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Table Al: Notation used in Appendix A (also reviewed as introduced in the appendix)
(1) Sequences of real vectors: X' =(x,,...,x,, )&D'=(d,,....d, ), with T a row permutation of X.
(2) Sample demeaned vector sequences: T =OT, where O =1 v —1,1y/N , with Iy the NxN identity
matrix and 1y an Nx1 vector of ones.
(3) Sample standardized and orthogonalized vector sequences: T =T(T'T/N)™".
(4) Sample standardized vector sequences: T =TDg(T'T/N)™*, where Dg(Z) denotes a diagonal matrix

with diagonal elements equal to those of Z.
(5) Vector of pair-wise root-N correlations: n, with elements #,, denoting the correlation of the p™and ¢"

N
- _ i IR ”
columns of TandD, asin 7, —letl.pd,.q /N

(6) Expectation across row permutations T of X: Et(), as in

E(i,) = Et/p/N 0 & E.(f))= Zﬁ /N=1 (Vi&p)-

(7) Expectation across row permutations T of one of the 7™ joint moments of n: E;,asin

T
7/2 V
_ET {anm:| N Z Ztnpl g ” rqr
k=1 i =

where p; ... p: & q, ... ¢, denote columns of Tand D.
(8) Summation across m indices excluding ties between them: Z ioi > @8N
N N N N N N
Zallb C Zzzahb cis - Zzailbizciz - Zzailbilciz - Zzanb C’l + 2261!1
,,,,, =liy=liy=1 iy =1iy=1 iy=liy=1 iy =liy=1
(9) Partition of the 7 n,, used in Ey into m groupings that tie elements together through their 7 indices:

{el}a o 9{em} as 1[1'
{el} {npl% P29 } { 2} { 1’3‘13} {em} = {nl’r v ’nprqr }, SO that

2
L =g f, L L =T B =t & dY=d, d, , d"=d,,.. d"

b Wpyihpy? i Wpy " hpy? 5] ihpy? inPr1 Py

(10) Component of E; based upon summation across unequal i indices for a given partition:

N
_ -7/2 Tle) Jle)  Flew) glen)
I(Tﬂ {el}""’ {em}) _ET[N Ztil‘ 1 dil 1 ”'tim dim ]

iy ooy =1
(11) Summation across p and ¢ indices which together cover all m elements in the partition:
N N N - _ - )
J(7,p.q.{e},....{e,}) = Z ZZ Z i d {el tj:ﬂ dz‘:m

=l i,=lj=l

& l<spsm,1<g<m,1<c,<m,1<d,<m, (g,h=1,...m)
and at least one ¢, (d)) equal to every integer in 1...p (1...q) . The 2m indices ¢, and d, connect the
2m different elements to p < m and ¢ < m counters in the summations.

(12) "mean" based upon 7" absolute powers of absolute Values of elements in n,,:

M (r, n,)= N2

i=l j=1

_

(13) Asymptotically equal to:



A. Multivariate Extension of Theorem I
Following the presentation in the paper, let X' =(x,...,x,,)and D'=(d,.....d, ) denote sequences
of Px 1 and Q x 1 real vectors, respectively, and O =1, —1,1) /N the centering matrix. We wish to show

that across the row permutations T of X:

~ ~ ~ ~\"2 o~ o~ ,
(AD) n(t .d )= XX DD} (TeD)1,

N N JN
where H = OH , ® denotes the Kronecker product and e the row-by-row Kronecker or face-splitting
product, is asymptotically distributed multivariate iid standard normal if

N? Z[x —m(x,)] Z , —md,)I
(A2) lim = =0

N 7/2 N 7/2
[Z x _m(‘xip )]2] [Z [diq _m(diq )]ZJ

i=1

holds for all column combinations p and ¢ of X and D and the matrices X'X/NandD'D/N are bounded
with determinant > y > 0 for all N sufficiently large. Hoeffding (1951) provides a proof for a broader, but
univariate, permutation problem. The generalization to the multivariate case requires additional notation
and consideration of cases, but otherwise I keep the presentation as close as possible to Hoeffding's so that
the proof can be checked against his original contribution if desired.

Define

' Y
(A.3)T=0T(T°Tj &E:OD(D](\?DJ , so that n(t,.d,) = &

JN

For the element 7, of the vector n based on the product of the p' " and ¢" columns of T and D

N 7 d. N N N N _
(A4 n, =) ;,f, where > 7, =3 d;, =0, 37, =2 d; =

as T'1,=0,,D'1,=0, TT=N*I, & DD=N*I,.
We shall show that all of the moments of the vector n converge to those of the mean zero multivariate
normal with identity covariance matrix.

We begin by showing how the moments of the permuted variables are calculated. As T is the row
permutation of X, T = T(T'T/N)™"is simply the row permutation of X = X(X'X/N)™ and the sample
moments of T are the same as those of X . Since each of the N! permutations of the rows is equally
likely, expectations across the row permutations T are given by

(A5 E6)=3 1 =0 & £ G)=3 0

Ji=l Jir=1

=1 (Vi&p),

while if i} # i, we have
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where we use the notation ji,j,... to denote summation across multiple indices, excluding ties between

them. Similarly, if p; # p,

(A7) Ey(5,1,,)= Z Linlas 0 (i)

Nofof
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Next, we compute the 1* and 2" moments of the elements 7, of the vector n:

i )gl §& i i
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=0
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:1+ﬁ @if p, = p, &q, =q,) or 0 (otherwise).

These examples illustrate, in a manner that hopefully makes the later exposition intelligible, how the
calculation of expectations produces sums of summations, with those that are across unequal indices in
turn expressible as further sums of summations. In the more immediate sense, (A.8) shows that the first
moment of the vector n made up of PQ n,, elements is 0pp, while its second moments asymptotically
equal the identity matrix, as desired. The next few pages focus on the higher moments.

Let E; denote one of the 7 moments of the joint distribution of n across the row permutations T
T N N
T _ _ -7/2 T 3 7 3
(A9) ET - ET |:lk_! Mpa :| - ET |:N zlzl til[’l dilql "'tirl’r dirqr >
- PR -

where the indices may reference the same columns of T and D, i.e. p; = p; or g, = g, for some i #, so that
the moment is across combinations of powers of the n,,. As can be seen from the second line of (A.8)
earlier above, £ needs to be separated into components based upon whether the i indices are identical or

not, which leads to elements of the form
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(A.10) I(T,{el},...,{em})zE{N”2 Zfil‘e"difel}...tv,.j"""*’d,.‘:""}, where Y e, =7,¢,21V,

i sy =1 i=1
and Z i...,, denotes the summation across each of m indices, excluding ties between the indices, the sets
{e1}, ... ,{en} constitute a partition of the 7 n,, used in Ej, with the notation e; without {} denoting the
number of elements in {e;}, and the 7'“' and 4'“’denoting the product of the elements within each set {e;}.

The {e;} groupings tie elements together through their i indices. Thus, for example, we might have

(A1) fe}=1{n,,.n,, }.det={n,, }oote, =40, , 1, }

e} _ 7 ey _ 7 {end _ 7
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which in turn can be expressed as the sum and difference of terms of the form

(A.14) N""%J(r,p,q,{el},...,{em})=N Z ZZ Zt‘e'}dfe" LBl

i=l i,=lj=1 j,=l

with 1< p<m, 1< g <m, l<c,<m,1<d, <m, (g h=1,..,m)
and at least one ¢, (d}) equal to every integer in 1..p (1...q) . The 2m indices c, and d, connect the 2m
different elements to p < m and g < m counters in the summations. The third line of (A.8) earlier provides
an example of how expectations add summations across j to each (z,...), while the fourth and fifth lines
show how the I(z,...) are re-expressed as the sum of J(z,...) forms.

Each J can be written as the product of subset J's

(AIS) J(T:paqa{el}a'"a{em}) = ]jJ(Tkrpk!qkﬁ{ekl}!'"a{ekmk })

where each {e;,} equals one of the original {e,}, and the s{e;},...,{ew} cover {e},....,{e,} in its entirety,
with

m;

(A.16) zek =Tk ka =7, Zpk ps qu q, & ka =m.

We assume that each J is subdivided into the greatest possible number of factors. In the fourth line of

(A.8) above, for example, we have:
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N N

N ~
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while all three terms in the fifth line are indivisible because the i, j counters for the 7 and d elements
connect at least one element of n,, to n, . . If J(z,, p,,q;,{e,} .-, {e,,, 1) 18 indivisible, it is because the
2my. ¢4 and dy, subscript indices link across the n; groups {e,,}.,...,{e,, } . To do so, there must be at least

my-1 equalities in these indices, i.e. at most m;+ 1 distinct values. At the same time, these indices cover
every one of the numbers in 1...p, and 1...¢;, so we may conclude that
(A18) p,+q, <m, +1
We note that if (cig,dig) = (Ciindia) for some kg # kh, we have more than the minimum m,-1 equalities
necessary for indivisibility and (A.18) holds with strict inequality. Summing across all s groups that make
upJ(z, p.q, i€}, te,})
(A19) p+g<m+s

with strict inequality if (cxg,dig) = (Cindin) ever holds.

Next, we take the absolute value, apply an inequality associated with that, and then apply Holder's

Inequality as well:

{ekl}d(eu; {emk)d{f’x .

“A
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i=l iy ==l =
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where the reader is reminded that e;, denotes the number of n,, in{e}, with Zekg =1, , allowing the

H[

=L\ =1 i, =lj=1
application of Holder's Inequality in the manner shown. We now decompose the set {e;,} into its
constituent parts. Let 1..7, » <z, index the unique 7,, variables across which the expectation £y is taken,

so that
(A.21) E; :ET |:anm}:ET {H”ﬁ‘jqa }’
k=1 a=1

where, as earlier above, in the first product different values of k£ may reference the same n,,, but in the
second product each a references a unique #n,, and each f, is > 0. Let fi g ... fe (Some of which are possibly
0) denote the power the unique 7,, in (A.21) are raised to in the grouping {e;,}. We can then apply

Hélder's Inequality once again'

'The use of Holder's Inequality in the third line requires additional explanation. Holder's inequality
states that for real numbers a., and p;.. pM all > 0 with 1/ pi+..+1/py =1

c=1|d=1 d=1

j (continued on next page)

c=1
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Applying the bound to each element on the right hand side of (A.15), we then have

(A23) N2 pagode s te, D < NPT T[T M (om0

k=1 a=1
Let us now assume (to be proven later) that assumption (A2) and the associated assumptions on

X'X/N and D'D/ N earlier above are sufficient to guarantee that

7, 7

(A.24) N'f'ﬁi vy = *ﬁi xd =o(l) forallp&gandz, =3,4,.

i=l j=1 =l j=1
From this we see that if 7; is even and greater than 2, then M (r,,n pq) — 0. If 7; is odd and greater than 1,

we can apply the Cauchy-Schwarz inequality

27+l

(A25) M(2n+1n,) = (N

To apply to (A.22), begin by defining / = 1..N*, and using it to count through the ij indices in (A.22), so
that (ilzjl) =(L,1), (i22) = (1,2) .. (lNH:]NH) (2,1) ...
ke 7 le v /e /e e X
ZZ j;ll\g. j;A,,dl;uL de i _Z j/;gk/kg fA A/Agdl/‘IIAgA/AL dfx,,A/Aé :Z
i=1 j=1 I ' " . 1=1 aef{a:fo, >0)

where in the last we drop multiplication by terms raised to a power f., = 0 (as those terms equal 1). We
z H JiPa 19a

now apply the inequality
Jakg ! ehg Jakg ! g
—H ZZ ,
1=1 aefa:fy,>0) ae{afyu,>0)\ / =]

where in the last we reintroduce multiplication by terms raised to a power fakg =0, as these equal 1. In
sum, by removing and then bringing back in terms raised to the power 0, Holder's inequality can be
applied here (and in other instances below as well).
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Finally, we have

(A26) M(2,n,)= N> Y|i; dz,

i=1 j=1

=N Zd Z
Combining these results with (A.23), and the fact that p+q < s+m, we see that if 7, > 2 for all £ in 1..s and
(a) 7, > 2 for any k or (b) 7, = 2 for all k and p+¢ <s+m, then N™"'2J(z...) asymptotically equals 0.

We now return to the equality in (A.15), expressing J(z...) as the product of s J(z;...). If 7, =1 we
have m; = p; = g, =1, and J(z;...) is given by

N N g
(A27) Zz /1P1dllql =

i=1jy=1 b

N ~
/1171 z iq T O’

1 Ji=1

'MZ

from which it follows that N™""*>J(z...)= 0 for all N. Hence, the only case where N™"""">J(z...) may not
be identically or asymptotically zero is where 7, = 2 for all . This means that each J(t,pr.qw {€x1}»---> {€hm})

involves two elements, n,, and 7, ,

divided into my; =1 or 2 groups. If m; =2, then p; + ¢, <3. If p, +
qr = 3, then J(z;...) is given by

N N
(A28) Zzz Jipr /1P7 11‘11 lzqz or ZZZ Jipr /zpz 11‘11 11%

iy=1iy=1 j=1 i=1j=1j,=1
both of which are zero. If p; + ¢, = 2 for any £, then p + ¢ +s - m <0, and by the results of the previous
paragraph N™"""?J(z...) is asymptotically zero.

From the above, we see that the only case where N~""'*J(z...) may not be identically or
asymptotically zero is when for each subcomponent J(z;...) we have 7, = 2 and m;= p;, = ¢, =1 (as p <my ,

qr < my), i.e. there is only one grouping of two ,,, summed across one index for i and one for j, i.e.

(A 29) J(T/f _2 p/f _1 qk = P1f11 pzqz}) Zz Jipy /1P7 11‘11 llqz

i=1ji=1
which equals N 2 if p; = p, and ¢, = ¢, and 0 otherwise. Since J(z...) is a product of J(z...), we then know
that the only form of N™"""'?J(z...) that is not identically or asymptotically zero is:

(A.30) N7 J(z, p,q.{n ) withm=p=qg=1/2

PRI S L
N N -

=N 3 VR R, NN =1L
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As described earlier, I(z,{e;},...,{e,}) is made up of the sum and difference of N""'?J(z...) terms, the
only one of which is not identically or asymptotically zero is given in (A.30), i.e. when I(z,...) involves
powers of 2 of each n,,. This implies that the only /(z....) that is not identically or asymptotically zero is
that where 7 is even, /(z,...) must be positive, and

T N

—m- ul e} F{e e, ) Fie
(A3D) I(zde}ade, N~ N 2 3 0V d

=N 2 2J(r,7/2,7/2,{},..{e.,,}) = NN* =1.



Ey is made up of the sum of (z,...) which tie the 7 n,, elements (possibly repeating) into m groups
through the indices i and j. To not be identically or asymptotically zero, the I(z,...) must involve powers of
2 of each n,,, so the only asymptotically non-zero £y is that where the powers to which the » unique 7,,
are raised, f1, ... .f; , as well as 7= Y, , are all even. The number of ways in which f; objects can be tied
together in pairs is (f; -1)!! (where !! denotes the double factorial). Consequently, we have shown that for

allt>2
(A32) Ef =E, [H nl. } - [H (f, —1)!!} (if all £, even), =0 (otherwise),
a=1 a=1

which are the higher moments of a vector of independent mean zero standard normals!
All that remains is to show that assumption (A2) implies (A.24). Define

‘xip B m(xzp) diq B m(diq)

N 12
[Z [x,'p - m(x,‘p )]2 j

i=1

& d

iq = N 1/2
(Z[diq - m(d,‘q )]2)

(A33) %, =

so that assumption (A2) may be re-expressed as
: e =T - g7
(A.34) lim N2 lexwz;d,q =0V p,q & Vr=3,4,..
i= j=

If  is even, we can equivalently say that
N

(A34) lim N%'li Y

i=1 Jj=1

d:|=0.

However, for any odd z = 25+1, we note that by Holder's inequality

NA21 ﬂ’lNAz 2NA22I/2 zi’lNAzNAz ’
§__1 s\ vy A > || N }__1 Y }__1 dy
s0 (A.34)"in fact applies for all =3, 4, ... > We also note that

~ ~\—%
(A36) X = X(XXJ
N

=22n+1

241, N
(A35) N 2 Dlx

i=1

= N”XA, where A = Dg(X'X)*(X'X)™

&D:f)(DD
N

-
J = N”DB, where B = Dg(D'D)*(D'D)™".

where Dg(Z) denotes a diagonal matrix with diagonal elements equal to those of Z. The elements of A

and B are asymptotically bounded as for all N sufficiently large
(A37) trace(A'A) = race(X'X) ™ Dg(X'X)(X'X) ™) = trace((X'X) " Dg(X'X)) < (4P)" | y <0
where 4 and y are the asymptotic upper bound on the diagonal elements and lower bound on the

determinant of X'X/ N , respectively, with the same (with O in place of P) in the case of B. To see the

*When 7= 3 and 5 = 1, the second square root on the right-hand side of (A35) equals 1 while the first goes
to 0; in all other cases both square roots on the right hand side go to zero.



last, note that the largest eigenvalue of (X'X/N )" is the inverse of the smallest eigenvalue of X'X/N ,
which by the trace and determinant property of eigenvalues is greater than or equal to y/(4P)"". The trace
of X'X/ N is bounded by AP. Using the fact that for real positive semi-definite matrices the trace of a
matrix product is less than or equal to the maximum eigenvalue of one times the trace of the other (Fang,
Loparo & Feng 1994), then gives the bound specified above.

With these results in mind, we complete the proof using properties of the absolute value and

Holder's inequality to show that

N

7171 a =T Vr
(A38) [N > 3> % dy |=

N N(P O R ‘ T N (PO _ 4
— 2 ¥ — 2 ¥ —
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g1+ +gpo=T gl gPQ

N2 Zi

where we use a and b to denote the elements of A and B as defined in (A36), in the second line we change
double summations to single summations by introducing the subscripts & = 1..PQ and 1 = 1..N* which we
use on e & fand i & j to capture the movement through the original double summations of these,’ in the
third line we apply the multinomial expansion using the notation Zgl +.+gn=r t0 denote the summation
across all sets of PQ non-negative integers that sum to 7, in the fourth line we apply Holder's Inequality,

and in the fifth line we make use of the boundedness of the elements ¢ and b of A and B.

3That is, (e1,f;) = (1,1), (e2,5) = (1,2) ... (eofo) = (1,0), (egi1,for1) = (2,1) ... (epp,fro) = (P,Q), with a similar
sequence for /.



Table B1: Notation used in Appendices B & C (also reviewed as introduced in the appendices)

(1) Regression model: y =X B+Zy+¢ or y=Z_ v, +& where Z, = (Xw,Z) and y'. = (B',y"). Estimated
parameters denoted by ". Xy is NxPQ, Z NxK and Z.. NxK,.

(2) Ag and e denote the row by row Kronecker product, Ag= A e B. This appears in the form of NxP
treatment variables X multiplied by NxQ interaction covariates W (Xw) and the multiplication of W
with errors € (W;). A ®B denotes the Kronecker product.

(3) The N observations are divided into M treatment groupings, with all observations in a treatment
grouping receiving the same treatment value. We denote the MxP matrix of treatment values by X
and its row permutation by T, with T denoting the consequent NxP matrix of observation level
treatment values. We use subscripted m or i to identify the m™ or i™ row of X and X, as in %/, and
x,. We use scripted notation as well for non-treatment matrices to distinguish those with M rows
from those with N, as in D versus D. Whereas in the treatment matrices the m™ element represents
the common treatment given to all elements i in the m™ grouping, in the case of other variables the
scripted matrix refers to the sum of all elements 7 in the m™" grouping, i.c. p{mq =Ziendig -

(4) Yrp, =Y +(Tyy — X )B, denotes the counterfactual value of y under the null B, following the row
permutation 7" of X and the application of these values to observation groupings to form T. [Aiwu are
the associated parameter estimates.

(5) In addition to the M < N treatment groupings, the practitioner divides the sample into C < N cluster
groups, within which the errors might be correlated, and O < N other groupings in which other
regressors might be correlated. U < N denotes the largest number of groups the sample can be
divided into such that the observations associated with each treatment m, cluster c, or regressor o
grouping reside in at most one union grouping u. While errors and regressors within each union
grouping may be arbitrarily correlated, they are independent across union groupings. We define
intersection groupings v as the largest observational grouping such that all observations belong to at
most one cluster grouping ¢ and one treatment grouping m, with the number of such groupings V' <
N.

(6) Notation X, denotes the sum across observations i in union grouping u (or cluster, treatment or
intersection groupings ¢, m or v), and similarly %, _,denotes the sum across treatment groupings (or,
similarly, cluster or intersection groupings ¢ or v) in union grouping u.

(7) d) refers to the i row of matrix D and D,, D., D,, & D, to the rows of D associated with the
subscripted union, cluster, treatment or intersection grouping. dj refers to the ii™ element of D,
while d,; (or similarly cj, mj or vj) refers to the rows of the ™ column of D associated with the union
grouping u.

(8) "Means" are calculated by dividing by M, and in addition to means across all observations, we also

have means across subscripted groupings, defined as follows:
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dyd s

Ydd O\ —d.d g
m(d,d;,) :Zﬁa mg(dildiZ) :Zz# & mg(dil’de) :ZZZ M

i=1 g=lieg g=lieg jeg

forg=c,u,orvand G=C, Uor V. w() denotes the mean across M elements, as in

o) =252 & alf) - Y%

=1 o

(9) 1) & 0, denote Mx1 vectors of 1s & 0s, 0p,0 a OxQ matrix of Os & I, the MxM identity matrix.

(10) We use the ~ notation to denoted demeaned M matrices and their elements, as in X =0 X where
o=1,-1,1,/M.

(11) tw, and xw, denote the k™ and I columns of T, and X, , with the i" elements of these vectors given
by 2,0 Wigyand X, W, ), Where p(j) and g(j) denote the columns of T (or X) and W associated
with the /™ column of Ty (or Xw).

(12) : denotes convergence almost surely across the probability law governing the data D = (Xw,Z,¢€).
i) & i) denote convergence in probability and distribution across permutations 7 of X almost

surely across the distribution of the data D. E() denotes the expectation across the data D.

(13) npg denotes the multivariate iid standard normal, indicated by npp ~ N(0pg,Ip0).

B. Generalizing the Results to Allow for Clustering and Grouped Treatment

This appendix generalizes the results to include grouped treatment and standard errors which are
homoskedastic, heteroskedasticity robust, or clustered at, below, above and across treatment groupings
(i.e. at any level). As in the paper, we have

(B.]) y=XyB+Zy+¢,

where X,, =X e W and * denotes the row by row Kronecker or "face-splitting" product of two matrices,
while y and € are N x 1 vectors of outcomes and residuals, Z and y the N x K matrix of covariates and K x
1 vector of associated parameters, X an N x P matrix of treatment variables, W an N x Q matrix of
interaction covariates, and p the PQ x 1 vector of parameters of interest. The sample is divided into M <
N groupings of observations, with all observations i in grouping m in X receiving the same treatment row
vector. We use the matrix X to denote the M x P matrix of grouped treatments underlying X, 7 any of the
M! equally likely row permutations of X, and T the N x P matrix of treatments associated with the
allocation of T to the corresponding M observational groupings. Stratification is considered in a later
appendix.

As before, we combine the treatment and non-treatment regressors into more compact notation,

describing our regression model as
(B2) y=Z.,y, +¢ or (attheobservationlevel) y,=z"y, +¢,

where Z, =(Xy,,Z) and ¢y’ =(p’,y") denote the full matrix of regressors and parameters and z',the 1 x K

vector representing the i row of Z,. White (1980) assumes that (z',,&,) is a sequence of independent but
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not necessarily identically distributed random vectors. To generalize his work, assume that in addition to
the M < N treatment groupings, the practitioner divides the sample into C < N cluster groups, within which
the errors might be correlated, and O < N other groupings in which other regressors might be correlated,
and let U < N denote the largest number of groups the sample can be divided into such that the
observations associated with each treatment m, cluster ¢, or regressor o grouping reside in at most one
union grouping u. While errors and regressors within each union grouping may be arbitrarily correlated,
they are independent across union groupings. Further below we will also have need to make use of
intersection groupings v, defined as the largest observational grouping such that all observations belong to
at most one cluster grouping ¢ and one treatment grouping m, with the number of such groupings V' < N.
In the case where errors, treatment and other regressors are independent at the observation level, C= M =
U=V=N.

We will need a substantial amount of additional notation. As before, d/ refers to the i"™ row of
matrix D, while we now use D,, D., D,,, and D, to refer to the rows of D associated with the subscripted
union, cluster, treatment or intersection grouping. dj; refers to the ii™ element of D, while d,; (or similarly
cj, mj or vj) refers to the rows of the /™ column of D associated with the union grouping u. We use the
notation X, to denote the sum across observations i in union grouping u (or cluster, treatment or
intersection groupings ¢, m or v), and similarly X, _,denotes the sum across treatment groupings (or,
similarly, cluster or intersection groupings ¢ or v) in union grouping u. All "means" are calculated by
dividing by M, and in addition to means across all observations, we also have means across subscripted
groupings, defined as follows:

dd dd d,d
(B3) m(d,d,) = Z i) = ST &m0 = YT T

g=lieg g=lieg jeg

where m(d,d,,) =m,(d,d,,) as z dy Zz d,d,

g=lieg

and where g=c¢, m orvand G =C, M or V. The reader will see that the m., m,, and m, means for two
variables are the divide-by-M means of the product of the variables summed at the ¢, m or v level (i.e.
each "observation" for a variable equaling a sum across all observations i in a ¢, m or v grouping). As
(B.3) shows, m(dud;,) = mg(dd;), but no such relation necessarily holds for summation across two
groupings, as in my(d;1,d;). To distinguish matrices with M rows from those with N, we use scripted
notation, as in the matrices X and 7 versus X and T defined above. We further distinguish between the
two by using subscripted m or i to identify the m™ or i"™ row in each, as in x/ and x. We shall need to
define other M matrices that are a function of the N matrices for non-treatment variables, as in D versus D.
Whereas in the treatment matrices the m™ element represents the common treatment given to all elements i
in the m™ grouping, in the case of other variables the scripted matrix refers to the sum of all elements i in

the m™ grouping, i.e. Amg = Ziendiq - We use the notation () to denote the mean across M elements, as in

12



(B4) w(x,,) = Z & od,,) Z%

m= l
We note that for non treatment variables d, &(du) = m(diy) & O(Xpfmg) = M(Xipdiy), aS Ky = x;, for all 7 in
grouping m, but w(x,,,) does not necessarily equal m(x;,). We shall use the ~ notation only with respect to
demeaned M matrices and their elements, as in X =0 X where O =1 v =11, /M

Within this framework, we make the following White-type assumptions

un @(Z,,,
matrices. (b) E(z

g,)is a sequence of independent but not necessarily identically distributed random
€)=0,, forall i

["*y< 4 and

) is non-singular for all U

(U2) There exist positive finite constants J, 4 and y such that (a) for all u, E(| €.
E(Z,z,, ") <4 forallj,k=1.K;(b)My=U'Y. EZ.Z

sufficiently large, with determinant My >y > 0.

u-u

+uj Z, i u=1 +utu

(U3) There exist positive finite constants J, 4 and y such that (a) for all u, E(|Z’ e ["7)< 4 for
allj=1..K.; (b) Vu=U"Y"
determinant V> y > 0.

