 

and randomization inference, the maximum leverage share appears to have greater predictive value (as 

measured by R2) and is more robustly statistically significant.  Table G1 below substantiates this claim 

with OLS regressions.  The dependent variable is either the overlap divided by the union of the .95 

confidence intervals or the absolute difference in the p-values produced by randomization and 

conventional clustered/robust inference, both measured at either the level of 2944 individual treatment 

effects or 35 paper averages.  The independent variables are the maximum coefficient leverage share of a 

single treatment grouping, the log10 number of treatment groupings and a constant term or paper fixed 

effects.  Standard errors in parentheses are either clustered at the paper level or, for paper averages, 

heteroskedasticity robust.  Bootstrapped (at the paper level) p-values based upon the percentiles of t-

statistics are also reported in brackets.  As shown in the table, the R2s associated with the use of maximum 

leverage as a regressor are very much higher than those found using the number of treatment groupings. 

While maximum leverage is almost always statistically significant at the .05 level, the number of 

treatment groupings is often statistically insignificant, especially when the bootstrap is used to evaluate 

significance or when entered jointly with maximum leverage in the same regression.  Table G2 produces 

similar results using a 39 paper sample that includes the papers and regressions dropped because of 

stratification issues (see Appendix F above and discussion in Section V of the paper). 
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Table G1:  Observations versus Leverage as Predictors of  

Differences between Randomization and Conventional Inference (2944 coefficients in 35 papers) 

 (a) coefficient level 
no paper fixed effects 
s.e. clustered by paper 

(b) coefficient level 
paper fixed effects 

s.e. clustered by paper 

(c) paper averages 
heteroskedasticity robust s.e. 

 dependent variable: 1 - overlap divided by union of .95 confidence intervals 

max 
leverage 

1.92 
(.305) 
[.050] 

 
1.90 

(.236) 
[.023] 

1.64 
(.113) 
[.001] 

 
1.66 

(.117) 
[.002] 

1.94 
(.407) 
[.118] 

 
2.06 

(.582) 
[.147] 

log10 # of 
treatment 
groupings 

 
-.112 
(.059) 
[.332] 

-.005 
(.026) 
[.854] 

 
-.039 
(.037) 
[.453] 

.021 
(.010) 
[.123] 

 
-.175 
(.055) 
[.104] 

.018 
(.043) 
[.714] 

constant 
.006 

(.005) 
[.268] 

.353 
(.160) 
[.309] 

.021 
(.066) 
[.796] 

   
-.005 
(.015) 
[.752] 

.512 
(.142) 
[.085] 

-.053 
(.122) 
[.709] 

R2 .736 .176 .737 .868 .547 .870 .772 .457 .773 

N 2944 2944 2944 2944 2944 2944 35 35 35 

 dependent variable: absolute value of difference in conventional and randomization p-values 

max 
leverage 

.377 
(.038) 
[.000] 

 
.404 

(.034) 
[.000] 

.408 
(.027) 
[.000] 

 
.415 

(.030) 
[.001] 

.260 
(.054) 
[.058] 

 
.309 

(.055) 
[.010] 

log10 # of 
treatment 
groupings 

 
-.016 
(.009) 
[.322] 

.007 
(.003) 
[.077] 

 
-.006 
(.008) 
[.580] 

.009 
(.004) 
[.041] 

 
-.022 
(.008) 
[.077] 

.007 
(.004) 
[.129] 

constant 
.005 

(.001) 
[.001] 

.057 
(.023) 
[.237] 

-.014 
(.009) 
[.194] 

   
.007 

(.002) 
[.025] 

.072 
(.020) 
[.049] 

-.012 
(.012) 
[.325] 

R2 .446 .055 .454 .502 .187 .506 .707 .358 .722 

N 2944 2944 2944 2944 2944 2944 35 35 35 
   Notes: clustered by 35 papers (panels a & b) or heteroskedasticity robust (panel c) standard errors in (); bootstrap 
p-values based upon 1999 bootstrap sampling (at paper level) draws from the distribution of t-statistics in []. 
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Table G2:  Observations versus Leverage as Predictors of  

Differences between Randomization and Conventional Inference (3213 coefficients in 39 papers) 

 (a) observation level 
no paper fixed effects 
s.e. clustered by paper 

(b) coefficient level 
paper fixed effects 

s.e. clustered by paper 

(c) paper averages 
heteroskedasticity robust s.e. 

 dependent variable: 1 - overlap divided by union of .95 confidence intervals 

max 
leverage 

1.91 
(.303) 
[.058] 

 
1.90 

(.239) 
[.025] 

1.64 
(.112) 
[.000] 

 
1.65 

(.117) 
[.001] 

1.94 
(.400) 
[.108] 

 
2.04 

(.548) 
[.135] 

log10 # of 
treatment 
groupings 

 
-.106 
(.054) 
[.327] 

-.004 
(.022) 
[.866] 

 
-.040 
(.034) 
[.455] 

.020 
(.009) 
[.132] 

 
-.157 
(.050) 
[.098] 

.014 
(.033) 
[.724] 

constant 
.006 

(.005) 
[.252] 

.339 
(.147) 
[.298] 

.019 
(.058) 
[.801] 

   
-.003 
(.014) 
[.821] 

.473 
(.130) 
[.079] 

-.040 
(.099) 
[.734] 

R2 .736 .176 .736 .867 .549 .868 .775 .435 .777 

N 3213 3213 3213 3213 3213 3213 39 39 39 

 dependent variable: absolute value of difference in conventional and randomization p-values 

max 
leverage 

.377 
(.038) 
[.001] 

 
.402 

(.035) 
[.000] 

.407 
(.028) 
[.000] 

 
.414 

(.030) 
[.000] 

.262 
(.053) 
[.038] 

 
.285 

(.060) 
[.007] 

log10 # of 
treatment 
groupings 

 
-.016 
(.008) 
[.285] 

.006 
(.003) 
[.076] 

 
-.007 
(.008) 
[.543] 

.008 
(.003) 
[.061] 

 
-.021 
(.007) 
[.048] 

.003 
(.005) 
[.488] 

constant 
.005 

(.001) 
[.001] 

.056 
(.021) 
[.213] 

-.012 
(.009) 
[.212] 

   
.007 

(.002) 
[.009] 

.071 
(.018) 
[.024] 

-.001 
(.014) 
[.908] 

R2 .444 .059 .451 .503 .194 .506 .680 .362 .683 

N 3213 3213 3213 3213 3213 3213 39 39 39 
   Notes: clustered by 39 papers (panels a & b) or heteroskedasticity robust (panel c) standard errors in (); bootstrap 
p-values based upon 1999 bootstrap sampling (at paper level) draws from the distribution of t-statistics in []. 
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H. Determinants of Difference Between "Max across β0~j" and "β0~j = j~0β̂ " Randomization 
Inference P-Values 

 Table H1 below uses regression analysis to examine the determinants of differences between the 

randomization inference p-value for individual coefficients in multi-treatment equations found by 

maximizing across all nulls for untested coefficients versus that found by setting the null for untested 

coefficients equal to estimated values.  Panel (a) looks at the unconstrained maximum, whereas panel (b) 

looks at the constrained maximum wherein the null for untested coefficients is restricted to have a p-value 

greater than 10-10 using the conventional Wald test.  The sample is the same as the practical sample 

examined in the paper and appendices above, except that it is restricted to equations with more than one 

treatment measure and hence consists of 2462 individual coefficient p-values found in 28 papers.  The 

independent variables are the maximum coefficient leverage share of a single treatment grouping, the log10 

number of treatment groupings, the log10 number minus 1 of treatment measures (so that an equation with 

two treatment measures, the lowest possible, has a log10 value of 0), the "β0~j = j~0β̂ " p-value, its square 

and a constant term or paper fixed effects.  Standard errors in parentheses are either clustered at the paper 

level or, for paper averages, heteroskedasticity robust.  Bootstrapped (at the paper level) p-values based 

upon the percentiles of t-statistics are also reported in brackets.   

