
 

 
 

 

Asymptotically Robust Permutation-based  

Randomization Confidence Intervals for Parametric OLS Regression 

 

Alwyn Young 

London School of Economics 

November 2023 

 
Abstract 

 Randomization inference provides exact finite sample tests of sharp null hypotheses which fully 

specify the distribution of outcomes under counterfactual realizations of treatment, but the sharp null is 

often considered restrictive as it rules out unspecified heterogeneity in treatment response.  However, a 

growing literature shows that tests based upon permutations of regressors using pivotal statistics can 

remain asymptotically valid when the assumption regarding the permutation invariance of the data 

generating process used to motivate them is actually false.  For experiments where potential outcomes 

involve the permutation of regressors, these results show that permutation-based randomization inference, 

while providing exact tests of sharp nulls, can also have the same asymptotic validity as conventional tests 

of average treatment effects with unspecified heterogeneity and other forms of specification error in 

treatment response.  This paper extends this work to the consideration of interactions between treatment 

variables and covariates, a common feature of published regressions, as well as issues in the construction 

of confidence intervals and testing of subsets of treatment effects.  
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I.  Introduction 

 Randomized experiments have achieved prominence as a key method in the credible identification 

of causal mechanisms in economics (Duflo et al 2007), and randomization inference has been advocated 

as a means of accurately testing null hypotheses regarding experimental outcomes (Athey & Imbens 2017, 

Young 2019).   Randomization inference provides exact finite sample tests of sharp null hypotheses which 

fully specify the distribution of outcomes under counterfactual realizations of treatment, but its accuracy 

in testing average treatment effects with unspecified heterogeneity and other forms of specification error is 

less clear.  In many cases, however, experimental potential outcomes involve the permutation of treatment 

regressors.  Here a growing literature has shown that when based on asymptotically pivotal test statistics1 

permutation-based tests can share the asymptotic validity of conventional tests despite violations of the 

assumption regarding the permutation invariance of the data generating process used to motivate the test.2  

Janssen (1997) showed that studentized permutation tests of the equality of means across two samples are 

asymptotically exact even when the assumption of identical distributions motivating the permutation test 

is false, and Chung and Romano (2016) obtained similar results in a multi-parameter extension.  Outside 

of studentization, prepivoting (Chung and Romano 2016) and martingale transforms (Chung and Olivares 

2021) have also been found to give asymptotic accuracy of permutation tests in two sample problems.  

From the perspective of ordinary least squares (OLS) regression, these results concern binary treatment vs 

control comparisons, but in a major generalization DiCiccio and Romano (2017) show that studentized 

permutation tests are asymptotically equivalent to conventional heteroskedasticity robust Wald tests for 

testing treatment effects using iid treatment measures and ancilliary covariates defined on the real 

numbers.  This establishes the asymptotic accuracy of permutation-based OLS randomization inference 

based upon a sharp null in the presence of heterogeneous treatment effects in iid environments with real 

experimental treatment measures as regressors. 

 This paper extends the DiCiccio and Romano result in several areas, with an eye to the regression 

environments encountered in published randomized experiments.  First, it explicitly addresses interactions 

between treatment measures and covariates, both broadly defined on the reals, in published work a 

frequent characteristic3 of often central importance4, but not considered in DiCiccio and Romano.  In such 

                                                 
1That is, those whose asymptotic distribution does not depend upon an unknown parameter. 
2The precise meaning of the terms "randomization test" and "permutation test" is an object of disagreement 

with, for example, Edgington & Onghena (2007, p. 1) stating the former are a subclass of the latter, Lehman and 
Romano (2022, p. 831) stating the converse, and Hemerik & Goeman (2021) arguing neither is a subset of the other.  
This paper uses randomization inference and tests to refer to procedures motivated by a consideration of potential 
experimental outcomes, focusing on cases where these outcomes are the permutation of treatment regressors.  An 
exact test based upon permutation of variables can be motivated without reference to an experimental procedure, e.g. 
via population sampling of exchangeable random variables, as is done in the papers cited above.  

3Of the 53 published papers based upon randomized experiments surveyed in Young (2019), 34 interact 
treatment with non-treatment covariates in on average .46 of their estimating equations.  Of the 39 of these with OLS 
regressions analyzed further below, 21 interact treatment with covariates in on average .40 of their OLS regressions.   

4As examples: (i) Oster and Thornton (2011) examine the impact on school attendance of the provision of 
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cases a simple minded application of DiCiccio and Romano's methods, permuting the regressor made up 

of treatment interacted with a covariate, may allow for asymptotically accurate inference.  Finite sample 

exactness, however, requires that the permuted regressor be independent of unpermuted ancilliary 

variables (DiCiccio & Romano 2017, p. 1216), a condition unlikely to be satisfied when the permuted 

regressor involves interaction with a non-treatment covariate.  By focusing on potential experimental 

outcomes rather than permutation of regressors per se, i.e. by permuting treatment alone and creating new 

regressor values based upon its interaction with covariates that need not equal the permuted values of the 

original variable, this paper provides asymptotically robust permutation-based randomization inference 

methods for treatment-covariate interactions that remain finite sample exact in tests of sharp nulls.5 

 Second, the asymptotic accuracy of permutation-based inference is proven more generally for 

independently but not-necessarily identically distributed (inid) data while relaxing assumptions on the 

error term.  Experimental data are often drawn from disparate regions6 and are unlikely to be iid, as 

assumed by DiCiccio and Romano.  When conducted in a single locale, experiments often apply treatment 

randomly to participants arriving at field or laboratory locations or participants contacted in home visits7 

and the characteristics of people who arrive at a location or are found at home are unlikely to be the same 

at different times of day or days of the week, producing inid data.8  Furthermore, while DiCiccio and 

Romano assume that the mean of the error term is zero conditional on the regressors,9 the analysis below 

merely assumes that the error term is uncorrelated with the regressors.  This validates the use of the test in 

broader circumstances with specification error, such as the existence of non-linear effects that are 

                                                                                                                                                              
menstrual products to girls in Nepal in specifications that include the interaction of treatment with the pupil being on 
their period; (ii) Aker et al (2012) examine the impact on pupil outcomes of adult mobile phone education in Niger in 
diff-in-diff specifications with treatment interacted with dummies for post-experimental time periods. 

5The permutation procedures used here equally motivate exact tests of sharp nulls for observational data 
whose distribution is exchangeable and independent of non-permuted covariates.  Other frameworks, such as normal 
homoskedastic errors, also motivate exact tests.  Lei & Bickel (2021) provide a quick survey of these as well as 
introducing a novel cyclic permutation test for exact inference given exchangeable errors.  Tests based upon the 
permutation of OLS residuals or dependent variables, rather than regressors as in this paper, have been proposed 
(Anderson & Robinson 2001 provide a survey), but these are not finite sample exact and with heteroskedastic errors 
may not even be asymptotically valid (DiCiccio & Romano 2017). 

6For example, Thornton (2008) investigated the demand for and effects of learning HIV status across north, 
central and south Malawi, which differ systematically in their ethnicity and religion.   

7As an example of the former, Cai et al (2009) investigated saliency by randomly assigning restaurant arrivals 
in China to tables with different menu setups, while, as an example of the latter, Ashraf et al (2010) investigated the 
impact of prices on health product demand using door-to-door marketing in Zambia.  Inid data are likely to arise 
even when prospective participants are assigned time slots, as often occurs in campus and field experiments, as the 
time slot a participant is actually able to attend will be a function of their characteristics.   

8Although chronological information is rarely reported in experimental data, Cai et al (2009) give the time of 
day the restaurant bill was paid.  With time denoting the 24 hour clock rescaled to 0 to 1, regressing the ln total 
restaurant bill on sine(π*time) I get a statistically significant negative value (t-stat -4.3 to -4.9 and -6.0 to -9.1, 
depending upon clustering, for the two public use data sets), as meals paid in the mid-night have the highest bills. 

9In the case where there are non-permuted non-treatment covariates, as examined in this paper.  When all 
regressors are permuted, they are able to make the stronger zero correlation assumption made here. 
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orthogonal to the linear effects estimated in the regression, where the zero conditional mean is violated but 

OLS remains consistent.  These extensions broaden the applicability of the permutation procedures given 

here and (equivalently, when there are no treatment-covariate interactions) in DiCiccio and Romano. 10 

 Third, this paper provides a novel approach to testing subsets of treatment measures.  In 

randomized experiments multiple treatment measures are very rarely randomized and administered 

independently of each other.11  Consequently, the counterfactual distribution of outcomes under a sharp 

null depends upon the null for all treatment measures.  Thus, while permutation tests of individual 

coefficients are asymptotically identical to conventional tests, depending only upon the null for that 

treatment measure, in the finite sample they depend upon the null for all treatment measures in the 

regression.  D’Haultfoeuille and Tuvaandorj (2022) address this issue by proposing that individual 

treatment measures be permuted within strata created by fixed values of other treatment, producing a valid 

subset of potential outcomes, an approach used in Young (2019) to provide alternative randomization p-

values.  In the finite sample this approach is not helpful in regressions with covariate interactions, as there 

are no possible permutations of treatment within values of treatment interacted with covariates or vice 

versa, and asymptotically has more limited validity than OLS or other forms of randomization inference, 

as it requires the covariance of errors and regressors to be zero in every stratum created by other treatment 

variables, which may be violated in the presence of heterogeneous treatment effects and correlated 

treatment measures.  As an alternative, I propose calculating the maximum randomization inference p-

value across all possible nulls for untested measures, producing a test that in both finite samples and 

asymptotically depends only upon the null for the desired subset.  This approach can be applied in all 

environments, ensures control of the rejection probability below nominal level in tests of sharp nulls, 

retains the broad asymptotic validity of OLS, and in practice appears to provide 80 to 90% of the power of 

conventional inference and only slightly less than that found using other-treatment-stratification (where 

the latter can be applied). 

 Finally, this paper derives a number of practical results and techniques.  The conditions needed for 

asymptotic accuracy in the very diverse settings found in empirical practice, where practitioners typically 

                                                 
10It has been brought to my attention that Zhao & Ding (2021), after the initial circulation of this paper in 

2020, provide asymptotic results for specifications which include treatment-covariate interactions.  Their paper (i) is 
limited to binary treatment, while this paper concerns treatment defined broadly on the reals; (ii) includes treatment-
covariate interactions, following the suggestion of Lin (2013), but only as a means of improving power for inference 
on a single binary treatment and provides no results for inference on the treatment-covariate interactions themselves, 
while this paper provides procedures & results for testing both treatment regressors and their interactions with 
covariates; (iii) always tests the sharp null of no treatment effects using the coefficient on binary treatment alone 
without alerting readers to the fact (discussed below) that in finite samples this is actually a joint test of sharp nulls 
on both treatment and its interactions but asymptotically only a test of the coefficient on binary treatment, with 
consequent issues regarding finite sample null rejection probabilities and asymptotic power against alternatives, 
whereas this paper addresses the applied econometrician's desire in a multivariate regression model to maintain 
control of size and maximize power in separate tests of different elements of treatment. 