(U4) There exist positive finite constants ¢ and 4 such that forall u & j = 1...K. E(|(Z/

+uj +u/

E(Z &.k£.Z,,)is non-singular for all U sufficiently large, with

u=1 +uuu" +u

) |l+5)<A,

+uj +u/

(U5) (a) If using the homoskedastic covariance estimate V,,(§, ), the errors are iid with E(g] |z,,) =0

for all i & E(¢,¢;|2,;,2,;) = 0 for all j # i; (b) If using the heteroskedasticity (but not clustered)
robust covariance estimate V, (7, ), the errors are independently but not necessarily identically
distributed with E(z,,¢,6,z, ;) = 0 for all k & /= 1.. K, if j #1i; (c) If using the clustered robust
covariance estimate V_(7,), the errors are independently distributed across clusters with
EZ, .z, &) =0forallj k=1..K,if cluster ¢, # c,.

U1 - U4 are a straightforward extension of White's work to allow for correlated regressors and errors

across observation groupings and hence the following lemma is easily proven (in the next appendix):

Lemma B1: Assumptions Ul - U4 guarantee that for all U sufficiently large ¥, exists, ¥, : Y., and
JU (Y, —v.)is asymptotically (across the data generating process for the data sequence Z,,&)
normally distributed with mean 0, and covariance matrix M,'V,M,'. If U5a holds.
V,(.) 5 MV, My ; if USb holds, V, (7,)—M;'V,Mj'; and if Uc holds, V., (7.) > M;'V,M;!.

Obviously, within the framework of the regression model, heteroskedasticity is just the case where the
number of clusters C = N and hence can be subsumed under clustering. However, in developing the
randomization results further below, clusters that are larger than one observation generate additional
complications in proofs (especially in Appendix C) as clustering can be below, above, at the same level as,
or across treatment groupings. Consequently, I treat the heteroskedastic case as separate from clustering,
even though at some points the exposition is redundant.

In addition to U1 - U5, we make four randomization inference specific assumptions

13



(A1) Gy = Zle E(x,x)/M - Z}::l E®x,)/M Zle E(x))/M is non-singular for all M sufficiently
large with determinant G,, >y > 0.

(A2) Either the matrix W is part of Z, i.e. the interactions with treatment in Xy are entered separately
as covariates in the regression, or £(x,)=0,.

(A3) There exist positive finite constants 6, 8", 4 and y, with 6(1+260")> 1, such that (a) for all m, ¢ =
l..Qandp = 1..P, E(W,,£,&,W,,|"") <A and E(|x,,|"")<4;(b) Wy =M Y E(W,e,E,W,)
is non-singular for all M sufficiently large, with determinant W;, >y > 0.

(A4) The maximum number of observations in a union grouping u, and by implication in a treatment

grouping m or error correlation grouping ¢, is bounded from above by N <o,

Assumptions A1, A2 and A3a are extensions of those given in the paper for observation level treatment to
treatment groupings. As in the paper, we base the proofs on the version of A2 which states that W is part
of Z, as the alternative assumption is unlikely to hold. The condition A3b on W, rules out cases where
the average expectation of union grouped products as in V in U3b is positive definite but the average
expectation of treatment grouped products as in A3b is not. A4 rules out asymptotically infinitely large
cluster or treatment groupings, or overlaps across the two that generate infinite chains. It ensures that C,
M, U and N are all of the same order, so that matrices that are positive definite when divided by one
measure do not converge to matrices of Os when divided by another and — oo for one has the equivalent
implication for the others. The formal asymptotics below are all stated as the units of treatment M — oo as
key elements are in terms of that measure.

With the assumptions given above, result (R1) in the text can be modified to read:

(R1) Given assumptions U1 - U4 and A1 - A4, for any B, in a finite /A neighbourhood of B, i.e. such
that M (B—B,)'(B—B,) < 4 (a constant) < oo, as M — oo almost surely across the data generating
process for (Z.,g) the distribution of v/M (61130 —B,) across permutations T of X converges to that of
the multivariate normal with mean 0p( and almost surely bounded covariance matrix C,, while
depending upon which of U5a, U5b or U5c hold, the homoskedastic, heteroskedasticity robust and
clustered covariance estimates \A’(ﬁwo ) converge in probability to C,, so that the Wald statistic
7(T,Bo) is asymptotically distributed chi-squared with PQ degrees of freedom and in probability

converges to the value for the true null f, = p
d(Ma.s(Xy,Z:) P(D)a.s(Xyy Z:8)
(B.5) 7(T,B,) - )(IZJQ & «(T,B,)—(T,B) - 0.
Given Lemma B1, results (R2) - (R5) in the paper and its appendix then follow as before from (R1), as the
Wald statistics for the original regression and for permutations 7" of X for tests of any subset or linear
combination of parameters are both asymptotically distributed chi-squared with £ degrees of freedom.
The remainder of this appendix is dedicated to proving (R1). We begin by laying out some basic theorems

and lemmas, and then examine the asymptotic distribution of coefficient estimates produced by
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permutations 7" of X and the probability limit of their covariance estimates. Proofs of all lemmas used

below are in Appendix C.

(a) Base Theorems and Lemmas

We restate Theorem's I and III in terms of the treatment groupings in which they will be applied:

Theorem I for Grouped Treatment:

Letx'= (x1, ..., xa) and {' = (d,, ... , {u) denote sequences of real numbers, not all equal, and ¢’ =
(t1, ... , tau) any of the M! equally likely permutations of x. Then as M — oo, the distribution of the

random variable

(Ta) n(t,d,) = [tm—w@mn[&—w(&))]]
i=l [ M _ 2 M —o(d, 2 )
(Z[xm w(x,)] 3 ] y

M P M
as calculated across the realizations of £ converges to that of the standard normal if for all integer 7 > 2

MY [x, ~ 06T Y14, - od,)T

/2

(Ib) lim

Moo M 720y
[Z[X’m - o(x, )]2] [Z[i{” - w(d, )]2]

i=1
If X'=(x,,...x,)and D'=(d,....q,, ) are sequences of vectors, and T any of the row permutations of
X, then the distribution of

XX PP (TP
(Ic) n(tm,dm)z[M ® v, J ( \/M) M,
where ® denotes the Kronecker product and e as above the row-by-row Kronecker or face-splitting
product, is distributed multivariate iid standard normal if (Ib) holds for all pairwise combinations of the
elements of the columns of X and D and the matrices X'X /M and 5 ’5 /M are bounded with

determinant >y > 0 for all M sufficiently large.

Theorem III for Grouped Treatment:

Letx'= (x1, ..., i) and {' = (d,, ... , {u) denote sequences of real numbers, possibly all equal, and
t'=(ti, ..., ty) any of the M! equally likely permutations of x. Then as M — oo, across the

permutations £ of ® the random variable

tm i 4” :m(tidi)_a)(xm)m(di)_p) 0 2

(Illa) w(t,d,)~ox,)od,)= MM

m=1

tm%n _ <
M~
provided

i [x, — o(x,)T i [4, — ©(@d,)]’

(111b) lim 2= M My,

M

If ¢y, is a sequence that converges to zero and the stronger condition
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M

(Illc) f“ (%, — A“;("m)]2 3 [4, — ()T

" is asymptotically bounded

m=1 m=1

holds, then across the permutations ¢ of

() VM [a(t,d,) - (%) (d, ey =M [m(t,d,) - o (x, )m (d, )], — 0.

The changes from the theorems given in the text are merely notational (using groupings of observations)
and these theorems have already been proven in the paper and the appendix above. Theorem II in the
paper also continues to hold, so that if conditions (Ib) and (I1Ib) hold almost surely for the data sequence
(Z-,8), we can say that almost surely (across the data) n(%,.4,.) converges in distribution and «(£,d,,)
converges in probability across the row permutations 7 of X. As in the paper, with the exception of the
clustered extension of White's result in Lemma B1 above, references to almost surely are with respect to
the probability distribution governing the data sequence, whereas references to in distribution and in
probability are with respect to the permutations 7" of X.

The following lemma will be useful below:

Lemma B2: Define W, as the M x Q matrix whose mq’h element w,,,. is the sum of the
observational elements corresponding to the m” treatment group in the N x Q matrix W; (i.e.
Winge =2 iemWig€i . 1f assumptions Ul - U4 and A1 - A4 hold, then:

(@)Z'Z/M ,W'W/M, X'X/M & w'w, /M are almost surely positive definite with determinant
>y >0 forall M sufficiently large, while W/ W, /M — W/ W/M SOQXQ and hence
W' W, / M is also almost surely positive definite with determinant >y > 0 for all M
sufficiently large.

(b) Z'e/M > 0, & Xiye/M =5 0,

(c) Let HZ:I % denote the product of n =1, 2, 3 or 4 elements of the columns of X, and d;;d;, and
did;s each the product of the elements of 2 columns of (Z,,€) (with at most one in each being €).
Then |CU(HZ:1 Xui)|, [m(didy)|, m(dydinpdidis)l, im((dndip,dizdis)|, Imu(dndin, dixdi)| &
|m(didip,dizdyy)| are all almost surely bounded, as are (Z'Z/ M YL (WW/ M),

RR/M) ,(Ww /M) & (W /M)

(d) Let szl X, denote the product of n > 4 elements from the columns of X and d;d;; and dzdiy

each the product of the elements of two columns of (Z.,€), with at most one in each case being

€. Then for some a such that 2>a > 0
—a ﬁ—2 n a.s. a.s.
M (2 jw(]‘[kl x,.) = 0, M*m (d’d},d>d}) — 0,

Mﬁzam'"(d"zld’é’dédii) 2) 0 &Mﬁzamv(dizldizzadédit) 1) 0.
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(b) Asymptotic Distribution of Coefficient Estimates
The counterfactual outcome is given by y;, =y +(TeW—-Xe W), and consequently, with

M =1-Z(Z'Z)"'Z' denoting the residual maker with respect to Z, similar to the paper we have

M M M M
where r =,/ M(p—PB,). This expression can be analyzed using the following lemma:

’ -1 ’ ’ -1 ’
(B.6) m(ﬁwo— B) = (TWMTW] TWMXWrJ{TWMTW] TyMe

Lemma B3: Given assumptions Ul - U4 and Al - A4:
(a) Condition Illc of Theorem III almost surely holds for the mean of the product of the elements
of one or two of the columns of T with the elements of two columns of D = (Xw,Z,€) , no

more than one of which is ¢, so that in particular

P P
m(t,d,d,)-o(x,,)m(d,d, )—>0, m@,t,dd,)-ox,x,,)mdd,)>0 &

ip“iq mq

if ¢,y >0 then VM [ m(t,d,dy ) — o(x,, ym(dyd, e, — 0.
From Lemma B2c @(X.), ©(XmyXmg) and m(d;dy) are known to be almost surely bounded.
(b) Xy & Wge almost surely satisty condition Ib of Theorem I for all column pairs of X and W,,
while X'X /M & W'W, /M are almost surely bounded with determinant >y > 0 for all M

sufficiently large, so that across the row permutations 7 of X we have

po» Wheren,, ~N(0,,,1,,)-

[7?/7? QL"Q JVZ (f s Q),IPQ a

® —-n
M M JM

Moving forward, let tw; and xw; denote the #” and /" columns of Ty, and Xy, , with the /*
elements of these vectors given by 7, W, ), and x,,,W,,;,, where p(j) and ¢(j) denote the columns of T
(or X) and W associated with the /™ column of Ty (or Xw). With this notation, we see that the /™

element of Ty, MT,, /M can be expressed as
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-1
t’WkMtWI t’Wk [IN — Z(Z'Z)_IZ']tW, 7' 7
(B.7) = i; = My o ipy Wiy Wigcay) = I8 ) Wig 12 ; m(?,, Wy %
t., Mt,,
so % IY; . _[a)(xmp(k)xmp(/))_w(xmp(k))a)( mp(/))]m( i (k) tq(/))
1
[m(tip(k)tip(/)"Viq(k)""iq(/))_w(xmp(k) mp(l))m( iq (k) tq(/))]+w( mp(k))a)( mp(/))[m( iq (k) q(l)) m(w, Wig(iyZ ,)( j m(w, Wity z,) |

»
—0 (Lemma B3a) =m(Wy, (k) Wg (1)) for M sufficiently large (Lemma B2a)

1
7'7
[m(ttp(k)wq(k)z )— a)(xmp(k))m(wtq(k)z )] (M] [m(t,p(l)""iqu)zi) _a)(xmp(l))m(mq(l)zi)]

’ - P
5 0% (Lemma B3a) bounded (Lemma B2c) —0x (Lemma B3a)

(77’
DX, 1) )M (W, zq(k)zi)(Mj (M, Wiy(1y2:) = (%, MW,y 2,)]

bounded (Lemma B2c) ﬁ 0 (Lemma B3a)

, 7z
= [, ) Wiy 4)2:) = QX 1) (W )2 )]( IY; j (X, )Wy 1 2 )_’O

»
—>0% (LemmaB3a) bounded (Lemma B2c)

where m(7,, W,y Z7) = (Mt Wiy ) Zi0)s -+ s 118, 4 Wiy Zi ) and we use the fact that as

m(w, ;) =w, ,Z/ N, where W, is the q(k)" column of W which is included in the covariates Z
(assumption A2), so for all N sufficiently large that Z'Z/ M is guaranteed to be invertible w;(k)Z(Z’Z)’1

a row vector of zeros with a 1 in the column corresponding to the position of W, in Z. Similarly, the kI"

element of T),MX,, /M can be expressed as’

—1 -1
(B 8) t,Wk MXWI _ t,Wk[I Z(Z Z) Z]XWI ([ w. X ) m(t Z ZZ Z’XWI
. M - M ip(k) "ig (k) tq(/) ip(l) ip (k) tq(k) i M M
1
"7\ Z'x
[m(tlp(k) iq (k) lq(/)xlp(/))_w( mp(k))m( i (k) q(l)xlp(l))] [m(tlp(k) iq (k) z;) - (X, mp(k))m( (k)2 ,)]( j MWI
-
ﬁ)O (Lemma B3a) ~>0'K (Lemma B3a) bounded (Lemma B2c)
1
77\ Zxy, »
+ (X, 1) Wiy 1) Wiy 1y Xip (1)) — QK ) m(w,Z; )[ M] Y -0,

=m(Wig(k)Wig ;, Xip(1y ) for M sufficiently large (Lemma B2a)

)y

where we again make use of the assumption that W is included in Z. Combining these results, we have:

TyMT, X'X _W'W 7 TyMX,, 7
(B9 »—W _XX®WW_)0PQYPQ & Y—Y 50
M M M : M
Finite values of r = v M (B —B,) , multiplied by T;,MX,, /M , asymptotically have no influence in (B.6).

The remaining part of (B.6) is the vector Ty, Mg/ JM , the " term of which equals:

POxPQ "

“In applying the Lemmas, keep in mind that W)X are the elements of one column of Xy.
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tw, Me

M

7' 3
M

a)(tmp(k))m(wiq(k)gi)

m(ti Wi gi)_ m(ti Wi Z; - 7'7 - VA , 7'7 . VA
\/M|: ip(k) ""iq (k) j|_m|: ip(k) ""iq (k) i| [j € +m —w(tm,,(k))m(w,-q(k)li) 7 € ’
—_

(B.10)

W Z'Z
= Mm(tip(k)wiq(k)gi) - Mm(tip(k)wiq(k)zi)(Mj

!/
a)(tmp(k))m(wiq(k)gi) a)(tmp(k))m(wiq(k)zi) M M M
Vi :0 x (Lemmas B2b,B2c) =m0y llél;;fe)(ﬁ);;il‘,\;[];;giciently
1)0 (Lemma B3a)
so the only term that asymptotically is non-zero is v, , which equals
t Zw. £,
Nofoow L, M Ymp(k) iq(k)Ci
_ in() Wig() @i _ i
(B.1D v, = M[Z _a)(tmp(k))m(wiq(k)gi)J =vM Z l]mw _w(tmp(k))m(wiq(k)gi)
i=1 i=1

& Lop 0y Wong(ioe L L0 — O )W g0 — QW)
= \/M[ Smp(k) " mq(K)e a)(t )CU(W )J — 'mp (k) ‘mp (k) mq(k)e mq(k)e ,
; M ‘mp (k) mq(k)e ; \/H

which is the £™ element of (’F el ro! JM . Applying Lemma B3b we then see that

~ ~ ~ o~ \
/. T’ M d
(B.12) (75‘; ® “;;WJ yﬁg ~>n,,, wheren,, ~ N(0,,1,,).

Combining the preceding results, we see that for finite r =+ M (p—B,) we have

(13.13)(74'x ®MW€] [X'x ®W'W}/M(I3T,po -By) =

M M

~ ~ ~ o~ NV~ ~ _
[X’ ®w;v\gJ (X'X®W'WJ[T(NMTWJIT;VMXW

-
M M M M M M oumded
a.s.bounded positive definite matrices (Lemmas B2a, B2¢) » [ R ® W'W ]71 i(]pa\m
B XX g WW 0
M M

[7‘ o VW Nxx ® W'W](T;VMTW Mx o W Mxx W, JTM ;

® —>n,,.
M M M M M M M M M JM re

P d
—Ip —Npy

(c) Probability Limit of the Homoskedastic Covariance Estimate

The estimated residuals are given by

(B.14) éT,[}O = NIYT,p0 - MTWﬁT,[}O =MXy (B-B,) +Me—-MTy, (ﬁT,[}O -By)>

so using the fact that MM = M we see that the average squared residual equals

(B.15) —LhoTh _ F+2 W 2f
N N N

'Me M X, MX ., TwMT,, . '™MX T, MX ., TwM
¢ ¢ +(r' WMZ * r+r, WMZ * 8M3/2 WM2 - r_2r' ]‘\;3/28)’
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where r = \/M(B —-B,) and r = \/ﬁ(ﬁmo —PB,). From Lemma B2, (B.9) & (B.13) above, and the fact that
M/N <1, we have

(B.16)

XyMX, XXy XWZ(Z'Z ' Z'X, [almost surely
M M\ M M bounded |’

eMe g M|eZ(ZZ\ Zg| eMX,, &X,, ¢€Z(ZZ - ZX,, o
- =T — 05 = - e d OPQ’
N N NI M\ M M M M M\ M M
T,MT, XX _WW» T,MX,, * T, Mg »
WM v I ® v 0,600 5 7WM Y 05, s & o = 0y,
%/—/

almost surely bounded

Consequently, for the homoskedastic covariance estimate V,, ([Aiwo) = (T\'VMTW)’I(Q:’T,méT,BU /IN-K.,):

4
~ o~ -1
X'X ® W'WJ g'e

(B.17) MV, (ﬁT,m—[ —~0

W POxPQ

M M

We now note the following lemma:

Lemma B4: If as in U5a the errors are iid and homoskedastic. with E(&7 [z,.) =0 &
E(¢ée;|2,,2z,;)=0 forall i and j # i, then WW /M —(W'W/M)(s's/N)SOQXQ .
From Lemma B4, (B.13) & (B.17) we see that when the errors are iid, MV h(ﬁT,Bo) converges in probability
to the asymptotic covariance matrix of normally distributed M ([Aiwu —B,), so the Wald statistic is
asymptotically distributed chi-squared with PQ degrees of freedom. Moreover, every appearance of r in
the Wald statistic 7(T,f,) is multiplied by a term that almost surely across (Z.,€) in probability across
permutations T converges to 0, so that in probability z(T,p,) converges to 7(T,p), as stated in (R1).

(d) Probability Limit of the Heteroskedasticity Robust Covariance Estimate
For the heteroskedasticity robust covariance estimate we have

T,MT,, )" A( T, MT,, )‘1 whore A = MTy o8y, Y(MTy o8yy)
M ’ M

(B.18) MV, (By ) = [
with k" term given by

1 & K R K -
(B.19) A, = HZ(tip(k)Wiq(k) - Zzia5ak )(tip(/)wiq(l) _Zzih5b/ )gT,puia
i=1 a=1 b=1

K PO K PO K ~
N _ N N r, A "Tf
where Erpyi =€ ;:1, Z .+ ;:1’ (xip(d)wiq(d) - ;:1: ZieTed)W_ /2:1 T ;:1, Zigé‘gf)ﬁ,

using the formula for &, from (B.14) earlier with r = \/M(B -B,), = \/M(ﬁm -B,),
8, =(ZZ)'Z'ty,, %, = (Z'Z)"'Z'xy,and f|=(Z'Z)"' Z's. From Lemmas B2b and B2c we have
1—0, and from B2c know that the limit of % . is almost surely bounded. As for §, its plim across the

distribution of T is bounded as
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. YAAR YAAR ,
(B.20) 9, - a)(xmp(k))(Mj m(w, ,z,) = ( v j [(m(Z,, 4 Wiy 1y 2:) — QX0 )W, 1) Z,)] 0 -

)
bounded (Lemma B2c) bounded (Lemma B2c) — 0 (Lemma B3a)

As for all N sufficiently large (Z'Z)’IZ'Wq(k) is a vector of zeros with a 1 in the row corresponding to the
column position of W, in Z and @(%,,,,) is known to be bounded by Lemma B2c, plim Sak= 0 unless a is

the column position of w, in Z, in which case plim Sak —o(x,

o) = 0. The elements of rare finite and

of rare asymptotically multivariate normal, so when divided by any positive power of M have a
probability limit of zero.

When the terms in (B.19) are multiplied out, most involve a product with an element of rAM,
tAM ,or 1) that has a plim of zero, parameters 7 and 5 with bounded probability limits, and the mean
of the product of the elements of 0 to 4 columns of T and the elements of 4 columns of D = (Xw,Z,€) (no
more than two of which are ¢;). The following lemma allows us to conclude that the plim of all such terms

18 zero:

Lemma B5: Assumptions U1 - U4 and the additional A1 - A4 ensure that for some a in (0,%%)
condition IIIb of Theorem III almost surely holds for the mean of the product of the elements of n =1,
2, 3, or 4 columns of T divided by N“™*">* with the elements of four columns of D = (Xw,Z,£) , no

more than two of which are ¢, so that across the permutations 7" of X

n n V4
—amax(n—-2,0) —amax(n—-2,0)
m(M ™ (Htip(o))dijdikdildim) —o(M™™ H"'mp(a))m(dzjdikdildim)_)o :
o=1 o=1

From Lemma B2c¢ we know that the sample means of the product of the elements of one through
four columns of X or four columns of D are almost surely bounded, so the probability limit in Lemma B5
is bounded when n =1 or 2 and 0 when n = 3 or 4. Consequently, in (B.19) every term that involves the
product of an element of rAM , ERM , or 1 that has a plim of zero with the mean of the product of four
columns of D with zero, one or two columns of T has a probability limit of zero. Every term in (B.19)
that involves the product of n = 3 or 4 columns of T with four columns of D also includes at least
n -2 £//M terms which can be re-expressed as (£/M"**)(1/M*) for some a in (0,2). The 1/M “ parts can
be used to satisfy Lemma B5, while the £/ M “ part converges in probability to 0. Thus, all such terms
also have a plim of 0.

The above only leaves terms in (B.19) that involve the product of two or less columns of T and do

not include an element of r /M , tIM , or 1, namely
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K

o Lt Wigofint) zq(/)g Ly zq(/) R R e ) zq(k) 2p8 E & L & iaZin€,
B2 v 36,3 o i 2512 +2.2,049, Z
i=1 b=1 i=1

a=1 i=1 a=1 b=1 i=1

K K
2 ~
m(tzp(k) ip(l) lq(k) q(l)g ) Zé‘km(ttp(/) lq(l Zig z) Zé‘lm(ttp(k) lq(k)Zihgi )+Zzé‘ak blm(zla 1/18 )

a=1 b=1

»
2 2
where m(t, oL, 1) Wiy Wign€i ) =~ @Ko Koo )Wy 1) Wiy ) = 0

Lemma BS

& m(ttp(l)wq(l)zlagl) a(x, (1))”1(""@(1)2;(15,) _> 0,

LemmaBS
SO Ak/ [a)(xmp(k)xmp(/)) - a)(xmp(k))a)(xmp(/))]m(wq(k)wlq(l)g ) _> 0
where we use the boundedness of means of products of up to four terms (Lemma B2c) and the fact noted
above that plim Suk = 0 unless a is the column position of W, in Z, in which case plim 5 = (%,,4)) =0
and z,, =W, . This allows us to state that

~!~ r P
(B.22) A—X]; WW. %o

POxPQ°

and consequently for the heteroskedasticity robust covariance estimate we have

~ o~ 1y~ o~ ~ o~ -1
- XX _WW) (XX _WW (XX _WW)| »
(B'23) MVr(BT,'}O) _{ M ® M J { M ® M J{ M ® M J OPQYPQ'

We now note the following lemma:

Lemma B6: If as in USb the errors are independentlv but not identicallv distributed, with E(z,,&:€,z, ;)
=0 forall k & [ =1...K. if j #i, then WA, /M —(W,W,/M)—>0,,, .

From Lemma B6, (B.13) & (B.23) we see that when the errors are heteroskedastic but not clustered,

MV,, (ﬁmo) converges in probability to the asymptotic covariance matrix of normally distributed

M (ﬁwo —-B,), so the Wald statistic is asymptotically distributed chi-squared with PQ degrees of
freedom. Moreover, every appearance of r in the equation for the Wald statistic 7(T,f,) is multiplied by a
term that almost surely across (Z.,€) in probability across permutations T converges to 0, so that in

probability 7(T,B,) converges to 7(T,p), as stated in (R1).

(e) Probability Limit of the Clustered Robust Covariance Estimate
For the clustered robust covariance estimate we again use the sandwich formula (B.18), but this

time with the k" element of A given by

(B 24) Ak/ Z(Z( ity Wig(ky ~ Zzzaéak)gT Boi J(Z(t/p(l)wfq(/) zszé‘bl)gT ﬁuJJ

c=1 \_iec Jjec

A T
A /
where &, = z Z,c77c+§ (Xip(ay Wigtay E,Z,Jed) Z(tlp(f) Wig(r) Zzigég/’) a
g=l
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and where, as before, the notation i € ¢ denotes the summation across the set of observations i in cluster c.
The following lemma is useful (the reader is reminded that subscript v in m, denotes the treatment cross
cluster intersection grouping, as described earlier above):

Lemma B7: Let ¢...t;4 denote columns of T and v;; and v, each the product of the elements of

two columns of D = (Z.,€), no more than one of which in each case is &. Given assumptions Ul

- U4 and A1- A4, for some a in (0,'%)

(L7a) m, (t,.lvl.l,vﬂ) —a(x,,)m, (v,.l,vﬂ)i)O &m, (1, vll,vﬂ) —a(x,,%,,)M, (vl.l,vjz)—p>0
(LTb) 1, (30,159 ) — (@08, %,2) = @ty Oty 1, (917 1)+ 0y Y0 )11, (1,10 )50,
(L76) Mm (ttv ot 139 ) —> 0 & M m_(tytiyvigst st 00 2) > 0.

a)(l_[Z:1 %) for n=1to 4, m(vi1,v;) & m,(v;1,v;2) are almost surely bounded (Lemma B2c).