 As shown in the table, the maximum leverage and number of treatment measures are consistently 

significant, while the number of treatment groupings is never significant.  The "β0~j = j~0β̂ " p-value and its 

square are statistically significant when the regression is run using individual coefficients as the dependent 

variable, but completely insignificant when paper averages are used and much of the tail variation of these 

variables is eliminated.  The amount a large p-value can be increased is obviously limited, and the 

coefficients on the p-values (when significant) indicate this, while also suggesting that small p-values are 

inherently more robust to the search across β0~j.  When the sample is expanded to include regressions 

dropped on the basis of having asymptotically unbalanced treattment across strata and hence not fitting 

into the framework studied in this paper and the on-line appendix (Table H2), the regression fit is 

somewhat worse (with lower R2s) and the number of treatment measures becomes insignificant in some 

specifications, but the patterns are similar. 
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Table H1:  Determinants of Differences Between Maximum P-value across β0~j  and Setting β0~j = j~0β̂    

 (a) coefficient level 
no paper fixed effects 
s.e. clustered by paper 

(b) coefficient level 
paper fixed effects 

s.e. clustered by paper 

(c) paper averages 
heteroskedasticity robust s.e. 

 (a) dependent variable: maximum p-value across β0~j  minus p-value setting β0~j = j~0β̂   

maximum 
leverage 

.252 
(.022) 
[.000] 

  
.254 

(.020) 
[.000] 

.228 
(.023) 
[.004] 

  
.215 

(.029) 
[.006] 

.405 
(.092) 
[.021] 

  
.380 

(.085) 
[.025] 

log10 # of 
treatment 

groups 
 

-.010 
(.009) 
[.299] 

 
 
 
 

 
-.022 
(.016) 
[.323] 

 
 
 
 

 
-.021 
(.019) 
[.325] 

 
 
 
 

log10 # - 1 
of treatment 

measures 

 
 
 

 
.033 

(.010) 
[.024] 

.034 
(.008) 
[.005] 

 
 
 

 
.058 

(.018) 
[.040] 

.052 
(.017) 
[.064] 

 
 
 

 
.075 

(.019) 
[.012] 

.064 
(.014) 
[.011] 

β0~j = j~0β̂   

p-value 

.211 
(.023) 
[.001] 

.220 
(.024) 
[.001] 

.193 
(.026) 
[.001] 

.185 
(.025) 
[.001] 

.204 
(.025) 
[.001] 

.212 
(.025) 
[.001] 

.203 
(.024) 
[.001] 

.194 
(.023) 
[.001] 

-.240 
(.403) 
[.578] 

.025 
(.375) 
[.933] 

.398 
(.334) 
[.255] 

-.078 
(.332) 
[.832] 

β0~j = j~0β̂   

p-value 
squared 

-.214 
(.024) 
[.001] 

-.224 
(.025) 
[.001] 

-.205 
(.026) 
[.001] 

-.197 
(.025) 
[.001] 

-.208 
(.025) 
[.001] 

-.217 
(.026) 
[.001] 

-.209 
(.024) 
[.001] 

-.201 
(.024) 
[.001] 

.400 
(.529) 
[.488] 

.018 
(.463) 
[.969] 

-.692 
(.444) 
[.164] 

.073 
(.452) 
[.883] 

constant 
.010 

(.003) 
[.013] 

.041 
(.024) 
[.120] 

-.001 
(.006) 
[.875] 

-.007 
(.005) 
[.238] 

    
.022 

(.028) 
[.448] 

.084 
(.050) 
[.173] 

.020 
(.029) 
[.505] 

.010 
(.019) 
[.620] 

R2 .156 .102 .144 .205 .280 .248 .264 .300 .462 .097 .230 .607 

N 2462 2462 2462 2462 2462 2462 2462 2462 28 28 28 28 

 (a) dependent variable: constrained maximum p-value across β0~j  minus p-value setting β0~j = j~0β̂  

maximum 
leverage 

.182 
(.020) 
[.000] 

  
.183 

(.024) 
[.001] 

.190 
(.025) 
[.012] 

  
.184 

(.026) 
[.019] 

.198 
(.046) 
[.027] 

  
.184 

(.038) 
[.017] 

log10 # of 
treatment 

groups 
 

-.005 
(.004) 
[.175] 

 
 
 
 

 
-.016 
(.008) 
[.272] 

 
 
 
 

 
-.010 
(.009) 
[.341] 

 
 
 
 

log10 # - 1 
of treatment 

measures 

 
 
 

 
.023 

(.003) 
[.000] 

.023 
(.002) 
[.000] 

 
 
 

 
.029 

(.010) 
[.297] 

.024 
(.010) 
[.352] 

 
 
 

 
.041 

(.009) 
[.036] 

.036 
(.007) 
[.015] 

β0~j = j~0β̂   

p-value 

.113 
(.016) 
[.003] 

.119 
(.016) 
[.000] 

.101 
(.015) 
[.005] 

.095 
(.015) 
[.020] 

.109 
(.019) 
[.031] 

.116 
(.020) 
[.011] 

.112 
(.018) 
[.015] 

.105 
(.017) 
[.040] 

-.196 
(.134) 
[.220] 

-.058 
(.143) 
[.690] 

.126 
(.120) 
[.300] 

-.105 
(.084) 
[.241] 

β0~j = j~0β̂   

p-value 
squared 

-.103 
(.015) 
[.002] 

-.110 
(.015) 
[.001] 

-.097 
(.014) 
[.005] 

-.091 
(.015) 
[.022] 

-.102 
(.018) 
[.041] 

-.109 
(.019) 
[.015] 

-.105 
(.018) 
[.015] 

-.099 
(.017) 
[.041] 

.299 
(.164) 
[.131] 

.099 
(.169) 
[.530] 

-.254 
(.167) 
[.150] 

.117 
(.099) 
[.260] 

constant 
.002 

(.001) 
[.161] 

.020 
(.011) 
[.071] 

-.005 
(.002) 
[.072] 

-.010 
(.002) 
[.031] 

    
.015 

(.013) 
[.301] 

.044 
(.027) 
[.220] 

.013 
(.013) 
[.327] 

.008 
(.008) 
[.326] 

R2 .253 .137 .217 .341 .367 .272 .281 .383 .529 .083 .313 .753 

N 2462 2462 2462 2462 2462 2462 2462 2462 28 28 28 28 
   Notes: clustered by 28 papers (panels a & b) or heteroskedasticity robust (panel c) standard errors in (); bootstrap p-values based 
upon 1999 bootstrap sampling (at paper level) draws from the distribution of t-statistics in [].  
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Table H2:  Determinants of Differences Between Maximum P-value across β0~j  and Setting β0~j = j~0β̂    

(including regressions dropped on the basis of unbalanced treatment across strata) 

 (a) coefficient level 
no paper fixed effects 
s.e. clustered by paper 

(b) coefficient level 
paper fixed effects 

s.e. clustered by paper 

(c) paper averages 
heteroskedasticity robust s.e. 

 dependent variable: maximum p-value across β0~j   - p-value with β0~j  = estimated values 

maximum 
leverage 

.278 
(.033) 
[.000] 

  
.284 

(.032) 
[.000] 

.235 
(.023) 
[.002] 

  
.217 

(.029) 
[.005] 

.402 
(.080) 
[.004] 

  
.371 

(.075) 
[.008] 

log10 # of 
treatment 

groups 
 

-.021 
(.014) 
[.197] 

 
 
 
 

 
-.022 
(.015) 
[.282] 

 
 
 
 

 
-.029 
(.015) 
[.081] 

 
 
 
 

log10 # - 1 
of treatment 

measures 

 
 
 

 
.041 

(.018) 
[.089] 

.042 
(.017) 
[.074] 

 
 
 

 
.076 

(.028) 
[.116] 

.071 
(.028) 
[.116] 

 
 
 

 
.142 

(.072) 
[.321] 

.136 
(.073) 
[.375] 

β0~j = j~0β̂   

p-value 

.167 
(.050) 
[.082] 

.178 
(.048) 
[.043] 

.145 
(.058) 
[.129] 

.137 
(.058) 
[.144] 

.188 
(.029) 
[.001] 

.195 
(.028) 
[.000] 

.184 
(.031) 
[.000] 

.176 
(.031) 
[.001] 

-.838 
(.758) 
[.414] 

-.643 
(.810) 
[.524] 

.014 
(.515) 
[.982] 

-.395 
(.486) 
[.490] 

β0~j = j~0β̂   

p-value 
squared 

-.178 
(.042) 
[.018] 

-.189 
(.041) 
[.004] 

-.166 
(.047) 
[.026] 

-.158 
(.048) 
[.042] 

-.196 
(.026) 
[.000] 

-.203 
(.026) 
[.000] 

-.193 
(.027) 
[.000] 

-.187 
(.027) 
[.000] 

1.07 
(.898) 
[.363] 

.809 
(.973) 
[.502] 

-.341 
(.546) 
[.547] 

.282 
(.514) 
[.596] 

constant 
.021 

(.012) 
[.327] 

.082 
(.047) 
[.188] 

.005 
(.009) 
[.611] 