11As noted below, of 2500+ treatment measures appearing in multi-treatment regressions in published papers, 
I find that only 94 measures were randomized independently of other treatment in the regression. 
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(see Young 2019) stratify and group treatment and use homoskedastic, heteroskedastic and clustered (at, 

below, above and across treatment groupings) covariance estimates are all covered (in the on-line 

appendix).  While earlier work has focused on tests of zero average treatment effects alone, this paper 

shows how randomization based confidence intervals can be constructed analytically avoiding costly and 

potentially fruitless or inaccurate line searches (as these confidence intervals may be non-convex and of 

infinite width).  Similarly, analytical techniques are developed to calculate maximum p-values across 

possible nulls for untested treatment measures along opposite rays of infinite length, thereby simplifying 

the search for maximum p-values in subset tests.  Finally, different randomization inference techniques are 

applied and compared in a practical sample of 3000+ treatment measures appearing in 39 published 

papers, with results that confirm characteristics and patterns seen in Monte Carlos. 

 The proofs below merge results concerning the asymptotic distribution of permutation statistics of  

Wald & Wolfowitz (1944), Noether (1949) and Hoeffding (1951) with White's (1980) proof of the 

asymptotic accuracy of conventional inference using heteroskedasticity robust standard errors.  Given 

White's assumptions on the moments of errors and regressors, conventional Wald statistics using 

heteroskedasticity robust variance estimates are asymptotically distributed chi-squared, and hence allow 

for accurate inference when evaluated using that distribution.  With minimal additional assumptions, the 

permutation-based counterfactual distribution of these same Wald statistics is similarly asymptotically  

distributed chi-squared, even when the restrictions of the sharp null that underlie the calculation of the 

counterfactual distribution are false.  Consequently, using the percentiles of the full permutation 

distribution to evaluate the conventional Wald statistic is asymptotically analogous to looking up chi-

squared tables, and asymptotically yields identical p-values.  Random sampling from the permutation 

distribution allows the calculation of randomization p-values and confidence intervals which are randomly 

weighted averages of those found using conventional tests at different levels.  Consequently, in tests of 

true nulls, where the conventional coverage probability is asymptotically equal to a 45o linear function of 

the nominal level, randomization confidence intervals based upon sampling from the permutation 

distribution have similarly accurate coverage probability.  In tests of false nulls, where the conventional 

coverage probability of the false null is a convex function of nominal level, by Jensen's Inequality 

randomization confidence intervals have higher coverage probabilities and hence lower power, with the 

difference vanishing as the number of draws from the permutation distribution goes to infinity. 

 Within White's (1980) framework of independently but not necessarily identically distributed 

observations, the additional assumptions are: (1) treatment variables vary and are not colinear; (2) 

variables interacted with treatment appear separately as regressors in their own right; and (3) treatment, 

errors and interaction variables in combination have sufficiently high moments.  These requirements are 

typically satisfied in experimental settings.  Administered treatment measures vary, are not colinear with 

each other, and are drawn from distributions with moments of all order, satisfying (1) and (3).  Variables 

interacted with treatment are usually entered separately in regressions to estimate their separate effects, 
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satisfying (2).  White's framework is extended in the on-line appendix to allow for treatment applied to 

groupings of observations, correlations across observations of errors and regressors and the use of 

clustered standard errors (if the size of correlated observational groupings is bounded), as well as stratified 

treatment (if the first and second moments of treatment are asymptotically balanced across strata).12 

 Two key elements underlying the results are worth emphasizing.  The use of Wald or studentized 

test statistics is crucial, because permutation of treatment variables breaks the correlation between the 

variance of the residual and the regressor introduced by treatment effect heterogeneity and specification 

error.  Consequently, the asymptotic variance across permutations of coefficients is typically different than 

that of the conventional coefficient across the realizations of the data, so use of the distribution of 

permuted coefficients to evaluate the significance of the conventional coefficient estimate is usually 

inaccurate.  Dividing permuted coefficient estimates by their standard error estimates corrects for the way 

in which permutation breaks the connection between regressors and the variance of residuals, producing a 

test statistic that is asymptotically distributed chi-squared.  If the conventional test statistic is similarly 

distributed, i.e. the conventional OLS variance estimate is asymptotically correct, randomization inference 

asymptotically produces identical p-values.  The key here is the use of a covariance matrix that 

asymptotically accurately estimates the differing correlation between regressors and residuals in the 

original data and the permutation distribution. 

 The inclusion of variables interacted with treatment separately in the regression plays a crucial 

role in ensuring asymptotic power identical to that of the conventional test.  When the null underlying the 

counterfactual calculation of outcomes is false, the counterfactual data generating process has a mean bias 

which, absent assumption (2) above, results in permuted Wald statistics having an asymptotic non-central 

chi-squared distribution.  When used to evaluate the experiment's test statistic, the higher tail probabilities 

of this distribution result in very low rejection rates.  Including variables interacted with treatment as 

regressors in their own right partials out the bias, ensuring that Wald statistics on treatment effects are 

asymptotically distributed chi-squared, producing p-values and power identical to those of the 

conventional test. 

 The paper proceeds as follows:  Section II lays out a general parametric linear regression model 

that encompasses the treatment-covariate interactions often found in published work in a specification that 

allows for linear treatment effect heterogeneity and non-linear specification error, stating the central 

theoretical results of the paper while further clarifying how they broaden DiCiccio and Romano's results 

and depend upon the given assumptions.  Section III then uses Monte Carlos to illustrate the importance of 

White's moment conditions in conventional and randomization inference alike and the role assumption (2) 
                                                 

12The extension to stratification assumes that the clustered/robust (White 1980) standard error estimates are 
valid as treatment effects do not vary systematically by strata.  Bugni, Canay & Shaikh (2018) show the need for a 
different standard error estimate when average treatment effects vary by strata and treatment balance is greater than 
that achieved by random sampling from a treatment distribution, proving that with test statistics based on this 
estimate randomization inference for binary treatment is again asymptotically robust to treatment heterogeneity.  
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plays in ensuring adequate randomization power, both in tests of heterogeneous and sharp treatment 

effects.  Section IV addresses practical issues, such as algorithms for the construction of confidence 

intervals and differing methods for testing subsets of treatment effects in finite samples, highlighting 

where different approaches do or don't provide finite sample exact tests of sharp nulls or asymptotically 

valid tests of heterogeneous treatment effects.  Monte Carlos show how other-treatment-stratification in 

subset testing provides finite sample exactness at the expense of narrower asymptotic validity in tests of 

heterogeneous treatment effects when treatment measures are correlated, while calculating maximum p-

values over all possible nulls provides conservative control of the null rejection probability for sharp nulls 

while retaining the broader asymptotic validity of OLS.  Section V compares randomization and 

conventional confidence intervals and p-values in a large practical sample of published papers, finding 

patterns which closely parallel those found in the Monte Carlos and, based on these, providing a practical 

summary and comparison of subset testing methods.  The appendix below provides proofs of base results, 

while the on-line appendix lays out the extensions to grouped treatment, clustering and stratification.  The 

programme randcmdci, available on the authors' website or in Stata through ssc install, calculates the 

parametric OLS randomization confidence intervals & p-values discussed in this paper for Stata users. 

II. Permutation-based Randomization Inference in a Parametric Regression Model 

 This paper focuses on permutation-based randomization inference in a parametric regression 

model that encompasses the range of specifications typically encountered in applied work, namely:  

 ,)1.2( εZγβXy W   

where XW = X•W and • denotes the row by row Kronecker or "face-splitting" product of two matrices, 

while y and ɛ are N x 1 vectors of outcomes and residuals, Z and γ the N x K matrix of covariates and K x 

1 vector of associated parameters, X an N x P matrix of treatment variables, W an N x Q matrix of 

interaction covariates, and β the PQ x 1 vector of parameters of interest.  This formulation allows for 

treatment entered simply into the regression (W = 1N, an N x 1 vector of 1s) or interacted with other non-

treatment variables (the columns of W), as is often the case.  Treatment may be discrete or continuous and 

there are no restrictions on the elements of X, W & Z other than that they are real numbers and satisfy 

moment conditions given further below.  There may be heterogeneity or non-linear components to the 

impact of treatment regressors or covariates on the outcome and β and γ are interpreted as average linear 

effects,13 with heterogeneous linear or non-linear aspects, if any such exist, implicitly included in the 

residuals.  For example, with ii zxW  &  denoting the ith rows of XW and Z and ),( iiif zxW   some non-linear 

function, the data generating process for observation i might be  

,)]()(),([ where

),()2.2(

iiiiiiiiiiiii

iiiiiiii

f

fy







γγzββxzxγzβx

γzβxzx

WWW

WW  

                                                 
13Linear, that is, in the regressors, which themselves may be non-linear functions of an aspect of treatment.  

Thornton (2008), for example, randomly assigned monetary incentives to individuals in Malawi to learn their HIV 
results and used the incentive, its square, and an indicator if it is greater than 0 in many regression specifications. 
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where βi & γi represent the observation specific heterogeneity in average linear effects, ),( iiif zxW  -

)()( iiii γγzββxW   the non-linear components, and we assume that KPQiiiE  0zxW )),(( (a PQ+K row 

vector of 0s).  This assumption allows for misspecification, with the understanding that we are trying to 

estimate population average linear effects while recognizing that there might be unspecified but 

orthogonal heterogeneity and non-linearity.  Treatment is randomly applied at the observation level14 and 

any of the N! permutations of the rows of X is equally likely to have occurred, with the N x P matrix T 

used to represent one such outcome and TW = T•W its interaction with covariates.  

 The dominant approach to inference in contemporary randomized experiments in the model 

described above uses conventional t- and Wald tests whose accuracy is validated by asymptotic results 

based upon characteristics of the data generating process, often motivated as representing random 

sampling from an infinite population.  Within this framework, heterogeneity of variables and effects in the 

sample are viewed as an underlying characteristic of the population from which the experimental sample 

is drawn.  Asymptotically heteroskedasticity or clustered robust covariance estimates are generally used 

although these have rejection probabilities that may deviate substantially from nominal levels in small  

samples, as seen for example in the Monte Carlos below. 

 An alternative approach to experimental inference, rooted in the history of the experimental 

literature, treats the allocation of experimental treatment X as the only source of stochastic variation, with 

the covariates W and Z and characteristics of ε unrelated to X taken as given.  In particular, randomization 

tests of "sharp nulls", first advocated by Fisher (1935), use a precise specification of what outcomes would 

have been under counterfactual realizations of treatment to calculate the distribution of a test statistic.  The 

test we examine in this paper is the standard one that assumes no treatment related heterogeneity or 

misspecification, so that Zγ+ε | X = Zγ+ε | T for all alternative treatment allocations T.15  For the null 

hypothesis β = β0, this allows the calculation of the counterfactual outcome under an alternative treatment  

allocation T as 
 .)(),()3.2( 00 βXTyβTy WW   

As the distribution of potential outcomes is uniform across the permutations T of X, comparison of a test 

statistic for the experimental outcome τ(X,β0) with the percentiles of the distribution of τ(T,β0) across 

permutations T provides a finite sample exact test of the joint null that β = β0 and Zγ+ε | X = Zγ+ε | T, 

regardless of the characteristics of Z, W and ε.  Calculation of the entire distribution is not needed, as tests 

based on random sampling from that distribution are (under the joint null) equally exact. 