As in the case of the robust covariance calculation earlier above, when multiplied out most of the
terms in (B.24) involve an element of r/~/M , r/~M , or | whose plim is zero, multiplied possibly by a
parameter from T and & whose plim is bounded, times one of the m. terms described in Lemma 7 or

simply m, (v,

1>V,2) - From Lemma B2c we know that the () sample means of the product of the elements
of n = one through four columns of X and the m.() sample means of the product of the elements of four
columns of (Z.,€) (no more than two of which are €) are almost surely bounded. Consequently, in (B.24)
every term that involves the product of an element of r WM, ¢ M, or 1) that has a plim of zero with

the mean of the product of four columns of D with zero, one or two columns of T has a probability limit of
zero. Every term in (B.24) that involves the product of n = three or four columns of T with four columns
of D also includes at least 7 - 2 £/~/M terms which can be re-expressed as (f/ M " )(1/M“) for some a in
(0,%). The 1/M “ parts can be used to satisfy Lemma B7c, while the £ /M " part converges in probability
to 0. Consequently, the plim of all such terms is 0 and we need only focus on terms in (B.24) which do

not involve an element of r/~/M |, ¥/NJM , or 7). These are

Lip(ky zq(k)gzt/mnwzq(/)g S Lip(ky zq(k) Z b€
B25)YYY Zf%ZZZ

c=1 iec jec c=1 iec jec

e (Lip ey Wig(k)€i L ip(1)Wjg ()€ ) M (Lip (k) Wig (k) €152 o€ )

A TTT M 335,53 55 A,
a=1 b=1

a=1 c=l iec jec c=1 iec jec

me (L yWig(y€iZ ja€ ) me (2, &2 € ;)

so using Lemma B7 we see that

P
(B.26) Ay —[@(x,,0%p1)) = OR,p 01 ) O(R, 1) )11, Wiy 1815 W g 0 1) >0,

n_n

where we once again use the fact that plim é;k is only non-zero in the "a" column position of W, in Z, with

plim §ak = o(x,,4,)and z, =w,,, . Consequently, for the clustered robust covariance estimate
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(B27) A - XA’;( ® wj"jz: i)OPQxPQ |:Where t e Zzzwlgtg/w _ i W‘:SVSLWV:|

v=l iev jev v=1

~ o~ -1 ~ o~ —
- XX _WW XK _ww (XK _WW) »
= MV(:I(BT,BO ) - [ M ® M ] ( M ® ;V[E j{ M ® M J _)OPQxPQ'

We now note the following lemma:

Lemma B8&: If as in U5c E(ZH €.2,.48.) =0forallj, k=1..K, if cluster ¢; # c;,

then W', /M—@Q/M—)OQXQ .
From Lemma B8, (B.13) & (B.27) we see that when the errors are clustered, MVC,([A%TJ}O) converges in
probability to the asymptotic covariance matrix of normally distributed M ([Aiw0 —-B,), so the Wald
statistic is asymptotically distributed chi-squared with PQ degrees of freedom. Moreover, every
appearance of r in the equation for the Wald statistic #(T,f,) is multiplied by a term that almost surely
across (Z.,€) in probability across T converges to 0, so that in probability (T,B,) converges to z(T,B), as
stated in (R1).
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C. Proofs of Lemmas used in Appendix B
We make use below of the corollaries to Markov's Law of Large Numbers, the Continuous

Mapping Theorem and the Borel-Cantelli Lemma given in Appendix C in the paper. In applying the
corollaries, we can treat the random variables generated by vector inner products as a single observation,
asin g g or ¢ g . Anissue that arises, however, is that the Markov Corollary is stated in terms of
independent random variables. Given assumption U1 above, this is always true for observations made by
the inner product of union groupings u, but it need not necessarily be true for observations made by the
inner product of groupings based upon m, ¢ or v, as these are subsets of u. We can, however, apply a
Corollary to a Law of Large Numbers for Heterogeneous Dependent Sequences (hereafter, LLNHDS)
given by White (1984):

LLNHDS Corollary: For the Borel field generated by the random variable d{(w), i=n..n+m & w

inQ,let B"" =o(d

) be the smallest ¢ - field of subsets of Q with respect to which di(w), i

na’t* ’ n+m

=n..n+m, are measureable. LetB" =o(...,i,)be the smallest collection of subsets of Q that

contains the union of the o - fields B” asa — -wand B”  =o(i,,,,...) be the smallest collection of

subsets of Q that contains the union of the ¢ - fields B, asa —> . Let g and # be o-fields and

n+m

define ¢(g,#) =Supg. g new.po | PC(H | G)— P(H)|. Define the mixing coefficients
#(m)=sup, #(B", B ) . Let {d;} be a sequence with ¢(m) = O(m™) for A > rl/(2r-1), r a real

—o0 2 n+m

number with 1< r <o, such that E(|d/**) < 4 < «o for some § > 0 and all i. Then
N

d_ NE(d) a.s.
_ _ _~7 0
Ly LN

In the case of variables which are y independent, i.e. d; is independent of d;_, for all >y and all i, ¢(m) =0

%) < A < oo for some 6 > 0 and all i.

for all m >y, ris 1, and the requirement for the result becomes E(|d]|
In this case, the requirement for the Strong Law is the same as used in the Markov Corollary in the paper.

Since by assumption U1l (Z ) is a sequence of independent random matrices, and each union grouping

o Ey
has no more than N observations, we see that all variables are N independent. This allows us to apply
the LLNHDS Corollary with 7 = 1 to the means of groupings below the union level, such as €' ¢, .
Lemma B1: The proof of this lemma follows proofs given in White (1980), with notation and
cases adapted to our specific framework. All variables are independent across union groupings, so

assumption U2a and the Markov Corollary guarantee that

VA a.s.

Y E(Z
M Z +u +u Z +u +u) 0K+XK+.

u=1 u=l1

My, is almost surely positive definite for all U sufficiently large with determinant greater than some y > 0
(assumption U2b), so by the Continuous Mapping Theorem Corollary Z\Z, /U is almost surely positive
definite for all U sufficiently large with determinant greater than y > 0. Consequently, ¥, exists for all U

sufficiently large. U3a implies that
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Holder's Inequality Cauchy-Schwarz Inequality
U

5 )
(Cl 2) E(| Z+M/8 8 Z+l{k |1+ )< HE(| Z+um u |2(l+ )) < HE(| Z+um +um ll u |(1+(>)) < A

m=j,k m=j,k

for all j, k= 1...K,. Using this and Jensen's Inequality then ensures that for all u and j
(C1.3)E(|Z. ¢, |"°)<E(Z 8¢z, |") <A”,

+uj u| +uj Cuu™ +uj

which along with the Markov Corollary and U1b indicates that

(Cl 4) Z +u8u _ZE(Z+u u) a8 OK

u=l U !
U ' 2 . U N N
= Z+u8u — Z 8 @ +u u ZE(Z-H i/l _ 0K+
u=1 U U u=1 i=1 U i=1 U

This guarantees that

. 77 ' 7/ ¢ as
(CLS) Y, =(Z'Z,) Z’(Z+Y++8)=Y++£ - +j £

Z'g/ JU s a vector with expectation and variance:

' ' U /
(Cl 6) E(Z \J E(Z+l 1) 0K+’ [Z 88Z j ZE Jruau8 Z+u) :VU s
i=1

) & Ju o

where we make use of the fact that by U1 observations are independent across u with E(Z/,,&,) =0, .

u=1

Since Vy is positive definite for all U sufficiently large (assumption U3b), let E denote its eigenvectors
and A its diagonal matrix of positive eigenvalues, and define V;* =EA™E', where A™ is a diagonal
matrix with entries equal to the inverse of the square root of the eigenvalues in A. The largest eigenvalue
of V' =V,"V,"is the inverse of the smallest eigenvalue of V. Since the determinant of V, is >y > 0 for
all U sufficiently large, and by Jensen's Inequality and (C1.2) its diagonal elements are bounded by 4",
by the trace and determinant property of eigenvalues we know that the smallest eigenvalue of Vi, Ay, 18
greater than y/(K.4" ") K,-1).

As noted in White (1980, p. 829 - see also White 1980a and Hoadley 1971), given (C1.6) a
multivariate Liapounov Central Limit theorem implies V,"Z’g/ JU is asymptotically distributed
N(Og+,I+) provided that for all k in R*" and some § > 0

U
(CL7) Y. E(K'V/ Zig, [**)/ U > 0.

u=1

Define ¢ =x'V;", and note that by the properties of the Rayleigh quotient ¢'¢p <k'k/ A,

‘min 2

i.e. for any

given K the elements ¢, of ¢ are bounded. By Minkowski's Inequality and (C1.2)
K+
(CL8) E(K'V, ' Zie, ") =E( ) ¢ 2, .8, )

k=1

X 1 246 X 1 246

+ +

S[Z(Emkz:uksu |2*"><2“”] <[Z(|<ok 2 A)MJ <o,
k=1

k=1
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s0 (C1.7) holds and using (C1.1), we can say that V,'M,, JU (Y, —7.)is asymptotically distributed
N(Og..Ix.).

We now show that U \7(%) , for the three covariance estimates considered in U5, converges
almost surely to the asymptotic covariance matrix M,'V, M}, of JU (Y. —v.). Depending upon whether
assumption U5a, U5b or U5c hold, we have

N ’
(C1.92) V,, = 022% = oM, (if USa);
N
(CL9b)V, = ZE(Z“U’ Z) (if Usb);

C ’
(C1.9¢)V,, = ZE(Z“svsczﬂ) (if Usc).

c=l1
All of these expressions are positive definite for sufficiently large U (by U3b). They are also bounded, as

examining the diagonal terms we see

(C1.10a )Z i

u=1

U2a & Jensen's Inequality

E(z

+uj +u/) < Al/(lﬂs)

b

icu

U3a & Jensen's Inequality

31 1 S E(Zﬂl +uju u) 1/(1+8
(CllOb)Z ’ <Z %o < A1
u=
Cauchy-Schwarz Inequality ccu
U3a & Jensen's Inequality

C U
(Cl IOC) Z +c/8cz+(/8( ) < E(Z+(/ +(/8 g, ) < Z E(ZH// +u/ u u) < Al/(1+5)

c=1 U c=1 u=1

For the homoskedastic covariance estimate, assuming U5a and using § =¢+Z,(y, —7,) we have
1 ayn
I Z'Z,\ € N
(C1LIDUV,(7,)= , wWhere
U ) NN-K,

APA ’ '
g'e g'e U €Z, R U v L7, N
—= - V.1 )+ (0 -1) —— (,-v) > o,
N — N —— U —_—

— —_—— — as. —_— as. — as.

as. <1 a.\'. >0, <1 —> 0%, a.s.bounded —0x

— o by 0%, by(CL5) by (CL5)  by(C1.1)&(C1.10a) by(Cl 5

Markov's Strong Law by (C1.4)
~ a.s.
soUV,(¥,)-M;/c> =0, , ,whereM,;'V,M, =M, /o’ (if U5a holds),

and where we use the fact that (C1.1) and the Continuous Mapping Theorem Corollary imply that

(Z.Z2,/U)" -M;) —) 0,..«.. For the heteroskedasticity robust covariance estimate we have

(Cl.lZ)UVr(?J:(Z*Z*] A(Z;]L] , where

U

K+ K+
+zlg HIZ

Y +ij +zk i +z/Z+sz +z/Z+sz
p= +2Z(7+, m)Z LD I AT (A m)z

i=1 =1 m=1

V4

+im
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The last two terms of Aj, converge almost surely to 0 as v, —7, , which converges almost surely to zero, is

multiplied by terms which are asymptotically almost surely bounded:

Cauchy—Schwarz Inequality Cauchy—Schwarz Inequality icu
N U ’ 2
Z,. 2,22 2. 22,22 22,27 (z
+if < +ik < +il < +im +ij < +ik
(C113) z i < Z i Z +il “ +im <4 I I Z +in <4 z +un +un
i=1 U i=1 U i=1 n=j,k,l,m i=1 n=jk,l,m u=1
U ' 2 2 2
where Z (Z+unz+un) _ Z E(Z-Hm +un) _) O & Z E(Z-Hm +un) < Al/(l+§) ,
u=1 U u=1 U u=1
Markov Corollary, Jensen's Inequality & U4
Cauchy—Schwarz Inequality icu
N ZZ 0 ZnEi 2522 (z' Uz 7z e )
Z i 7k il | |Z +in Z +il i | |Z +1m +un Z +ul ™ +ul®u®u
i=1 U n=j,ki=1 U n=j,ku=1 u=l1 U

U 2 2 U
Where Z (Zirunzﬂm) _ZE(ZJrun +un) _) 0& z +u[Z+u[8u8u _ZE(Z;u/ZH{/a;gu) ii
u=1 U u=l1 U u=l1 U u=l1 U

Markov Corollary, U3 & U4

2 U ’ ’
and ZE(ZHM +un Al/(l+§)&ZE(Zﬂl/?}ulaugu)<A1/(l+§)'

Jensen's Inequality, U3 & U4

2 |1+§

The expectation of | Zieu ZoGZ. is bounded as

Cauchy-Schwarz Inequality Holder's Inequality icu

(CLI& E( DY zyz,8 "< E( ] D206

ieu n=j,k icu

U3a

A< \/HEGZZW 240y < \/ [1E(Z, 2.8 8 ) <4,

n=j,k i€eu n=j,k

where u; denotes the union grouping to which observation i belongs. Consequently, given USb, by the

Markov Corollary
g 1 S ZyiZyi g S E(Z+z ik )
R R 3 D B
< E(Z+y Zi € )
A=) ——7 —> 0 and UV,(§,)-M;'V,M —>01< «, (if USb holds).

i=1

For the clustered robust covariance estimate we have

1 1
N R Z' 7 Z! 7 : e Z+ kﬁ
CLIOUY =|——| A|——| , whereA ; = L+
( ) cl(Y+) ( U \J [ U j Jk ; U
+( Z+c Z+c c < Z+c Z+( +c 8 & & A A C Z;C.ZJF(_ Z;C Z+('m
S22 PN g I3 YA )
e=l c=l =1 m=1 =1

Again, the last two terms of A; converge almost surely to 0 as v, —¥, , which converges almost surely to

zero, is multiplied by terms which are asymptotically almost surely bounded:
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Cauchy—Schwarz Inequality

’

(C1.17) ZC:M < Z(zwzm) Z(Zﬂkz“m)

c ' ' c ' '
Z (Z+C/Z+Cjz+dz+d ) Z (Z+ckz+ckz+cmz+cm)

<
c=1 U c=1 U U c=1 U c=1 U
Cauchy—Schwarz Inequality ccu
U ’
H Z (Z+cn +cn H Z (Z+un +un)
n=j,k,l,m c=l1 n=j,k,l,m u=1
2 2 2
where Z (Z+un +un) Z E(Z+un +un) _) 0 & Z E(Z+un +un Al/(1+5)
u=1 U u=1 U u=1

Markov Corollary, Jensen's Inequality & U4
Cauchy—Schwarz Inequality

2
i Z+(1Z+ck£ Z(Zﬂks ) Z(ZH/ZH/) Z +ckZ+ck8c£ HZ(ZMH +cn

c= c=1 n=j,lc=1

ccu

2
U
<4 Zz+l¢kz+uk8u u HZ(ZHM +un
U

u=1 n=j,lu=1

2
Where i (Z;u"ZJr””) _ z E(Z+un +un) _) 0& z +ukz+uk£u£u _ i E(Z;ukZJruks’uSu) g 0
u=1 U u=1 U u=1 U

Markov Corollary, U3 & U4

U

and z E(Z:u(n]ZHM) Al/(l‘*d) & Z E(Z+uk§]+uk£u u) Al/(1+§).

u=1 u=1

Jensen's Inequality, U3 & U4

/ 1+ .
The expectation of | ), _, Z. 8.2, | is also bounded as
Cauchy-Schwarz Inequality

(CLIE(Y.Z 22 & ") <E([] D@8 ")

ccu n=j,k ccu
Holder's Inequality Cauchy-Schwarz Inequality ccu
U3a
\/H E(| Z(Z+c»1 c) Hb) < \/H E(| zz+cnz+cn£c£c 1+b)< \/HE(| Z+u n+u, n 1'4 u |l+6) < A
n=j,k ccu n=j,k ccu n=j,k
where u. denotes the union grouping to which cluster group ¢ belongs. Consequently, given USc, by the
Markov Corollary
< 1 < 1 +(£Z+(£ CEZ+( +(£ @
(C1.19) ZEZz;cjscz;cksc - ZEE > 57 5, =Z Lk Z (#:of 2iafe) =5 0,
u=1 ccu u=1 ccu c=1 c=
E(Z+c -%—ck8 ) -1 -1
A, - # 230 and UV,(7.)-M,'V,M; —>0K «. (if U5Scholds),
c=1

which completes the proof of the lemma.

Lemma B2a: As U/M is bounded from above by 1, (C1.1) above allows us to state that
2 Bl U 5

K. xK,*
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As My is almost surely positive definite for all U (equivalently, by A4, M) sufficiently large with
determinant greater than some y > 0 (U2b), and U/M is bounded from below by N ™' (assumption A4), by
the Continuous Mapping Theorem Corollary Z'Z, /M is almost surely positive definite for all M
sufficiently large with determinant greater than N 'y > 0. Since the trace of My, is bounded from above
by 4""*YK., (C1.10a above), by the trace and determinant property of eigenvalues we know that for
sufficiently large N its smallest eigenvalue is almost surely greater than 2= y/(K.4"" " )NK,-1)> 0. It
follows that almost surely for all M sufficiently large the smallest eigenvalue of Z'Z, /M is greater than
N~'). Since Z and W are part of Z (assumption A2), it follows from the properties of the Rayleigh
quotient that the minimum eigenvalues of the sub-matrices Z'Z/M and W'W /M are greater than or equal
to that of Z',Z, /M . Consequently, for sufficiently large M both matrices are almost surely positive
definite with determinants > N “2* and N 942, respectively. By Jensen's Inequality the assumption

E(| x’; [""Y< 4 in A3a implies that E(| X)) "%y < A4""* for n=1...3, so by the LLNHDS Corollary above

X'X XX X1, 1,X M E(x,x) E(x ) E(x")
Cc2.2 -G, = _ M oMt m”’m m m 0 ,
( ) M (M M M ) (; M ; M Z )—) PP

and from Ala for all M sufficiently large the determinant of G,, is almost surely greater than y > 0, so
using the Continuous Mapping Theorem Corollary the same can be said of X'R/M .

A E(W 8,8 W

mr>m>"m mi|

By Hélder's Inequality and A3a, E(|W., €,&,W,.|""") < E(W, &8 W 10y

mq©m®m mqg®m®m mq|

<
Aforallg & r=1...0. Consequently, using the LLNHDS Corollary once again

W Z Wm SWISWIWYI Z E(Wm SWISYHW ) :0

C2.3 R
( ) u 00

m=1
where by A3b W, is positive definite for all M sufficiently large with determinant >y > 0, and so by the
Continuous Mapping Theorem Corollary the same is true of WW, /M . As U/M is bounded, from (C1.4)

we know that:

Z' Z’ a.s.
(CZ.4)7‘°’=£Z wbe Do

M u=l U
Since W is included in Z, and 1, W) = &'W, the implication, as indicated in the lemma, is that
WW WwW w'w W' N as
(C25) e e & "Ye _ e e W €& W A T BN OQVQ'
M M M M M M :

Lemma B2b: As Z and Xy are part of Z, (C1.4) and (C2.4) above establish this lemma.

Lemma B2¢: With regards to the matrix inverses in the Lemma, for an invertible positive definite
matrix A the largest eigenvalue of A™'is equal to the inverse of the smallest eigenvalue of A. From the
proof of B2a we know that each of the matrices in Lemma B2c is invertible with a smallest eigenvalue
almost surely greater than some A > 0 for all N sufficiently large, so it follows that the elements of their
inverses are all almost surely bounded. For the means of products of columns of X, by Jensen's Inequality
%, |1") < 4 in A3a implies that E(| x,, |1+”*) <A"* and E(|x,, ) < 4" forn=1,
2, 3 or 4, and by the LLNHDS Corollary @ (x,,,) — @(E(x,,,)) —> 0 , which tells us the means of powers up

mp

the assumption E(| x;
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to 4 of x are bounded. The sample mean of products of 2, 3 or 4 different columns of X can then be

bounded by repeated application of the Cauchy-Schwarz Inequality:

Mox, X uox2 A% & Fop o Ky (S0 X,
(C26) ‘Q)(X X )‘ = mpm e < mp mq mp mq Zmr
mp”* mg mZ:: M ; M mZ:; mp”*mq”* mr mZ:; M ; ; M

M % M % M 4 M4
\/ Z qu X X s
m=1 M m=1 M m=1 M m=1 M

Turning to |m(d;dy)|, where d;id}, is the product of the elements of two columns of (Z;,¢), let d,; denote

& ‘a)(xmpxmq erxmx )

the group u observations of the j* column of (Z.,£) and d; the i" observation of that column. Then

(C2.7) |m(H d)| <

C—Schwarz Inequality

d,d E(d,d
& Zl: "2]“’ —Zl: (5 “’)—>0 while £(d/,d,;) < 4",

Markov Corollary & U2a

Jensen's Inequality & U2a

so the mean of the product of 2 elements from the columns of (Z,,¢) is also almost surely bounded. Next, we
note that U3a and U4 imply that for any d,; and d,; denoting u group column elements of (Z,,€), with no
more than one of these referring to &, there exist positive finite constants ¢ and 4 such that for all

(C2.8) E(d,d, d,d,|") < 4.

uj " uj
When one of the d,; denotes elements of g, (C2.8) is merely a restatement of U3a. When both d,; denote

elements of Z., we use Holder's Inequality & U4 to show that :

Holder's Inequality
U

(C2 9) E(|Z+ujz+ujz+ukz+uk|1+5) < \/E(‘(Z-Hg +l¢_/ )2|1+§)E(|(Z+ukz+uk)2|1+§) < A

We then have
Cauchy-Schwarz Inequality ieu,M >2U
U 272 U 2 32 U
(€2.10) |m(d”dl-2di3d,-4>|s\/ZZdﬁ”ZZdjj“ st" Gl y Sl
u=l ieu u=1 icu u=1 u=1
vddd,.d, Edd.d d
& Y Z , ;}"k "k)—>o while £(d;,d, d],d,,) < 47"
u=l1 u=1

Jensen's Inequality & (C2.8)

Markov Corollary & (C2.8)

Similarly, for m,, m,, and m,, let the letter g (G) denote either ¢, m or v (C, M or V), so
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Cauchy-Schwarz Inequality

_Jz S a0 Y S d,

(C2.10) |m (dyd,,d;xd;,)| = Z Zd' d, d, d,

- l gt geu gcu
Cauchy-Schwarz Inequality gcuM>U
\/Z zdgld 1d;'2dg2 Z ngd 3d;, dé4 > \/Z duldulduzduzz duSdu3du4du4 ,
u 1 gcu u= 1 gcu » l
. 1, , U ' ' ' , )
while Zl d“fdujdukd Z] U E(dujdujduk uk) _) 0 & E(d dujduk uk) < Al/(l 5).

Jensen's Inequality & (C2.8)
Markov Corollary & (C2.8)

Together (C2.10) & (2.11) establish that m(d; dind;zds), m(dindp,djdis), m,(dindin,didys) & m(dndi,did;s)
are all almost surely bounded, which completes the proof of the lemma.

Lemma B2d: When looking at the product of # > 4 column elements of X, we have

|H mp

n
Xmp
|a’(H Xonp)| Z# 1 n 2 32 <
p=1 =1 p=1 m=1 mp mp
(C2.12) —— <l <s[ ]| Max=22 | > ==,
Ma<5—2> Ma<5—2> M <— 2) ool | <M M M

where we make use of Holder's Inequality. As for the m,, m,, and m, mentioned in the lemma, with g (G)

denoting ¢, m or v (C, M, or V), we can say

m(d2d2,d%d?,) ddid’d?, did? d3d24
(C2.13) . zzz ! L= <M / il zaz zzz J3%
M g=lieg jeg Ml 2 1<N M g=lieg jeg
< MaX 11 12 NZZ J3 J4 < M dtld122 NU i du3du3du4du4
i<N prr et ,<N M2a M — U )

— 4
where N from A4 is the maximum union grouping size. Since Lemma B2c showed that Ct)(l_[k=1 X, )18

bounded, while the average of d/.d ,d,,d,,is as seen in (C2.11) similarly bounded, we need only show

a.s.

(C2.14) 3a <5 such that: Max x, /M —0 ¥V p and Max d;d;/M“go v jk.
m<M i<N

From A3 and (C2.8) above, we know that for all m, u, j, k & p there exist finite positive constants ¢ and 4

such that E( x,,, ["°) < 4 and E(|d,d,d,d,[")<4. Applying Markov's Inequality

mp uj

(C2.15) ZP(pr >M7)= ZP(xM >MY7)< Z

M=l

S ! ! S A :
;P(dwdwdwdw >UY)< UZ}W <o if 2p(1+5)>1.

So, following the Borel-Cantelli Corollary, both Max,_,,x. /M’ and Max,., d.d; /M*"

mp ij ik

dd.d,d, /U 27 are almost surely bounded for y > Y4(1+9)™, and consequently for all a in (y,"2)

< Maxu<U uj " uk

(C2.14) holds, proving the lemma.
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Lemma B3a: For n =1 or 2 we need to show that the following is bounded:

[mek w(H W 4y D dudy = % dd, I MY

1 k=1 iem m=l iem
(C3. ); I Z} "

~[o([[x2)- w(H 3, 10, (dydy,d o)~ m(ddy)']

All of these were shown to be bounded in the proof of Lemma B2c.
Lemma B3b: Lemmas B2a and B2c¢ already established that 7? ’7? IM & ‘WS"WS / M are almost
surely bounded with determinant > y > 0 for all M sufficiently large, so all that remains is condition Ib.

Our objective is to prove that for all integer 7> 2 and all p and ¢

7/2 7/2 as.
(C3. 2>M2 Z ,nI,Z (mepj [ﬁﬁ] —0,
m=1

m=1

where W, = Zlem w,€; . We begin by noting that:

771
Max %,; Maxw; e

m<M """ m<m

M

(C3 3) m=1 m=1 m=1 m= l —
: M M /2 M M 7/2 M 2 M W
~2 ~2 ~2 ~2 mp mqe
2 me Z quc me Z M;mq.c 2 M Z M
m=1 m=1 m=1 m=1 m=1 m=1

With regards to the denominator in the last expression, by the Schur-Horn Theorem the smallest diagonal
element of a symmetric real matrix is greater than or equal to its smallest eigenvalue. Lemmas B2a and
B2c established that X'X /M & W' / M are almost surely bounded with determinant > y > 0 for all M
sufficiently large. For a K x K matrix with determinant > y > 0 and non-negative diagonal elements
bounded from above by 4', by the trace and determinant property of eigenvalues the smallest eigenvalue is
bounded from below by A(K)= y/(K4"Y~(K-1). Consequently, the denominator in the last expression is
almost surely > A(P)A(Q) > 0 for all N sufficiently large.