-.001 
(.008) 
[.871] 

.019 
(.005) 
[.030] 

.082 
(.039) 
[.195] 

-.027 
(.017) 
[.247] 

-.027 
(.016) 
[.230] 

.093 
(.080) 
[.425] 

.174 
(.107) 
[.292] 

.054 
(.053) 
[.413] 

.049 
(.049) 
[.467] 

R2 .068 .045 .070 .107 .358 .342 .359 .376 .148 .087 .246 .351 

N 2712 2712 2712 2712 2712 2712 2712 2712 32 32 32 32 

 dependent variable: maximum p-value across bounded β0~j   - p-value with β0~j  = estimated values 

maximum 
leverage 

.185 
(.021) 
[.000] 

  
.188 

(.025) 
[.002] 

.190 
(.024) 
[.010] 

  
.183 

(.026) 
[.014] 

.195 
(.041) 
[.018] 

  
.185 

(.033) 
[.010] 

log10 # of 
treatment 

groups 
 

-.007 
(.004) 
[.082] 

 
 
 
 

 
-.015 
(.008) 
[.270] 

 
 
 
 

 
-.011 
(.006) 
[.119] 

 
 
 
 

log10 # - 1 
of treatment 

measures 

 
 
 

 
.023 

(.004) 
[.000] 

.023 
(.003) 
[.000] 

 
 
 

 
.031 

(.010) 
[.152] 

.026 
(.010) 
[.162] 

 
 
 

 
.047 

(.012) 
[.039] 

.044 
(.012) 
[.066] 

β0~j = j~0β̂   

p-value 

.113 
(.015) 
[.001] 

.119 
(.014) 
[.000] 

.102 
(.014) 
[.002] 

.096 
(.014) 
[.009] 

.115 
(.018) 
[.009] 

.121 
(.019) 
[.001] 

.117 
(.017) 
[.001] 

.111 
(.017) 
[.010] 

-.272 
(.155) 
[.140] 

-.150 
(.168) 
[.401] 

.076 
(.129) 
[.576] 

-.128 
(.093) 
[.209] 

β0~j = j~0β̂   

p-value 
squared 

-.103 
(.014) 
[.001] 

-.109 
(.013) 
[.000] 

-.098 
(.013) 
[.001] 

-.092 
(.013) 
[.008] 

-.107 
(.018) 
[.010] 

-.114 
(.018) 
[.001] 

-.109 
(.017) 
[.001] 

-.104 
(.016) 
[.011] 

.382 
(.183) 
[.091] 

.208 
(.197) 
[.326] 

-.187 
(.164) 
[.265] 

.123 
(.103) 
[.237] 

constant 
.003 

(.001) 
[.108] 

.026 
(.012) 
[.044] 

-.006 
(.002) 
[.031] 

-.010 
(.002) 
[.009] 

.003 
(.003) 
[.221] 

.048 
(.020) 
[.268] 

-.014 
(.009) 
[.223] 

-.014 
(.008) 
[.192] 

.025 
(.016) 
[.193] 

.056 
(.027) 
[.112] 

.014 
(.013) 
[.302] 

.011 
(.009) 
[.286] 

R2 .211 .122 .184 .287 .343 .270 .280 .359 .394 .119 .335 .680 

N 2712 2712 2712 2712 2712 2712 2712 2712 32 32 32 32 
   Notes: clustered by 32 papers (panels a & b) or heteroskedasticity robust (panel c) standard errors in (); bootstrap p-values based 
upon 1999 bootstrap sampling (at paper level) draws from the distribution of t-statistics in []. 
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I.  Practical Results using Other Treatment & Covariate Stratification 

 As noted in the paper, D'Haultfoeuille & Tuvaandorj's (2022) method of subset testing involves 

stratified permutation by all other covariates, but in the paper I only stratify treatment permutation by 

other treatment variables, as randomly applied treatment is independent of non-treatment covariates.  In 

this appendix I implement their method in full, stratifying by non-permuted treatment values crossed with 

covariate values crossed with stratification measures (when these exist, to ensure that the resulting 

permutations are a valid subset of the potential outcomes of the original experimental procedure).  The 

resulting distributions are non-degenerate for only 720 of the 2712 estimated treatment effects residing in 

equations with more than one treatment measure.8  Figure I1a below graphs the p-values found setting the 

null equal to estimated effects against those found using other-treatment and covariate stratification.  As in 

the paper, I divide results by the partial R2 of the regression of the permuted treatment measure on the 

stratification dummies.9  Also as in the paper, differences are greatest in the 419 cases where the R2 is 

greater than .5, much less in the 301 cases where the R2 is less than .5, and largely non-existent in the 4 

cases where the R2 is less than .01.  Figure I1b graphs the overlap/union of the confidence intervals and 

the absolute value of the difference in p-values of other-treatment & covariates stratified permutation and 

conventional clustered/robust inference against the maximum coefficient leverage share of a single 

cluster/treatment grouping.  Again, as is the case in the figures in the paper, large differences appear even 

when maximum leverage is near zero, so that the influence of individual observations is minimal and 

conventional inference is more likely (given amenable error moments) to have its desirable asymptotic 

properties.  While the patterns in Figure I1a & I1b mimic those shown in Figure III in the paper & Figure 

F3 above, they appear somewhat more extreme, with for example more frequent and larger differences at 

negligible values of leverage (panel iiib), as the average partial R2 is .57, as opposed to the .43 and .45 

found with other-treatment-stratification alone in the samples of Figure III in the paper and Figure F3 

above, respectively. 

                                                 
8Section V in the paper notes this as 667 because throughout the discussion there I drop regressions where 

the number of base treatment strata grew with the number of observations or treatment was unbalanced across strata 
(see Appendix F above and discussion in the paper).  However, as D'Haultfoeuille & Tuvaandorj's theory does not 
exclude such cases, I include them here (as well as in Appendix F). 

9"Partial" because I take the regression of treatment on the original stratification dummies (when the 
experiment was stratified) as the reduced model.   
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Figure I1: Randomization Inference using Other-Treatment & Covariate Stratification Compared with Other Methods
(a) 720 individual treatment effect p-values compared to those with null on untested coefficients = to estimated values

by R2 of regression of permuted treatment on other-treatment & covariate stratification dummies
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J.  Formulae and Methods used in Randcmdci to Calculate Randomization Confidence Intervals 

 This appendix presents the formulae and methods used by randcmdci to calculate randomization 

confidence intervals and p-values for individual treatment effects.  Randcmdci asks the user to indicate the 

base treatment variables that are permutable across observations or groups of observations, possibly 

within strata alone (all as specified by the user).  The programme then executes any calculations given by 

the user to generate the regressors associated with treatment variables.  The permutable treatment 

variables are not necessarily the treatment regressors themselves, as the calculations may transform the 

treatment values.  The regression model is εZγXβy  , where X are the KX treatment regressors and 

Z the KZ covariates.  We depart from the notation in the paper and use X rather than XW to indicate 

treatment regressors, as it is up to the user how treatment regressors are generated from base treatment 

variables (i.e. more may be done than simply interacting them with covariates).  As long as base treatment 

variables are permutable across possibly stratified and grouped observations, as indicated by the user, and 

the calculation procedures given to transform these values into treatment regressors follow those used in 

the experiment, the resulting treatment regressors represent potential outcomes of the experiment and the 

randomization p-values are exact for sharp nulls.  Asymptotic accuracy for heterogeneous treatment 

effects, however, is only guaranteed for the framework presented in the paper, where the only post 

permutation calculation used to generate a treatment regressor is one in which the permuted treatment 

variable is (possibly) multiplied by a covariate.10  We use T to denote the treatment regressors generated 

by a permutation of the base treatment variables and the execution of any calculations indicated by the 

user.  Again, to emphasize, our notation departs from that in the paper, as T here is not merely a 

permutation of treatment, but the resulting treatment following any post-permutation calculations, 

including multiplication with covariates (TW in the notation of the paper) which fits the asymptotic 

theorems in the paper, but also allowing for other calculations which do not while still providing finite 

sample exact tests of sharp nulls. 