 As a concrete example, consider the Wald statistic for the conventional test that β = β0, the test 

statistic used in this paper. The initial OLS coefficient and variance estimates β̂ & )ˆ(ˆ βV from the 

                                                 
14The on-line appendix examines the case of treatment applied to groupings of observations or stratified. 
15In terms of (2.2), this implies that βi = 0PQ and fi is a function of zi alone.  In principle, a sharp null could 

specify a precise set of heterogeneous effects (e.g. βi), but there is usually nothing to guide or discipline this choice.  
For completeness, one might also specify that W | X = W | T, but this is implicit in the statement that covariate 
values are taken as given. 
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regression of y on (XW,Z) are first used to calculate the Wald statistic )ˆ()ˆ(ˆ)ˆ(),( 0
1

00 βββVβββX   .  

The treatment variables X are then permuted to T, interacted with covariates to form TW = T•W, and the 

regression of counterfactual outcome y(T,β0) on (TW,Z) is used to produce the coefficient and covariance 

estimates ),(ˆ
0βTβ & )),(ˆ(ˆ

0βTβV and Wald statistic ),( 0βT  )),(ˆ()),(ˆ(ˆ)),(ˆ( 00
1

000 ββTββTβVββTβ   . 

D random draws with replacement are made from the distribution of the permutations T of X.  With G and 

E denoting the number of times that τ(T,β0) is either greater than or equal to τ(X,β0), and u a random draw 

from the [0,1] uniform distribution, the randomization p-value given by  

,
1

)1(
)4.2(





D

EuG
pR

 

is uniformly distributed under the sharp null.16  D need not be "large", i.e. approximate the full 

distribution, although power increases with D, as shown below.  However, while finite sample exactness is 

desirable, the sharp null and its assumption that Zγ+ε | X = Zγ+ε | T is often seen as demanding. 

 This paper examines permutation-based randomization tests from the population sampling point 

of view, treating heterogeneity of regressors and parameters as part of the data generating process, which 

can be conceptualized as taking a random sample from an infinite population and then randomly allocating 

treatment across subjects.  Given certain moment conditions, the use of the distribution of τ(T,β0) based on 

counterfactual outcomes y(T,β0) under the sharp null to evaluate the conventional Wald statistic τ(X,β0) is 

shown to be asymptotically identical to conventional inference when the latter is asymptotically accurate, 

even when the assumption Zγ+ε | X = Zγ+ε | T underlying the calculation of y(T,β0) in (2.3) is in fact 

false.  Thus, this permutation-based test has the same asymptotic validity of conventional tests of average 

linear treatment effects, while simultaneously providing, from the experimentalist perspective, exact finite 

sample tests of sharp nulls conditional on the given values of W, Z and ε.17 

 The main results of this paper (proven in the appendix below) are as follows: 

(R1) Given White's (1980) assumptions W1 - W4 and the additional assumptions A1 - A3, all detailed 

below, for any 0β in a finite N neighbourhood of β, i.e. such that )()( 00 ββββ N < Δ (a constant) < 

∞, the Wald statistic τ(T,β0) calculated using the heteroskedasticity robust covariance estimate is 

asymptotically distributed chi-squared with PQ degrees of freedom and in probability converges to the 

value for the true null β0 = β  

,0),(),(&),()5.2(
),,.(.|)(

0
2

),,.(.|)(

0

εZXTεZXT WW

βTβTβT
sap

PQ

sad

χ     

where 
),,.(.|)( εZXT Wsad

 and 
),,.(.|)( εZXT Wsap

 denote convergence as N → ∞ in distribution and probability across 

the permutations T of X almost surely given the realization of the data (XW,Z,ε). 

(R2) Since locally τ(T,β0) ceases to be a function of β0, asymptotically in probability the 1 - α 

randomization confidence interval (RCI) based upon the set of nulls that are not rejected at the α level  
                                                 

16For proofs see, for example, Hoeffding (1952) or the on-line appendix of Young (2019). 
17Thus, following the terminology of Abadie et al (2020) who usefully review these concepts, exact inference 

under design-based uncertainty provides asymptotically accurate inference under sampling based uncertainty. 
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using the p-value in (2.4) and D draws from the permutation distribution is given by  

,})1()ˆ()ˆ()ˆ(:{),1()6.2( 1*1*10
1

00 
  ii IIDRCI  βββVβββ  

where i* is the smallest integer greater than or equal to (D+1)(1-α), I1 is the indicator function for the 

event )1)(1(*  Diu  with u uniformly distributed over [0,1], τ1 < ... < τD are the ordered values of 

τ(T,β0) and where if needed we define τ0 as 0 and τD+1 as ∞. 

(R3) As White's assumptions ensure that for the conventional Wald statistic calculated using the 

heteroskedasticity robust covariance estimate 

,),()7.2( 2
),,(

0 PQ

d

χ
εZXW

ββX   

where d(XW,Z,ε) denotes convergence in distribution across the realizations of (XW,Z,ε), randomization 

confidence intervals based upon (2.6) asymptotically cover the true parameters with probability 1-α, i.e. 

with Pr{a} denoting the probability of event a, 

.-1)},1(Pr{lim)8.2(  


DRCI
N

β  

(R4) Asymptotically the frequency with which the randomization confidence interval does not cover 

(rejects) false nulls β0 ≠ β in a finite N neighbourhood of β, i.e. such that )()( 00 ββββ N < Δ  < ∞, is 

strictly lower than that for the conventional confidence interval (CCI), but converges to the 

conventional level as D & N → ∞,18 i.e. 

.0)}]1()(Pr{)},1()([Pr{lim

0)}]1()(Pr{)},1()([Pr{lim)9.2(

00
,

00













CCIDRCI

CCIDRCI

ND

N

ββββ

ββββ
 

 (R5) As D & N → ∞ the randomization p-value using the Wald statistic to test any null β0 in a finite N  

neighbourhood of β using D draws given the data, pR(β0,D| XW,Z,ε), almost surely converges to the 

conventional p-value for the same null based upon the Wald statistic for the data, pC(β0|XW,Z,ε), that is 
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(R2) - (R5) apply equally to tests of subsets of coefficients, as shown in the appendix.  The extension to 

errors that are homoskedastic or cluster correlated, treatment applied to groupings of observations and 

stratified treatment is given in the on-line appendix.  The requirement that the null β0 remain root-N local 

to β implies drifting sequences such as β0 = β + δ0/N
½.  With additional conditions, (R1) can be changed to 

stating that the Wald statistic τ(T,β0) is asymptotically distributed chi-squared for any fixed β0, as shown 

in the on-line appendix.  This paper focuses on drifting sequences as stated in (R1) above because (i) such 

sequences are necessary to ensure that p-values and coverage probabilities for incorrect nulls do not 

trivially converge to 0; (ii) the proof for fixed β0 in the extension to grouped treatment requires clustering 

of standard errors at levels of aggregation greater than or equal to treatment groupings, which is not 

always done in practice and is not necessary for (R1)'s extension to grouped treatment and  

                                                 
18We use limD,N→∞ to denote the double-limit, i.e. for every Δ > 0 there exists an M such that for all D & N > 

M the absolute value of the expression is less than Δ. 
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clustering;19 and (iii) (R1)'s local convergence in probability of τ(T,β0) to τ(T,β), which is not true of fixed 

β0, allows the construction of subset tests that asymptotically are identical to a test based upon knowledge 

of the true parameter values for untested treatment effects, as described further in Section IV, which 

covers practical issues in calculating confidence intervals and implementing subset tests in finite samples. 

 Turning to the assumptions, combining the treatment and non-treatment regressors into more 

compact notation, our regression model can be described as 

,level)n observatio (at theor     )11.2( iiiy   γzεγZy  

where ),(  and  ),( γβγZXZ W   denote the full matrix of regressors and parameters and iz the 1 x K+ 

row vector representing the ith row of Z+.  In this notation, White (1980) proved that almost surely 

coefficient estimates converge on true parameter values and N times the heteroskedasticity robust 

covariance estimate to the covariance matrix of normally distributed )ˆ(   γγN , thereby ensuring that 

Wald statistics are asymptotically distributed as chi-squared variables, using the following assumptions: 

(W1) ),( ii z is a sequence of independent but not necessarily identically distributed random vectors 

such that E(z+iεi) = 0K+. 

(W2) There exist finite positive constants δ, Δ and γ such that (a) for all i, ΔE i  )|(| 12   and 

E(| ikij zz  |1+δ) < Δ for all j, k = 1...K+; (b) MN =  

N

i 1 NE ii /)(  zz is non-singular for all N 

sufficiently large, with determinant MN > γ > 0. 

(W3) There exist finite positive constants δ, Δ and γ such that (a) for all i, E(| ikiji zz 
2 |1+δ) < Δ for 

all j, k = 1...K+; (b) VN =  

N

i 1 NE iii /)( 2
 zz is non-singular for all N sufficiently large, with 

determinant VN > γ > 0. 

(W4) There exist finite positive constants δ and Δ such that for all i, E(| ilikij zzz 
2 |1+δ) < Δ for all j, k, l  

= 1...K+ or, equivalently (by Hӧlder's Inequality), E(| 4
ijz |1+δ) < Δ for all j = 1...K+. 

In addition to White's W1 - W4, we make use of three additional assumptions 

(A1)  There exists a finite positive constant γ such that GN =  

N

i 1 NE ii /)( xx  - 

N

i 1 NE i /)(x  

N

i 1 NE i /)(x  

is non-singular for all N sufficiently large with determinant GN > γ > 0.  

(A2) Either the matrix W is part of Z, i.e. the interactions with treatment in XW are entered separately 

as covariates in the regression, or  

N

i 1 Pi NE 0x /)( . 

(A3) There exist finite positive constants θ, θ* and Δ, with θ(1+2θ*) > 1, such that for all i, q = 1...Q 

and p = 1...P, E(| 22
iiqw  |1+θ) < Δ and E(| 4

ipx |1+θ*) < Δ. 

 Nothing in W1 - W4 and A1 - A3 requires that the data generating process behind X is such that 

all permutations T of X are actually equally likely.  These assumptions guarantee that the distribution of 

the Wald statistic across row permutations T of X is asymptotically chi-squared, as is the conventional 

Wald statistic of the original regression.  Using random draws from the distribution of τ(T,β0) to evaluate 

                                                 
19Provided the properties of εi are such that with the homoskedastic or clustered below or across treatment 

groupings covariance estimate the conventional Wald statistic is distributed chi-squared (see the on-line appendix). 
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τ(X,β0) asymptotically allows for accurate inference for the parameters associated with any set of 

regressors XW that meet these conditions.  It is also unnecessary, as one can more easily evaluate τ(X,β0) 

using tables of the chi-squared distribution.  However, for data generating processes where all 

permutations T of X are actually equally probable, permutation-based randomization tests of sharp nulls 

are exact in finite samples.  Results (R1) - (R5) then confirm that these tests have an asymptotic validity 

equal to those of conventional tests in tests of population average (heterogeneous) treatment effects when 

the restrictions of the sharp null are not satisfied.  Since it is in this context that use of permutation based 

tests makes sense, the discussion in this paper focuses on randomized experiments where all permutations 

T of X are in fact equally likely. 