Turning to the numerator, since for c(m = Rnp OT Wiy

|+ o(d,)’

and Lemma B2c¢ showed that both w(x,,,) & w(W,.) = m(w;e;) converge almost surely to the bounded

72 2 2
(C3.4) Max,’ < Max 47 +2,[Max(4;))

mean values of E(xmp) & E(qug) respectively, to prove (Ib) all that remains is to show that
MaX m<M meMaXm<M

6, 6" and 4, with A(1+26") > 1, such that E(| x;
Markov's Inequality

M —> 0. From assumptlon A3a we know that there exist finite positive constants

mqe

"y < A and E(] Wi, |")< 4. Consequently, applying

mp |

(C3.5) D P(x;, = M) =Y P(xy, 2 M**) < ZL <o if 2a(1+6")>1
M=1 M=1

& ZP(WM£>M )<2M,f1 7 <0 if b(1+6)>1.

M=1

Both conditions can be met witha>0,b5>0anda + b <1 if 9(1+29*) >1 as
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1 L 0(1+26")-1

(C3.6) 1>a+b> —+ = .
20+60) 1+6 2(1+¢9)(1+0)

poses no contradiction. We then see that Max sz Max,, W,/ M ‘”bls by the Borel-Cantelli Lemma

mqe

Corollary almost surely bounded by 1, so Max,_,,x, Max,,_, w, ./ M 5o.
Lemma B4: From the proof of Lemma B2a we know that WW, /M —W,, - 0,0 &
WW /M — W,/ M —> 050,50 WW,/M~-W, - 0,,,. When using the homoskedastic covariance

estimate, from US5a we have

(CADW, ZE(WmsmsmW ) ZZZ

m=1 m=liem jem m=1iem

E(W EWE)) zza E(w w)) ngiE(w;Wu)
M u=l1 U '
where we recall that we use the notation w/ to denote the i" row of W. As W is part of Z. (assumption

A2), from U2a and the Markov Corollary we have:

W'W E(W W) LWW LEWW,) e
> =2 -2 — 0

C4.2 )
( ) u=1 u= U u=1 U o0

while, as ¢; is iid, by the Strong Law of Large Numbers,
N 2 a.s.

g'e g,
:Zi—>0' s
N =N
so, as U/M is bounded between (1, N "), W, /M —(W'W/M)(¢'e/ N);SOQXQ, as stated in the

lemma.

Lemma B5: We need to show that for n = 1...4, d;yd;, and dd;s each equal to the product of the

elements of two columns of (Z,,€) with no more than one in each case equal to €, and some « in (0,%%)

[M aman 20)1_["';% (M~ amax(e ZO)H m/f)]2 M [ZdildidedM_izdﬂdﬂdﬁdM/M]z

C5.OM™ -1 iem m=1iem
(C5.1) Z " Z "

:[Mfzumax(nfz,())w(ﬁx’ik) (M amax(n— 20)0)(1_[ mk)] [mm(d d,d. d14,d d fwd 4) m(d,d,d, dm)]
k=1

The m() means of any 4 columns of (Z,,€) (no more than two of which are &) have already been shown to

be almost surely bounded (Lemma B2c), while from Lemmas B2c and B2d we know that the w() mean of
n=1..4 columns of X times M ™2 and the w() mean of 2n =2, 4, 6, or 8 columns of X times
M 20) are all almost surely bounded. So all that is needed to establish (C5.1) is to show that:

m, (d,d,d.d,.d;d,dd,

2
(C5.2) = I, ) = M_zi[Zd”didedM] = M_zi(zdizldizz zd‘/z'Sd?th

m=1\iem m=1\_iem Jjem

dadly dz NN & dpd; dld: NN
ll 12 Zzzdj3 14_ <N ZZ /3 j4 :M 1}\[:2 (d 124)_)0

Z<N M m=1 iem jem ! m=1 jem
NN /M is bounded by N? and m(d ;d;) is almost surely bounded by Lemma B2¢. From (C2.8) earlier
we know that E(| dU 2 "9)< 4 < oo for some J > 0, so applying Markov's Inequality
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0 " A
(C5.3) %P(dfvjd,f,k >N < Zl T <% if a(l+8)>1..

As 0> 0, we know that there exists an a < 1 such that (C5.3) holds. so by the Borel-Cantelli Lemma
Corollary max,_, d;d; / N"is almost surely bounded by 1, whilemax....d’d? / N 250 as desired.

Lemma B6: From the proof of Lemma B2a we know that W/, /M —W,, gOQxQ . When using
the heteroskedasticity robust covariance estimate, from USb we have

(C6.nw, = ZE(WmS”’SmW’”) ZZZ _ZZE(W & W;) ZN:E(W W)

m=1 m=1iem jem m=l iem i=

From (C1.14) earlier we know that £(| z_,
applying the LLNHDS Corollary and using the fact that N/M is bounded between 1 and N

w.e'w! E(we'w) M(W'W, as.
Z ii i 7 _ WM
oy NU M

E(wlglg,w )

1+0

z..6 ["?)< A<, Since W is a part of Z, (assumption A2),

(C6.2) Z

thereby proving Lemma B6.

Lemma B7: We cannot directly invoke Theorem 111, as the expressions in the lemma involve
cluster groupings and generate somewhat different results, but the method of proof will be similar. To
minimize clutter, for the purposes of this proof we change notation and let £,,1, £, ... (or generically £,,)
each denote the product of 1 or 2 columns of T, with x,,1, X, ... (X,) and 1, Zo, ... (t) denoting the
products of corresponding columns of X and T. We also let v;; and v;, each denote the product of two
columns of (Z,¢). In addition, define m; as the group m associated with observation i, and Im, = m, a (0,1)
indicator function for whether m, = m;, and note that, since for all m ¢, has the same expectation across
the row permutations 7 of X, E,(t,,,) = E,(t,,), with similar results for higher moments. We begin by
using the symmetry and equal likelihood of permutations to calculate the expectation of ¢, and products

of ¢, across the row permutations T of X:
M
(C7 1) E (t k) Z ](;k - a)(xmk) E (tmk) Z ’Vlk - a)(x)ik)
m=1 m=1

2

X M X o(x, )M ox)
&E t ) mk " nk _ mk = mk — mk .
7'( mk Yn( m)k) ;;M(M 1) ;M(M_l) M -1 M-1

We then use these to calculate the expectation across row permutations 7~ of the expression in (L7a):
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(C1.2) Ey(m 1y, =3 T3 LrtEm Va2 T(t’”‘)v” 2 — oty ), (vy,,5)

c=1 iec jec

E(m, ([,1"11:",2) )= ZZZZZZE (tm1)"&1"/12"11"/21%:”1[

c=1 d=1 gec hec ied jed

+ZC:ZC: ZZZ T(t)n 14m 1)"5,1"/12"11"/21,” ”

c=1 d=1 gec hec ied jed

Im =m 2M . Im =m
— a)(?(’,il) Z g =i +|:a)(xml) _ a)(xml)i|[mc (V,-pvjz)Z _ Z g i J

M -1 M -1 M

c ¢
h I _ élvh2v11v72
where 307, , =222 2.2 0~

c=1 d=1 gec hec ied jed
2
= E ([m (t,v,v,,) — @(x,,)m, (v, Via ) =
2
Z Img:m, - mc (vil H ij)
M -1

where the last follows by the fact that x,,; is at most the product of elements of two columns of X, while v;;

[(x2) — @(x,1)'] 0,

and vy, are always the product of elements of two columns of (Z.,g), so o(x,,), @(x,,), & m.(v,,v,,) are
by Lemma B2¢ bounded, while using the Cauchy-Schwarz Inequality and the bound N on the size of

clusters we see that

©7.3) [X1, -,

EETETy s SISy

C
c=1 d=1 gec hec ied jed c=1 d=1 gec hec

2
Vg 2

S v VoV | —
g _ 2 2 2
z Im =m; <N Z z M =N mc(vgl’th)’
=1 ¢ hec

ied jed c=1 ge
JR— C J—
since ) ISN & Z 1, _,, <N given the upper bound on maximum grouping size.
Jjed d=1 ied ¢
So the expressions in (L7a) converge in mean square, and hence in probability to zero, as stated in the
Lemma.’

Turning to (L7b), we first calculate the expectation:

(C74) E (tmltrnZ) = a)(xmlxmz)

t Ittt Mao(x,)0(%,,)  O%,%,,) _
E t t 'ml ¥n2 _ 'ml ¥m?2 ml m2 ml”m2
rtm :’nim)) ;;M(M—l) ;M(M—l) M-1 M-1

E . (t.t. )vilij

C
E (m (tzl il /2v/2)) Zzz ’”A:m/+zzz (]);;,n) Im,-;tm/-

c=1 iec jec c=1 iec jec

= a)(xmlxrnZ )mv (vil ijZ) + a)(xml)w(xrnZ)[mc (vil’ij) - mv (vil’ij )] + Oas.(l)’

a)(xml)a)(xfrd) + oa S, (1)

E (tmlt/nZ)vtIVJZ

*When comparing results in this section with the Lemma, keep in mind that in the proof 7, may denote 1 or
the product of 2 columns of T, but in the statement of the Lemma it only denotes one column.
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where we use the notation o, (1) to denote sequences which almost surely converge to zero and make use
of the fact (Lemma B2c) that the w() mean for products of up to 4 elements of X are known to be almost
surely bounded, as are m.(vi1,v;2) and m,(v;1,v52). Calculating the second moment is considerably more
complicated.

We begin by calculating the expectation of the product of four arbitrary £,,... .4, varying by

whether indices do or don't match

M
tm tm tm tm
(C75) ET(tmltn12tm3tm4) = Z Lmd 3 =

M a)(xn1lxm2xm3xm4)

E (t t ¢t .t ) ZZ mltm2tm3tn4 _i tmltn12tm3tm4 — a)(x X % )a)(x )+0 (1)
ml¥m2¥m3 njm por o M(M 1) P M(M _1) ml”*m27%m3 m4 a.s.

E (t t ot ) zz Luttmatuztua _i ttmatustna :a)(x % )a)(X % )+0 (1)
T \tml¥m2 (r;m) 21:,") - M(M 1) ~ M(M _1) ml”m2 m3”m4 a.s.

M M M 4 M M 4
zzzt)nlt)nZtMSt(M - zzztnv Htmk

m=1 n=1 o=l v=3 m=1 n=1 k=1(#v)
M M M 4
=2 D tutwtutu 22 ] [t
E, (tmlt’ﬂtgm)t{):m,n)) = = n:lA/[(M M _,;:)1 = = (x,,%,,)0(x,,3)0(x,,,) + 0, (1)

M M M M M M 4
ZZ D tutiatoitys Z Z ZZZtﬂwt{W [Tt +
m=1 n=1 o=1 p=1 wel v=wtl m=l n=1 o=1 k=1(#w,v)

4 M M
2222 [Tew+ X334 TTtw 63T Tt .

Vel mel n=l  k=1(2v) v=2m=ln=l  k=l(#v) m=1 k=1

E (tm tﬂ to t ):
T ! (#2m) (jm,n) f:m,n,u) M(M—l)(M—2)(M—3)

= H w(xmk) + 045, (1)9

where H::um t.« denotes the product of across £ = 1 through 4, excluding v (or w & v if # w,v), and where
the 0,,(1) terms incorporate all elements whose limit based upon Lemmas B2¢ and B2d are known to be
0, taking into account that each £, is at most the product of two columns of X. (C7.5) retains terms which
might be unbounded. For example, if each £, is the product of two columns, then @(x,,X,,X,:X,.)1s the
mean of the product of 8 columns, and bounds on this have not been established, but Lemma B2d tells us

it will almost surely converge to 0 if divided by M**. Using (C7.5) we calculate the second moment:
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(C7.6) E.(m.(t,v,,t /2‘,/2) )=E ZZZZZZtélthztlﬂ/zvg,lvhzv,lvlz

c=1 d=1gec hec ied jed

=o,,(D+ w(leij)Z]mg =my=my=m, T a)(xml)a)(xfnZ)Z(]mg =m; Imh:m, -
b 0t 5, Sy T 4Ty o Ly =20 )
+ a)(xlilX/HZ)a)(XIZ)Z(Img —my=m, T Img:m,:m,. - 21mg:mh:m1:mj )
022 YOSy + Ty =2

mg =nmy =m;=m; )

mg=my=m;=m; )

+|: a)(xmlerd)* :| ]mg:mh +1m,:m/ +1mg:m/ +1mh:m1 _21mg:m,,1m1:m/ _21mg:m/ m,=m;
a)(xml)a)(xm2) + 8I)ng :n1h :)7[/- :)7[/- - 2I)ng :n1h :)7[/- - 21n1g :)nh:n’l/- - 2I)ng :n'l1 :n’l/v - 21n1h :)7[/- :n1/-
2 2
+ a)(xml)a)(xm2) Z(Iﬂ'lg :)7[/- - ])ng :n'l1 ]n1h :)7[/- - ]n'lg :n1h :)7[/- - ])ng :n'l1 :n’l/v + 21’ng :n1h :)n/-:"’[/- )
2 2
+ a)(xrnZ)a)(Xml) Z(]m,,:mf - Img:m,]m,,:m/ - ]mg:m,,:m/ - ]m,,:m,:m/ + Zlmg =my=m;=m; )
2 1 + 21 _n1h :)7[/- + 21n1g:n11:)n/ + 21n1g:n1h :)7[/- + 21n1h :)n/-:)n/- +I)ng:n1hlﬂ'[/-:)n/- +I"’l :)7[/-1”1h :)7[/-
F O ) 000 Z I 61 I I I ’
n’lg:)n/- )nh:n'lv - m :ﬂ'[h:n’ll:)nv - )7[0:”1;‘ - n’ll:)n- - )7[0:”1v - n’lh:)n/- - "’lg:n'l1 - n1h:)n-

where Zl (orl,1)= ZZZZZZ 5,1"112 Yelna¥n¥ Jlor 1 1),

c=1 d=1 gec hec ied jed

and where the o, (1) emerges from the product of the o, (1) terms in (C7.5) with the }’ I terms in (C7.6)

which, making frequent use of the Cauchy-Schwarz Inequality are all shown to be almost surely bounded

(C77) Zlmg:mhzzlm,:m/:mv(vgl’th)mc(vgl’th)’ Z]mg:m,,lm,:mj:m (Vgl’th)2
C ]VZ a.s.
DNIIED 3 33020 3 KON AR SRR

gl>
c=1 d=1 gec hec ied jed
_n _ _ "non _ u " _ _ "
for u="m,=m,=m","m,=m, =m;", "m, =m, =m,

n — — ".
or "m,=m,=m"

c c lvh2 c c vzlv/2 N a.s.
WS Z;;Z}ZZ;Z; quzzzzz 1, e —m (vgl,v,,Z)m (vgl,v,,Z)—>0,
c=1 d=1 gec hec ied je

c=1 d=1 gec hec ied jed

for a,bzmi,m. or ab=m.m.:

S élvhz N’ @3-
‘z m,=a m,, ‘ ZZZZZZ <—m (V th)_)O’

m =a m, =b — gl»
c=1 d=1 gec hec ied jed

fora=gorhandb=iorj

S50 3030 3030 SRS 203305 ooy NGRS

m,=my, M gl
c=1 d=1 gec hec ied jed c=1 d=1 gec hec ied jed

keeping in mind that v,; & v, are always the product of elements of two columns of (Z;,¢), so by Lemma

‘: \, m,=my,

B2d we know that when divided by M all m,. and m, terms involving the square of these converge to 0

If each ¢; involves only n; = 1 columns of T, then all the w in (C7.6) are known to be bounded

and hence vanish if multiplied by something that converges to 0, so using (C7.7) we can simplify to
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(C7.8) E (m(t,v,, [V )2 )— (a)(XlemZ m, (v, Vi )+ o(x,,)o(x,,)[m. (v, Via )—m, (v, Via )])Z -0

h a.s.
=k, ([mc (taVast ov)0) — (%, %,,)m, (V) Vis )= o(x,,)0(%,,)[m. (v, Viy)—m, Vi Via )]] )0,
and see that the expression in (L7b) converges in mean square and hence in probability to 0. When n; + n,
> 2, 5o that at least one of the ¢ involves more than one column of T, the mean w(x’,x.,) in (C7.6)

involves the product of more than 4 columns of X, as will at least one of (x> x,,) and @(x,,x.,), and

ml

hence we don't know if these means are bounded. However, from Lemma B2d we know that if multiplied
by M ~“®"2"79 their limit is 0, as for »1 and 52 each equal to 1 or 2:°

as.
— 0 (Lemma B2d)

20 2n,+2n,
a( =

—_— B _2)
(C7 9) M a(2n;+2n,— 4)a)(xbix’z§) Mfa(nlJranZ)M 2 a)(xbix)zg) _>O

Hence, in this case we multiply m,(2,v,,t,,v;,) by M~“"*"? and see that

(C7.10) M " ""2F m (t,v,

i

a.s. a.s.
—a(2m+2n,-4) 2
b)) >0 &M e E(m (t;v,,1,,v,)") = 0,

by (C7.4) by (C7.6) (C7.7)& (C7.9)

thereby ensuring convergence in mean square and probability to zero verifvine the r‘lmm in (L7c¢).
Lemma B8: From the proof of Lemma B2a we know that W/, /M —W,, —>0QAQ When using
the clustered covariance estimate the random vectors w;e; and wy; are independent with expectation 0y if
in different clusters (U1b, U5c), so with intersection groupings v defined as the largest observational
grouping such that all observations belong to at most one cluster grouping ¢ and one treatment grouping

m, with the number of such groupings V' < N:

(C8.1)W, Z—E(Wms'"smw) Yy 3 SEEN)

m=1 m=liem jem

ZZZZE(W,&&/W D_% E[Zwvsvsvwv] s E(WVSVSVWV}

m=1vcm iev jev m=1 vem

E(wlelelw )

The expectation of |z’ ;£,2' &, " is for all v, j and k bounded as

Héolder's Inequality Cauchy-Schwarz Inequality

(C8.2) E(|Z. 8,2, .8, [°) < \/HE(I (@,,8) ") < \/HEGz;mzw,,sst )

n=j.,k n=j,k

vCu

U3a

\/HE(| Z+M Wi +ll v ; ll |1+§) < A

n=j,k

where u, denotes the union grouping to which intersection grouping v belongs. Since W is a part of Z.
(assumption A2), applying the LLNHDS Corollary and the fact that /M is bounded between 1 and N

(assumption A4), it then follows that

%In applying Lemma B2d here, as b1 and b2 are 1 or 2, I put 2n; and 2n, in the exponent on M to ensure that
the lemma is satisfied (n; denoting the number of columns of T in #; and hence the number of columns of X in x,,).
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27 Vi WeeW, < (WesW )
(C8.3) -W, = [Z—ZE[D =0,

M M v=1 V v=1

thereby proving the lemma.
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Table D1: Notation used in Appendices D & E (also reviewed as introduced in the appendices)

(1) Regression model: y =X B+Zy+¢ or y=Z_ v, +& where Z, = (Xw,Z) and y'. = (B',y"). Estimated
parameters denoted by ". X is NxPQ, Z NxK and Z. NxK .

(2) Ag and e denote the row by row Kronecker product, Ag= A e B. This appears in the form of NxP
treatment variables X multiplied by NxQ interaction covariates W (Xw) and the multiplication of W
with errors € (W;). A ®B denotes the Kronecker product.

(3) twy and xw, denote the K" and I" columns of T, and X, , with the i™ elements of these vectors given
by 2,4, Wi and X, W,y , where p(j) and g(j) denote the columns of T (or X) and W associated
with the /™ column of Ty (or Xw).

(4) Sample of N observations divided into S strata with N; observations in stratum s. Subscript s denotes
the sub-matrix associated with stratum s, as in X; and W,. Z denotes summation across
observations 7 in stratum s.

(5) T denotes a stratified row permutation of X.

(6) Yrp, =Y +(Tyy —Xy)B, denotes the counterfactual value of y following stratified row permutation T
of X under the null By, [Aiwu the associated parameter estimates.

(7) 1y & 0y denote Nx1 vectors of 1s & 0s, 0.0 a OxQ matrix of Os & Iy the OxQ identity matrix.

(8) Sample and stratum demeaned variables: T = (I, 1,1, /N)T & T, = (I v, — 1y 1 INOT,.

(9) m() and my() denote full sample and stratum means, i.e.
N

m(xl.p) = 2%, ms(xip) = z

i=1 ies s

S
s=1

X, N,
]\;’ &m(xtp)zz N ms(xip)'

s

m(x,) & m(x))are column and row vector versions of these.

(10) Q) & ﬁ)>denote convergence almost surely and in probability across the probability law governing
the data D = (Xw,Z,¢). —p> & i) denote convergence in probability and distribution across
stratified permutations T of X in probability given the data D. E() denotes the expectation across
the data D.

(11) npg denotes the multivariate iid standard normal, indicated by npg ~ N(0p0,1p0).

D. Stratification of Treatment

This appendix generalizes the results to allow for the stratified application of treatment.
Specifically, it shows that White's assumptions justify the use of covariance estimates without adjustment
for stratification (as is done universally in the published papers reviewed in Young 2019) and notes
sufficient additional conditions for use of the distribution of coefficients and covariance estimates based
upon within stratum permutations of treatment to yield asymptotically accurate inference. To minimize
notational complexity, the analysis is done in the context of the framework presented in the paper, with

treatment applied at the observation level and heteroskedasticity robust covariance estimates. Extension
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to the grouped treatment/clustered covariances of Appendix B above is straightforward but uses much
more notation.

The baseline regression model remains as in the paper

D)) y=XuB+Zy+eory=2Z,y, +¢,

where Z. = (Xw,Z) and y'. = (B',y"). We now assume that the data are divided into a finite number S of
strata, with the subscript s denoting the N; rows of each matrix or vector associated with observations in
stratum s, as in Z,. The notation T now denotes the stratified permutations of treatment X, i.e. an outcome
observed when permuting treatment within strata. We use the notation X, to denote the sum across all
observations i in stratum s, and m() and ms() to denote the full sample and stratum means, as in:

zp zp

(D.2) m(x,)=

With N =Zf:1 N; denoting the total number of observations in the regression, we assume that for all s NJ/N
> A > 0 for all N sufficiently large, so that N — oo implies (and is of course implied by) N, — oo for all 5.”
All discussion below of limits is with respect to N — o, and hence N, — oo in all strata.

In addition to the above, we assume:

(S1) White's assumptions W1 - W4 and the additional randomization specific assumptions Al - A3
given in the paper hold for the entire sample. In addition, for all strata s X, E(w,w'¢’)/ N is non-
singular with determinant >y > 0 for all N, sufficiently large.

(S2) While the expectation of non-treatment variables may differ systematically across strata, the
asymptotic strata average first and second moments of treatment variables are almost surely

identical, i.e.

ZE](\;(I) _ZE](\;‘) 0, & ZE(XZX’) ZE(XX) 0,, foralls,z=1.S.
ies s iet t ies iet

White's assumption W3b (given in the paper) ensured that the condition on the determinant in S1 holds for
the average across the entire sample. The proofs later on require that it hold for individual strata as well.
Assumption S2 corresponds to the A5 mentioned in the conclusion of the paper. It allows, but limits,
heterogeneity of treatment across strata.

Since White's assumptions all hold, his result holds as well, and JN (Y, —v.)is asymptotically
(across the data generating process for the data sequence Z,,g) normally distributed with mean 0, and
positive definite covariance matrix MV, M (as defined in W1-W4 in the paper), to which N times the
heteroskedasticity robust covariance estimate calculated without consideration of the strata almost surely
converges, NV LJ)-MV,M, 30 x..x. (see White 1980 or the more general proof for clustering in
Appendix C above). As noted in the paper, White's assumptions in particular imply that average linear

treatment effects do not vary systematically across strata, as a common parameter vector y. applies to all

’Given White's assumptions, strata for which this does not apply asymptotically almost surely have zero
influence on coefficient and covariance estimates and can be ignored.
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observations and E(z.;) = O for all i. As in the non-stratified framework considered in the paper,
White's assumption that the variables are independently distributed can be reconciled with dependence
between observations within strata brought about by the application of a given distribution of treatment to
the observations by appealing to O'Neill's (2009) de Finetti result that if the cumulative distribution
function F of treatment within strata converges to a given distribution the exchangeable random variables
asymptotically have an iid distribution.
Assumptions S1 and S2 ensure that the following hold:
Lemma D1: Across the probability distribution of the data generating process for D = (Xw,Z,¢):
(@) ZZ/N, WW/N, XX/N & \TVE’\;VS / N are all almost surely strictly positive definite with
determinant > » > 0 for all N sufficientlv laree. as are X'X./N.and W.W,, /N, for all strata s,
while W/W./N—=W/W./N 550,,, & W.W, /N, ~W.W, /N, -0
(b) Z'e/N 5> 0, & Xiye/N S 0,

OxQ -

(c) The full sample and strata means of the product of the elements of one, two, three or four
columns of X or the elements of one, two or four columns of D (no more than two of which are
¢;) are almost surely bounded, as are (Z'Z/N)™, (W'W/N)™", (X'X/ N)’l,(VNVS'\&’V£ /N),
(XX, /N,)" and (W, W, /N)".

(d) For p and g denoting columns of X & W used to make any column of Xy:

‘/ﬁ[i ]]\\[;ms (x, )m (w, z;) —m(x, )m(w,z, )]{ 27 )_ 4 20

N N

s=1

(e) For p and ¢g denoting columns of X & W used to make any column of Xy:

ﬁ[i Z]vas (x;,)m (W, &) — m(xip)m(wiqgi)] 0.

s=1

In the paper, and generally in this on-line appendix, convergence almost surely is with reference to the
probability distribution of the data while convergence in probability or distribution is with respect to the
permutations T of X. However, there are some instances in this appendix, such as in Lemma D1, where
convergence in probability is with respect to the distribution of the data D, which I note by using the
notation pp. Because of this, result (R1) in the paper is now stated in terms of in probability, rather than
almost surely, across the distribution of the data. Stronger assumptions ensure almost sure convergence,
but convergence in probability is sufficient for the objective of this appendix. Lemmas D1d and D1e are
used later on in proofs of the following Lemma:

Lemma D2: In probability, across the distribution of the data D = (Xw,Z,¢), the following hold across

the probability distribution generated by stratified permutations T of treatment X:

(a) With no more than one of the d;; denoting ¢;,
p p
m(t,.pdl.jd,.k) - m(xip)m(d,.jd,.k) — 0, m(tiptiqd..d. ) - m(xipxiq)m(dy.dik) — 0.

ij ik

(b) Forn =1, 2, 3, or 4 and not more than two of the d;; denoting &;, for some a in (0,'2)
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n n p
m(N~"20 ([ 1,0, dydydyd,,) — m(N~"2OT ] x,, ) )m(d,d,d,d,,) — 0.
o=l o=1
(c) For p and ¢g denoting columns of X & W used to make any column of Xy:

, NV/AWAE
\/ﬁ[m(tipwiqzi)_m(‘xip)m(wiqzi)]( N ] N _>0

N ¥ N —>n,,, wherenp, ~N(0,,,1,,).