 The baseline coefficient estimates for treatment regressors are the vector  β̂ with individual 

components ĵ  and clustered or heteroskedasticity robust covariance estimates )ˆ( jV  .  Following each 

permutation of underlying treatment, counterfactual outcomes  )( 0, 0
βXTyy WWβT  for the sharp null 

β = β0 (with jth element β0j) are calculated.  The vector of coefficient estimates associated with these are 

0,
ˆ

βTβ with individual components j0,
ˆ

βT and associated clustered or heteroskedasticity robust covariance 

estimates )ˆ(
0, jV βT .  Our first objective is to calculate which nulls β0 are consistent with randomization p-

values greater than level α, i.e. a 1- α confidence interval.  We do this by comparing the percentiles of 

Wald statistics for individual coefficients, i.e.  
                                                 

10Thus, availing ourselves of the example of Duflo, Dupas & Kremer's (2011) random assignment of students 
to class sections discussed in the paper, the assigned section is permutable across students, but the average quality of 
assigned peers (the treatment regressor) is not.  Consequently, the regressor does not fit the framework discussed in 
the paper.  Nevertheless, one can calculate confidence intervals for sharp nulls by permuting assignment, 
recalculating the quality of peers for each such assignment, and using it as the treatment regressor. 
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where we use ‿ to denote residuals from the projection on Z, as in XMX Z


.  Let  ci denote 

summation across the observations i in cluster c and C the total number of clusters.  When the covariance 

estimate is not clustered and merely heteroskedasticity robust, C = N and each "cluster" contains one 

observation.  Let ak and ajk denote the kth column and jkth element of A, 1)(  XMXXMX ZZ
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With this notation in mind, the coefficient and clustered/robust variance estimate associated with the jth 

treatment measure with regressors T and null β0 are given by: 
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where subscripted ~j denotes excluding the jth element, as in aj~j is the jth column of A excluding its jth 

element and S~j~j is S excluding its jth row and column.11  The letters c1, c2 and c3 are used below to 

indicate the expressions given above. 

 The first step to calculating the randomization confidence interval is to calculate the roots implied 

by equality of the Wald statistics in (J.1) above.  This equality defines a 4th order polynomial in β0j:  

                                                 
11I follow Stata's convention and multiply the variance estimate by an adjustment for the finite sample bias in 

the case of normal iid errors based upon the number of observations, clusters and regressors, but as this appears on 
both sides of (I.1), I omit it in the equations above to minimize clutter. 
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(J.6) allows for up to 4 real roots, which randcmdci calculates along with the derivative of the expression 

at the values of the real roots.  When no real roots exist, randcmdci notes the value of e, which then tells 

whether the Wald statistic for post-permutation regressor outcome T is greater or less than that for X for 

all real β0j.  When a, b, c, d & e all equal to 0, which arises for example when T equals X or -X, the Wald 

statistics are identical for all β0j (a "universal tie").  randcmdci checks for this case as well.  In equations 

with more than one treatment measure, all of the above depends upon the nulls for the elements of β0~j.  

Based on the results in the paper, for the baseline calculation of confidence intervals randcmdci sets these 

equal to the estimated values j~0β̂ although, as covered below, in calculating p-values alternate values are 

considered as well.  Of course, where there is only one treatment measure ~j is the null set and all terms 

involving ~j in (J.5) & (J.6) are set equal to 0 (i.e. don't exist). 

 Randcmdci then calculates for each treatment regressor outcome T whether the lim as β0j→-∞ of 

f(β0j) is > , < or = to 0.  Where real roots in (J.6) exist, this is determined by taking the sign of the 

derivative at the smallest root.12  Where real roots do not exist, this is determined, as already noted above, 

by the sign of e or (in the case of a universal tie) by the fact that a, b, c, d & e all equal 0.  The number of 

draws where f(β0j) is found to be greater than or equal to 0 at this limit can be termed G[-∞] & E[-∞].  

Randcmdci then orders all the real roots calculated in D draws of T along the real line, which we might 

denote as r1 < r2 < r3 ....  Moving along the real line indexed by r, using the value of the derivative at each 

ri, the value of G[r] & E[r] is determined.  A single draw of U distributed uniformly on (0,1) is used to 

calculate the p-value at each point on the real line as equal to (G[r]+U*(E[r]+1))/(D+1),13 and these p-

values are used to calculate the .9, .95 & .99 confidence intervals.  The program notes when the 

confidence interval is non-convex, in which case it alerts the user to this fact and reports the convex cover 

of the non-convex set.  Temp variables and matrices used in the program's code follow the notation above, 

e.g. a, b, c, d, e, c1, c2, c3, d, S, etc, except that subscript k rather than j is used to denote the coefficient of 

interest. 

                                                 
12The reader may note that c1 above is ≥ 0.  In the usual case, with c1 > 0, a in (I.6) is < 0 and the derivative 

associated with the smallest real root (if it exists) is always positive, i.e. the draw T cannot contribute to G[-∞].  
However, cases might arise where c1 = 0 and the derivative on the smallest real root (if it exists) is negative, so the 
draw T contributes to G[-∞], so randcmdci checks for this possibility.   

13Recall from (2.4) in the paper that the original treatment draw X is treated as a tie with itself, hence the +1. 
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 A sidebar:  Because of machine precision, a, b, c, d & e are often not exactly equal to 0, even 

when T does generate a universal tie with X (as when T equals X or -X).  Consequently, it is necessary to 

use a non-zero cutoff as an indicator of 0.  Ideally, this cutoff should not be sensitive to units of measure, 

i.e. a scaling of variables, so randcmdci uses a normalization to adjust for units of measure.  Let ky, kj & k~j 

be scalars that multiply y, xj (tj) and any x~j (t~j).  The following is the fashion in which the measures in 

(J.6) scale with these: 
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Consequently, randcmdci uses the following indicator which is unaffected by scale: 
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In the more than 6 million realizations of T across 1999 permutations each of thousands of treatment 

measures in my practical sample, there is a gap in the distribution of dif.  26826 realizations of dif are less 

than 3x10-10 (and these realizations can be confirmed through examination of T and X to generate 

universal ties), and the remaining 6 million+ are greater than 2x10-3.  Randcmdci uses a value of dif < 10-9 

to identify universal ties. 

 Continuing, to compute the p-value of the null of zero effects for an individual treatment effect 

when setting the null for untested measures equal to estimated values (β0j = 0, jj ~0~0 β̂β  ), randcmdci 

calculates the number of instances G & E where: 
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where I is an indicator for the event occurring.  The p-value is then given by (G[0]+U*(E[0]+1))/(D+1), 

using the same U used to calculate the randomization confidence interval above.  As can be seen in (J.9), 

as an allowance for machine precision an absolute difference in the absolute value of the t-statistics of less 

than 10-9 is considered a tie (contributing to E).  Again, in more than 6 million permutations of treatment 

across my practical sample, there is a gap in the distribution of the difference of the absolute value of t-

statistics, as in (J.9).  In 27701 instances it is less than 4x10-12 in absolute value,14 and in the remaining 6 

million+ instances it is greater than 4x10-7 in absolute value.   

 Randcmdci also allows the user to call for the calculation of the maximum p-value for the test of 

zero effects (β0j =0) for an individual treatment effect across all possible nulls β0~j, which ensures control 

of the null rejection probability below nominal level in the case of sharp nulls (see the discussion in the 

                                                 
14These include the universal ties identified above plus 875 additional ties for the specific null β0j = 0 where 

the absolute value of the difference in absolute t-stats is less than 6x10-13. 
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paper).  Setting β0j = 0 and substituting using the definitions in (J.5), we can write: 
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g(β0~j) = 0 defines a quadratic equation in β0~j.  As was the case above, there are cases where all elements 

of A0, b0 and c0 are zero, there is a universal tie15 and g(β0~j) is identically zero.  As before, because of 

machine precision it is necessary to construct a non-zero cutoff to distinguish such cases, and this cutoff 

should not be sensitive to scaling of variables.  Following the definitions used earlier above, note that  
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and construct the following indicator which is unaffected by scale: 
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where b0k denotes the kth element of b0, A0kl the kth x lth element of A0, and jk ~  summation across all k 

in 1...Kx excluding j.  As before there is a gap in the distribution of dif2.  In more than 5 million 

permutations of treatment in multi-treatment equations across my practical sample, it is less than 2x10-12 

in 6327 instances and greater than 2x10-5 in the remaining 5 million+.  Randcmdci uses a value of dif 2 < 

10-9 to identify universal ties in these computations. 

 Returning to (J.10), when there are only two treatment measures, i.e. β0~j is the scalar β0~j, we can 

solve for the roots for each T in D draws and line these up along the real line.  In some instances there are 

no roots, in some instances the quadratic and/or linear term is zero, and there is also the possibility of 

universal ties where all terms are zero, as identified by dif2.  Randcmdci follows the same procedure used 

in the case of confidence intervals for β0j above, calculating the number of cases where g(β0~j) is greater 

than 0 or equal to 0 (the universal ties) as β0~j →-∞ and then, with the location of real roots r of g(β0~j) and 

the sign of the derivative of g at those roots for each treatment outcome T in hand, moving along the real 

line indexed by r and keeping track of G[r] & E[r].  With the p-value at each point given by 

(G[r]+U*(E[r]+1))/(D+1), using the same U as was used to calculate the confidence interval for β0j above, 

randcmdci calculates the maximum p-value across all values r.  This is the maximum p-value for the test 

of β0j = 0 across all possible nulls for β0~j. 