 The procedures, results and assumptions laid out above differ from those of DiCiccio and Romano 

(2017).  DiCiccio & Romano show (2017, Theorem 3.3) that, given assumptions on moments and errors, 

heteroskedasticity robust Wald statistics arrived at by permuting regressors X in an OLS regression model 

with other covariates Z are asymptotically distributed chi-squared.  The XW in the model above could be 

taken as their X and permuted accordingly (i.e. permuting not merely the treatment, but the product of 

treatment with covariates).  However, as DiCiccio & Romano note, when the X and Z in their model are 

not independent, as is most likely the case when their X represents the interaction of randomized treatment 

with participant covariates (our XW), the resulting test is not guaranteed to be finite sample exact, as the 

permutation distribution does not equal the sampling distribution of the original data.  For the case of 

treatment interacted with covariates, which was not directly considered by DiCiccio & Romano, our 

procedure instead permutes treatment X to T, holding constant the matrix W, and calculates and uses TW 

= T•W in the regression model.  This allows the calculation under the sharp null of the counterfactual 

distribution of randomization outcomes, producing finite sample exact tests.  Results (R1) - (R5) show that 

tests based upon this permutation distribution, which when covariate interactions are present is different 

than that considered by DiCiccio & Romano, are also asymptotically equivalent to the conventional test 

when the restrictions imposed by the sharp null are invalid.  Practical interest in these results, however, 

stems from the fact that they are based upon a test that is otherwise finite sample exact for sharp nulls. 

 For the case where there are no interactions with covariates other than the constant term, XW = X, 

the results above are identical to DiCiccio & Romano (2017), but the regression framework is more 

general.  DiCiccio & Romano's proof requires that the regression include a constant term (the equivalent 

of A2), bounded fourth moments of iid regressors and errors, and that the conditional expectation of the 

error equal 0, i.e. E(εi|z+i) = 0.  At the expense of requiring greater than fourth moments of regressors, W1-

W4 and A1-A3 allow for independently but not identically distributed data and the weaker condition 

E(εiz+i) = 0K+.  As noted in the introduction, experimental data are often drawn from disparate regions and 

time periods across which participant characteristics are unlikely to be iid.  As noted in example (2.2) 

above, the weaker condition E(εiz+i) = 0K+ allows for specification error that is uncorrelated with the linear 

regressors and does not compromise the consistency of the OLS estimates of average linear treatment 
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effects.  Finally, W1-W4 and A1-A3 provide some flexibility on moments, since when treatment measures 

are drawn from distributions with moments of all orders, in the DiCiccio and Romano model where W is 

simply 1N A3 can be satisfied without further restrictions beyond that given in W2a, i.e. the residuals need 

have only slightly greater than second moments. 

 In the context of the typical randomized experiment, the most challenging of the assumptions 

above is White's assumption W1, that the regressors are independent.  In many experiments treatment is 

independently drawn from a fixed distribution, producing an iid regressor, but in some cases a preselected 

cumulative distribution function of treatment Fx is allocated to the sample, inducing correlation between 

the regressors.20  In this case, we appeal to de Finetti's results regarding the asymptotic distribution of 

exchangeable random variables, including the reals (Hewitt and Savage 1955).  In particular, de Finetti's 

Theorem implies that if the asymptotic cumulative distribution function of exchangeable random variables 

converges to a unique Fx, then they are asymptotically iid with joint distribution equal to Fx raised to the 

Nth power (O'Neill 2009).  The expectation of treatment measures in A1 - A3 allows for heterogeneity 

across observations, but this is only to indicate the generality of the permutation result.  In situations 

where use of the permutation distribution has desirable finite sample characteristics, i.e. all permutations T 

of X are equally probable, the treatment variables are generally (at least asymptotically) iid.  Many 

experiments apply common treatment to observational groupings, e.g. all individuals in a laboratory 

session, ensuring that observations are neither exchangeable nor asymptotically iid.  Extension of the 

assumptions and results to allow treatment exchangeability only across observational groupings, as well as 

other cross observation correlations of regressors and residuals, is straightforward as long as one can 

define independent groupings of observations of bounded size and consider the asymptotics in terms of the 

number of such groupings going to infinity, as shown in the on-line appendix.  The on-line appendix also 

shows that stratification of treatment is easily accommodated provided the first and second moments of 

treatment are asymptotically identical across strata. 

 The additional assumptions A1 - A3 are easily met by most experiments. A1 merely states that 

treatment measures vary across observations and are not perfectly collinear.  Regarding A2, it would be 

unusual to seek the effect of the interaction of a covariate with treatment without wanting to know the 

direct effect of the covariate itself and in practice covariates that are interacted with treatment are almost 

always entered separately in the regression.  The alternative assumption that the expectation of treatment 

is zero is unlikely to hold and is not used below.  In the case where W is simply 1N, an N vector of ones, 

A2 amounts to requiring that the regression include a constant term.  If treatment measures are drawn 

from a distribution with bounded support and moments of all orders, as is usually the case, A3 (given A2 
                                                 

20As an example of the former, Robinson (2012) randomized weekly income shocks to married couples in 
Kenya by drawing (with replacement) one of 56 paper slips out of a bag.  As an example of the latter, Galliani et al 
(2011) examined the impact of military service on crime using Argentina's annual national service lottery, which 
sequentially drew lottery balls numbered 1 through 1000 without replacement and assigned them to young males 
based upon the sequence of the last three digits of their national ID. 
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& W3) will be satisfied with θ(1+2θ*) > 1. 

 The role A2 and A3 play in generating the results can be illustrated by considering the simplest 

example, that with a single treatment variable where the data generating process is y = xβ + ε.  Under the 

null β = β0, following each permutation t of treatment x, the counterfactual y is taken to be y(t,β0) = 

y - xβ0 + tβ0 = x(β-β0) + tβ0 + ε, producing coefficient estimates: 


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where  /NNNN 11IΟ  is the centering matrix.  The Wald & Wolfowitz (1944) theorem given in the 

appendix shows that the distribution across permutations of N times the correlation of a permuted 

variable and another sequence, a term such as  / NΟεt in (2.12), converges to the normal if sufficiently 

high moments of the two sequences exist.  This is similar to the restrictions on tail outcomes in central 

limit theorems which motivate White's (1980) bounds on higher moments, except more demanding, 

leading to the addition of A3 to White's assumptions.  The mean of the product of a permuted sequence 

with a fixed sequence is easily shown (in the appendix) to converge in probability to the product of their 

means given much less stringent conditions, so that terms like N/xt converge to )/)(/( NN NN 1x1t  . 

 Examining (2.12), one sees that if the asymptotic mean of treatment is zero, as would be the case 

if the alternative assumption in A2 were true, then )),(ˆ( 00  tN  converges to a normal variable and 

when suitably normalized by a variance estimate takes on a chi-squared distribution, i.e. the asymptotic 

distribution of the Wald statistic for the original treatment allocation x.  When this condition does not 

hold, however, the coefficient estimates obtained by regressing counterfactual output y(t,β0) on t have a 

bias induced by the N deviation of the null from the true parameter value, )( 0 N , and the 

N deviation from zero of the finite sample mean of the error term, NN /1ε .  The associated Wald 

statistics are now distributed non-central chi-squared, do not match the asymptotic sampling distribution 

of the Wald statistics for treatment allocation x, and hence cannot provide a suitable basis for population 

inference.  The solution to this problem is to include the covariate interaction with treatment, which in this 

case is the regressor 1N, in the regression, estimating the model ε1xy   N , even though the value of 

α is known to be zero.  The coefficient estimate for permutation t is then given by 
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and since NN // OOxtOxt  converges in probability to ,0*0)/)(/(  NN NN O1xO1t  provided 

)( 0 N  is finite the distribution of the associated Wald statistic will converge to the central chi-

squared and for every realization of t will in probability be identical to that found setting β0 = β.  More 

generally, including all variables W interacted with the matrix of treatment T in the list of covariate 

regressors Z, as stated in A2, solves these issues of bias and ensures an asymptotic chi-squared 

distribution & individual values identical to those found setting β0 = β, as shown in the appendix below. 
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 In (R1) and this paper in general, the emphasis is always on using the distribution of Wald 

statistics associated with permutations T and counterfactual outcomes y(T,β0) to evaluate the original 

Wald statistic based on X and y, rather than using the coefficient distribution to evaluate the original 

coefficient estimates.  Permuting the original treatment X to T breaks any connection between the 

variance of the error term and the treatment regressors such as might exist because of heterogeneous 

treatment effects or specification error as described in (2.2) earlier.  Consequently, the variance of the 

coefficient estimates across permutations of treatment brought about by the finite sample correlation 

between the permuted treatment vector and the errors, as in the last term of (2.13), is unlikely to be the 

same as the sampling variance of the original treatment vector x.21  Normalizing by the permuted variance 

estimate, i.e. studentizing the test-statistic, corrects for how this variance differs between permuted 

treatment and the original population sample.  When the sharp null is true, either the permuted coefficients 

or permuted Wald statistics provide a basis for accurate tests, but only the Wald test has asymptotic 

validity when Zγ+ε | X ≠ Zγ+ε | T.  This is illustrated in simulations below. 

  Finally, turning to the intuition for (R2) - (R5), from (R1) the limiting distribution across 

permutations of treatment of the Wald statistic is that of a chi-squared variable.  As the number of draws 

from the randomization distribution goes to infinity, using the percentiles of this distribution to evaluate 

the conventional Wald statistic is asymptotically identical to using the chi-squared distribution to evaluate 

the conventional Wald statistic, i.e. produces the same p-values.  This is the basis of (R5).  Insofar as 

conventional tests of true nulls using the variance estimate are asymptotically exact, so will analogous 

tests using randomization inference, while the power of randomization inference in tests of locally false 

nulls will be identical, even if the sharp null that motivates the randomization test is false.   

 When using a finite number of randomization draws to evaluate the test statistic, the ith order 

statistic of D draws from a chi-squared distribution is a random variable with expected value equal to the 

i/(D+1) percentile of the chi-squared distribution.  If (1-α)(D+1) is not an integer, we can create a random 

variable whose expected value equals the 1-α percentile by probabilistically selecting the order statistic to 

be either the integer ceiling or floor of (1-α)(D+1), forming the basis for (R2).  When the null is true, the 

asymptotic coverage probability of the conventional confidence interval, based upon the set of nulls such 

that the Wald statistic is less than the 1-α percentile of the chi-squared distribution, equals 1-α, i.e., the 

conventional coverage probability is asymptotically a 45o linear function of the nominal level.  Hence, 

using a random variable whose mean is the chi-squared 1-α percentile to determine the level of the 

confidence interval will have an expected coverage probability of 1-α, forming the basis for (R3).  When 

testing false nulls, the probability the conventional confidence interval covers the false null is a convex 

function of the chi-squared 1-α percentile.  Hence, using a random variable whose mean is the chi-squared 

                                                 
21In (2.13), this variance can be shown to be the homoskedastic covariance estimate.  This is not generally 

true, however, because when treatment is interacted with non-constant covariates W, as in TW = T•W, the coefficient 
estimates for permuted treatment continue to be affected by heteroskedasticity related to W.  
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1-α will by Jensen's Inequality yield a coverage probability greater than 1-α and lower power, unless the 

variance of the random variable goes to 0, as happens as D → ∞.  This forms the basis for (R4).  The 

appendix below provides formal proofs. 