The proofs of the lemmas are given in Appendix E.

~ o~ ~ o~ =~ ~
r r ° 12 d
@ (XX®W£W£] (TeW,)1,

With Lemmas D1 and D2 in hand, one can follow the steps used in the paper's appendix and
prove that in probability across the distribution of the data D for a finite r = JN (B-B,), asymptotically
=N (ﬁwo —B,) is, across stratified permutations T of X, distributed multivariate mean zero normal
with a covariance matrix equal to N times the probability limit of the heteroskedasticity robust covariance
estimate Vr(ﬁwo ), result (R1) in the paper. Results (R2) - (R5) then follow as in the paper's appendix.
For the sake of completeness, the two sections below prove (R1), although the steps are nearly identical to
those used in the paper's appendix.

(a) Asymptotic Distribution of Coefficient Estimates

As in the text, counterfactual output is given by

(D.3) Yyp, =Y +H(TeW-XeW)B, =X\, (B—B,)+Zy +e+TyB,,
the only difference being that the permutations T of X are stratified (i.e. treatment is permuted within

strata). Consequently, as before we have

(D4) VN By, —By) = (

T, MT,, ]‘ TWMXy (T{VMTW )1 T, Me
N N N JN

where r = mﬂ ~B,)- Let tw; and xy; denote the " and /" columns of Ty, and X, , with the i” elements

of these vectors given by 7, ,W,,,and X, W, , where p(j) and ¢(j) denote the columns of T (or X)) and

W associated with the /™ column of Ty (or Xy). With this notation, we see that the kI” element of

T, MT,, /N can be expressed as
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twMty, _ [l - Z(ZZ) ' Zty,

-1
Z,
(D.5) = My Wiy Wigary) ~ M) Wi )22, m(z,, Wiy Z),
N N
t,, Mt,,
S0 N _[m(xzp(k)xtp(l)) m(xlp(k))m(xzp(l))]m( q(k)wtq(]))_

1
7'7
[m(tlp(k) i Wig (k) q([)) m(xzp(k)xlp(l))m( i (k) q(]))]+m(xlp(k))m(xlp(l))[m( iq (k) q(])) m( zq(k)Z;)( NJ m(w, zq(l)Zi) ]

~> 0 (Lemma D2a)

a.s8.=m(Wi, ) Wiq (1)) for N sufficient ly large (Lemma D1a)

77\
A G o B R e e G
ﬁOVK (Lemma D2a) a.s.bounded (Lemma Dlc) ﬁOK (Lemma D2a)

oy -1
m(xlp(k))m(wq(k)z )( N j [m(tip(l)""iq(l)zi)_m(xip(l))m(wiq(l)zi)]

»
a.s.bounded (Lemma Dlc) —0 (Lemma D2a)

.l
7'7 r
[m(tlp(k)wq(k)zz) m(xlp(k))m(wzq(k)zz ]( N, ] m(xlp(l))m(wq(l) ) =0,

—>0'K (Lemma D2a) a.s.bounded (Lemma Dlc)

where m(2,, W, 1, Z) = (ML, 00, Wiy)Zi1)s - » Mty ) Wi Zi ) » and in the third line we use the fact that as
m(w,,,,2,) =W, Z/ N, where W, is the g(k)" column of W which is included in the covariates Z
(assumption A2), so for all N sufficiently large that Z'Z/ N is guaranteed to be invertible w’q(,{)Z(Z'Z)'l

a row vector of zeros with a 1 in the column corresponding to the position of w,, in Z. Similarly, the kl"

element of T;, MX,, /N can be expressed as

(D.6) t Mxy, _ tw[ly ~Z(Z'Z) ' Z]xy,
N N

AN
= (8 10 Wig ) Wig 1y Xip(1y) = D0 ) Wig 1,2 ,)( ~ N

72\ Z'xy,
[t 00 Wy Wiy %ip ) = M3 0 Wi 10y Wi 053 0y)] = [ 0y Wi 10 22) — 1 1 YW 12

N N
%,—/
%0 (Lemma D2a) ~>0'K (Lemma D2a) a.s.bounded (LemmaDlc)
-1
7’7\ Z'x P
WiI
+m(xtp(k))m( o Wiy X)) — m(xtp(k)) m(w, Wi Zi )( N Ni — 0,

a.8.=m (Wi (1) Wig(1)Xip(1) ) for N sufficiently large (Lemma D1a)
where in the last line we again use the assumption that W is included in Z.

Combining these results, we have:

T, MT, X'X "W » T MX. °?
(D.7) Y—W —XX®WW—>0PQ,VPQ & YW 590
N N N N

PQx PQ"

Finite values of r=+/N (B-B,), multiplied by T;,MX, / N, asymptotically have no influence in (D.4).
As can be seen, assumption A2 that W is a part of Z (or the less plausible alternative that the mean of the
x;, are asymptotically zero) is key to this result.

The remaining part of (D.4) is the vector Ty, Mg/ JN , the ¥ term of which equals:
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M 1) Wig(ir 61) — }

1
VA
Nm(t. .\ W, & Nm(t, ,w. z[ j =N
= NNm(t, Wiy &) =N NmM(E, W 0Z;) v (% (8, 0 6,)

(D3) \W

(L, 4 Wiy 1y Zi) ( j AN YHAWA
VN m(x, 50 )m(Wy &) = m(x,,;,)) m(w,,z;)| ——
|:m(xl_p(k))m(wq(k)z ) N N ip(k) Wig(k) ip(k) iq(k) N N
a.s.=m(w)&;) for N sufficiently large (LemmaD1a)

9‘01( (LemmasD1b,Dlc)

»
— 0 (LemmaD2c)

The only term that asymptotically is non-zero is v, which, as m(#,,;)) = m(x,,,) , equals the k™ element of

(T oW )1, /N . Applying Lemma D2d we then see that

0o XX g WV,
N N
X

. / d
] T\/Msenpg, wheren,, ~N(0,,,1,,),

XX _ WW, XX o WW
so ... (D.10 ® —+—E VN (B(T =
( )(N N ] (N ] (B(T.B,) —B,) =
VIV S\ ’ ' L
XX o WW, ) (XX WW T,MT, | TMX,
N N N N N N bou::ded
%f—J »
almost surely bounded positive definite matrices (LemmasD1a,D1c) L> ﬁ L - L} 0,50.r0
N

JN

N
J[ X ~\TVN XX o WW]%T;VMs a
=Ny
N

N N N N N

P

anPQ

(i’i o VW, J/(ii o W'WJ( T, MT,,

—>1Ip

(b) Probability Limit of the Heteroskedasticity Robust Covariance Estimate

For the heteroskedasticity robust covariance estimate we have
(MT,, «&(T,B,))(MT,, &(T,B,))

- (TyMT, Y ( TyMT,, ) ~
(D-11)NV,(B(T,BO))—( I ] A( v ] , where A = v

with k" term given by

(D.12) A, = Z(ttp(k) Wig(k) sz ak)(tzp(l) i (1) Zzzbé‘hl)g(T Bo)
r L
where &(T,B) =& — Y 2z, + 2 Xy Woits = 2 ZiToa)—T=— 2 (Eo Wiy = 2 210, ) ——,
(T.By) = ¢, CZ::, il ;( () Wig(d) ; , d)\/ﬁ ;(;m a(f) ; g &/)\/ﬁ
with r =+/N(B—B,), t =VNB(T,B,)-B.). 8, =(ZZ)'Zt,, %, =(Z'Z)"' Z'xy, and §=(Z'Z) "' Z.

From Lemmas D1b and D1c we have 1—0, and from D1c know that %, is almost surely bounded. The

plim of §, across the distribution of T is bounded as

77 zz\"
(D.13) §, m(x,pm)( Nj Nq(k) = ( Nj [ (7, 10 Wig sy 2:) = 10X

a.s.bounded (Lemma D1c) a.s.bounded (Lemma D1c)

p
m(w,,z,)] — 0.

~>0K (Lemma D2a)

46



As for all N sufficiently large (Z'Z)"' Z'w 4k 18 @ vector of zeros with a 1 in the row corresponding to the
column position of w,, in Z and m(x;,) is known to be bounded by Lemma D1c, plim Sak: 0 unless a is
the column position of w, in Z, in which case plim gak —m(x,,,)=0. The elements of r are finite and of
f are asymptotically normal with bounded variance, so when divided by a positive power of N have a plim
of zero.
When the terms in (D.12) are multiplied out, most involve a product with an element of r NN,
t AN, or 1) that has a plim of zero, 0 to 4 parameters 7 and 5 with bounded probability limits, and the
mean of the product of the elements of 0 to 4 columns of T and the elements of 4 columns of D =
(Xw,Z,€) (no more than two of which are ¢;). From Lemma D1c we know that the sample means of the
product of the elements of one through four columns of X or four columns of D are almost surely
bounded. Consequently, in (D.12) every term that involves the product of an element of r AN, EWN,
or 1 that has a plim of zero with the mean of the product of four columns of D with zero, one or two
columns of T has, using Lemma D2a, a probability limit of zero. Every term in (D.12) that involves the
product of n = three or four columns of T with four columns of D also includes at least n - 2 AN terms
which can be re-expressed as (f/ N"*)(1/N“) for some a in (0,%). The 1/N* parts satisfy Lemma D2b,
while the £/ N"“parts converge in probability to 0. Thus, all such terms also have a plim of 0.
The above only leaves terms in (D.12) that involve the product of two or less columns of T and do
not include an element of r/A/N , N , Or 1), namely
(D.14) i tt‘p(k)Wiq(k);;;(l)wiq(/)giz i z w(l)qu(/)Zm i i 5 lz w(k)wzqw)zzbg + i 5.8 i
P o o

i=1 b=1 i=1 a=1b

K K
2 s S 2
m(tlp(k) ip(l) tq(k) tq(/)g ) z km(tzp(/) ig(l) tagz) Zdblm(tlp(k) lq(k) lhgi )+Zz§ak§b/m(ziazihgi)

a=1 a=1 b=1

where: 1t oty iy Wiy Wagy1 ) = M0 %0 )M Wig i Wig ) _’ 0 & Mty Wiy Zi8; ) =m0 MWy Zi08; ) _’ 0,
Lemma 2a Lemma 2a
p
2
so Ay _[m(xip(k)xip(/)) _m(xip(k))m(xip(l))]m(wq(k) Wiy€i ) >0,

where we use the boundedness of means of products of up to four terms (Lemma D1c) and the fact noted

above that plimJ,, = 0 unless a is the column position of w,) in Z, in which case plim J,, =m(x,, ) and

z

i =Wy, This allows us to state that

XX o WW, 7
N

(D.15) A- POPO

and consequently for the heteroskedasticity robust covariance estimate we have

~ ~ -1/~ ~ ~ ~ -1
r r r ! r r P
XX®WW XX®W£WS XX®WW 0000
N N N N N N

(D.16) NVru%T,,;O)—(

which from (D.10) is seen to be the asymptotic covariance matrix of normally distributed JN (ﬁwo -By).
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E. Proofs of Lemmas used in Appendix D

This appendix references the Markov Corollary presented in the paper.

Lemma D1a-D1c: In the paper's appendix proofs for Lemma 1 in the paper the statements
regarding the full sample in Lemma D1a - D1c were proven without reference to permutations, and simply
using the assumptions regarding observation level moments and the determinants of sample average
matrices of expectations given in assumptions W1-W4 and A1-A3. Consequently, all of these results
continue to hold. Given the assumption in S1 on the determinant of strata level X, E(w,w'e’)/ N, and on
the moments of x; in S2 along with assumption A1, the results for W;\,\TVSY / N,and )N('\)N(\ / N, can be
proven using the same techniques as was used for the full sample. The results regarding bounded sample
means in D1c were proven in the paper's appendix using the Markov Corollary and the uniform bounds on
the observation level moments of the X and D variables. As we assume that N — oo implies N, — oo,
these results hold at the stratum level as well.

Lemma D1d: For the random vector py=2'¢/ JN , we have:

WI: E(z,;6,)=0g,

WL E(z,;6,)=0g, & observations independent

Y E(z, | Z'ee'Z E(z,£2;)
Z 8 &¢ Z 8

(EJ)E( ] =Y K~ mm.E( j Rl
; ;QN : N ; N

(145 . .
A" 5o the covariance matrix of

From assumption W3 and Jensen's Inequality we have E(| Sl-zzfijzf,-k <
v is bounded. Consequently, by Chebyshev's Inequality the elements of py are bounded in probability.
The proof of Lemma 1c in the paper's appendix showed that the elements of (Z'Z/ N)™" are almost surely
bounded.

Assumption A3 combined with Jensen's Inequality tells us that for n =1, 2, 3 or 4, E(|x,|"""") <

ip
A™*. Using Hélder's Inequality, and with p(1) ... p(n) denoting arbitrary columns of X, these uniform

bounds apply to the product of different column elements:
A

ip(0)
Consequently, applying the Markov Corollary at both the stratum and full sample level, and making use of

1+0*

14+6* 04
(E2) E )<A :

Assumption S2 and the assumption that N — oo implies N; — oo,

(E.2) and Markov Corollary

(E3) ms (H‘xip(u)) - ms (E(H xip(o) )) _>09 m(H xip(u)) - m(E(H xip(o) ))_>O’
o=l o=l o=l o=l

Assumption S2

& mx (E(H‘xip(u) )) - m(E(H xip(u) )) _>O and SO mx (Hxip(o)) - m(H xip(u) ) _>0
o=1 o=l o=1 o=1

We will make use of (E.3) further below as well. In the present context, we have

(2;'() a.s.bounded (Lemma lc)
f_/%

p)—m(x,)] m(wlqzl) —>0

(E4) Z ioZi pImw,z)) = z
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In sum,

(E.5) (2]]\’\] m, (w,z))—m(x, )m(wlqzl)](ZNZj Ze

M :
e a.s.bounded boundedin
-0 probability

=

and hence the entire expression converges in probability across the distribution of the data D to zero.
Lemma Dle:
We define the random variable 7,, and calculate its expectation:

(E.6) 7, = JN (ZS: ]]vv pm (w, &) —m(x, )m(wlqel)] z z z x,pquej ﬁ‘, i x,;,\v;jfzsj

s=1 ies jes S i=l j=1

( E(x, w. g) E(x )E(w, &) E(x,w, &) E(x,)E(w,¢&,)

E(qu) z k ;lzlq : Z - N2 ] ] Z ]Z\I;s/lzq : Z N2 A =0,

i,jes i=1 i,j=1

where, as elsewhere in the paper, we use subscripted 7, j to denote the summation across both indices,
excluding ties between them, and we recall assumption W1's statement that the observations are
independent with E(z..;) = Ok, so E(x,w, &) and E(w,é&;) equal 0 as both Xy and W are part of Z,, and
the fact that expectations of powers less than 4 of x;, are bounded by A3 and Jensen's Inequality as for n =

1,2,3 or4, E(|x}|) < A"*"*), The variance of 7, is given by:

ip|

Wiy En X W, €

SYTY Ty ek

s=1 t=1 ges hes iet jet

(B7) E(r;)=E

N N N N S
DIRP R IRIIRE
=1 h=1 i=1 j=I g=1 h=1 s=1 ies jes
s 2 N N N N S
DD IR 3 3 L L et e
2
s=1 ges hes ies NN\ g=1 h=1 i=1 =1 s=1 hes ies

In the last line we simplify by making use of the fact that observations are independent and, as already
noted, E(x,w,&) and E(w,é&;) equal 0 and expectations of first and second powers of x;, are bounded, as

is E(x,w,é&,), as by A3, W3a and Jensen's Inequality

ip " Viq
Holder's Inequality

(E8) |E(iw, &) |<E(xw, ,|)<\/E(X,,,)E( W £2) <A o5,

Consequently, all non-zero expectations in the first line of (E.7) must contain an &, which rules out all
cases where the 4 and j indices in the first line do not tie, leading to the expression in the second line.

In calculating the expectations in the second line of (E.7), it will once again be necessary to
consider cases where the various indices do or don't tie. Since observational level expectations are
bounded and cases that involve one or more ties are divided by powers of N, the latter vanish
asymptotically, leaving only expectations in which there are no ties. Expectations that involve no ties will
cancel. We can conclude that the variance of 7,, converges to zero, and so it converges in mean square
and hence in probability to the expectation given in (E.6), i.e. 0. As these statements are difficult to

confirm without experience with such problems, the details are worked out for the reader below.
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We begin by calculating the expectations in the second line of (E.7), paying careful attention to

potential ties between indices:

N E(xpowyel) L E(x,)E(x,w, &)

ip Tigi + 2 ip " Tig<i
N N N E(x, x, woe’ ,Z:: N* e N?
(B9a) 3y et | TN .
r=i=r= L S ECREORED | S By )EC, EOe))
h,i=1 N3 g,h,i=1 N3
N? N N?
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N N N?
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B 3 3y e T e e e
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[
Mh

“
I

m[E(x,w, &)+ 2N,m[E(x,)m[E(x,w;&)]

ig©i ig<i

—2m[E(x,)E(x,w,e)]+ Nm][E(x; ) m[E(w,&)]

ig©i ig©i

= m[E(x,)E(w,e )+ Nim [E(x,, )T m[E(w,e)]

iq iq

—2Nm[E(x,)Im[E(x,)E(w,,e)]

g9 8
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=
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:ZZ\; ig©i
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(E.9¢) ZZZZE(X xhpw,qel %) 3 izzzzE(x xhpw,qel )

g=1 s=Il hes ies s=l t=1 get hes ies

ZZS:ZZZE(XépthWqul ) izzzE(xép)E(xhpwielz)
s=1 ges hes ies s,t=1 get hes ies
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22 2.2
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2L NN, Z —ZZE(X )E(xh,JE(whqeh)
get hes N N\'

s E(xgpxhp 262 MLE(x ) Im [E e, wh,&l) 1+ N [E(x,, ), [ECx,, im [E0v 61)]
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: By wis?) m LE (e, w3, &)1+ N, [E(x, JIm [E(r7 )]
8P 1[) iq”i E
SLX22 ey (x&,)]z ( - [E(x, )EOw,87)] J

SN na[E(xgp)]mS[E(xh,,w:qem+Nm[E(x P [E(w.e2)]
Ly —m,[E(x,)m [E(x, ) Ew,e)]

S 2

:Z%‘z E(x )] m [E(W,q i )]+m[E(xgp)]Z

Z

)m [E(w,&))]

ig®i

m[E(w.e})]+o(1)

ig<i

mS[E(xhp)]m E(w,q ,) +o(l)

s=1

where, (i) as elsewhere, subscripted s,f or g,A,i or h,i denote summations across the indices excluding ties

between them; (ii) we simplify at the end of each expression using the fact that since all of the

expectations are uniformly bounded those that are divided by any positive power of N or N are o(1); and

(iii) as the first term following the equal sign from the second line down in (E.9c) is identical (subject to a

modification of the denominator) to (E.9b), we simply substitute using the results from that earlier
calculation towards the end of (E.9¢).

Combining the results of (E.9a) - (E.9¢), we have:
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N mS[E(xgp) E(wzez)

ig<i

(E.10) E(z,,)=m[E(x, ) m[E(w,&)]+

ig<i

s=1

w [ECo, ) Im[E(w, &)+ 0(1)

2

=

=Zsle mJE(x,,)]—m[E(x,)] | m, E(wf]ef) +o(l) —> 0.

a.s.bounded (W3)

30 (assumption 82)
Consequently, 7,, converges in mean square and in probability to zero, as claimed in the lemma.

Lemma D2a: The proof of Lemma 1d in the paper's appendix only involves the observation level
moment conditions in W1 - W4 & Al - A3. These lemmas now hold at the stratum level, with stratum
means m,() and N; — oo taking the place of sample means m() and N — o. So:

(E.1D) m (¢, dy a)—m (x ym, (dy %) —) 0& m (t,pt,qd,j ) —m (x X, )m (dy d,) —) 0.
Consequently, using (E.3) earlier and the fact that N/N is bounded between 0 and 1, for n =1 or 2

(E 12) m((H tip(o))d;'jdik) - m(Hxip(o))m(d;'jdik) =
= o=l

ZJX;[WI ((H)t,p(g)dy zk) m (wa(o))m (dl/ ik :|+Zl

s=1 o=1 o=1

N n n P
S[’”S(H)‘ww))_m(szp(o))} m(d;d,) —0
N ‘ [

o=1 o=1
a.s.bounded (Lemma D1c)

Zo@n SoEs)
Lemma D2b: Again, the proof of Lemma 2 in the paper's appendix only involves observation

level moment conditions, and hence now holds at the stratum level as well. As N; — oo:

(E 13) ms (N\‘_a max(n2.0) (H tip(()) ) dl/ dikdlldzm ) m (N‘_a (20 H xip(()) )mx (dl/ dikdtldzm ) _) O
o=1 o=1

Using the fact that N/N is bounded between 0 and 1, and that sample and stratum means are almost surely

bounded (Lemma D1c)
(E 14) m(N amax(n-2,0) (Ht,p(o))d,j A d,,,,)—m(N amax(n-2, O)Hx,p(o))m(d,j P d,m) —

o=1 o=1
S Nl+amax(n 2,0)
- (n=2,0) - (n-2,0)
ZNHamax(n 2,0) |:m (N e (Htlp(o))dy ik dim)_m (N e szp(o) )m (dlj ik dim ):|

5= o=1 o=1

»
—0(E.13)

P
+Z N1+amax(n -2,0) N m (Hx’!’(o)) m(Hx’P(O) ):| m (dlj ik d”") _)0

o=1 o=1

1+amax(n-2,0)
N amax(n-2, 0)|:

a.s.bounded (Lemma D1c)

SoE3)

Lemma D2¢: From Lemma 1d in the paper, which now holds within strata, if

(E.15) if ¢ —)0 then N [m (¢,d;d;)—m (x,)m (d,d;)]cy —> 0.

ip
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For any cy, we can define cy, = cy, based upon the value of N, corresponding to N. Since
N —>wo< N, > owforall s =15, if cy— 0 as N — oo, we can also comfortably say cy; — 0 as N; — oo.
The elements of (Z'Z/N)™'(Z'e/ N), which from Lemma D1b and D1c are known to converge almost

surely to 0, are one such cy. We now note that the expression in the Lemma can be decomposed into:

(E.16) N [m(t, w, z)) - m(x, )m(wlqzl)](zz) Z;':

SN N T (1w, )~ m, (x, )m, (w, 2 J][ 'Zj Lt

s=1 N N
clementsarecy
iOby(ElS)
SN, 77\ Z's
+/N/ —m (x, )m (w,z,)—m(x, )m(w, z,)j( ) ,
[; N p q ip q N N

— 0byLemmaDI1d
Consequently, in probability across the data sequences D the expression in D2¢ converges in probability
(across the permutations T of X) to 0, as stated in the Lemma.
Lemma D2d: We use superscripted ~ to denote either sample demeaned (T) or strata demeaned
(TS) variables, with the presence of the subscript s indicating the intent. Since the moment conditions in
W1-W4 & A1-A3 apply to all observations, from the proof of Lemma 1le in the paper's appendix we know
that across the stratified permutations T of X, as N; — o

shs g ' es " (TS.W"‘Y),IN; ¢
(E.17) N £ ® I \/ﬁ =Ny, Wheren,, ~N(0,,,1,,)-

provided the matrices W;Wag /N, and )N(’S)N(S / N, following their counterparts for the entire sample, are
almost surely positive definite with determinant greater than some y for all N; sufficiently large (which is
true by Lemma D1a). The np; are clearly independent across strata, as the observations and permutations
of each strata are independent of the others. The k™ element of v= (Te W )1y /[N equals:

Nt = ) W & =MW, 10 E)) L &,
_ ip(k) ip(k) (k) (k) l ) Wig(h) ﬁ
(E.18) v, —; 2 d Tq\[ 4 Z ; 4 \/i m(x,p(k))m( q(k)g)

Z Z[tlp(k) ~ (le(k))][\/z\q%k)g —n (Wq(k)g )] r[z Nm (xlp(k>)m( q(k)g) m(xzp(k))m( ig(6)Ei )J

D
— ObyLemmaDle

In addition,

(E.19) (Z

V'Y A7 XK V'Y VALY S V'Y VN A ws.
]s\'] 5 ® s.]sv &]_{X ® sWsJ:ZNs|:XsXs_XXj|® ssws.s -0

POXPQ
o g N N ~N| N, N N,
%,—/
a.s. a.s.bounded (LemmaD]1c)
-0, (E3)
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Consequently, the covariance matrix of S independent npp, random variables each multiplied by
VN, /N()NCL)N(S /N, ® W;,W&, / N,)" converges almost surely to X'X/N ® W/W, /N, and using (E.18)

XX g w] FeW1,
N

VN
XX o WW, )8 i;i o WoW, X WW ) (@ e W),
Z ® —_—
N y N NS NS NY

.S s

a.s.bounded (LemmaDIc) a.s.bounded (LemmaDIc) in
POs
X’X W W N, d
J{ N J ZV '—[m(x}) em(wig)]'>n,,,

a.s.bounded (Lemma D1c) '3 0,, (LemmaDle)
PO

as stated in the Lemma.
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F. Papers used in Section V’s Analysis of a Practical Sample & Alternative Figures Retaining
Regressions and Papers Otherwise Dropped on the Basis of Growing Number of Strata or
Unbalanced Stratification

Given below are the 39 papers whose OLS regressions are analyzed in Section V & in this
appendix. The acronym at the beginning of each reference is the code used to identify the paper in the
public use do-files. As noted in the text, I remove papers in the 53 paper Young (2019) sample without
OLS regressions or where treatment is calculated from sample characteristics or applied using multiple
cross-cutting criteria in a fashion that does not allow for counterfactual permutation. These papers

(identified by the acronym used in Young 2019) are:

(1) No OLS regressions: CC1, CC2, CHKL, CILS, ER, FJP, LL, S, VDR.
(i1) Treatment does not allow counterfactual permutation: D, DR2, FG, GKN, MMW.