                                                 
15The universal tie here is different than in the case considered in (I.6), (I.8) & (I.9), as that concerned a 

universal tie across all β0j given β0~j = estimated values whereas here we are examining a universal tie across all β0~j 
given β0j = 0. 
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 For the case of three treatment measures, where β0~j is a 2 x 1 vector, randcmdci transforms β0~j 

into polar coordinates, giving: 

).[0,2  )],cos(),[sin(       where,0),( )()13.J( 00
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For a given value of θ this is a quadratic equation in r, and the procedure described above can be used to 

solve for the maximum p-value across all positive and negative r given θ, which we may call g*(θ).  

Randcmdci then performs a line search across θ dividing [0,π] into # (as given by the user option 

maxlevel(#)) evenly spaced points and takes the maximum p-value across these.  Because the maximum 

across r for each θ allows for both positive and negative values of r, this search automatically considers 

the maximum p-value along the opposite ray where θ lies in [π,2π]. 

 For the case of Kx = four or more treatment measures, β0~j is a Kx - 1 vector and we transform into 

n-dimensional spherical coordinates, where with θ a k (= Kx - 2) x 1 vector: 
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For a given value of θ this is a quadratic equation in r, and the procedure described above can be used to 

solve for the maximum p-value across r given that θ, which we may call g*(θ).  Randcmdci then performs 

# (as given by maxlevel) iterations of the Nelder-Mead (1965) search procedure.  For each iteration, k+1 

draws from the uniform distribution across [0,π]k are used to find k+1 initial g*(θ) values and then the 

Nelder-Mead simplex method is executed until the g*(θ) for the k+1 vectors in the simplex are identical.  

Randcmdci takes the maximum across the # independent Nelder-Mead searches and reports that as the 

maximum p-value.  On each round of simplex optimization I draw u = (u1, u2, u3) from the 3 dimensional 

iid uniform distribution on (0,1) and use these to randomly set the Nelder-Mead reflection coefficient α = 

u1, expansion coefficient γ = 1+ u2, and contraction coefficient β = u3. 

 Randcmdci also allows the user to ask for a bounded search.  If the boundcoef(#) option is chosen, 