III. Monte Carlos Illustrating the Importance of the Assumptions 

 This section uses Monte Carlos to highlight the role White's assumptions on moments, the 

additional randomization specific assumptions A2 and A3, and the sharp null hypothesis play in the finite 

sample and asymptotic performance of conventional and randomization inference.  In Tables I and II 

below the Monte Carlo data generating process (dgp) is given by 

(3.1) yi = βxiwi+ εi, with εi = βixiwi + d |xiwi|
½ + |wi|

½ + ηi,  

iid βi =U(-a,a) & xi = c + t(v), and inid ηi = sin(i)*t(2.1) & wi = sin(i)*t(4.2), 

where U(-a,a) denotes the uniform distribution across (-a,a), t(v) the t distribution with v degrees of  

freedom which has all absolute moments up to v, and c and d constants with base values of 0 and 1 

respectively.  xi is the iid treatment variable, wi the inid sample characteristic interacted with treatment and 

βi the heterogeneity in the linear treatment effect.  The positive square root of xiwi and wi are included in 

the error term to illustrate how the DiCiccio and Romano (2017) assumption that E(εi|z+i) = 0 can be 

relaxed in favour of E(εiz+i) = 0K+, thereby allowing the error term to incorporate non-linear specification 

error that is uncorrelated with the regressors.22  Similarly, to illustrate the extension of their asymptotic 

results to inid data, the distributions of ηi and wi follow a cyclical pattern dictated by the sine function.  As 

noted above, experiments often apply treatment randomly to participants arriving at field or laboratory 

locations or participants contacted in home visits and these can create cyclically varying distributions.23 

 With both xiwi and wi included in the regressors iz and the error term εi, )|(| 12  
iE , )|(| 14 

ijzE  

and )|(| 12  
 iikij zzE  are uniformly bounded for some δ > 0 provided v in t(v) is greater than 4, thereby 

satisfying White's assumptions W1 - W4 earlier for asymptotically accurate heteroskedasticity robust 

conventional inference.  In the tables below the degrees of freedom v for the treatment variable xi varies 

between (a) 42.1, so that assumption A3 is met with θ(1+2θ*) > 1;24 (b) 4.21, so that θ(1+2θ*) is only 

greater than 0 but assumptions W1 - W4 are still met; and (c) .421, so that θ* is not even positive and 

neither assumption A3 nor W2 - W4 are met.  Assumption A2 is satisfied when the regression includes the 

interaction variable wi or the dgp mean of xi (c in equation 3.1) is 0.  As noted above, the sharp null is that 

Zγ+ε | X = Zγ+ε | T for all alternative treatment allocations.  In the context of (3.1), this requires that βi ≡ 

0 and d = 0, the latter illustrating how any misspecification of the sharp null for linear treatment effects is 

unallowable if finite sample exact inference is to be guaranteed. 
                                                 

22E(εiz+i) = 0 follows because the density of wi is symmetric around 0 and would be true for any power of 
|xiwi| and |wi| appearing in εi.  I use the square root rather than greater powers to add non-linearity while not requiring 
the existence of additional moments beyond those already needed (as reviewed in the next paragraph). 

23See the footnote on Cai et al (2009) in the introduction above. 
24In terms of A3, for the dgp described above θ is just below min(.05,v/2-1), while θ* is just below v/4-1. 
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 Table I presents tests of true nulls of an average linear treatment effect β equal to zero, with  

sample sizes ranging from 20 to 20000 observations, 999 draws of T used in the calculation of 

randomization p-values and confidence intervals, and 10k iterations per dgp.  In panel (a), which varies v,  

we see that conventional heteroskedasticity robust rejection probabilities show size distortions in small 

samples, but converge to nominal value when assumptions W1 - W4 are met.  When v = .421, however, 

rejection probabilities show no tendency to converge to nominal value as the sample size increases.  When 

v is sufficiently small the influence of individual observations on coefficient and standard error estimates 

does not decline with sample size and asymptotic theory simply does not apply.25 

 Turning to randomization inference, the topic of this paper, in panel (a) we see that with v = 42.1 

or even 4.21, where θ(1+2θ*) is barely above 0, randomization p-values rapidly converge to the 

heteroskedasticity robust values, while the area covered by the intersection of the confidence intervals 

divided by the area of their union converges toward 1.  While θ(1+2θ*) > 1 is necessary to ensure that all 

moments of the randomization distribution converge to the normal, with v = 4.21 and θ(1+2θ*) merely > 0 

the first four moments are still guaranteed to converge to those of the normal and this is enough, at least 

with this dgp, to produce rejection rates close to nominal value.  In contrast, when v = .421 p-values and 

confidence intervals diverge with increases in sample size, and randomization inference shares the large 

size distortions of conventional inference.  However, when the sharp null is true (βi ≡ 0 and d = 0), 

indicated by the column with a *, randomization inference is exact even with v = .421 and delivers 

rejection probabilities that are within expected simulation variation from nominal value in all sample 

sizes.  No matter how poorly behaved the data, in finite samples randomization inference provides exact 

tests of sharp nulls, while for well behaved variables with bounded moments of sufficiently high order it 

shares the same asymptotic validity as conventional robust inference in the presence of heterogeneous 

treatment effects.  The sharp null, however, is more than a statement about a lack of heterogeneity in the 

tested linear treatment effect, as emphasized by the column marked with a #, where although βi ≡ 0, d = 1 

and the error term contains the specification error on the treatment effect.  Randomization inference in this 

case is neither finite sample exact nor asymptotically accurate with misbehaving regressors. 

 Panel (b) of Table I varies the heterogeneity of treatment effects, increasing a in U(-a,a) by orders 

of magnitude all the way up 5000, while keeping v at 42.1, so that assumptions W1-W4 and A1-A3 all 

hold.  Relative to panel (a), greater heterogeneity and hence heteroskedasticity increase the size distortions 

of both conventional and randomization methods in the very smallest of samples, but these disappear as 

conventional rejection rates converge to nominal value and randomization p-values and confidence 

                                                 
25The leverage of an individual observation in the regression of y on X is usually defined as the diagonal 

element of the hat matrix X(X'X)-1X'.  For individual coefficient estimates, one can define a similar measure using 
the hat matrix for the partitioned regression, i.e. using the residuals of one regressor projected on the others.  For the 
residuals of xiwi regressed on wi, in the regressions of panel (a) in Table I as the number of observations increases 
from 20 to 20k the average across 10k samples of the maximum leverage of an individual observation falls from .39 
to .027 when v = 42.1, but actually rises from .78 to .85 when v = .421. 
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Table I: Conventional and Randomization Inference in Favourable and Unfavourable Conditions 
(Monte Carlos: 10000 iterations per data generating process (dgp), following notation of (3.1)) 

 probability of rejecting true null for β at .05 level joint distribution of p-values and confidence intervals for β 

 conventional robust inference randomization inference correlation between p-values {CCI}∩{RCI}/{CCI}U{RCI} 

 (a) regression model yi = βxiwi + γwi + εi; dgp of (3.1) with c = 0, d = 1, a = ½, by v 

obs  v 42.1 4.21 .421 .421* .421# 42.1 4.21 .421 .421* .421# 42.1 4.21 .421 .421* .421# 42.1 4.21 .421 .421* .421# 

20 
200 
2000 
20000 

.236 

.118 

.069 

.053 

.264 

.154 

.088 

.059 

.778 

.793 

.787 

.792 

.427 

.557 

.597 

.598 

.780 

.797 

.789 

.786 

.072 

.060 

.055 

.052 

.088 

.081 

.067 

.058 

.576 

.795 

.858 

.884 

.054 

.051 

.050 

.050 

.536 

.672 

.689 

.719 

.960 

.989 

.995 

.996 

.962 

.990 

.995 

.997 

.952 

.960 

.919 

.885 

.847 

.789 

.763 

.756 

.941 

.958 

.968 

.974 

.579 

.831 

.942 

.971 

.562 

.803 

.926 

.969 

.261 

.622 

.560 

.478 

.258 

.181 

.119 

.088 

.255 

.310 

.375 

.443 

 (b) regression model yi = βxiwi + γwi + εi; dgp of (3.1) with c = 0, d = 1, v = 42.1, by a 

obs  a 5 50 500 5000 5 50 500 5000 5 50 500 5000 5 50 500 5000 

20 
200 
2000 
20000 

.335 

.161 

.079 

.056 

.353 

.163 

.077 

.055 

.355 

.164 

.077 

.056 

.355 

.164 

.077 

.056 

.140 

.096 

.065 

.057 

.157 

.099 

.063 

.056 

.157 

.100 

.063 

.055 

.157 

.100 

.063 

.055 

.945 

.980 

.990 

.994 

.944 

.979 

.990 

.994 

.944 

.979 

.990 

.994 

.944 

.979 

.990 

.994 

.584 

.843 

.942 

.971 

.588 

.844 

.942 

.971 

.588 

.844 

.942 

.971 

.588 

.844 

.942 

.971 

 (c) regression model yi = βxiwi + εi; dgp of (3.1) with v = 42.1, d = 1, a = ½, by c 

obs  c 0 10 100 100* 100# 0 10 100 100* 100# 0 10 100 100* 100# 0 10 100 100* 100# 

20 
200 
2000 
20000 

.255 

.115 

.068 

.052 

.218 

.099 

.055 

.048 

.238 

.102 

.057 

.047 

.158 

.075 

.055 

.051 

.237 

.105 

.059 

.051 

.072 

.058 

.054 

.052 

.054 

.053 

.045 

.044 

.049 

.050 

.046 

.048 

.051 

.050 

.050 

.056 

.050 

.048 

.048 

.053 

.954 

.988 

.995 

.997 

.193 

.191 

.178 

.203 

.030 

.010 

.019 

.033 

.017 

.023 

.015 

.011 

.029 

.001 

.011 

.021 

.515 

.825 

.944 

.972 

.058 

.055 

.035 

.018 

.006 

.005 

.004 

.002 

.007 

.008 

.007 

.006 

.006 

.006 

.004 

.003 

 (d) randomization inference using percentiles of coefficients (probability of rejecting true null for β at .05 level) 
 model of panel (a) by v model of panel (b) by a model of panel (c) by c 

obs  42.1 4.21 .421 .421* .421# 5 50 500 5000 0 10 100 100* 100# 

20 
200 
2000 
20000 

.072 

.097 

.116 

.136 

.080 

.147 

.226 

.291 

.459 

.951 

.998 
1.00 

.050 

.053 

.052 

.051 

.387 

.929 

.995 
1.00 

.138 

.231 

.250 

.257 

.165 

.246 

.257 

.260 

.166 

.247 

.257 

.261 

.165 

.247 

.257 

.261 

.076 

.102 

.116 

.137 

.054 

.063 

.060 

.065 

.052 

.053 

.049 

.049 

.052 

.050 

.052 

.055 

.051 

.047 

.050 

.054 

   Notes:  * = sharp null is true, βi≡0 & d=0; # = βi≡0, but sharp null is not true (d=1); {CCI}∩{RCI}/{CCI}U{RCI} = overlap divided by union of combined 
confidence intervals; randomization inference uses 999 draws of Wald statistics (panels a-c) or squared coefficients (panel d). 
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intervals converge to those of the conventional test.  The results in panels (a) and (b) follow (R1) - (R3) 

and (R5) above.  Panel (c) removes the interacted variable wi from the regression, violating assumption A2 

if the mean of xi is not 0.  The results for conventional inference and randomization inference when the 

mean c of xi is 0 are much the same as before.  However, when c ≠ 0 and no version of A2 is satisfied, 

randomization p-values and confidence intervals do not converge to conventional values as the sample 

size increases.  These results stem from the random bias and non-central chi-squared distribution 

highlighted earlier above. 