Some OLS regressions in ABHOT, DDK and DKR are removed on the basis of (ii) as well. In the figures
in the text, I also remove papers where procedures are such that the number of strata grows with the
sample size (AL & MMW?2) and regressions with stratified treatment that is not, at least in principle,
asymptotically balanced for asymptotically non-negligible strata (all of the regressions in GRS and KMP,
some in BBLP, CGTTTV, DKR & FL). The results presented in Figures I-1II & V in the paper are based
upon the remaining regressions in 35 papers. Figures F1-F4 below include all regressions dropped for
stratification issues and as can be seen are virtually identical to Figures I-III & V given in the paper.
Figures F1 & F2 are based upon 3213 coefficients in 1066 regressions in 39 papers. Figure F3 is based
upon 1730 coefficients in 467 regressions in 28 papers where the other-treatment-stratification
permutation distribution for coefficients in multi-treatment equations is not degenerate. No regressions
are dropped because of stratification issues in Figure IV of the paper. Figure F4 duplicates Figure V in the
paper. With the addition of regressions dropped from Figure V for stratification reasons, the sample now
consists of 2712 coefficients in 565 regressions with more than one treatment effect in 32 papers. This is
the only case where there is any discernible difference with results given in the paper, showing more cases
where low p-values and low leverage regressions have big increases in their p-values in the unconstrained

max (panels a & ¢, compare with Figure V in the paper).
List of papers

(AFGH) Abeler, Johannes, Armin Falk, Lorenz Goette, and David Huffman. 2011. “Reference Points
and Effort Provision.” American Economic Review 101 (2): 470-49.

(AKL) Aker, Jenny C., Christopher Ksoll, and Travis J. Lybbert. 2012. “Can Mobile Phones Improve
Learning? Evidence from a Field Experiment in Niger.” American Economic Journal: Applied
Economics 4 (4): 94-120.

(ABHOT) Alatas, Vivi, Abhijit Banerjee, Rema Hanna, Benjamin A. Olken, and Julia Tobias. 2012.

“Targeting the Poor: Evidence from a Field Experiment in Indonesia.” American Economic
Review 102 (4): 1206-1240.
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Appendix Figure F1: Sensitivity Test for Figure | in Paper
Overlap/Union of .95 Conventional and Randomization Confidence Intervals

(a) individual treatment effects (b) paper averages
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other nulls = estimated values

overlap/union of confidence intervals

Appendix Figure F3: Sensitivity Test for Figure Il in Paper
Randomization Inference using Other-Treatment-Stratification Compared with Other Methods

(a) Individual treatment effect p-values compared to those with null on untested coefficients = to estimated values
by R? of regression of permuted treatment on other-treatment-stratification dummies
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Appendix Figure F4: Sensitivity Test for Figure V in the Paper
Maximum P-Value Across all Nulls for Untested Measures
Compared with Setting Untested Nulls Equal to Estimated Effects
(2712 individual treatment effects in 565 multi-treatment estimating equations)
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G. Observations versus Leverage as Predictors of Differences in Conventional and
Randomization Inference

Section V of the paper notes that while both the log number of treatment groupings and the
maximum leverage share of a single treatment grouping are related to differences between conventional
and randomization inference, the maximum leverage share appears to have greater predictive value (as
measured by R?) and is more robustly statistically significant. Table G1 below substantiates this claim
with OLS regressions. The dependent variable is either the overlap divided by the union of the .95
confidence intervals or the absolute difference in the p-values produced by randomization and
conventional clustered/robust inference, both measured at either the level of 2944 individual treatment
effects or 35 paper averages. The independent variables are the maximum coefficient leverage share of a
single treatment grouping, the log;o number of treatment groupings and a constant term or paper fixed
effects. Standard errors in parentheses are either clustered at the paper level or, for paper averages,
heteroskedasticity robust. Bootstrapped (at the paper level) p-values based upon the percentiles of t-
statistics are also reported in brackets. As shown in the table, the R’s associated with the use of maximum
leverage as a regressor are very much higher than those found using the number of treatment groupings.
While maximum leverage is almost always statistically significant at the .05 level, the number of
treatment groupings is often statistically insignificant, especially when the bootstrap is used to evaluate
significance or when entered jointly with maximum leverage in the same regression. Table G2 produces
similar results using a 39 paper sample that includes the papers and regressions dropped because of

stratification issues (see Appendix F above and discussion in Section V of the paper).
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Table G1: Observations versus Leverage as Predictors of
Difterences between Randomization and Conventional Inference (2944 coefficients in 35 papers)

(b) coefficient level
paper fixed effects
s.e. clustered by paper

(a) coefficient level
no paper fixed effects
s.e. clustered by paper

(c) paper averages
heteroskedasticity robust s.e.

dependent variable: 1 - overlap divided by union of .95 confidence intervals

max 1.92 1.90 1.64 1.66 1.94 2.06
leverage (.305) (236)  (.113) (.117) (.407) (.582)
g [.050] [.023] [.001] [.002] [.118] [.147]

log;o # of - 112 -.005 -.039 .021 -175 .018
treatment (.059) (.026) (.037)  (.010) (.055) (.043)
groupings [.332] [.854] [.453] [.123] [.104] [.714]
.006 353 021 -.005 S12 -.053
constant ~ (.005)  (.160) (.066) (015)  (.142) (.122)
[.268] [.309] [.796] [.752] [.085] [.709]

R’ 736 176 737 .868 547 .870 772 457 773

N 2944 2944 2944 2944 2944 2944 35 35 35

dependent variable: absolute value of difference in conventional and randomization p-values

max 377 404 408 415 .260 309
leverage (.038) (.034)  (.027) (.030) (.054) (.055)
g [.000] [.000] [.000] [.001] [.058] [.010]

log)o # of -.016 .007 -.006 .009 -.022 .007
treatment (.009) (.003) (.008)  (.004) (.008) (-004)
groupings [.322] [.077] [.580] [.041] [.077] [.129]
.005 .057 -.014 .007 072 -.012
constant ~ (.001)  (.023) (.009) (.002)  (.020) (.012)
[.001] [.237] [.194] [.025] [.049] [.325]

R’ 446 .055 454 502 187 .506 707 358 722

N 2944 2944 2944 2944 2944 2944 35 35 35

Notes: clustered by 35 papers (panels a & b) or heteroskedasticity robust (panel ¢) standard errors in (); bootstrap

p-values based upon 1999 bootstrap sampling (at paper level) draws from the distribution of t-statistics in [].
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Table G2: Observations versus Leverage as Predictors of
Difterences between Randomization and Conventional Inference (3213 coefficients in 39 papers)

(b) coefficient level
paper fixed effects
s.e. clustered by paper

(a) observation level
no paper fixed effects
s.e. clustered by paper

(c) paper averages
heteroskedasticity robust s.e.

dependent variable: 1 - overlap divided by union of .95 confidence intervals

max 1.91 1.90 1.64 1.65 1.94 2.04
leverage (.303) (239)  (.112) (.117) (-400) (.548)
g [.058] [.025] [.000] [.001] [.108] [.135]

log;o # of -.106 -.004 -.040 .020 -.157 .014
treatment (.054) (.022) (.034)  (.009) (.050) (.033)
groupings [.327] [.866] [.455] [.132] [.098] [.724]
.006 339 019 -.003 473 -.040

constant ~ (.005)  (.147) (.058) (.014)  (.130) (.099)
[.252] [.298] [.801] [.821] [.079] [.734]

R’ 736 176 736 .867 .549 .868 775 435 77

N 3213 3213 3213 3213 3213 3213 39 39 39

dependent variable: absolute value of difference in conventional and randomization p-values

max 377 402 407 414 262 285
leverage (.038) (.035)  (.028) (.030) (.053) (.060)
g [.001] [.000] [.000] [.000] [.038] [.007]

log)o # of -.016 .006 -.007 .008 -.021 .003
treatment (.008) (.003) (.008)  (.003) (.007) (-005)
groupings [.285] [.076] [.543] [.061] [.048] [.488]
.005 .056 -.012 .007 071 -.001
constant ~ (.001)  (.021) (.009) (.002)  (.018) (.014)
[.001] [.213] [.212] [.009] [.024] [.908]

R’ 444 .059 451 .503 .194 .506 .680 362 .683

N 3213 3213 3213 3213 3213 3213 39 39 39

Notes: clustered by 39 papers (panels a & b) or heteroskedasticity robust (panel ¢) standard errors in (); bootstrap

p-values based upon 1999 bootstrap sampling (at paper level) draws from the distribution of t-statistics in [].
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H. Determinants of Difference Between "Max across By.;'' and "B, = |A30~_," Randomization
Inference P-Values

Table H1 below uses regression analysis to examine the determinants of differences between the
randomization inference p-value for individual coefficients in multi-treatment equations found by
maximizing across all nulls for untested coefficients versus that found by setting the null for untested
coefficients equal to estimated values. Panel (a) looks at the unconstrained maximum, whereas panel (b)
looks at the constrained maximum wherein the null for untested coefficients is restricted to have a p-value
greater than 10™'° using the conventional Wald test. The sample is the same as the practical sample
examined in the paper and appendices above, except that it is restricted to equations with more than one
treatment measure and hence consists of 2462 individual coefficient p-values found in 28 papers. The
independent variables are the maximum coefficient leverage share of a single treatment grouping, the log;o
number of treatment groupings, the log;, number minus 1 of treatment measures (so that an equation with
two treatment measures, the lowest possible, has a log;, value of 0), the "B = [AioN " p-value, its square
and a constant term or paper fixed effects. Standard errors in parentheses are either clustered at the paper
level or, for paper averages, heteroskedasticity robust. Bootstrapped (at the paper level) p-values based
upon the percentiles of t-statistics are also reported in brackets.

As shown in the table, the maximum leverage and number of treatment measures are consistently
significant, while the number of treatment groupings is never significant. The "By, = [AioN " p-value and its
square are statistically significant when the regression is run using individual coefficients as the dependent
variable, but completely insignificant when paper averages are used and much of the tail variation of these
variables is eliminated. The amount a large p-value can be increased is obviously limited, and the
coefficients on the p-values (when significant) indicate this, while also suggesting that small p-values are
inherently more robust to the search across Py, When the sample is expanded to include regressions
dropped on the basis of having asymptotically unbalanced treattment across strata and hence not fitting
into the framework studied in this paper and the on-line appendix (Table H2), the regression fit is
somewhat worse (with lower R”s) and the number of treatment measures becomes insignificant in some

specifications, but the patterns are similar.
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Table H1: Determinants of Differences Between Maximum P-value across By-; and Setting B, = ﬁ0~ ;

maximum
leverage

log;o # of
treatment
groups

logjo#- 1
of treatment
measures

Bo~j = [}0'*]

p-value

BO#/ = ﬁ 0~j
p-value
squared

constant

R?
N

maximum
leverage

log;o # of
treatment
groups
lOg 10 #-1
of treatment
measures

BO~j = ﬁ0~j

p-value

Boi= [}0~ j
p-value
squared

constant

R2
N

(a) coefficient level
no paper fixed effects
s.e. clustered by paper

(b) coefficient level

paper fixed effects

s.e. clustered by paper

(c) paper averages

heteroskedasticity robust s.e.

252
(.022)
[.000]

211
(.023)
[.001]

214
(.024)
[.001]
010
(.003)
[.013]
156

2462

(a) dependent variable:

182
(.020)
[.000]

113
(.016)
[.003]

-.103
(015)
[.002]
002
(.001)
[.161]
253

2462

(a) dependent variable: maximum p-value across Py.; minus p-value setting By = [AiON i

-010
(.009)
[.299]

220
(.024)
[.001]

-224
(.025)
[.001]
041
(.024)
[.120]
102
2462

-.005
(.004)
[.175]

119
(.016)
[.000]

~110
(.015)
[.001]
020
(011)
[071]
137

2462

033
(.010)
[.024]

193
(.026)
[.001]

-205
(.026)
[.001]
-.001
(.006)
[.875]
144

2462

023
(.003)
[.000]
101
(.015)
[.005]

-.097
(.014)
[.005]
-.005
(.002)
[.072]
217

2462

254 228 215 405 .380
(.020) (.023) (.029) (.092) (.085)
[.000] [.004] [.006] [.021] [.025]

-.022 -.021
(.016) (.019)
[.323] [.325]

.034 .058 .052 .075 .064
(.008) (.018) (.017) (.019) (.014)
[.005] [.040] [.064] [.012] [.011]

185 204 212 203 194 -240 .025 398 -.078
(.025) (.025) (.025) (.024) (.023) (.403) (.375) (.334) (.332)
[.001] [.001] [.001] T[.001] T[.001] T[.578] [.933] [.255] [.832]
-197  -208 -217 -209 -.201 400 .018 -.692 .073
(.025) (.025) (.026) (.024) (.024) (.529) (.463) (.444) (452
[.001] [.001] [.001] [.001] [.001] [.488] [.969] [.164] [.883]
-.007 .022 .084 .020 .010
(.005) (.028) (.050) (.029) (.019)
[.238] [.448] [.173] [.505] [.620]

205 280 248 264 300 462 .097 230 .607
2462 2462 2462 2462 2462 28 28 28 28
constrained maximum p-value across f,; minus p-value setting p,; = [AiON ;

183 .190 184 .198 184
(.024) (.025) (.026) (.046) (.038)
[.001] T[.012] [.019] [.027] [.017]

-.016 -.010
(.008) (.009)
[.272] [.341]

.023 .029 .024 .041 .036
(.002) (.010) (.010) (.009) (.007)
[.000] [.297] [.352] [.036] [.015]

.095 .109 116 112 .105 -.196  -.058 126 -.105
(.015) (.019) (.020) (.018) (.017) (.134) (.143) (.120) (.084)
[.020] [.031] [.011] [.015] [.040] [.220] [.690] [.300] [.241]
-091 -102 -109 -105 -.099 .299 .099 -254 117
(.015) (.018) (.019) (.018) (.017) (.164) (.169) (.167) (.099)
[.022] [.041] [.015] [.015] T[.041] [.131] [.530] [.150] [.260]
-.010 .015 .044 .013 .008
(.002) (.013) (.027) (.013) (.008)
[.031] [.301] [.220] [.327] [.326]

341 367 272 281 383 .529 .083 313 753
2462 2462 2462 2462 2462 28 28 28 28

Notes: clustered by 28 papers (panels a & b) or heteroskedasticity robust (panel c¢) standard errors in (); bootstrap p-values based
upon 1999 bootstrap sampling (at paper level) draws from the distribution of t-statistics in [].
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Table H2: Determinants of Differences Between Maximum P-value across By-; and Setting B, = IA30N ;

(including regressions dropped on the basis of unbalanced treatment across strata)

maximum
leverage

logyo # of
treatment
groups

logjo#- 1
of treatment
measures

Boi = [}0~j

p-value

Bo~j = BON j
p-value
squared

constant

R?
N

maximum
leverage

logyo # of
treatment
groups

logjo#- 1
of treatment
measures

Boi= [}0~j

p-value

Bo~j = BON j
p-value
squared

constant

R?
N

(a) coefficient level
no paper fixed effects
s.e. clustered by paper

(b) coefficient level
paper fixed effects
s.e. clustered by paper

(c) paper averages
heteroskedasticity robust s.e.

dependent variable: maximum p-value across Py_; - p-value with B,; = estimated values

284 235 217 402 371
(.032) (.023) (.029)  (.080) (.075)
[.000] [.002] [.005] [.004] [.008]

278
(.033)
[.000]

-.021

(.014)
[.197]

-.022
(.015)
[.282]

-.029
(.015)
[.081]
041
(.018)
[.089]
145
(.058)
[.129]
-.166
(.047)
[.026]

.005

042
(.017)
[.074]
137
(.058)
[.144]
-.158
(.048)
[.042]

-.001

076 071
(.028) (.028)
[116] [.116]

184 176
(031) (.031)
[.000] [.001]
193 -.187
(027)  (.027)
[.000] [.000]
027 -.027
(012) (.047) (.009) (.008) (.005) (.039) (.017) (.016) (.080) (.107) (.053) (.049)
[327] [.188] [.611] [.871] [.030] [.195] [.247] [230] [425] [292] [413] [467]

.068 .045 .070 107 358 342 359 376 .148 .087 246 351

142
(.072)
[321]
014
(515)
[.982]
-341
(.546)
[.547]

.054

136
(.073)
[.375]
-395
(.486)
[.490]
282
(514)
[.596]

.049

167
(.050)
[.082]

-178
(.042) (.041)
[018] [.004]

.021 .082

178
(.048)
[.043]

-.189

188
(.029)
[.001]

-196
(.026)
[.000]

.019

195
(.028)
[.000]

-203
(.026)
[.000]

.082

-.838
(.758)
[414]

1.07
(.898)
[.363]

.093

-.643
(.810)
[.524]

809
(.973)
[.502]

174

2712 2712 2712 2712 2712 2712 2712 2712 32 32 32 32
dependent variable: maximum p-value across bounded B,.; - p-value with By_; = estimated values
185 188 1190 183 195 185
(.021) (.025) (.024) (.026) (.041) (.033)
[.000] [.002] [.010] [.014] [.018] [.010]

-.007 -015 -.011
(.004) (.008) (.006)
[.082] [.270] [.119]
.023 .023 .031 .026 047 044
(.004) (.003) (.010) (.010) (.012) (.012)
[.000] [.000] [.152] [.162] [.039] [.066]
113 119 102 096 115 21 A17 0 111 =272 -150 076 -.128
(.015) (.014) (.014) (.014) (.018) (.019) (.017) (.017) (.155) (.168) (.129) (.093)
[.001] [.000] [.002] [.009] [.009] [.001] [.001] [.010] [.140] [.401] [.576] [.209]
-103 -109 -.098 -092 -107 ~-.114 -109 -104 382 .208 -.187 .123
(.014) (.013) (.013) (.013) (.018) (.018) (.017) (.016) (.183) (.197) (.164) (.103)
[.001] [.000] [.001] [.008] [.010] [.001] [.001] [.011] [.091] [.326] [.265] [.237]
.003 026 -.006 -.010 .003 .048 -.014 -014 .025 056  .014 011
(.001) (.012) (.002) (.002) (.003) (.020) (.009) (.008) (.016) (.027) (.013) (.009)
[.108] [.044] [.031] [.009] [.221] [.268] [.223] [.192] [.193] [.112] [.302] [.286]
211 122 184 287 343 270 280 359 394 119 335 .680
2712 2712 2712 2712 2712 2712 2712 2712 32 32 32 32

Notes: clustered by 32 papers (panels a & b) or heteroskedasticity robust (panel ¢) standard errors in (); bootstrap p-values based
upon 1999 bootstrap sampling (at paper level) draws from the distribution of t-statistics in [].
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I. Practical Results using Other Treatment & Covariate Stratification

As noted in the paper, D'Haultfoeuille & Tuvaandorj's (2022) method of subset testing involves
stratified permutation by all other covariates, but in the paper I only stratify treatment permutation by
other treatment variables, as randomly applied treatment is independent of non-treatment covariates. In
this appendix I implement their method in full, stratifying by non-permuted treatment values crossed with
covariate values crossed with stratification measures (when these exist, to ensure that the resulting
permutations are a valid subset of the potential outcomes of the original experimental procedure). The
resulting distributions are non-degenerate for only 720 of the 2712 estimated treatment effects residing in
equations with more than one treatment measure.® Figure I1a below graphs the p-values found setting the
null equal to estimated effects against those found using other-treatment and covariate stratification. As in
the paper, I divide results by the partial R* of the regression of the permuted treatment measure on the
stratification dummies.” Also as in the paper, differences are greatest in the 419 cases where the R* is
greater than .5, much less in the 301 cases where the R” is less than .5, and largely non-existent in the 4
cases where the R? is less than .01. Figure I1b graphs the overlap/union of the confidence intervals and
the absolute value of the difference in p-values of other-treatment & covariates stratified permutation and
conventional clustered/robust inference against the maximum coefficient leverage share of a single
cluster/treatment grouping. Again, as is the case in the figures in the paper, large differences appear even
when maximum leverage is near zero, so that the influence of individual observations is minimal and
conventional inference is more likely (given amenable error moments) to have its desirable asymptotic
properties. While the patterns in Figure I1a & 11b mimic those shown in Figure III in the paper & Figure
F3 above, they appear somewhat more extreme, with for example more frequent and larger differences at
negligible values of leverage (panel iiib), as the average partial R* is .57, as opposed to the .43 and .45
found with other-treatment-stratification alone in the samples of Figure III in the paper and Figure F3

above, respectively.

¥Section V in the paper notes this as 667 because throughout the discussion there I drop regressions where
the number of base treatment strata grew with the number of observations or treatment was unbalanced across strata
(see Appendix F above and discussion in the paper). However, as D'Haultfoeuille & Tuvaandorj's theory does not
exclude such cases, I include them here (as well as in Appendix F).

?"Partial" because I take the regression of treatment on the original stratification dummies (when the
experiment was stratified) as the reduced model.
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other-treatment-stratification

overlap/union of confidence intervals

Figure 11: Randomization Inference using Other-Treatment & Covariate Stratification Compared with Other Methods

(a) 720 individual treatment effect p-values compared to those with null on untested coefficients = to estimated values
by R? of regression of permuted treatment on other-treatment & covariate stratification dummies
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J. Formulae and Methods used in Randcmdci to Calculate Randomization Confidence Intervals

This appendix presents the formulae and methods used by randcmdci to calculate randomization
confidence intervals and p-values for individual treatment effects. Randcmdci asks the user to indicate the
base treatment variables that are permutable across observations or groups of observations, possibly
within strata alone (all as specified by the user). The programme then executes any calculations given by
the user to generate the regressors associated with treatment variables. The permutable treatment
variables are not necessarily the treatment regressors themselves, as the calculations may transform the
treatment values. The regression model is y = Xp + Zy + ¢, where X are the K treatment regressors and
Z the K covariates. We depart from the notation in the paper and use X rather than Xy to indicate
treatment regressors, as it is up to the user how treatment regressors are generated from base treatment
variables (i.e. more may be done than simply interacting them with covariates). As long as base treatment
variables are permutable across possibly stratified and grouped observations, as indicated by the user, and
the calculation procedures given to transform these values into treatment regressors follow those used in
the experiment, the resulting treatment regressors represent potential outcomes of the experiment and the
randomization p-values are exact for sharp nulls. Asymptotic accuracy for heterogencous treatment
effects, however, is only guaranteed for the framework presented in the paper, where the only post
permutation calculation used to generate a treatment regressor is one in which the permuted treatment
variable is (possibly) multiplied by a covariate.'” We use T to denote the treatment regressors generated
by a permutation of the base treatment variables and the execution of any calculations indicated by the
user. Again, to emphasize, our notation departs from that in the paper, as T here is not merely a
permutation of treatment, but the resulting treatment following any post-permutation calculations,
including multiplication with covariates (Tw in the notation of the paper) which fits the asymptotic
theorems in the paper, but also allowing for other calculations which do not while still providing finite
sample exact tests of sharp nulls.

The baseline coefficient estimates for treatment regressors are the vector B with individual
components B . and clustered or heteroskedasticity robust covariance estimates V'( ﬁ ). Following each
permutation of underlying treatment, counterfactual outcomes yy; =y + (Ty, — Xy,)B, for the sharp null
B = Bo (with /™ element Bo) are calculated. The vector of coefficient estimates associated with these are
[AST,,}O with individual components /;’T,ﬁo ;and associated clustered or heteroskedasticity robust covariance
estimates V'( ﬁwo ;). Our first objective is to calculate which nulls B, are consistent with randomization p-
values greater than level a, i.e. a 1- o confidence interval. We do this by comparing the percentiles of

Wald statistics for individual coefficients, i.e.

""Thus, availing ourselves of the example of Duflo, Dupas & Kremer's (2011) random assignment of students
to class sections discussed in the paper, the assigned section is permutable across students, but the average quality of
assigned peers (the treatment regressor) is not. Consequently, the regressor does not fit the framework discussed in
the paper. Nevertheless, one can calculate confidence intervals for sharp nulls by permuting assignment,
recalculating the quality of peers for each such assignment, and using it as the treatment regressor.
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(ﬁT,[}Oj _ﬂ()j)z to (ﬁ, _/B()j)z .
V(Pry,;) V(B

Randcmdci begins by calculating coefficient estimates and residuals associated with a realized

(1.1)

permutation of treatment T under the null that , = 0, that is
(32) Bry = (T'M,T) ' TM,y, , =(T'M,T) ' T'M,y

Er9=M,(y—TBy,), where M, =1, — Z(Z'Z)Z.

The coefficient estimates and residuals for any null B, can then be calculated as:
(1.3) Bry, =(T'M,T) ' T'M,y,y, =By +Bry—AB, [Where A=(T'M,T)"(T'M,X)]

& &y =My (Yey, ~Thry) =&y ~(X-TA),,
where we use - to denote residuals from the projection on Z, as in X =M, X. Let Ziec denote
summation across the observations i in cluster ¢ and C the total number of clusters. When the covariance
estimate is not clustered and merely heteroskedasticity robust, C = N and each "cluster" contains one
observation. Let a; and a; denote the k™ column and jk" element of A, X = M, X(X'M,X)" &
T= M, T(T'M,T) ' and let t/ denote the i" row of T, X, the i/ element of X, t:,, the ;™ element of T,
& éT,m the i™ element of éT,o. Further, define the Kyx 1 vector d and Kyx Ky matrix S with elements

J4) d, = i (Z ?ijéiT,O ][Z ?ij (xXy — fi’ak )] & S, = i [Z ?ij (Xy — Ei’ak )][Z ?ij (x; — fi'a[ )]

c=1 \ iec iec c=1 \ iec iec
With this notation in mind, the coefficient and clustered/robust variance estimate associated with the ;"
treatment measure with regressors T and null , are given by:
(1.5) Prp,; = PBoj = Pro; =25 Bo, — a5y,
P 2 P 2 N ’ ’ ’
By = Poy)” = (Pro; =a;50;)" =2 Bro; = a;Bo)as Bo; +Boja, 5 B,

& V(ﬁT,p,)/) = Z[Z Z,‘[émo - Z()Vcik - fi,ak)ﬂOk ]) = Z(z i‘/éﬂ‘oj - 2d'B0 + B:)Sﬁo

c=1 \ iec k c=l \ iec
=V Bro) =20 o + B S By 2810 1S, B [+ S,
~

where subscripted ~j denotes excluding the /" element, as in a;; is the /" column of A excluding its ;"
element and S ; is S excluding its /" row and column.'" The letters c,, ¢, and c; are used below to
indicate the expressions given above.