)ˆ()ˆ( ~0~0~0~0 jjjj ββββ  must be less than #2.  Using the change of variables  
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If the user specifies the boundwald(#) option, )ˆ()ˆ()ˆ( ~~0
1

~~~0 jjjjj V βββββ   must be less than #2.  As 

)ˆ( ~ jV β  is strictly positive definite, we have: 

EEΛVEEΛVVVβ  ½½-½-½-½-½1
~   &      where,)ˆ()16.J( jV  

and where E are the eigenvectors of  )ˆ( ~ jV β , and -½½   &  ΛΛ  denote diagonal matrices whose elements 

are the square root & inverse of the square root, respectively, of the eigenvalues of )ˆ( ~ jV β .  Using the 

change of variables: 
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For both boundcoef and boundwald, the search for a maximum p-value is now restricted to values of r, as 

in the previous paragraphs, ≤ #.  For Kx = 2 the calculation of a maximum across the unbounded or 

bounded space for r can proceed concurrently.  The same can be done with the line search across θ in [0,π] 

when Kx = 3, as for each pre-determined θ a maximum across bounded and unbounded values of r can be 

calculated.  However, when Kx ≥ 4, the values of θ chosen by the Nelder-Mead algorithm at each step 

depend upon the values of the maximand g*(θ) in the simplex, which is different when r is bounded.  

Consequently, for Kx ≥ 4 separate searches are conducted, with and without bounds on r.  

 Finally, it should be noted that if requested by users randcmdci will also provide p-values for tests 

of specific (joint) nulls β0.  This is done by calculating the number of instances G & E where: 
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where as before I is an indicator for the event occurring.  With a random draw U from the uniform 

distribution on (0,1), the p-value is given by (G[β0]+U*(E[β0]+1))/(D+1). 
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K.  Convergence in Distribution for any β0 (notation follows that used in the paper & its appendices) 

 In this appendix we prove a version of (R1) that establishes convergence in distribution for any 

fixed β0, not merely for drifting sequences β0 that lie in a root-N neighborhood of the true parameter values 

β.  (R1) is modified to read: 

(RR1) Given White's (1980) assumptions W1 - W4 and the additional assumptions A1 - A3, as in the 

paper and modified below, for any 0β the Wald statistic τ(T,β0) based on the heteroskedasticity 

robust covariance estimate is asymptotically distributed chi-squared with PQ degrees of freedom  
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χ
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),,.(.|)( εZXT Wsad

 denotes convergence as N → ∞ in distribution across the permutations T of X 

almost surely given the realization of the data (XW,Z,ε). 

(RR1) does not subsume (R1) given in the paper, as no claim is made that τ(T,β0) converges in probability 

to τ(T,β).  The fixed value of β0 asymptotically affects the variance of the counterfactual coefficient 

estimates, but the covariance estimate properly adjusts for this producing a chi-squared distribution.  The 

individual realizations of τ(T,β0) depend upon β0 and do not necessarily equal τ(T,β). 

 (RR1) requires changing assumptions (A1) and (A3) as given in the paper to read: 

(AA1) There exists a finite positive constant γ such that (a) GN =  

N

i 1 NE ii /)( xx  -

 

N

i 1 NE i /)(x  

N

i 1 NE i /)(x  is non-singular for all N sufficiently large with determinant GN > γ > 

0; (b) with NΦ  ( 

N

i 1 NE ii /)( zz  )-1  

N

i 1 NE ii /)( Wxz  , Niii Φzxx WW   & αwwα iii  , for all α 

such that αα =1 & for all N sufficiently large  

.0t determinan  with 
)(

  where

,0
)(

 
)()(

1

1

1

11

2



























K
xx

K

x
K

x

WW

WW

N

i

iii

N

i

iii
N

i

iii
N

i

ii

N

E

N

E

N

E

N

E





 

(AA3) There exist positive finite constants θ, θ* and Δ < ∞, with θ(1+2θ*) > 1, such that for all i, j = 1...K+, 

p = 1...P, and q = 1...Q, E(| 22
iiqw  |1+θ) < Δ, E(| 22

ijiqzw  |1+θ) < Δ and E(| 4
ipx |1+θ*) < Δ. 

Relative to (A1) in the paper, the addition of AA1b requires that there is enough independent variation in 

the errors that their residual variation in a regression on the treatment variables weighted by any 

combination of the interaction covariates does not asymptotically go to zero, (i.e., that the R2 in the 

weighted regression of the outcome y on XW, net of the effects of covariates Z, does not go 1), and 

ensures that the covariance matrix of ),(ˆ
0βTβ based on counterfactual outcomes remains non-singular for 

any null β0.  E(| 22
ijiqzw  |1+θ) < Δ in (AA3) is an added moment condition that, depending upon the value of 

θ*, may be more demanding than the E(| 4
ijz |1+δ) < Δ given in White's assumption (W4).  Otherwise, the 

framework and notation is as given in the paper and its appendices. 
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 Following each permutation of treatment, the dependent variable is adjusted in accordance with 

the null and the realization T of treatment 

0000 )()(),()K.1( βTεZγββXβWXWTyβTy WW  . 

With ZZZZIM  1)(  denoting the residual maker with respect to Z, the estimated coefficients and 

residuals associated with T and β0 are 

),),(ˆ(),(ˆ),(),(ˆ)K.3(

,)(   where)(),()(),(ˆ)K.2(

00000

00
1

0
1

0

ββTβMTξβTβMTβTMyβTε

MεββMXξβMξTMTTβTMyTMTTβTβ

WW

WWWWWWW



 

 

and where we use the fact that MZ = 0NxK and define ξ which will be used repeatedly below.   

 All Lemmas proven in the paper continue to hold, as the moment conditions have, if anything, 

been strengthened, and will be referenced below as Lemma 1, Lemma 2, etc.  The following additional 

Lemma, proven below, will also be useful: 

Lemma K1:  White's assumptions W1 - W4 and the additional A1 - A3 as modified above ensure that  

(a) The means of the products of four columns of E = (Z+,ξ), no more than two of which are ξ, are 

almost surely bounded. 

(b) With Wξ = W•ξ, almost surely for all N sufficiently large NN //
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bounded and strictly positive definite with determinant > γ > 0, while 1)/(  NξξWW is bounded. 

(c) xip & wiqξi almost surely satisfy condition Ib of Theorem I for all column pairs p of X and q of Wξ, 
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ξξWWXX  are bounded with determinant > γ > 0 for all N sufficiently large, so that 

across the row permutations T of X we have 
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(d) For some a in (0,½) condition IIIb of Theorem III almost surely holds for the mean of the product 

of the elements of n = 1, 2, 3 or 4 of the columns of T divided by )0,2max( naN with the elements of 

four columns of E = (Z+,ξ), no more than two of which are ξ, so that across permutations T of X  
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As elsewhere in this paper, almost sure limits are with respect to the data sequence (XW,Z,ε), while 

probability limits and limiting distributions are with respect to the probability distribution generated by the 

N! equally likely row permutations T of X. 

  (a) Asymptotic Distribution of Coefficient Estimates 

 Multiplying (K.2) by N , we have 
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From (B.5) in the paper we know that: 
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where because of A2 for all N sufficiently large that N/ZZ is guaranteed to be invertible 
1

)( )(  ZZZw kq is 

a row vector of zeros with a 1 in the column corresponding to the position of wq(k) in Z.  Consequently, the 

second term in (K.6) is zero for sufficiently large N and applying Lemma K1c we have 
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 (b) Probability Limit of the Heteroskedasticity Robust Covariance Estimate 

 For the heteroskedasticity robust covariance estimate we have 
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Using the formula for ),(ˆ 0βTε from (K.3) earlier, the klth term of A is given by 
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with )),(ˆ(ˆ 00 ββTβr  N  & kk WtZZZδ  1)(ˆ .  From (B.13) in the paper the plim of kδ̂  is known to 

equal 0 unless a is the column position of wq(k) in Z, in which case plim 0)(ˆ
)(  kipak xm .  From (K.9), the 

elements of r̂ are asymptotically multivariate normal with bounded variance, so when divided by any 

positive power of N have a probability limit of zero. 
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 When (K.11) is multiplied out, all terms multiplied by an element of r̂ involve the mean of the 

product of the elements of 0 to 4 columns of T and the elements of 4 columns of E = (Z+,ξ), no more than 

two of which are ξ.  From Lemma 1c and K1a we know that the sample means of the product of the 

elements of one through four columns of X or four columns of E are almost surely bounded.  

Consequently, using Lemma K1d, in (K.11) every term that involves the product of an element of 

N/r̂ that has a plim of zero with the mean of the product of four columns of E with zero, one or two 

columns of T (and also possibly with an element of bounded kδ̂ ) has a probability limit of zero.  Every 

term in (K.11) that involves the product of n = 3 or 4 columns of T with four columns of E also includes 

at least n - 2 N/r̂ terms which can be re-expressed as )1()/ˆ( -½ aa /NNr for some a in (0,½).  The 
a/N1 part can be used to satisfy Lemma K1d, while from (K.9) the aN -½/r̂ part converges in probability to 

0.  Thus, all such terms also have a plim of 0. 

 The above only leaves terms in (K.11) that do not include an element of N/r̂  namely 
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where we recall the boundedness of means of products of up to four terms (Lemma 1c & K1a) and the fact 

noted above that plim ak̂ = 0 unless a is the column position of wq(k) in Z, in which case plim )(ˆ
)(kipak xm  

and )(kiqia wz  .  This allows us to state that  
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and consequently for the heteroskedasticity robust covariance estimate we have  
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which from (K.9) and Lemma K1b is seen to be the asymptotic covariance matrix of normally distributed 

)),(ˆ( 00 ββTβ N .  This establishes that the distribution of the Wald statistic τ(T,β0) across permutations 

T converges to that of the chi-squared with PQ degrees of freedom. 

 (c) Proof of Lemma K 

 Lemma K1a:  Regarding the means of products of four columns of E = (Z+,ξ), we note that 
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where )/()/(ˆ 1 NN εZZZτ    & )/()/(ˆ 1 NN WXZZZΦ   .  From Lemma 1a-1c in the paper we know 

that the elements of Φ̂  are almost surely bounded, those of τ̂  almost surely converge to 0, and the mean 

of the product of four columns of D = (XW,Z,ε), no more than two of which are ε, is bounded.  βb - β0b is a 

constant.  The mean of the product of four columns of (Z+,ξ) (no more than two of which are ξ) is made 

up of the sum of the means of products of four columns of (XW,Z,ε) (no more than two of which are ε) 