 Any test statistic allows for exact randomization inference when the sharp null is true, but with 

heterogeneous treatment effects the distribution of coefficient estimates generated by treatment 

permutation is only guaranteed to converge to that of the original data if studentized by the appropriate 

variance estimate.  Panel (d) of Table I illustrates this by moving away from Wald statistics and evaluating 

the significance of the estimated coefficient using the percentiles of the distribution of squared deviation 

of coefficient estimates from the null (in this case 0) generated by permuting treatment, i.e. comparing 
2

0 )0,(ˆ  t to 2̂ .  When the sharp null is true randomization inference is finite sample exact, but 

otherwise there is no guarantee of asymptotic accuracy, even when the regressor has higher moments, as 

rejection rates based upon the distribution of coefficients generally worsen as the sample size increases. 

 Table II below evaluates relative power by adjusting the parameter β so that the power of 

conventional inference, when testing the false null β = 0, equals .25, .50 or .75, and then reporting 

randomization inference rejection probabilities for the same dgp.26  The table focuses on results for  

v = 42.1 or 4.21, where conventional rejection probabilities of true nulls converge to nominal value (Table 

I).  As shown in panel (a), randomization power is well below that of the conventional test in very small 

samples, where the larger size distortions of the conventional test (see Table I) produce greater power.  

However, in all sample sizes randomization power is increasing in the number of draws used to calculate 

the randomization p-value and converges to the conventional level in large samples with a large number of 

draws.  This continues to be true in panel (b), when v = 4.21, A3 is not met, and only the first four 

moments of the randomization distribution are guaranteed to converge to the normal.  Increasing the 

heterogeneity of effects by orders of magnitude (panels c and d) has no systematic effects.  These results 

follow (R4) above.  As shown in panel (e), when assumption A2 is violated, the regression is run without 

the interaction variable wi, and the dgp for xi has a non-zero mean, randomization inference performs 

extraordinarily poorly with power that hardly differs from the nominal level for true nulls.  This is true 

even when the dgp conforms to that of the sharp null (panel f).  As noted above, in this case the coefficient 

estimates of permuted treatment are asymptotically distributed thick tailed non-central chi-squared, 

producing wide confidence intervals.  Assumption A2, that covariates W interacted with treatment X are 

included in the regressors Z, crucially guarantees randomization inference asymptotically identical power  

                                                 
26Since both positive and negative values of β can achieve the same conventional power, I compute 

randomization rejection rates for the two and report the average in the table. 
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Table II: Power of Randomization Inference by Power of Conventional Test for Tests of β 

 & Number of Draws from the Permutation Distribution (Monte Carlos with 10000 iterations per dgp)  

 conventional power = .25 conventional power = .50 conventional power = .75 
draws   

 obs 19 99 199 999 19 99 199 999 19 99 199 999 

 (a) regression model of Table Ia:  yi = βxiwi + γwi + εi , xi = t(42.1), βi = β + U(-½,½), d = 1 
20 

200 
2000 

20000 

.077 

.143 

.197 

.213 

.080 

.158 

.216 

.237 

.081 

.159 

.220 

.242 

.082 

.161 

.223 

.246 

.212 

.328 

.406 

.436 

.239 

.370 

.453 

.484 

.245 

.375 

.459 

.489 

.246 

.380 

.462 

.495 

.408 

.563 

.651 

.680 

.463 

.630 

.706 

.732 

.470 

.638 

.716 

.740 

.475 

.643 

.722 

.744 
 (b) regression model of Table Ia:  yi = βxiwi + γwi + εi , xi = t(4.21), βi = β + U(-½,½), d = 1 

20 
200 

2000 
20000 

 na 
.138 
.187 
.207 

 na  
.152 
.204 
.233 

 na  
.155 
.209 
.237 

 na  
.156 
.211 
.240 

.215 

.320 

.395 

.434 

.244 

.359 

.440 

.481 

.248 

.365 

.445 

.486 

.249 

.370 

.450 

.491 

.412 

.553 

.640 

.679 

.465 

.618 

.701 

.730  

.472 

.627 

.706 

.738 

.477 

.632 

.711 

.742 
 (c) regression model of Table Ib:  yi = βxiwi + γwi + εi , xi = t(42.1), βi = β + U(-50,50), d = 1 

20 
200 

2000 
20000 

na 
.155 
.200 
.217 

na 
.169 
.220 
.243 

na 
.170 
.221 
.246 

na 
.171 
.224 
.248 

.251 

.366 

.417 

.444 

.277 

.401 

.456 

.486 

.280 

.405 

.460 

.492 

.282 

.408 

.466 

.500 

.467 

.613 

.669 

.691 

.517 

.661 

.717 

.739 

.523 

.667 

.723 

.745 

.530 

.671 

.726 

.750 
 (d) regression model of Table Ib:  yi = βxiwi + γwi + εi , xi = t(42.1), βi = β + U(-5000,5000), d = 1 

20 
200 

2000 
20000 

na 
.156 
.201 
.216 

na 
.169 
.220 
.242 

na 
.170 
.221 
.246 

na 
.171 
.225 
.248 

.251 

.368 

.418 

.445 

.277 

.401 

.456 

.486 

.279 

.406 

.460 

.491 

.283 

.409 

.466 

.500 

.468 

.613 

.668 

.691 

.519 

.661 

.716 

.739 

.524 

.666 

.722 

.745 

.531 

.671 

.725 

.749 
 (e) regression model of Table Ic:  yi = βxiwi + εi ,  xi = 100 + t(42.1), βi = β + U(-½,½), d = 1 

20 
200 

2000 
20000 

.050 

.050 

.048 

.047 

.050 

.050 

.047 

.049 

.051 

.049 

.047 

.050 

 .051 
.050 
.048 
.050 

.052 

.052 

.048 

.046 

.054 

.050 

.049 

.048 

.054 

.049 

.048 

.049 

.054 

.050 

.049 

.049 

.052 

.051 

.048 

.047 

.054 

.050 

.048 

.047 

.054 

.049 

.048 

.047 

.055 

.050 

.048 

.049 
 (f) regression model of Table Ic:  yi = βxiwi + εi ,  xi = 100 + t(42.1), βi ≡ β & d = 0 

20 
200 

2000 
20000 

.052 

.052 

.051 

.052 

.052 

.051 

.051 

.053 

.053 

.050 

.051 

.054 

.053 

.050 

.051 

.054 

.052 

.053 

.051 

.053 

.053 

.052 

.052 

.054 

.054 

.051 

.051 

.053 

.053 

.051 

.052 

.055 

.053 

.053 

.053 

.054 

.054 

.052 

.053 

.056 

.054 

.052 

.052 

.055 

.054 

.052 

.054 

.055 
Note: β adjusted until the conventional rejection rate at the .05 level equals .25, .50 or .75; na - not applicable, 

conventional size distortions are so large that no null has a .05 rejection rate of .25; notation otherwise as in (3.1). 

to conventional Wald tests of locally false heterogeneous or sharp nulls, as in results (R4) - (R5) above. 

IV. Practical Issues: Finite Sample Algorithms and Testing Subsets of Coefficients  

 This section addresses algorithms for calculating randomization confidence intervals (RCI) and 

issues in testing subsets of coefficients.  Asymptotically if assumptions W1-W4 & A1-A3 hold the Wald 

statistic for permuted treatment τ(T,β0) in probability does not depend upon the null β0 in a finite N  

neighbourhood of β, so calculating the RCI merely involves sorting the values of τ(T) across D draws and 

using the order statistics to calculate a bound for τ(X,β0), as indicated by (2.6) in (R2) earlier.  This defines 

the usual ellipsoid around β̂ .  In finite samples, τ(T,β0) generally does depend upon β0, but the calculation 

of the RCI remains straightforward, as whether using the heteroskedasticity robust or clustered robust 
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Table III: Non-Convexities and Asymmetries in Randomization Confidence Intervals for β 

(Monte Carlos: 10000 iterations per data generating process based upon (3.1)) 

 

(a) regression with wi, 
specification of Table Ia 
c = 0, d = 1, a = ½, by v 

(b) regression with wi, 
specification of Table Ib 

c = 0, d = 1, v = 42.1, by a 

(c) regression without wi, 
specification of Table Ic 

v = 42.1, d = 1, a = ½, by c 
 42.1 4.21 .421 .421* 5 50 500 5000 0 10 100 100* 

 (i) number of non-convex .95 RCI in 10000 regressions 
20 

200 
2000 

20000 

139 
 9 
0 
0 

167 
18 
2 
0 

603 
513 
201 
152 

415 
59 

8 
1 

190 
25 
0 
0 

245 
30 

1 
0 

219 
24 

1 
0 

211 
21 
1 
0 

325 
47 

2 
0 

492 
539 

 907 
1247 

688 
846 

1262 
1548 

1025 
1119 
1303 
1579 

 (ii) mean ratio of length of shorter side to longer side of convex cover of .95 RCI 
20 

200 
2000 

20000 

.751 

.904 

.971 

.986 

.769 

.909 

.969 

.984 

.753 

.876 

.871 

.830 

.838 

.972 

.992 

.998 

.726 

.892 

.963 

.983 

.718 

.891 

.963 

.983 

.717 

.891 

.963 

.983 

.717 

.891 

.963 

.983 

.736 

.901 

.970 

.986 

.569 

.549 

.545 

.565 

.573 

.539 

.523 

.513 

.526 

.507 

.504 

.523 
    Notes: convex cover = smallest convex region covering all segments of RCI; * = sharp null is true, βi ≡ 0 & d = 0;  
20 ... 20000 = number of observations; notation otherwise as in Table I & (3.1). 

 

covariance estimates, the equation τ(X,β0) = τ(T,β0) defines a multivariate quartic equation in β0.
27  

 In a test for estimating equations with a single treatment effect, βj, the roots of τ(t,β0j) = τ(x,β0j) 

define regions on the real line where τ(t,β0j) is >, < or = to τ(x,β0 j).  To calculate the finite sample RCI, 

one simply takes D draws of t, calculates the roots specific to each, orders them on the real line, and 

moving left to right keeps track of the number of τ(t,β0j) that are greater than, less than, or equal to τ(x,β0).  

For a given draw from the uniform distribution u, one can calculate the (constant) p-value between any 

two adjacent roots and to the left and right of their extreme values, and in so doing find the RCI associated 

with any level 1-α.  The finite sample RCI may have infinite width when there are few distinct potential 

realizations of t or draws D from the permutation distribution.  It is also typically asymmetric and may be 

non-convex.  For these reasons the analytic procedure just described (and further in the on-line appendix) 

is better than costly and potentially fruitless or inaccurate line searches. 