The first step to calculating the randomization confidence interval is to calculate the roots implied

by equality of the Wald statistics in (J.1) above. This equality defines a 4" order polynomial in Bo:

" follow Stata's convention and multiply the variance estimate by an adjustment for the finite sample bias in
the case of normal iid errors based upon the number of observations, clusters and regressors, but as this appears on
both sides of (I.1), I omit it in the equations above to minimize clutter.
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(:éu; j _ﬂo;)z (:8, _ﬂo,')z
1.6) f(By,) =Rl 2l 2 D o
COSPI=y  B)
(ﬁT,Oj_a'j~jB0~j_ajjﬂ()j)zV(IBAj)_(ﬁjz_2ﬁjﬂ0j+ﬂ02j)(c3+2czﬁ0j+clﬁ02j):0:>

—c, By, + (28,6, = 26,18, +[aV(B) +4c, B, — e 7 — 1B
T [N ——

b

+[=2V(B)a,(Bro, =2, Bo. ) +28B,c; = 20,8718y, +[(Bro, — 2, By )V (B)) — . 57 1=0.

d

(J.6) allows for up to 4 real roots, which randcmdci calculates along with the derivative of the expression
at the values of the real roots. When no real roots exist, randcmdci notes the value of e, which then tells
whether the Wald statistic for post-permutation regressor outcome T is greater or less than that for X for
all real S, When a, b, ¢, d & e all equal to 0, which arises for example when T equals X or -X, the Wald
statistics are identical for all B, (a "universal tie"). randcmdci checks for this case as well. In equations
with more than one treatment measure, all of the above depends upon the nulls for the elements of B,.-;.
Based on the results in the paper, for the baseline calculation of confidence intervals randcmdeci sets these
equal to the estimated values [AiON ;although, as covered below, in calculating p-values alternate values are
considered as well. Of course, where there is only one treatment measure ~j is the null set and all terms
involving ~j in (J.5) & (J.6) are set equal to O (i.e. don't exist).

Randcmdeci then calculates for each treatment regressor outcome T whether the lim as f—-o of
f(By) is >, <or =to 0. Where real roots in (J.6) exist, this is determined by taking the sign of the
derivative at the smallest root.'> Where real roots do not exist, this is determined, as already noted above,
by the sign of e or (in the case of a universal tie) by the fact that a, b, ¢, d & e all equal 0. The number of
draws where f{f) is found to be greater than or equal to 0 at this limit can be termed G[-o0] & E[-o0].
Randcmdci then orders all the real roots calculated in D draws of T along the real line, which we might
denote as r; <r, <r;... Moving along the real line indexed by r, using the value of the derivative at each
r;, the value of G[r] & E[r] is determined. A single draw of U distributed uniformly on (0,1) is used to
calculate the p-value at each point on the real line as equal to (G[r]-i—U*(E[r]H))/(D-S-l),13 and these p-
values are used to calculate the .9, .95 & .99 confidence intervals. The program notes when the
confidence interval is non-convex, in which case it alerts the user to this fact and reports the convex cover
of the non-convex set. Temp variables and matrices used in the program's code follow the notation above,
eg.a b, c de,cy ey, d, S, ete, except that subscript & rather than j is used to denote the coefficient of

interest.

2The reader may note that ¢; above is > 0. In the usual case, with ¢; > 0, a in (1.6) is < 0 and the derivative
associated with the smallest real root (if it exists) is always positive, i.e. the draw T cannot contribute to G[-0].
However, cases might arise where ¢; = 0 and the derivative on the smallest real root (if it exists) is negative, so the
draw T contributes to G[-0], so randcmdci checks for this possibility.

BRecall from (2.4) in the paper that the original treatment draw X is treated as a tie with itself, hence the +1.
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A sidebar: Because of machine precision, a, b, ¢, d & e are often not exactly equal to 0, even
when T does generate a universal tie with X (as when T equals X or -X). Consequently, it is necessary to
use a non-zero cutoff as an indicator of 0. Ideally, this cutoff should not be sensitive to units of measure,
i.e. a scaling of variables, so randcmdci uses a normalization to adjust for units of measure. Let k,, k; & k;
be scalars that multiply y, x; (t;) and any x; (t;). The following is the fashion in which the measures in

(J.6) scale with these:

J.7 ¢ :k;),k‘f,kfj, ¢, :k;,k;l,ko

N/D

722 7.2 70 .70 70 70 720 71 71
Cyiky ko kD, ay ky kL kD, Ak kT
o .7l 121 70 H .7l 7-1 70 _p .1 7.0 -1 AN.7.2 7.-2 1.0
Proj ikyoky ks, Bk kykys Boy =Btk k ko, VB kK7 kS

~j5
. . - L2 .13 1.3 .4 74
atk) k0K, bkl kK, ikl kK dik Lk kS bkl kR

yovjofejs ~j°

Consequently, randcmdci uses the following indicator which is unaffected by scale:

(18) dif =|a|+—2L__y Lel 14l le| |
Vg, V) VBT V(B

In the more than 6 million realizations of T across 1999 permutations each of thousands of treatment

measures in my practical sample, there is a gap in the distribution of dif. 26826 realizations of dif are less
than 3x10™° (and these realizations can be confirmed through examination of T and X to generate
universal ties), and the remaining 6 million+ are greater than 2x10°. Randcmdci uses a value of dif < 10
to identify universal ties.

Continuing, to compute the p-value of the null of zero effects for an individual treatment effect
when setting the null for untested measures equal to estimated values (8o, =0, B,_, = [AiON ;), randcmdci

calculates the number of instances G & E where:

N YV N e AL B Ao
(J.9) G[o]:1 V(ﬁ?T,ZM-)'/’ >\V(ﬁj)‘/z +107 |, G[0]+ E[0]: 1 V(,bA’T,l;O,-)% >‘V(ﬁj)% _

where [ is an indicator for the event occurring. The p-value is then given by (G[0][+U*(E[0]+1))/(D+1),
using the same U used to calculate the randomization confidence interval above. As can be seen in (J.9),
as an allowance for machine precision an absolute difference in the absolute value of the t-statistics of less
than 107 is considered a tie (contributing to E). Again, in more than 6 million permutations of treatment
across my practical sample, there is a gap in the distribution of the difference of the absolute value of t-
statistics, as in (J.9). In 27701 instances it is less than 4x10™" in absolute value,' and in the remaining 6
million+ instances it is greater than 4x107 in absolute value.

Randcmdci also allows the user to call for the calculation of the maximum p-value for the test of
zero effects (B =0) for an individual treatment effect across all possible nulls B,.;, which ensures control

of the null rejection probability below nominal level in the case of sharp nulls (see the discussion in the

"These include the universal ties identified above plus 875 additional ties for the specific null Bo; = 0 where
the absolute value of the difference in absolute t-stats is less than 6x107°.
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paper). Setting f; = 0 and substituting using the definitions in (J.5), we can write:

(J10) (Brg; = Bo) V(B = (B, = By V'V (B, ) =
(ﬁT,Oj - a,j~jB0~j)2 V(ﬁj) - ﬂAjz (V(BT,OJ) - 2d,~jB0~f + B:)~fs~f~jpo~j) -
B:%j[V(ﬁj )aj~ja'j~j - ﬁfsvﬁ ]B0~j + [2ﬁ’j2d~j - 2ﬁT,0jV(ﬂAj)aj~j]/B0~j + [ﬁTZ,OjV(ﬁA)j) B V(ﬁ“f )ﬂAJZ] - g(B‘H)

Ag b, o

g(Po-) = 0 defines a quadratic equation in P, As was the case above, there are cases where all elements
of Ay, by and ¢y are zero, there is a universal tie'> and g(Po-y) is identically zero. As before, because of
machine precision it is necessary to construct a non-zero cutoff to distinguish such cases, and this cutoff

should not be sensitive to scaling of variables. Following the definitions used earlier above, note that
(J11) a,_ k) kK, S

P o721 7-1 70 D .71 71-1 70

Proj thyki ks Bk, kL ks,

Y S0 a0 S T S S

~J> ~J°

T SEN SO BT L S

~i~J
V(B I K, VB ki dC

14 1-4 70
Co ikt kK,

and construct the following indicator which is unaffected by scale:

B

0.12) dif, =l VB Uy 5 VBV (B2 Ay
Vig)™ = V(B) kemjie=y Vg,
where by, denotes the k™ element of by, Ao the k" x I element of Ay, and k € ~ j summation across all &
in 1...K, excluding j. As before there is a gap in the distribution of dif. In more than 5 million
permutations of treatment in multi-treatment equations across my practical sample, it is less than 2x107'
in 6327 instances and greater than 2x107 in the remaining 5 million+. Randcmdci uses a value of dif ; <
10” to identify universal ties in these computations.

Returning to (J.10), when there are only two treatment measures, i.e. Bo-; is the scalar f,_;, we can
solve for the roots for each T in D draws and line these up along the real line. In some instances there are
no roots, in some instances the quadratic and/or linear term is zero, and there is also the possibility of
universal ties where all terms are zero, as identified by dif,. Randcmdci follows the same procedure used
in the case of confidence intervals for f; above, calculating the number of cases where g(f,-) is greater
than 0 or equal to O (the universal ties) as f; —-o0 and then, with the location of real roots  of g(f,-;) and
the sign of the derivative of g at those roots for each treatment outcome T in hand, moving along the real
line indexed by r and keeping track of G[r] & E[r]. With the p-value at each point given by
(G[rH+U*(E[r]+1))/(D+1), using the same U as was used to calculate the confidence interval for ; above,
randcmdci calculates the maximum p-value across all values r. This is the maximum p-value for the test

of Sy, = 0 across all possible nulls for ;.

>The universal tie here is different than in the case considered in (1.6), (1.8) & (I.9), as that concerned a
universal tie across all f,; given P, = estimated values whereas here we are examining a universal tie across all o,
given ;= 0.
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For the case of three treatment measures, where P is a 2 x 1 vector, randcmdeci transforms By,
into polar coordinates, giving:

(J.13) g(B,. ;)= g(0,r) =x'Ax r* + bixr + ¢, =0, wherex'=[sin(d),cos(8)], 8 €[0,27).
For a given value of 6 this is a quadratic equation in r, and the procedure described above can be used to
solve for the maximum p-value across all positive and negative » given 6, which we may call g'(6).
Randcmdci then performs a line search across 6 dividing [0,7] into # (as given by the user option
maxlevel(#)) evenly spaced points and takes the maximum p-value across these. Because the maximum
across 7 for each 8 allows for both positive and negative values of 7, this search automatically considers
the maximum p-value along the opposite ray where & lies in [7,27].

For the case of K, = four or more treatment measures, Bo-; is a K, - 1 vector and we transform into

n-dimensional spherical coordinates, where with 0 a k (= K, - 2) x 1 vector:

(1.14) g(B,;) = g(0,r)=xX'Axr’ + byxr + ¢, =0,
k
where x, =cos(6,), x, =sin(f,)cos(6,), x, =sin(f,)sin(b,)cos(6,), ...., X, =Hsin(¢91),
1=1

with 6, €[0,z]forl=1..k-1 & 6, €[0,27).

For a given value of 0 this is a quadratic equation in r, and the procedure described above can be used to
solve for the maximum p-value across » given that ®, which we may call g'(0). Randcmdeci then performs
# (as given by maxlevel) iterations of the Nelder-Mead (1965) search procedure. For each iteration, £+1
draws from the uniform distribution across [0,n]" are used to find &+1 initial g"(@) values and then the
Nelder-Mead simplex method is executed until the g'(0) for the k+1 vectors in the simplex are identical.
Randcmdci takes the maximum across the # independent Nelder-Mead searches and reports that as the
maximum p-value. On each round of simplex optimization I draw u = (u,, u,, u3) from the 3 dimensional
iid uniform distribution on (0,1) and use these to randomly set the Nelder-Mead reflection coefficient o =
u,, expansion coefficient y = 1+ u,, and contraction coefficient = us.

Randcmdci also allows the user to ask for a bounded search. If the boundcoef(#) option is chosen,

By, — [Aio~ DB, - [A%N ;)must be less than #°. Using the change of variables
(115) g(Bo-) =B Ao, + biBo, + ¢ =Bi ABy, + biBy, + & =2(B,.,)
where B, =B, —B,;» Aj=A,, by=b,+2AB, . & T, =c, +bB,_, +B_ A.B,.-
If the user specifies the boundwald(#) option, (B,_; — ﬁ~ j)'V(ﬁ~ ; ) (B, i~ [AL ;) must be less than #. As
V([Ai~ ;) 1s strictly positive definite, we have:
(1.16) V(B_,)" =V*V", where V* =EA”E' & V" =EA"E'
and where E are the eigenvectors of V([AL ;),and A” & A denote diagonal matrices whose elements

are the square root & inverse of the square root, respectively, of the eigenvalues of V([AL/.) . Using the

change of variables:
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(A7) g(By-) =B, Ay, + Do, + ¢, =i AB,, + biBy, + & =2(By.)
where B, =V*Bo, —B_,). Ay =V A V", by=V"b, +2V*AB_, & G =c, +bip_ +B AB_,.

For both boundcoef and boundwald, the search for a maximum p-value is now restricted to values of 7, as
in the previous paragraphs, < #. For K, = 2 the calculation of a maximum across the unbounded or
bounded space for 7 can proceed concurrently. The same can be done with the line search across 6 in [0,7]
when K, = 3, as for each pre-determined 6 a maximum across bounded and unbounded values of 7 can be
calculated. However, when K, > 4, the values of 0 chosen by the Nelder-Mead algorithm at each step
depend upon the values of the maximand g'(0) in the simplex, which is different when r is bounded.
Consequently, for K, > 4 separate searches are conducted, with and without bounds on r.

Finally, it should be noted that if requested by users randcmdci will also provide p-values for tests

of specific (joint) nulls Bo. This is done by calculating the number of instances G & E where:

(Brg, —B)V (Bry,) " (Bry, ~B) Brg, ~B)V (Brg,) " (Bry, - Bo)j
>B-B) VB B-p,)+10" >(B-B,)V B B-B)-10" )
where as before / is an indicator for the event occurring. With a random draw U from the uniform
distribution on (0,1), the p-value is given by (G[Bo]+U*(E[Bo]+1))/(D+1).

(J.18) G[B,]:1 j G[Bo]+E[Bo]i{
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K. Convergence in Distribution for any B, (notation follows that used in the paper & its appendices)

In this appendix we prove a version of (R1) that establishes convergence in distribution for any
fixed Po, not merely for drifting sequences f, that lie in a root-N neighborhood of the true parameter values
B. (R1) is modified to read:

(RR1) Given White's (1980) assumptions W1 - W4 and the additional assumptions Al - A3, as in the
paper and modified below, for any B, the Wald statistic 7(T,f,) based on the heteroskedasticity

robust covariance estimate is asymptotically distributed chi-squared with PQ degrees of freedom
d(T)a.s.(Xy.Z.g)

7(T,B,) - X;zjg >

d(T)|a.s.(Xy,Z,g) ) o ) ]
where - denotes convergence as N — o in distribution across the permutations T of X

almost surely given the realization of the data (Xw,Z,¢€).

(RR1) does not subsume (R1) given in the paper, as no claim is made that 7(T,B,) converges in probability
to 7(T,B). The fixed value of B, asymptotically affects the variance of the counterfactual coefficient
estimates, but the covariance estimate properly adjusts for this producing a chi-squared distribution. The
individual realizations of 7(T,f,) depend upon B, and do not necessarily equal z(T,[).

(RR1) requires changing assumptions (A1) and (A3) as given in the paper to read:

(AA1) There exists a finite positive constant y such that (a) Gy = z: E(x,x))/N -
ZZ E(x;)/N z: E(x)/N is non-singular for all N sufficiently large with determinant Gy >y >
0; (b) with @, = > E(z,z))/N)" > E(z,xy,)/N, Xy, =Xy, —2®, & o, =a'w,w'a, forall a
such that a'a =1 & for all N sufficiently large

N E(a)igiz) _ ﬁ“ E(wexy,) K—lﬁ“ E(weXy,;)
o N i=1 N i=1 N

S E(a)tiWIX,VVI)

i=1

where K = with determinant K > y > 0.

(AA3) There exist positive finite constants 6, 0 and 4 < oo, with 9(1+29*) > 1, such that for all 4, j = 1...K,,
p=1.Pandq = 1.0 E(w,&|"") <4, E(w,z};|"") <4 and E(|x,,|""") < 4.

ig“i

Relative to (A1) in the paper, the addition of AA1b requires that there is enough independent variation in
the errors that their residual variation in a regression on the treatment variables weighted by any
combination of the interaction covariates does not asymptotically go to zero, (i.e., that the R? in the
weighted regression of the outcome y on Xy, net of the effects of covariates Z, does not go 1), and
ensures that the covariance matrix of |§(T, B,) based on counterfactual outcomes remains non-singular for

1+6

any null Bo. E(| w,f]zf,j |""") <4 in (AA3) is an added moment condition that, depending upon the value of

1+0

0", may be more demanding than the E(| zf,j | ") <4 given in White's assumption (W4). Otherwise, the

framework and notation is as given in the paper and its appendices.
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Following each permutation of treatment, the dependent variable is adjusted in accordance with
the null and the realization T of treatment
(K1) y(T,B) =y +(TeW-Xe W), =X, (B—B,)+Zy +e+TyB,-
With M =1-Z(Z'Z)"'Z' denoting the residual maker with respect to Z, the estimated coefficients and
residuals associated with T and B, are
(K.2) B(T,B,) = (TuyMT,) " Ty My(T,B,) = (TyMTy, ) ' Ty, ME + B, where & =MXy, (B —B,) + M,
(K.3) &(T.B,) =My (T, ) ~MTB(T.B,) =& ~MTy, (B(T.B,) - B,),
and where we use the fact that MZ = 0y,x and define & which will be used repeatedly below.

All Lemmas proven in the paper continue to hold, as the moment conditions have, if anything,
been strengthened, and will be referenced below as Lemma 1, Lemma 2, etc. The following additional
Lemma, proven below, will also be useful:

Lemma K1: White's assumptions W1 - W4 and the additional A1l - A3 as modified above ensure that
(a) The means of the products of four columns of E = (Z.,&), no more than two of which are &, are
almost surely bounded.
(b) With W = W&, almost surely for all N sufficiently large WW, /N = WW, /N & W,W, /N is
bounded and strictly positive definite with determinant >y > 0, while (W;W; / N)™'is bounded.
(c) x;, & w;,&; almost surely satisfy condition Ib of Theorem I for all column pairs p of X and g of W,
while XX/N & \7V¢’\’N\’g /' N are bounded with determinant >y > 0 for all N sufficiently large, so that

across the row permutations T of X we have

SIS S N R v
(X/X®W§ng (T.Wg)lN 4

m v Wi —>N,,, wheren,, ~N(0,,,1,,).

(d) For some a in (0,%2) condition I1Ib of Theorem III almost surely holds for the mean of the product

amax(n—-2,0)

of the elements of n =1, 2, 3 or 4 of the columns of T divided by N with the elements of

four columns of E = (Z;,£), no more than two of which are &, so that across permutations T of X

n n P
- -2,0 — -2,0 | | 3
m(N amax(r i ( I I tip(()) )e;'jeikeileim ) - m(N amax(r : ‘xip(()) )m(eifeikeileim ) 0

o=1 o=1

As elsewhere in this paper, almost sure limits are with respect to the data sequence (Xw,Z,€), while
probability limits and limiting distributions are with respect to the probability distribution generated by the
N! equally likely row permutations T of X.

(a) Asymptotic Distribution of Coefficient Estimates

Multiplying (K.2) by+/N , we have
TyMT,, )‘ Tyt

(K4) VN (B(T.B,)-B,) = ( N T

From (B.5) in the paper we know that:
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T.MT, XX _ WW »
(K.5) WN wo_ N ® v =0, 5o

The k" term of Ty&/+/N equals:

(K.6) t\,‘/wﬁ% _ i[ ip(k) m(f,p(k))][\/%(k)f 7"’1(W,q(/c)‘:E )] +\/>m(x,p(k))m(w,q(k)§)

However,

K7) mew, &) = Newll ZZEDZIX (B=P,) 5]
iq (k)

N

=0 almost surely for N sufficiently large

wwZ(ZZY',, -

N v 7' =w,,, almostsurely for N sufficiently large (Lemmala),

where because of A2 for all N sufficiently large that Z'Z/ N is guaranteed to be invertible W, Z(Z'Z)"is
a row vector of zeros with a 1 in the column corresponding to the position of w,, in Z. Consequently, the

second term in (K.6) is zero for sufficiently large N and applying Lemma K1c we have

!X W W Tr d
(K. 8)[ m I J \/Wﬁé — n,,, where n,, ~N(0,,,1,,),
so that
almost surely bounded positive definite matrices (Lemmasla-1c)
XX _WW. | (X X o WW
K.9 ® VN B(T =
(){N NJ{N ] N(B(T.By)—Bo) =
;[ﬁg)MJ 1
N N
NI VA r l; ' -1 l; ’ NI VAT '
XX o WeW, | (XX WW | TMT, ) (XX WW, ) (XX WoW, ngimpg.
N N N N N N N N N | N
IAIPQ i>nPQ

(b) Probability Limit of the Heteroskedasticity Robust Covariance Estimate

For the heteroskedasticity robust covariance estimate we have
, -1 , -1
T, MT, j A( Ty MT, j , where A =
N N
Using the formula for &(T,B,) from (K.3) earlier, the kI term of A is given by

1 & K R K R PO 2
(K.11) A, = Nz (tip(k)wiq(k) - zziaé‘ak)(tip(l)wiq(/) - zzib5bl)|:§i - z (tip(c)wiq(c) Z 1d5dc) r
i=1 a=1 b=1 c=1 d=

with = \/N(ﬁ(T,BO) -B) & Sk =(Z'7)"'Zt,,,. From (B.13) in the paper the plim of Sk is known to

equal 0 unless a is the column position of w,, in Z, in which case plim 3ak —m(x,,,,)=0. From (K.9), the

(MT,, &(T,B,))'(MT,, *&(T,B,))
N

(K.10) NV, (B(T,B,)) = [

elements of I are asymptotically multivariate normal with bounded variance, so when divided by any

positive power of N have a probability limit of zero.
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When (K.11) is multiplied out, all terms multiplied by an element of f involve the mean of the
product of the elements of 0 to 4 columns of T and the elements of 4 columns of E = (Z,,&), no more than
two of which are & From Lemma 1c and K1a we know that the sample means of the product of the
elements of one through four columns of X or four columns of E are almost surely bounded.
Consequently, using Lemma K1d, in (K.11) every term that involves the product of an element of
i/+/N that has a plim of zero with the mean of the product of four columns of E with zero, one or two
columns of T (and also possibly with an element of bounded & . ) has a probability limit of zero. Every
term in (K.11) that involves the product of n = 3 or 4 columns of T with four columns of E also includes
at least 7 - 2 #/~/N terms which can be re-expressed as (f/ N “)(1/N“) for some a in (0,%). The
1/N“ part can be used to satisfy Lemma K 1d, while from (K.9) the £/ N " part converges in probability to
0. Thus, all such terms also have a plim of 0.

The above only leaves terms in (K.11) that do not include an element of r/ JN namely

K

2
(K. 12)2 L Wigo) lp(l)W,q(l) Z akz Ly tq(l) %; _Z blz ,p(k)wlq(k)zlbé‘l K
i=1 i=

A

K K
m(tzp(k) ip(l) lq(k) q(l)§ ) 2 km(tzp(/) q(l)Ztag ) zé‘b/m(ttp(k)wlq(k)zlhg )+zz ak hlm(zlazzhg )

a=1 b=1

where m(1,, . Ly Wigao W& ) = 10X %0 )10, 00 Wey &) _’O
LemmaKId

& Mty Wiy Z:u&? ) = m(Xy 0 )Wy 2,87 —> 0,
LemmaKId
SO A, _[m(xip(k)xip(l)) - m(xip(k))m(‘xip(l))]m(wq(k) tq(/)§ ) _> 0,
where we recall the boundedness of means of products of up to four terms (Lemma 1c¢c & K1a) and the fact
noted above that plim 5ak = 0 unless a is the column position of w,, in Z, in which case plim Sak =m(X,,))
and z;,, =w,,. This allows us to state that

X WIW,
(K.13) A—XNX !

POxPQ
and consequently for the heteroskedasticity robust covariance estimate we have

. XX _WW) (XX _WW (XX _WW) »
K.14) NV_(B(T, - ® ® ® >0, .,
(K.14) NV, (B(T,B,)) (N N ] (N N ]( N N J POPO

which from (K.9) and Lemma K 1b is seen to be the asymptotic covariance matrix of normally distributed
JN (ﬁ(T, B,)—B,). This establishes that the distribution of the Wald statistic 7(T,B,) across permutations
T converges to that of the chi-squared with PQ degrees of freedom.

(¢) Proof of Lemma K

Lemma Kla: Regarding the means of products of four columns of E = (Z,,£), we note that
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K

K PO
(K.15) & =¢- zziafa + Z[xip(h)wiq(h) Z (h)(ﬂb Bos)
a1 b=1

p
where ¥ =(Z'Z/N)'(Z'e/N) & ® =(Z'Z/N)"(Z'Xy,/N). From Lemma la-lc in the paper we know
that the elements of ® are almost surely bounded, those of % almost surely converge to 0, and the mean
of the product of four columns of D = (Xw,Z,€), no more than two of which are g, is bounded. S, - fos is a
constant. The mean of the product of four columns of (Z.,&) (no more than two of which are &) is made
up of the sum of the means of products of four columns of (Xw,Z,€) (no more than two of which are &)
times terms from %, ® and B - B, and hence, by the results just noted, is almost surely bounded.

Lemma K1b: (K.7) showed that m(w;,¢;) equals zero for all N sufficiently large, which
establishes W,W, / N = W/W, / N for such N. From Lemma K la we see that the elements of W;W, /N ,
formed of the means of the product of four columns of (Z,,£), two of which are &, are almost surely
bounded. With regards to the determinant, by the properties of the Rayleigh quotient we know that if
o'W;W.a/N>y>0 for all @ such that a'a = 1, then W,W, /N is positive definite with determinant
greater than y¢ > 0. From the above:

dWWa ., g > I
(K.16) N =N Z w, (s -2+ Xy, —Z2®)P-B,))” wherew, =a'w.wa,

i=1

as. [ N N\ n as. N N\ N ’
i (Z E(;;Zf)] (Z E(]Z\}'gf)] =0, & ®-®>0,,,, where® = (ZE(;Z'ZI')] (ZE(Z]"\’;W")],
i=1

= i i
and the almost sure limits follow from the Markov Corollary given in the paper and use of the moment
conditions in (W1)-(W3): E(|z,,2.,|'""") <4, E(z+¢) = Ok, & (using Jensen's Inequality) E(| £z, |**) <
E(&’z2, |"°)" < 4" . By (W2), the matrix inverse in ® is known to exist, as it is a sub-matrix of My, and
the elements of ® are also known to be bounded.'® a is a vector of finite constants. When multiplied out,
the remaining components of (K.16) are seen to be the means of four columns of (Z;,¢), no more than two
of which are €. Using (W3), (W4) and Holder's Inequality

(KA7) E(| z,y7,582 ) < [TTE(Z2062 1) <4, EQ 2,207,070 1) <[ TTE(=5% 7)< 4,
a=j.k a=j.k,l,m

& (27526, ") <4[EQ 2L EQ 2L FOVE( 62 ) < 4,
so by the Markov Corollary these means converge almost surely to the mean of their expectations and
o'W, W.a E(ws))

(K.18) T—h 50, where &, _; S+~ BO)ZE(“’;XW’)

E(oXyXyw;)

+(B- ﬁo)z N

(B_Bo)-

where Xy, =Xy, —z/®. Minimizing the right hand side with respect to B, using the fact that the mean of

E(wXy,Xy,) is positive definite and invertible for all N sufficiently large (assumption AA1b above),

'As the trace of My is bounded from above by K, 4 and its determinant from below by y, its smallest
eigenvalue is greater than 1 = /(K. A" ")\ (K,-1) and the largest eigenvalue of the inverse in @ is bounded by 1™
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(K.19) B-B, = _(i E(oX Xy, j i E(a)i;iw[),

N 2 N = -1 N -
E(a)'gi ) _ Z E(a)igiXWz) (Z E(a) XWzXWi)j E(a)z;XWi) >y > 0’

o N i1 N P N

i=1

where we use (AA1b) in the last as well. This establishes that the minimum eigenvalue of W, W, / N is
almost surely > y > 0 for all N sufficiently large, so its determinant is greater than some y > 0 and, as the
eigenvalues of its inverse are bounded from above by the inverse of its smallest eigenvalue, that
(W,W./N )"'is also almost surely bounded.