times terms from τ̂ , Φ̂  and β - β0, and hence, by the results just noted, is almost surely bounded. 

 Lemma K1b:  (K.7) showed that m(wiqξi) equals zero for all N sufficiently large, which 

establishes NN //
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ξξξξ WWWW  for such N.  From Lemma K1a we see that the elements of N/ξξWW , 

formed of the means of the product of four columns of (Z+,ξ), two of which are ξ, are almost surely 

bounded.  With regards to the determinant, by the properties of the Rayleigh quotient we know that if 

N/αWWα ξξ > γ > 0 for all α such that α'α = 1, then N/ξξWW is positive definite with determinant 

greater than γ Q > 0.  From the above: 
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and the almost sure limits follow from the Markov Corollary given in the paper and use of the moment 

conditions in (W1)-(W3): E(| ikij zz  |1+δ) < Δ, E(z+iεi) = 0K+, & (using Jensen's Inequality) 
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 . By (W2), the matrix inverse in Φ is known to exist, as it is a sub-matrix of MN, and 

the elements of Φ are also known to be bounded.16  α is a vector of finite constants.  When multiplied out, 

the remaining components of (K.16) are seen to be the means of four columns of (Z+,ε), no more than two 

of which are ε.  Using (W3), (W4) and Hӧlder's Inequality  
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so by the Markov Corollary these means converge almost surely to the mean of their expectations and 
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where .Φzxx WW iii    Minimizing the right hand side with respect to β0 using the fact that the mean of 

)( iiiE WW xx  is positive definite and invertible for all N sufficiently large (assumption AA1b above),  

                                                 
16As the trace of MN is bounded from above by K+Δ and its determinant from below by γ, its smallest 

eigenvalue is greater than λ = γ/(K+ Δ1/(1+δ))^(K+-1) and the largest eigenvalue of the inverse in Φ is bounded by λ-1. 
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where we use (AA1b) in the last as well.  This establishes that the minimum eigenvalue of N/ξξWW is 

almost surely > γ > 0 for all N sufficiently large, so its determinant is greater than some γQ > 0 and, as the 

eigenvalues of its inverse are bounded from above by the inverse of its smallest eigenvalue, that 
1)/(  NξξWW is also almost surely bounded. 

 Lemma K1c:  Lemmas 1a & 1c in the paper and K1b above already established that 
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ξξWWXX  are almost surely bounded with determinant > γ > 0 for all N sufficiently large, so 

all that remains is condition Ib.  Define wiqξ = wiqξi and, as elsewhere, let superscripted ~ denote sample 

demeaned values.  Our objective is to prove that for all integer τ > 2 and all p and q 
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We begin by noting that: 
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As noted in the paper's appendix, for a K x K matrix with determinant > γ > 0 and non-negative diagonal 

elements bounded from above by Δ', the smallest eigenvalue is bounded from below by λ(K)= γ/(KΔ')^(K-

1).  By the Schur-Horn Theorem, the smallest diagonal element of a real symmetric matrix is greater than 

or equal to its smallest eigenvalue.  Consequently, given the properties already established for 
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ξξWWXX   we know the smallest diagonal elements of these matrices are almost surely greater 

than λ(P) and λ(Q), establishing that the denominator of (K.21) is almost surely bounded away from zero. 

 Turning to the numerator, since for any sequence di 
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while almost surely m(wiqξ) = m(wiqξi) = 0 for N sufficiently large (K.7 earlier) and m(xip) is bounded 

(Lemma 1c), to prove (Ib) all that remains is to show that .0/MaxMax
..
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iqNiipNi Nwx     Using (K.15) and 

recalling that xip(b)wip(b) is an element of z+i, we see that 2
iqw  is made up of the sum of the product of terms 

hi = 22
iiqw  , ijiiq zw 2 , or ikijiq zzw 

2 times almost surely bounded elements of τ̂ , Φ̂  and β - β0.  From (AA3) 

above and Hӧlder's Inequality we have 
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Applying Markov's Inequality 
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Both conditions can be met with a > 0, b > 0 and a + b < 1 if θ(1+2θ*) > 1 as 

)1)(1(2

1)21(
1

1

1

)1(2

1
1)24.K( *

*

* 


 








 ba  

poses no contradiction.  Applying the Borel-Cantelli Corollary in the paper, we see that 
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 Lemma K1d:  The sample means of 1 through 4 columns of X and any 4 columns of E = (Z+,ξ) 

(no more than two of which are ξ) are almost surely bounded (Lemma 1c and K1a), so to establish 
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where we select indices so that when two elements are ξi, eij represents one and eil the other.  The proof of 

Lemma 2 in the paper's appendix already established the condition for the products of xij above.  Using 

(K.15) we know that when eij = ξi, 
22
ikijee  is made up of the sum of the product of terms hi = 22

iijz  , ikiij zz 2 , 

or ilikij zzz 
2 times almost surely bounded elements of τ̂ , Φ̂  and β - β0, and otherwise we can say that hi = 
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As δ > 0, we know that there exists an a < 1 such that (K.26) holds, so by the Borel-Cantelli Corollary for 

any of the hi described above a
iNi Nh /max  is almost surely bounded by 1, and hence 0/max
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establishing IIIb. 
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L.  Convergence in Distribution for any β0 (Grouped Treatment) (notation follows Appendix B) 

 In this appendix we prove (RR1), as given in Appendix K above, for grouped treatment. The 

framework and notation follows Appendix B above, but we change assumptions (A1), (A3) & (U5) given 

therein to read: 

(AA1) There exists a finite positive constant γ such that (a) GM =  

M

m 1 ME mm /)( xx  - 

M

m 1 ME m /)(x  

 

M

m 1 ME m /)(x  is non-singular for all M sufficiently large with determinant GM > γ > 0; (b) with 
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(AA3) There exist finite positive constants θ, θ*, γ and Δ, with θ(1+2θ*) > 1, such that (a) for all m, j = 

1...K+, q = 1...Q and p = 1...P, E(| mqmmmq wεεw  |1+θ) < Δ , E(| mjmmjmq   zεzw |1+θ) < Δ and 

ΔE mp  )|(| *14 x ; (b) WM =  
 M

m mmmmEM
1

1 )( WεεW  is non-singular for all M sufficiently large, 

with determinant WM > γ > 0. 

(UU5) Clustering is done at the treatment grouping level or above, i.e. treatment groups are contained 

within clusters, and, following assumption (U5c) of Appendix B above, errors are independently 

distributed across clusters with E(
2211 ckccjc εzεz   ) = 0 for all j, k = 1...K+ if cluster c1 ≠ c2. 

(AA1) and (AA3) are the grouped treatment versions of the extensions of (AA1) and (AA3) discussed in 

appendix K.  The assumption E(
2211 ckccjc εzεz   ) = 0 from Appendix B merely ensures that the conventional 

Wald statistic is asymptotically distributed chi-squared.  Clustering must take place at the treatment level 

or above because a fixed deviation β0 ≠ β contributes, via the original regressors XW, to the error term of 

counterfactual outcomes y(T,β0).  When treatment groups cut across clusters this introduces a correlation 

across cluster groups, resulting in a divergence between the variance of ),(ˆ
0βTβ and that calculated using 

the clustered variance estimate, as shown analytically at the end of this appendix. 

 Turning to the proof of (RR1), the estimated coefficients and residuals associated with the null β0 

and row permutations T of X, producing observation level treatment measures T, are 
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All Lemmas given and proven in Appendices B and C above continue to hold, as the moment conditions 

have, if anything, been strengthened, and will be referenced below as Lemma B2, Lemma B3, etc.  The 

following additional Lemma, proven below, will also be useful: 
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Lemma L1:  Define Wξ as the M x Q matrix whose mqth element wmqξ is the sum of the observational 

elements corresponding to the mth treatment group in the N x Q matrix Wξ (i.e. wmqξ =∑iϵmwiqξi).  If 

assumptions U1 - U4 and A1 - A4 as modified above hold, then  

(a) With ei1ei2 and ei3ei4 each denoting the product of the elements of two columns of E = (Z+,ξ) (with at 

most one in each case being ξ), |m(ei1ei2)|, |m(ei1ei2ei3ei4)|, |mc(ei1ei2,ei3ei4)|, |mm(ei1ei2,ei3ei4)| & 

|mv(ei1ei2,ei3ei4)| are all almost surely bounded. 

(b) Almost surely for all M sufficiently large /MM ξξξξ WWWW  /~~
 & /Mξξ WW  is bounded and 

strictly positive definite with determinant > γ > 0, while 1)(  /Mξξ WW is bounded. 

(c) xmp & wmqξ almost surely satisfy condition Ib of Theorem I for all column pairs of X and Wξ, while 

MM /~~&/
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ξξ WWXX  are almost surely bounded with determinant > γ > 0 for all M sufficiently 

large, so that across the row permutations T of X we have 
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(d) With ti1...ti4 denoting columns of T and ui1 and uj2 each the product of the elements of two columns 

of E = (Z+,ξ), no more than one of which is ξ, for some a in (0,½) 
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As elsewhere in this paper, almost sure limits are with respect to the data sequence (XW,Z,ε), while 

probability limits and limiting distributions are with respect to the probability distribution generated by the 

M! equally likely row permutations T of X. 

 (a) Asymptotic Distribution of Coefficient Estimates 

 Multiplying (L.2) by M , we have 
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The remaining part of (L.3) is the vector M/ξTW , the kth term of which equals: 
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However,  
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where, as elsewhere, we make use of the fact that wq(k) is an element of Z.  Consequently, for sufficiently 

large M the second term in (L.5) is zero and  M/ξTW   /)~~
( MPQ1ξ WT .  Applying Lemma L1c: 
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 (b) Probability Limit of the Clustered Covariance Estimate 

 For the clustered covariance estimate we again have the sandwich formula,  
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with )),(ˆ(ˆ 00 ββTβr  M  & kk WtZZZδ  1)(ˆ .  From (B.20) in Appendix B above the plim of kδ̂  is 

known to equal 0 unless a is the column position of wq(k) in Z, in which case plim 0)(ˆ
)(  kmpak x .  From 

(L.8) the elements of r̂ are asymptotically multivariate normal with bounded variance, so when divided by 