 Table III reports the number of non-convex RCI and the mean ratio of the shorter side to the 

longer side of the convex cover of the RCI for the simulations of Table I.  As shown, when assumptions 

A2 and A3 are satisfied, with the interaction variable wi in the regression and v = 42.1, non-convexities 

and asymmetries are rapidly eliminated as the sample size increases.  When wi is not included in the 

regression and the mean of xi is not 0, i.e. both forms of assumption A2 are violated, asymmetries and 

non-convexities show no tendency to diminish with larger samples, even when the sharp null is true and 

there is no heterogeneity of treatment effects.  Conditions W1-W4 and A1-A3 not only ensure an 

asymptotic equivalence with conventional inference in tests of heterogeneous treatment effects but also  

tend to produce conventional properties in finite sample exact randomization tests of sharp nulls. 

 In a joint test of multiple treatment effects, the boundaries in the space of β0 of τ(T,β0) = τ(X,β0) 

                                                 
27The on-line appendix lays out this equation and its use to calculate confidence intervals as described below. 
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can be calculated for each T, and the intersections of these used to calculate a confidence interval for the 

joint test.  This is obviously difficult and it is generally more straightforward to simply report the p-value 

for a given β0 by calculating the relative value of τ(T,β0) and τ(X,β0) for the D draws of T.  The same 

procedure of reporting the p-value for a specific multi-dimensional null, rather than calculating the whole 

confidence interval, is used in conventional tests, so this is not much of an issue.   

 More problematic is the fact that the Wald statistic of a permutation-based randomization test of a 

null for a subset of treatment coefficients depends upon the null for all treatment measures, as the 

counterfactual outcome ),( 0βTy = 0)( βXT WW   generally depends upon all elements of 0β .  Let P denote 

a k x PQ matrix of zeros of full rank with a single one in each row, so that 00 Pββ  , βPβ ˆˆ  , and 

),(ˆ),(ˆ
00 βTβPβTβ  denote k x 1 sub-vectors of the parameters and estimated coefficients, and 

PβVPβV  )ˆ(ˆ)ˆ(ˆ and  )),(ˆ(ˆ
0βTβV  PβTβVP )),(ˆ(ˆ

0  the k x k covariance estimates.  The Wald statistic 

for the conventional test  ),( 0βX )ˆ)(ˆ(ˆ)ˆ( 00
  βββVββ  depends only on 

0β , but the equivalent 

Wald statistic for permuted treatment )),(ˆ))(,(ˆ(ˆ)),(ˆ(),( 000000
  ββTββTβVββTββT  in the finite 

sample depends upon all elements of 0β .28  Thus, in the finite sample a randomization test based upon a 

test statistic for a subset of coefficients remains a joint test of the null for all treatment measures, although 

this disappears asymptotically as the realizations of the test statistic become insensitive to nulls in a root-N 

neighborhood of β and the comparison of ),(),( 0 βTβT   to ),( 0
 βX depends only 

0β .  

 One way to test a subset null without taking a stand on the null for other treatment measures is by 

permuting WW PXX   alone, calculating the counterfactual outcome   00 )(),( βXTyβTy WWW  and 

treating the remaining treatment regressors as part of the matrix of covariates Z.  However, if the 

permutation of the treatment sub-vector alone is not consistent with the randomization protocol of the 

experiment, while results (R1) - (R5) still carry through for the test of the subset if conditions W1 - W4 

and A1 - A3 hold, the randomization test will not carry the additional finite sample validity of 

randomization tests when the sharp null is true.  Permutation of a treatment sub-vector is valid, for 

example, when treatment 
WX is independently applied, so that permutations of 

WX holding constant the 

remaining columns in XW constitute a valid subset of the universe of potential treatment realizations.29 

Unfortunately, in practice this is seldom the case, so while this method provides asymptotic validity, it 

only very rarely is guaranteed to be finite sample exact for tests of sharp nulls. 

 When multiple treatments are not separately randomized, as is more usual, one can still calculate a 

valid subset of potential outcomes by permuting treatment within strata defined by other treatments, e.g. 

examining the potential alternative realizations of 
WX within strata defined by the remaining columns of 

                                                 
28Similarly, while the confidence interval for an individual treatment effect βj in a multi-treatment equation is 

easily calculated using the roots of τ(T,β0j) = τ(X,β0j) following the method above, these roots and hence the 
confidence interval depend upon the maintained null for untested treatment measures as these determine y(T,β0). 

29For example, Cole et al (2013) investigated the demand for insurance in Gujarat by separately randomizing 
discounts.  Permutation of these holding constant other treatment elements maps out a subset of potential outcomes. 
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XW.  This is the procedure advocated by D'Haultfoeuille & Tuvaandorj (2022) in their extension of 

DiCiccio & Romano's (2017) analysis to cases where treatment measures are correlated with other 

covariates,30 and was used earlier in Young (2019) to provide alternative randomization p-values in 

amenable equations.  This method is not useful in regressions with covariate interactions, as the number of 

distinct other-treatment-stratified potential outcomes is generally the null set since treatment t generally 

cannot vary at all within strata defined by realizations of t•w,31 and vice versa.32  In these circumstances, 

the distribution is degenerate and while the p-value (based upon universal ties of all test statistics and a 

random draw from the uniform distribution in (2.4) earlier) is trivially exact, power is identical to size.  

Outside of this case, the conditional mean assumption E(xiεi|zi) = 0 used by D'Haultfoeuille & Tuvaandorj 

to guarantee asymptotic validity may be problematic as zi now contains other treatment variables that are 

correlated with xi.  As described earlier in (2.2), OLS parameters can be thought of as population average 

linear treatment effects, with misspecification in the form of orthogonal to average linear effects included 

in the error term.  When xi and zi are correlated, average linear treatment effects can vary by strata so that 

even though E(xiεi) = 0 holds in aggregate, E(xiεi|zi) may not equal 0 and this method is not asymptotically 

valid.  Furthermore, if other-treatment-stratification restricts tested treatment variation for substantial 

shares of the sample, there may be a loss of power.  In sum, while this method is finite sample exact for 

tests of sharp nulls in randomized experiments, it is often degenerate, and if not may lose power or be 

asymptotically invalid in the face of otherwise innocuous to OLS specification error. 

 A test that would remain exact and only depend upon the null for a subset of treatment measures 

while permuting all treatment regressors across the entire sample would be one that impractically always 

set the null on untested coefficients equal to their true values.  A practical approximation of this test 

involves setting the null on untested coefficients equal to the estimated OLS coefficients.  As stated in 

(R1) above, asymptotically for β0 in a finite root-N neighborhood of β, τ(T,β0) = τ(T,β).  White's 

assumptions ensure that )ˆ( ββ N is asymptotically normally distributed with a bounded covariance 

matrix, so that the N deviation of estimated values from β is bounded in probability and this test is 

asymptotically identical to setting the null on untested coefficients equal to their true values.  Insofar as 

asymptotic properties carryover into the finite sample, this approach approximates the impractical finite 

sample exact test, while providing an asymptotically valid subset test of heterogeneous treatment effects 

                                                 
30D'Haultfoeuille & Tuvaandorj actually suggest permuting within strata defined by all other regressors, 

which in our case would include the non-treatment covariates Z as well.  In practice covariates are often continuous, 
making that conditional permutation distribution degenerate, i.e. all strata contain only one observation.  However, 
when treatment is randomly applied it can be taken as independent of non-treatment covariates and the approach 
simplified to permuting within strata defined by other treatment measures alone, as done in Young (2019) and below.  

31Except for observations where w is 0. 
32Holding t constant, t•w can only be varied by permuting w, which is not an alternative experimental 

outcome and cannot be justified on that basis nor, typically, on the grounds that its distribution is exchangeable.  In 
any case, the inclusion of w as a separate regressor, as is usually done, renders this permutation distribution 
degenerate as well, as there is no way to vary t•w holding both t and w constant. 
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with the general validity conferred by the OLS assumption E(xiεi) = 0.  However, as sampling variation 

leads β̂  to vary from β  it will not be truly finite sample exact and, as shown below, may perform poorly 

when White's assumptions do not hold. 

 Another approach to subset testing is to conservatively calculate the maximum p-value for the test 

of a subset 
0β across all possible nulls for the remaining treatment effects in 0β .  While not exact, in a 

finite sample test of sharp treatment effects this will guarantee control of size, as the probability of 

rejecting a true null 
0β must be less than or equal to the nominal level of the test.  Searching for a 

maximum across an unbounded space can be problematic, but as shown in the on-line appendix the 

maximum p-value along opposite rays of infinite length can be calculated analytically.  In this fashion, the 

problem is reduced, through the use of spherical coordinates, to one of searching in the bounded space of 

angles, each lying in [0,π].  When the regression contains two treatment effects and p-values for β0j are 

calculated across all values of β0~j, there are no angles to consider and the maximum can be calculated 

analytically.33  This approach is all-purpose, serving across all regression types considered in this paper.  It 

is however conservative, producing a loss of power, and this conservatism need not disappear 

asymptotically.34  Power can be enhanced if bounds can be placed on the universe of true nulls for 

untested measures.  If these bounds are based upon the conventional Wald statistic for nulls on the 

untested measures, given White's moment conditions in probability the search for a maximum p-value 

remains within a finite root-N neighborhood and asymptotically produces p-values identical to setting the 

null on untested measures equal to their true values.  With liberal bounds, this provides protection against 

the finite sample variation of β̂  from β  that bedevils the approach based upon setting untested nulls equal 

to estimated values described above, while ruling out theoretically unreasonable infinitely large values of 

parameters and assuring asymptotic p-values and power equal to that of the impractical test based upon 

knowledge of the parameter values for untested measures. 

 The Monte Carlos in Tables IV and V explore the issues described above.  Table IV considers 

equations with covariate interactions, modifying the dgp of (3.1) to include the treatment vector itself as a 

source of variation: 
 (4.1) yi = β1xi + β2xiwi + εi, with εi = β1i xi + β2i xiwi + d |xi|

½ + d |xiwi|
½ + |wi|

½ + ηi 

iid xi = t(v) & βji = βj + U(-a,a) for j = 1 and 2, and inid ηi = sin(i)*t(2.1) & wi = sin(i)*t(4.2). 