Lemma Klc: Lemmas la & 1c in the paper and K1b above already established that
XX/N & W'W / N are almost surely bounded with determinant >y > 0 for all N sufficiently large, so
all that remains is condition Ib. Define w;,- = w;,{; and, as elsewhere, let superscripted ~ denote sample

demeaned values. Our objective is to prove that for all integer 7 > 2 and all p and ¢

a.s.

t N N 20 N 7/2
(K20) N> 3% Zw,qé / [Zx] (2%;} 5o.

We begin by noting that:
1
Ny > )E N Max X, Max i,
2 =T ~7T 2 Ve / 5
N Zl: X Zl: Weel |V (1\{£2[3.VX X, I\E.'jlvx W e z W, 5 N N<N

- N N 1/2 Y
sese) || or%
As noted in the paper's appendix, for a K x K matrix with determinant > y > 0 and non-negative diagonal
elements bounded from above by 4’, the smallest eigenvalue is bounded from below by A(K)= y/(KAYNK-
1). By the Schur-Horn Theorem, the smallest diagonal element of a real symmetric matrix is greater than
or equal to its smallest eigenvalue. Consequently, given the properties already established for
XX/N & WgWi /' N we know the smallest diagonal elements of these matrices are almost surely greater
than A(P) and A(Q), establishing that the denominator of (K.21) is almost surely bounded away from zero.

Turning to the numerator, since for any sequence d;
(K.22) Maxd,’ <Maxd; +2, [Max(d;)|m(d )| +m(d,)’,
while almost surely m(w;,e) = m(w;,&;) = 0 for N sufficiently large (K.7 earher) and m(x,,,) is bounded
(Lemma 1c¢), to prove (Ib) all that remains is to show that MaXKNx Max,_, w. e ! N —>0 Using (K.15) and
recalling that x;,; Wiy 1s an element of z,;, we see that w,.q5 is made up of the sum of the product of terms
h;= W,q«?, , qu«?lzw , or Wfqzﬂ-jzﬂ-k times almost surely bounded elements of %, ® and B - f,. From (AA3)
above and Holder's Inequality we have E(\w,z,,z,, ") < E(lwyz2, ") E(wiz2, ") <4,

Lq +t/ Lq +Lk
E(woe? [ <A, E(wiez, ™) < E(w2el ) (w2, 1) < 4, & E(x 1)< 4 with 61+20°) > 1.

lq 1 lq +t/

Applying Markov's Inequality
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0

(K.23) > Prix;, = N“} =Y Prixy, >N} <>’ P <o if 2a(1+6")>1

N=1 N=1 N=1

& Y Prih, ZNb}ﬁzw«xv if b(1+6)>1.
N=1 N:IN

Both conditions can be met witha >0, 5>0and a + b < 1 if §(1+26") > 1 as

L B 0(1+26") -1
21+60°) 1+0 2(1+07)(1+0)
poses no contradiction. Applying the Borel-Cantelli Corollary in the paper, we see that
Max

(K24) 1>a+b>

e XpMax  w . / N’ is almost surely bounded by 1, so Max,_yx, Max,,w. ./ N )
Lemma K1d: The sample means of 1 through 4 columns of X and any 4 columns of E = (Z,,&)
(no more than two of which are &) are almost surely bounded (Lemma 1c and K1a), so to establish

condition IIIb it suffices that there exists an a in (0,2) such that the following are almost surely bounded

2.2.2 2 2.2 2.2 2 2
xlj xtk‘xtl ‘x x1/ ‘xlk xtl xim ‘x;'j x

(K.25) m| —— 2X0), m 2 < max max —2- m(x; x,
N N N N < N N

N ool el 22

& ; Gt ’1 i i<NX e,]]\e;k m(ege,,)

where we select indices so that when two elements are ¢, e; represents one and e; the other. The proof of
Lemma 2 in the paper's appendix already established the condition for the products of x; above. Using
(K.15) we know that when e; =&, ¢
or Zf,-jzﬂ-kzﬂ-, times almost surely bounded elements of T, ® and B - Bo, and otherwise we can say that /; =
e,,elk = zﬂjzﬂk From (W3), (W4) & Holder's Inequality we have E(] zw ; "y <4, K| zﬂj "y <4,

E(| 2262 ") < E(z2el ") E( 22,22, |"°)" <4, & E(|z)z; |"°) < 4. Applying Markov's Inequality

l/ tk

- ,,( is made up of the sum of the product of terms 4, = ZﬂjSl s Z,jc%Zﬂ,c s

Z+lkZ+t1 |

+1/ +ij l

(K.26)2Pr{h >N* }<ZNWM) <o if a(l+8)>1.
N=1

As 0> 0, we know that there exists an @ < 1 such that (K.26) holds, so by the Borel-Cantelli Corollarv for
any of the /; described above max,. &/ N is almost surely bounded by 1, and hence max,., e2e’ /N —0,
establishing IIIb.
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L. Convergence in Distribution for any p, (Grouped Treatment) (notation follows Appendix B)

In this appendix we prove (RR1), as given in Appendix K above, for grouped treatment. The
framework and notation follows Appendix B above, but we change assumptions (A1), (A3) & (U5) given

therein to read:

(AA1) There exists a finite positive constant y such that (a) Gy, = Z}::l E(x,%.,)/M - Zle Ex,)/ M
Zf;l E(x))/M is non-singular for all M sufficiently large with determinant G,,> y > 0; (b) with
@, = (X E@2z)INY' XL E@Xy)IN, Xy, =Xy, —Z,® & ®, =W, a, for all @ such that
a'a =1 & for all M sufficiently large

Elweg o s ) E((x)so)Xw) E(XW o s )
m_m m_m m_m m m K m m m_m > O’
D TR P

where K = ZE(XWm(’)m‘”mem)

with determinant K >y > 0.
m=1 M

(AA3) There exist finite positive constants 6, 6", y and 4, with (1+26")> 1, such that (a) for all m, j =
1.K.,qg=1..0and p = 1...P, E(W,,£,&,W,,[") <4, E(W,,2.,%&,2.,,|"") <4 and
E(|x,,["") < 4; (b) Wy = M~ z E(W, £,£,W,) is non-singular for all M sufficiently large,
with determinant W, >y > 0.

(UUS) Clustering is done at the treatment grouping level or above, i.e. treatment groups are contained
within clusters, and, following assumption (U5c) of Appendix B above, errors are independently
distributed across clusters with E(ZH1 & +(2 €. ) =0forallj, k=1..K, if cluster ¢; # c..

(AA1) and (AA3) are the grouped treatment versions of the extensions of (AA1) and (AA3) discussed in
appendix K. The assumption E(z, £, Z.. £. ) = 0 from Appendix B merely ensures that the conventional
Wald statistic is asymptotically distributed chi-squared. Clustering must take place at the treatment level
or above because a fixed deviation f, # p contributes, via the original regressors Xy, to the error term of
counterfactual outcomes y(T,By). When treatment groups cut across clusters this introduces a correlation
across cluster groups, resulting in a divergence between the variance of ﬁ(T, B,) and that calculated using
the clustered variance estimate, as shown analytically at the end of this appendix.

Turning to the proof of (RR1), the estimated coefficients and residuals associated with the null B,
and row permutations 7 of X, producing observation level treatment measures T, are

(L.1) ﬁ(T,BO) = (TQyMT,,) ' Ty My(T,B,) = (Tyy MT,, )" T{, ME + B, where &=MX,, (B-B,) + Mg,

(L2) &(T.By)=My(T,B,) ~MT,B(T,B;) =&~ MTy, (B(T.B,) ~ B,).
All Lemmas given and proven in Appendices B and C above continue to hold, as the moment conditions
have, if anything, been strengthened, and will be referenced below as Lemma B2, Lemma B3, etc. The

following additional Lemma, proven below, will also be useful:
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Lemma L1: Define W:as the M x Q matrix whose mq"” element w,,, is the sum of the observational
elements corresponding to the m™ treatment group in the N x Q matrix We (6. Wige =2 ienWigls)- 1If
assumptions U1 - U4 and A1 - A4 as modified above hold, then

(a) With e; e, and e;3e;4 each denoting the product of the elements of two columns of E = (Z,,§) (with at
most one in each case being &), |m(e;en)|, [m(eienenen)l, Imeien eseun)l, [malenen esen) &
|m.(e;1en,esen)| are all almost surely bounded.

(b) Almost surely for all M sufficiently large Wg’ﬁ% IM =W'W/M & W/W/M is bounded and
strictly positive definite with determinant > y > 0, while (W'W./M )_1 is bounded.

(€) Xmp & W,ye almost surely satisfy condition Ib of Theorem I for all column pairs of X and W, while
X'RIM & W{;‘W{; / M are almost surely bounded with determinant >y > 0 for all M sufficiently

large, so that across the row permutations 7 of X we have

[W ®ﬁMJ (T e W)L,

v; IV; N3 —>N,,, where np, ~N(0,,,1,,)-

(d) With ¢,...t4 denoting columns of T and u;; and u;, each the product of the elements of two columns

of E = (Z.,&), no more than one of which is &, for some « in (0,'%)

P P
dl) m, (t,u,, ”‘/2) = a(x,,)m,(u, a“‘/z)_ﬂ) & m, (t,t,u, a”‘/z) = O(X,,%,,,)m, (u, a“‘/z)_ﬂ)

P
(dz) m(r (tiluil H ZLj2uj2 ) - ([a)(xmlxnﬂ) - a)(xml )a)(xrnZ )]mv (uil H uj2) + a)(xml )a)(XmZ )mc (uil b uj2 ))_) O’
P p
(d3) M™m, (tilt12uil’tj3uj2) -0 & Mﬁzamc (tilti2uil’tj3tj4uj2) —0.
As elsewhere in this paper, almost sure limits are with respect to the data sequence (Xw,Z,€), while
probability limits and limiting distributions are with respect to the probability distribution generated by the
M equally likely row permutations 7" of X.
(a) Asymptotic Distribution of Coefficient Estimates
Multiplying (L.2) by /M , we have
-1
. T, MT,, ) T.&
L.3) VM (B(T,B,)—B,) = | W | 2=,
(L.3) (B(Bo)ﬁo)[Mjm

From (B.9) in Appendix B above we know that:

T.MT, XX _WW?
(L.4) WM L L@ = O,

The remaining part of (L.3) is the vector Ty, &/ JM , the K" term of which equals:

! tm Wi gi
T SN el A S I
\/M i=1 \/M i=1 \/M i=1 VM

. [ty = i)Wy = OWy02)]
:; p(k) p(k) mq(k)f q(k)é +\/ﬂw(tmp(k))w(wmq(k)§),

However,
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Wonlly —ZZLZ|[ Xy, (B-B,) +£]
M

(L.6) oW, 1)) =mW, &) = =0 a.s.for M sufficiently large

WonZ(Z'Z ) —w 1 ly fi fficiently 1
as v\ 7' =w,,, almostsurely for M sufficiently large (Lemma B2a).
where, as elsewhere, we make use of the fact that wy is an element of Z. Consequently, for sufficiently

large M the second term in (L.5) is zero and Ty &/ JM = (T e 1:%)’1 ro! M Applying Lemma Llc:

~f o ATHAS " ’ d
(L.7) (75‘; ® “ﬁ:\é] TS wheren,, ~N(0,,,1,,).

m—mPQ,

Combining the preceding results, we see that

almost surely bounded and positive definite (Lemmas B2a.2¢, L1b)

(L8) ["‘ “MJ { XX W’WJ JM By~ By) =

M M M

—)Il .
M M M M M M M NIYi re

» d
—1Ipy —Npy

i Lt e e

(b) Probability Limit of the Clustered Covariance Estimate

For the clustered covariance estimate we again have the sandwich formula,

(L.9) MV,,(B(T.B,)) = (TWxTW ] A(TWDA;TW )

but with the kI” element of A this time given by

| C(Z(tzpm Wig(k) sz%){f Z(f,p(() Wig(e) Zzlﬁm) - D
(L.10) Ay =—>"

M= K R P ’
[Z(ij(l) (1) szbéb,){g Z(f,p(e) Wige) /Z;Z/]'gfé)\/;?:|J

Jee
with = m(ﬁ(T, B,)—B,) & Sk =(2'7)"'Z't,,. From (B.20) in Appendix B above the plim of Sk is
known to equal 0 unless a is the column position of W, in Z, in which case plim 5ak - o(x,,,)=0. From
(L.8) the elements of r are asymptotically multivariate normal with bounded variance, so when divided by
a positive power of M have a probability limit of zero.

When (L.10) is multiplied out, all terms multiplied by an element of ¥/ VM involve the m, means
of the product of the elements of 0 to 4 columns of T and u;, and u;, each the product of the elements of
two columns of E = (Z.,§), no more than one of which in each case is &, as in m.(u;,up), m(tiu,up),
m(titti, toldj), Mttt Up), me(titpui, tzup) and me(titpuan, tatau), where f;; .. ¢ represent columns of T.
From Lemma B2c in Appendix B above and Lemma L1a we know that |a)(1_[Z:1 X,)| forn=1..4 and

m(u;1,up) are almost surely bounded. Consequently, using Lemma L1d, in (L.10) every term that
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involves the product of an element of T/ VM that has a plim of zero with the mean of the product of four
columns of E with zero, one or two columns of T (and also possibly with an element of bounded & .)hasa
probability limit of zero. Every term in (L.10) that involves the product of n =3 or 4 columns of T with
four columns of E also includes at least 72 - 2 F/~/M terms which can be re-expressed as (F/ M “)(1/M*)
for some a in (0,%). The 1/M “ part can be used to satisfy Lemma L1d, while from (L.8) the t/M **“ part
converges in probability to 0. Thus, all such terms also have a plim of 0.

This only leaves terms that do not include r/ NI namely

lp(k) tq(k)é:ltfp(l) q(l)é: S w(k) lq(k)é:tzjbé:
LYYy Z%ZZZ

c=1 iec jec c=1 iec jec

me (Lip () Wig (0815 jp (1) W jg (1)) me (U () Wig (0617 65 7)

S Zmét,p/ iq(l (S a Zméz,hf
Y8, Yy el ks 220 EDDN Il

a=1 c=1 iec jec c=1 iec jec

me (tipyWig(1)$i 52 ja$ ) me (2, $isZjpS ;)

so using Lemma L1d we see that
)4
(le) Akl [a)(x np (k) mp(l)) - a)(xmp(k))a)( mp(l))]m ( zq(k) l’wfq(l)fj)_>0’
where we once again use the fact that plim 5ak is only non-zero in the column position of W, in Z, when

plim Sak =w(x,

mp

(L13) A- 'X @f 010,00 {Where@ﬁg ZZZW% , iwsé@;wv}

w)and z, =w,,,. Consequently, for the clustered robust covariance estimate

M

v=l iev jev v=1

:MVC,(I”}T,BO)—(""%@W'W] ( x WQI 'x®wa I

M M M M |\ M M poxPer

We now note the following lemma:
Lemma L2: IfUS holds, then W2/ M — @@/ M > 0,,,,.

From Lemma L2, (L.8) & (L.13) we see that when the errors are clustered, MVC,([AiTJ,O) converges in
probability to the asymptotic covariance matrix of asymptotically normally distributed M ([Aiw0 -B,), so
the Wald statistic is asymptotically distributed chi-squared with PQ degrees of freedom.

(¢) Proof of Lemmas

Lemma L1a: We note that
K PQ K R
(L.14) &, =¢,— Zziaz-a + Zszp(b)Wiq(h) - zzicq)cbj(ﬁb = B)
a=1 b=1 c=1

where =(Z'Z/ M) (Z'e/ M), ®=(Z'Z/ M) (Z'X, /M) and f, - fos is a constant. From Lemmas
B2a-B2c¢ in Appendix B above we know that the elements of ® are almost surely bounded and those of T
almost surely converge to 0, while Lemma B2c also showed that for d;d;; and d;3d, each the product of
the elements of two columns of (Z,,€) (with at most one in each being €), |e( HZ;I X, [m(didy)|,
|m(didndidy)|, Imd(didy, dizdi)l, [ma(didy, diadiy)| & |m(dydy, dizdy)| are all almost surely bounded. From
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(L.14) we see that the m, m., m,, and m, means of the product of e;e;, and eeu, each denoting two
columns of (Z,,&) (with no more than one in each case being &), are made up of corresponding means of
products of four columns of (Z;,€) (no more than two of which are €) times almost surely bounded terms
%, ® and P - By, and hence, by the results just noted, are almost surely bounded.

Lemma L1b: (L.6) showed that @®(w,, ;) = m(w,,,&;) =0 for all M sufficiently large, which
establishes W/ W/ M =W/W./M for such M. From Lemma L1a we see that the elements of W/ W./M
formed of the means m,,(e;1e.eiei) of columns of E = (Z,,), are almost surely bounded. With regards to
the determinant, by the properties of the Rayleigh quotient we know that if @"W,/Wa/M >y >0 for all a
such that a'a = 1, then W/ W./M is positive definite with determinant greater than y 2> 0. From the above,
with o, =a'w,:

wis) mA;«éa 5 Yo @6~ 2R+ (XY, ~ZD)(B - m»%m (&, it +(x\y, —Z,D)(B-B,))

m=1

where “_’[Z E(;[ )J [ZN: E(;}g,.)j:ﬂl( & (i)—(DgOKXPQ,with (D:(ZN: E(;}Z;)] (iE(Z](;/W")],

i=1 i=1 i=1 i=l1
and the almost sure limits following from the Markov Corollary and, using assumption U2a,
E(Z ")y<4 & E(|€le
E(| |l+§)/zE(|8 |1+§)‘/z

consisting of elements of &, B - Py, # & P times means of d d, d .d, ,, with each d representing one of

m2* m3

Tk %) < 4 which imply, from Hélder's Inequality, that E(|Z ¢, ™) <

uu +u/ u

< 4. When multiplied out, (L.15) is seen to consist of the sum of terms

+u/ +uj u u

the columns of (Z,,€) with no more than one in each pair being ¢, and
Holder's Inequality

(L 16) E(| d d d dm4 |l+6) < \/E((d:nld)nZ)2(1+§))E((d;13dm4)2(l+§))

ml>m2> m3

Cauchy-Sch I lit;
auchy-Schwarz Inequality mcu U3& U4

S " ——
S\/E‘((dmld dmdez)Hé)E((dm}d d dm4)1+6)£\/E((duld d duZ)Hé)E((d;¢3du3d;4du4)l+6) <A B

ml m3 ul

so by the LLNHDS Corollary in Appendix C these means converge almost surely to the mean of their

expectations and
oW NWa a.s.
(L.17) ﬂ —h,— 0, where

E(XWm(DmmmXWm)
M

:z (mm nm /n)+2(ﬁ BO)ZM (B BO)Z

m=1 M m=1 \B BO)

and X}, =Xy, —Z,®. Minimizing %, with respect to B, using the fact that the mean of

Wm

E (XWm o) XWM)IS positive definite and invertible for all M sufficiently large (assumption AA1b),

E(XWmmm(DmX ) E(XWm m m m)
§ Bttt Kol 4t

SO

(L.18) BB, = [

m=1 m=1

> Z E((Dmammmam) Z E((Dmam(’“)mXWm) (Z E(XWm(’“)m(’“)mXWm)] Z E(XWm m mam) > }/ > 0

m=1 m=1 M m=1 M m=1 M
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which establishes that the minimum eigenvalue of W/ W./M is almost surely >y > 0 for all M sufficiently
large, so its determinant is greater than some y© > 0 and, as the eigenvalues of its inverse are bounded
from above by the inverse of its smallest eigenvalue, that (W W./M )"is also almost surely bounded.

Lemma Llc: Lemmas B2a, B2¢ from Appendix B & L1b above already established that
X'KIM & TK{VQ / M are almost surely bounded with determinant >y > 0 for all M sufficiently large, so
all that remains is condition Ib. Our objective is to prove that for all integer 7> 2 and all p and ¢

vt Se S [($a] (Sa] 5o

m=1 m=1 m=1 m=1

where .. = w,& . We begin by noting that:

. ) r_
Maflifmpiv%g M2 (Maxx Max )z Z fﬁﬁ Maxx,, Maxw, . *
(L 20) m=1 m=1 < m<M m<M m=1 — M
) M 72|~ M 7/2 M2 M52 .
~2 ~>2 mp mq
Sase) Sese) F s
m=1 m=1 m=1 m=1 m=1 m=1

As noted earlier, for a K x K matrix with determinant > y > 0 and non-negative diagonal elements bounded
from above by 4', the smallest eigenvalue is bounded from below by A(K) = y/(K4)(K-1). By the Schur-
Horn Theorem, the smallest diagonal element of a real symmetric matrix is greater than or equal to its
smallest eigenvalue. Consequently, given the properties already established for XKIM & TK{VQ /M
we know the smallest diagonal elements of these matrices are almost surely greater than A(P) and A(Q),
establishing that the denominator of (L.20) is almost surely bounded away from zero.

Turning to the numerator, since for any sequence gy,

T2 2 2 2
(L21) Max 4, < +2, Max(@)|o(d, )|+ o(d,)
and almost surely w(w;y) = m(w;,;) = 0 for all M sufficiently large (L.6 earlier) and a)(xmp) is bounded

(Lemma B2c), to prove (Ib) all that remains is to show that Max,_,, xmpMax it

/M—>O Using

mq§

(L.14) and recalling that x;,w;,@») is an element of z,;, we see that w’ e 18 made up of the sum of the

product of terms 4,, = (W), € ), wmqsmwqu+,,,j ,or w, z, W, z . timesalmost surely bounded elements

mq©m mq™+mj """ mq

of ¥, @ and P - . From (AA3) above and Hélder's Inequality we have E((W,£,)"""”) < 4,

E(W, &,W,.z..1"") < E(W,.&,)"" ") E(W,,z2,,)"") <4, E(W,z,, W,z

) |1+H
mg<m " mq™+mj mq~m mq +m/ mq ™ +mj +mk

)<

E(W,,z,,) ") E(W,,z,,)" "), <4 & E(|x,, ") < 4 with 6(1+26%) > 1. Consequently, applying
Markov's Inequality
(L22) Y P(xy, 2 M) = ZP(X;;F >M*)< ZM2 Ty < if 2a(1+6°)>1
M=1 = M=1

& ZP(h >M )<ZM’ﬂ+6’> <o if b(1+6)>1.

M=1

Both conditions can be met witha>0,b5>0anda +b <1 if 9(1+29’3 >1 as
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1 L _,_ 60+20)-1

(L23)1>a+b> —+ = -
20+60) 1+46 20+ 0 )1+ 6)

poses no contradiction. From the Borel-Cantelli Lemma Corollary, we see that
Max, ., %, Max, . w ./ M“"is almost surely bounded by 1, so Max ., Max, ., w,. ./ M N
Lemma L1d: Lemma B7 in Appendix B above proved analogous results for the means of
products of columns of T and v; and v, each denoting the product of the elements of two columns of
(Z.+,&). From (L.14) above, we see that all terms in Lemma L1d can be expressed as the sum of means of
the type seen in Lemma B7, possibly times elements of 4, ® and p - B, which are almost surely bounded.
Applying Lemma B7 to each of these terms and summing up we get the results of Lemma L1d.
Lemma L2: Above we saw that W/ W,/ M =W,/ W/M for M sufficiently large. Based upon the

moment results in (L.16) and the LLNHDS of Appendix C, as in the proof of Lemma L1b we have that

where

(L.24) %— H, —0,,,

H — S E(W/’rzsmslnwm) + 2% E(W/;XWm (B B Bo)slnwm) + i E(Wr'nXWm (ﬁ - ﬁo)(ﬁ - ﬁo)’X’VVme).
" m=1 M m=1 M m=1 M

Since the intersection groupings v are a subset of the union grouping u, a similar appeal to (L.16) and the

LLNHDS establishes that:

where

ﬂg"ﬂg a.s.
(L25) 7— Hv —)OQXQ,

H :iE(W;;s;W» 5 E(W;XWV(]I‘Z ~ByeW,) +iE(W;va(ﬁ—ISOA);B—lso)'fc’wvwv)_

m=1 m=1

When clustering at or above the treatment grouping level, the intersection groupings v equal the treatment
groupings m, so H,, = H,, completing the proof.

If cluster groupings are across or below treatment levels, the intersection groupings v are subsets
of the treatment groupings m, which means that for (L.24) and (L.25) to be equal the sum of expectations
of products of observations from the same treatment groups that are in different clusters in (L.24) must
equal zero. This is unlikely to be the case. As treatment is generally iid and independent of the other
regressors Z, we have:

Y E(zz)) (S Ez(xow)) (SE@z)) . o (L E@EW, :
[0 (58520 (£5) e[ 5] e
where, as W is part of Z, ¥ is a matrix of Os with a diagonal matrix of 1s along the diagonal position of W
in Z. Consequently, Xw - Z® = [X - 1,E(x")]*W. This means that for all observations within treatment
groups that cut across cluster groupings the diagonal elements of the last summation in H,, involve the
non-zero variance of the treatment measures. Unless the expectation of the product of terms from W in
such cases is zero, which is unlikely to true if treatment is iid and independent of the regressors, these

expectations will not be 0 and so H,, will not equal H,. In contrast, as was seen in Appendix B above,
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when B is root-N local to B, the last two summations in (L.24) and (L.25) can be eliminated and if

E(Z’H.l /-SL.IZLCZ,YSCZ) =0 for ¢; # ¢», H,, equals H,. If the ¢ are mean zero and independent across clusters, this
condition can be met although, in the case of treatment groups that cut across clusters, it would require
that there are no treatment related heterogeneous effects included in the residuals. This merely follows the
analysis in Appendix B, which shows that if the conditions on the errors are such that the homoskedastic,
heteroskedastic or clustered (at any level) covariance estimate allow for asymptotically accurate
conventional inference, then randomization inference using Wald statistics based upon the same
covariance estimate is equally asymptotically accurate. In contrast, when B, is no longer root-N local to j,
as in this appendix, if clustering takes place below or across treatment groupings randomization inference

based upon Wald statistics is likely to be inaccurate, even when conventional inference is not.
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