a positive power of M have a probability limit of zero. 

 When (L.10) is multiplied out, all terms multiplied by an element of M/r̂ involve the mc means 

of the product of the elements of 0 to 4 columns of T and ui1 and uj2 each the product of the elements of 

two columns of E = (Z+,ξ), no more than one of which in each case is ξ, as in mc(ui1,uj2), mc(ti1ui1,uj2),  

mc(ti1ui1,tj2uj2), mc(ti1ti2ui1,uj2), mc(ti1ti2ui1,tj3uj2) and mc(ti1ti2ui1,tj3tj4uj2), where ti1 .. ti4 represent columns of T.  

From Lemma B2c in Appendix B above and Lemma L1a we know that |ω( 

n

k mk1
x )| for n = 1..4 and 

mc(ui1,uj2) are almost surely bounded.  Consequently, using Lemma L1d, in (L.10) every term that 
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involves the product of an element of M/r̂ that has a plim of zero with the mean of the product of four 

columns of E with zero, one or two columns of T (and also possibly with an element of bounded kδ̂ ) has a 

probability limit of zero.  Every term in (L.10) that involves the product of n = 3 or 4 columns of T with 

four columns of E also includes at least n - 2 M/r̂ terms which can be re-expressed as )1()/ˆ( -½ aa /MMr  

for some a in (0,½).  The a/M1 part can be used to satisfy Lemma L1d, while from (L.8) the aM -½/r̂ part 

converges in probability to 0.  Thus, all such terms also have a plim of 0. 

 This only leaves terms that do not include M/r̂ , namely 
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so using Lemma L1d we see that 
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where we once again use the fact that plim ak̂ is only non-zero in the column position of )(kqw in Z, when 

plim )(ˆ
)(kmpak x  and )(kiqia wz  . Consequently, for the clustered robust covariance estimate 
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We now note the following lemma: 

Lemma L2:  If U5 holds, then QxQ

sa

MM 0ξξξξ

..

//~~  WWWW . 

From Lemma L2, (L.8) & (L.13) we see that when the errors are clustered, )ˆ(ˆ
0,βTβVclM converges in 

probability to the asymptotic covariance matrix of asymptotically normally distributed )ˆ( 0, 0
ββ βT M , so 

the Wald statistic is asymptotically distributed chi-squared with PQ degrees of freedom. 

 (c) Proof of Lemmas  

 Lemma L1a:  We note that 
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where )/()/(ˆ 1 MM εZZZτ   , )/()/(ˆ 1 MM WXZZZΦ    and βb - β0b is a constant.  From Lemmas 

B2a-B2c in Appendix B above we know that the elements of Φ̂  are almost surely bounded and those of τ̂  

almost surely converge to 0, while Lemma B2c also showed that for di1di2 and di3di4 each the product of 

the elements of two columns of (Z+,ε) (with at most one in each being ε), |ω( 

n

k mk1
x )|, |m(di1di2)|, 

|m(di1di2di3di4)|, |mc(di1di2,di3di4)|, |mm(di1di2,di3di4)| & |mv(di1di2,di3di4)| are all almost surely bounded.  From 
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(L.14) we see that the m, mc, mm and mv means of the product of ei1ei2 and ei3ei4, each denoting two 

columns of (Z+,ξ) (with no more than one in each case being ξ), are made up of corresponding means of 

products of four columns of (Z+,ε) (no more than two of which are ε) times almost surely bounded terms 

τ̂ , Φ̂  and β - β0, and hence, by the results just noted, are almost surely bounded. 

 Lemma L1b:  (L.6) showed that 0)()( )()(  ikiqkmq wm  w  for all M sufficiently large, which 

establishes /MM ξξξξ WWWW  /~~
for such M.  From Lemma L1a we see that the elements of /Mξξ WW , 

formed of the means mm(ei1ei2.ei3ei4) of columns of E = (Z+,ξ), are almost surely bounded.  With regards to 

the determinant, by the properties of the Rayleigh quotient we know that if M/αα ξξ WW > γ > 0 for all α 

such that α'α = 1, then /Mξξ WW is positive definite with determinant greater than γ Q > 0.  From the above, 
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and the almost sure limits following from the Markov Corollary and, using assumption U2a, 

ΔE ukuj  
 )|(| 1 zz  & ΔE uu   )|(| 1 εε  which imply, from Hӧlder's Inequality, that )|(| 1 
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½1½1 )|(|)|(|  εεzz .  When multiplied out, (L.15) is seen to consist of the sum of terms 

consisting of elements of α, β - β0, π̂ &Φ̂  times means of 4321 mmmm dddd  , with each d representing one of 

the columns of (Z+,ε) with no more than one in each pair being ε, and   
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so by the LLNHDS Corollary in Appendix C these means converge almost surely to the mean of their 

expectations and  
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.  Minimizing hm with respect to β0 using the fact that the mean of 

)( mmmmE WW XωωX


 is positive definite and invertible for all M sufficiently large (assumption AA1b),  
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which establishes that the minimum eigenvalue of /Mξξ WW is almost surely > γ > 0 for all M sufficiently 

large, so its determinant is greater than some γQ > 0 and, as the eigenvalues of its inverse are bounded 

from above by the inverse of its smallest eigenvalue, that 1)(  /Mξξ WW is also almost surely bounded. 

 Lemma L1c:  Lemmas B2a, B2c from Appendix B & L1b above already established that 

MM /~~&/
~~

ξξWWXX  are almost surely bounded with determinant > γ > 0 for all M sufficiently large, so 

all that remains is condition Ib.  Our objective is to prove that for all integer τ > 2 and all p and q 
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As noted earlier, for a K x K matrix with determinant > γ > 0 and non-negative diagonal elements bounded 

from above by Δ', the smallest eigenvalue is bounded from below by λ(K) = γ/(KΔ')^(K-1).  By the Schur-

Horn Theorem, the smallest diagonal element of a real symmetric matrix is greater than or equal to its 

smallest eigenvalue.  Consequently, given the properties already established for MM /~~&/
~~

ξξWWXX   

we know the smallest diagonal elements of these matrices are almost surely greater than λ(P) and λ(Q), 

establishing that the denominator of (L.20) is almost surely bounded away from zero. 

 Turning to the numerator, since for any sequence dm  
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and almost surely ω(wiqξ) = m(wiqξi) = 0 for all M sufficiently large (L.6 earlier) and ω(xmp) is bounded 

(Lemma B2c), to prove (Ib) all that remains is to show that .0/MaxMax
..

22
sa

mqMmmpMm M  wx   Using 

(L.14) and recalling that xip(b)wip(b) is an element of z+i, we see that 2
mqw  is made up of the sum of the 

product of terms hm = 2)( mmqεw , mjmqmmq  zwεw , or mkmqmjmq   zwzw times almost surely bounded elements 

of τ̂ , Φ̂  and β - β0.  From (AA3) above and Hӧlder's Inequality we have ΔE mmq   ))(( )1(2 εw , 

)|(| 1 
 mjmqmmqE zwεw  < ΔEE mjmqmmq  


 ½)1(2½)1(2 ))(())((  zwεw ,  

 )|(| 1 
mkmqmjmqE zwzw  

½)1(2½)1(2 ))(())((  



  mkmqmjmq EE zwzw , < Δ & ΔE mp  )|(|

*14 x  with θ(1+2θ*) > 1.  Consequently, applying 

Markov's Inequality 

.1)1(  if  )(&

1)1(2  if  )()()22.L(

1
)1(

1

*

1
)1(2

1

24

1

2
*






































b
M

Δ
MhP

a
M

Δ
MPMP

M
b

M

b
M

M
a

M

a
Mp

M

a
Mp xx

 

Both conditions can be met with a > 0, b > 0 and a + b < 1 if θ(1+2θ*) > 1 as 
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poses no contradiction.  From the Borel-Cantelli Lemma Corollary, we see that 
ba
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 /MaxMax 22

wx is almost surely bounded by 1, so .0/MaxMax
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mqMmmpMm M  wx  

 Lemma L1d:  Lemma B7 in Appendix B above proved analogous results for the means of 

products of columns of T and vi1 and vj2 each denoting the product of the elements of two columns of 

(Z+,ε).  From (L.14) above, we see that all terms in Lemma L1d can be expressed as the sum of means of 

the type seen in Lemma B7, possibly times elements of τ̂ , Φ̂  and β - β0 which are almost surely bounded.  

Applying Lemma B7 to each of these terms and summing up we get the results of Lemma L1d. 

 Lemma L2:  Above we saw that /MM ξξξξ WWWW  /~~
for M sufficiently large.  Based upon the 

moment results in (L.16) and the LLNHDS of Appendix C, as in the proof of Lemma L1b we have that  
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Since the intersection groupings v are a subset of the union grouping u, a similar appeal to (L.16) and the 

LLNHDS establishes that: 
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When clustering at or above the treatment grouping level, the intersection groupings v equal the treatment 

groupings m, so Hm = Hv, completing the proof.   

 If cluster groupings are across or below treatment levels, the intersection groupings v are subsets 

of the treatment groupings m, which means that for (L.24) and (L.25) to be equal the sum of expectations 

of products of observations from the same treatment groups that are in different clusters in (L.24) must 

equal zero.  This is unlikely to be the case.  As treatment is generally iid and independent of the other 

regressors Z, we have: 
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where, as W is part of Z, Ψ is a matrix of 0s with a diagonal matrix of 1s along the diagonal position of W 

in Z.  Consequently, XW - ZΦ = [X - 1NE(x')]•W.  This means that for all observations within treatment 

groups that cut across cluster groupings the diagonal elements of the last summation in Hm involve the 

non-zero variance of the treatment measures.  Unless the expectation of the product of terms from W in 

such cases is zero, which is unlikely to true if treatment is iid and independent of the regressors, these 

expectations will not be 0 and so Hm will not equal Hv.  In contrast, as was seen in Appendix B above, 
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when β0 is root-N local to β, the last two summations in (L.24) and (L.25) can be eliminated and if 

E(
2211 ckccjc εzεz   ) = 0 for c1 ≠ c2, Hm equals Hv.  If the εi are mean zero and independent across clusters, this 

condition can be met although, in the case of treatment groups that cut across clusters, it would require 

that there are no treatment related heterogeneous effects included in the residuals.  This merely follows the 

analysis in Appendix B, which shows that if the conditions on the errors are such that the homoskedastic, 

heteroskedastic or clustered (at any level) covariance estimate allow for asymptotically accurate 

conventional inference, then randomization inference using Wald statistics based upon the same 

covariance estimate is equally asymptotically accurate.  In contrast, when β0 is no longer root-N local to β, 

as in this appendix, if clustering takes place below or across treatment groupings randomization inference 

based upon Wald statistics is likely to be inaccurate, even when conventional inference is not. 
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