There are heterogeneous linear treatment effects for both xi and xiwi and to satisfy assumption A2 both 1N 

and w should be included as ancilliary regressors.  The sharp null holds when a = 0 and d = 0.  The table 

reports rejection rates of tests of correct nulls of the mean treatment effects β1 and β2.  In the permute-one 

                                                 
33Techniques for finding the maximum for higher dimensional problems are reviewed in the section below. 
34While, as noted earlier, the distribution of τ(T,β0) is asymptotically unaffected by any fixed value of β0 (not 

merely those in a root-N neighborhood), its individual realizations are, so by searching across β0 the p-value based on 
a finite number of draws from the distribution can be manipulated (as can be seen in the equations describing the 
calculation of the max p-value in the on-line appendix).  Moreover, mathematically, convergence for a fixed value 
does not guarantee convergence of the maximum across all values.   
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Table IV: Subset Inference with Covariate Interactions by Method (true null rejection rates at .05 level) 

Monte Carlos: 10000 iterations per data generating process based on (4.1)  
regression model: yi = β1xi + β2xiwi + γ +δwi + εi 

 randomization inference 
 

conventional 
robust permute-one jj ~~0 ̂   

jj ~~0    constrained 
max over j~0  

max over j~0  

tests of: β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

(a) xi = t(42.1), d = 1, a = 0 

20 
200 

2000 
20000 

.070 

.047 

.047 

.046 

.145 

.086 

.054 

.053 

.065 

.053 

.051 

.050 

.059 

.058 

.049 

.053 

.056 

.052 

.051 

.050 

.048 

.058 

.048 

.053 

.055 

.052 

.051 

.050 

.052 

.058 

.048 

.053 

.033 

.042 

.047 

.047 

.028 

.045 

.045 

.052 

.031 

.034 

.036 

.038 

.026 

.035 

.036 

.040 

(b) xi = t(42.1) , d = 1, a = 5000 

20 
200 

2000 
20000 

.156 

.069 

.052 

.050 

.302 

.164 

.076 

.053 

.137 

.063 

.051 

.050 

.147 

.102 

.061 

.052 

.128 

.063 

.052 

.049 

.129 

.102 

.061 

.052 

.128 

.064 

.051 

.049 

.136 

.102 

.061 

.052 

.102 

.056 

.045 

.045 

.098 

.089 

.057 

.051 

.099 

.053 

.040 

.040 

.096 

.082 

.048 

.039 

(c) xi = t(42.1) , a = d = 0 (sharp null is true) 

20 
200 

2000 
20000 

.070 

.047 

.047 

.046 

.145 

.086 

.054 

.053 

.065 

.053 

.051 

.050 

.059 

.058 

.049 

.053 

.056 

.052 

.051 

.050 

.048 

.058 

.048 

.053 

.055* 

.052* 

.051* 

.050* 

.052* 

.058* 

.048* 

.053* 

.033 

.042 

.047 

.047 

.028 

.045 

.045 

.052 

.031# 

.034# 

.036# 

.038# 

.026# 

.035# 

.036# 

.040# 

(d) xi = t(.421) , a = d = 0 (sharp null is true) 

20 
200 

2000 
20000 

.238 

.368 

.422 

.429 

.239 

.361 

.428 

.431 

.051 

.053 

.059 

.064 

.039 

.033 

.031 

.025 

.072 

.094 

.069 

.057 

.076 

.094 

.073 

.058 

.048* 

.050* 

.051* 

.047* 

.049* 

.049* 

.054* 

.048* 

.034 

.051 

.055 

.050 

.032 

.050 

.058 

.051 

.030# 

.046# 

.049# 

.047# 

.025# 

.044# 

.052# 

.047# 
Notes: β0~j = null for coefficient not being tested, null for coefficient being tested always equals parameter of the 

dgp; * = method is exact; #= size guaranteed to be less than or equal to nominal level. 

approach only the variable associated with the coefficient being tested is permuted, i.e. xi is changed to ti 

or xiwi to tiwi, without changing the other.  This is not a valid experimental outcome, and hence these tests 

need not be exact in tests of sharp nulls, but if W1-W4 and A1-A3 hold have the same asymptotic validity 

as the conventional test.  In " jj ~~0 ̂  ", following each permutation of treatment xi to ti both regressors 

are changed and the null on the coefficient that is not being tested is set equal to its estimated value.  

Again, given W1-W4 and A1-A3 this has the same asymptotic validity as the conventional test, but need 

not be exact for sharp nulls as β0~j does not equal the true value.  In "β0~j = β~j" the untested null is set 

equal to its true value, providing a benchmark of an asymptotically valid and finite sample (sharp null) 

exact test.  "max over β0~j" reports rejection rates for the conservative test which calculates the maximum 

p-value across all possible untested nulls, providing conservative control over size in the finite sample for 

exact nulls and asymptotically for heterogeneous treatment effects.  The "constrained max" restricts the 

search for a maximum p-value to those nulls for which the conventional p-value for the Wald statistic for 

β0~j is greater than 10-10.  When W1-W4 and A1-A3 hold, both the "constrained max" and " jj ~~0 ̂  " are 
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asymptotically identical to "β0~j = β~j".  The method of other-treatment-stratified permutation is not 

examined here, as each observation would constitute a separate strata and the distributions are degenerate. 

 As seen in panels (a) - (c) of the table, when W1-W4 and A1-A3 hold, while small sample 

deviations from nominal rejection probability are much higher when there is a lot of regressor associated 

heteroskedasticity (a = 5000 in panel b), all approaches other than "max over β0~j" asymptotically provide 

rejection probabilities equal to nominal value, whereas "max over β0~j" remains conservative even in large 

samples,.  When the sharp null is true, whether regressors satisfy assumptions W1-W4 & A1-A3 (panel c, 

xi = t(42.1)) or not (panel d, t(.421)),  setting "β0~j = β~j" provides an exact test (within the bounds of 

simulation variation) and "max over β0~j" more practically implementable conservative control of size.  

Permute-one, which is not a valid counterfactual experimental outcome, does not provide an exact test 

when the sharp null is true, with rejection probabilities that actually deviate further from nominal value as 

the sample size grows in panel d.  Results for both " jj ~~0 ̂  " and "constrained max" appear to 

converge to those of "β0~j = β~j", even in panel d where the sufficient moment conditions do not hold.35  

" jj ~~0 ̂  " is not, however, finite sample exact, as shown in panel d where with unruly regressors 

rejection rates are well above nominal value.   The "constrained max" with the liberal bounds given above, 

however, controls size in finite samples while converging to the impractical test based upon "β0~j = β~j".

 Table V below considers a Monte Carlo where other-treatment-stratified permutation is an option.  

The data generating process is given by 

(4.2) yi = β1x1i + β2x2i + εi, with εi = β1i x1i + β2i x2i + d1 x1i
2 + d1 x2i

2 + |wi|
½ + ηi  

iid xji = U{-4,-3,-2,-1,1,2,3,4} & βji =U(-a,a) +d2x~j, and inid ηi = sin(i)*t(v) & wi = sin(i)*t(4.2), 

where U{} denotes uniformly distributed on the given integers.  I consider two scenarios: independent, 

where x1i and x2i are drawn independently, and correlated, where the two variables are constrained to have 

the same sign but are otherwise independently distributed across the integers.  When d1 = 1 (panel a) there 

is specification error in the form of quadratic treatment effects, whereas when d2 = 1 (panel b) there is 

specification error in terms of treatment interactions.  In both cases, E(xjiεi) = 0 holds, while E(xjiεi|x~ji) = 0 

when x1i and x2i are independent, but E(xjiεi|x~ji) ≠ 0 when x1i and x2i are correlated.  Other-treatment-

stratified permutation is only guaranteed to be asymptotically valid when the xji are independent, whereas 

all other methods (provided v > 2 so that the error disturbance has enough moments) are guaranteed to 

have asymptotically accurate or conservative rejection rates.  This is seen in panels (a) and (b) of the table, 

where with v = 2.1 rejection rates using all other methods other than "max over β0~j" (which remains 

slightly conservative) rapidly converge to nominal value, while size distortions using other-treatment-

stratified permutation actually increase with sample size when the regressors are correlated.  This 

illustrates the more restrictive assumptions needed for asymptotic validity with this method.  However, 

                                                 
35Table VII below gives more detailed evidence on convergence of individual p-values, but for the interim 

convergence to "β0~j = β~j" is discussed in terms of average rejection rates. 
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 Table V: Subset Inference when Treatment Stratified Permutation is Non-Degenerate 

(true null rejection rates of β1 & β2 at .05 level, 10k iterations per dgp (4.2), by correlation of regressors) 
regression model: yi = β1xi + β2xi + γ +δwi + εi 

 randomization inference 

 
conventional 

robust permute-one jj ~~0 ̂   jj ~~0    constrained 
max over j~0  j~0over max   x~j stratified 

 ind corr ind corr ind corr ind corr ind corr ind corr ind corr 

 (a) specification error in the form of quadratic effects, v = 2.1, a = ½, d1 = 1, d2 = 0  

20 
200 

2000 
20k 

.072 

.050 

.049 

.052 

.047 

.045 

.049 

.050 

.054 

.049 

.049 

.051 

.033 

.044 

.049 

.051 

.055 

.050 

.049 

.052 

.030 

.043 

.049 

.051 

.055 

.049 

.048 

.052 

.029 

.043 

.049 

.051 

.043 

.043 

.045 

.050 

.020 

.036 

.045 

.050 

.040 

.039 

.039 

.041 

.019 

.033 

.039 

.041 

.058 

.054 

.055 

.057 

.070 

.160 

.166 

.167 
 (b) specification error in the form of treatment interactions, v = 2.1, a = ½, d1 = 0, d2 = 1 

20 
200 

2000 
20k 

.107 

.053 

.050 

.048 

.050 

.045 

.049 

.050 

.088 

.052 

.051 

.048 

.036 

.044 

.049 

.051 

.090 

.053 

.050 

.048 

.033 

.043 

.049 

.050 

.087 

.053 

.050 

.048 

.032 

.043 

.049 

.050 

.076 

.046 

.047 

.046 

.021 

.036 

.045 

.048 

.072 

.041 

.041 

.039 

.019 

.033 

.039 

.039 

.079 

.050 

.050 

.049 

.074 

.134 

.142 

.140 
 (c) sharp null is true, v = 2.1, a = d1 = d2 = 0 

20 
200 

2000 
20k 

.045 

.044 

.045 

.045 

.054 

.044 

.046 

.045 

.049* 

.050* 

.049* 

.048* 

.056 

.050 

.051 

.049 

.044 

.049 

.049 

.048 

.036 

.049 

.051 

.049 

.048* 

.050* 

.049* 

.047* 

.052* 

.050* 

.051* 

.050* 

.024 

.042 

.046 

.046 

.021 

.037 

.046 

.047 

.021# 

.035# 

.036# 

.035# 

.019# 

.032# 

.037# 

.037# 

.051* 

.049* 

.050* 

.049* 

.051* 

.050* 

.053* 

.049* 
 (d) sharp null is true, v = .21, a = d1 = d2 = 0 

20 
200 

2000 
20k 

.002 

.000 

.001 

.001 

.003 

.000 

.000 

.001 

.051* 

.051* 

.052* 

.049* 

.075 

.064 

.074 

.079 

.009 

.016 

.027 

.031 

.003 

.014 

.027 

.034 

.051* 

.050* 

.052* 

.049* 

.054* 

.052* 

.051* 

.053* 

.001 

.002 

.009 

.017 

.000 

.002 

.009 

.020 

.001# 

.000# 

.000# 

.001# 

.000# 

.000# 

.000# 

.000# 

.049* 

.051* 

.051* 

.049* 

.053* 

.050* 

.052* 

.050* 
  Notes: As the data generating process is symmetric, reported figures are averages for separate tests of the two 
coefficients.  ind = x1i and x2i are independent; corr = x1i and x2i are constrained to be of the same sign and hence 
correlated; * = method is exact; #= method maintains control of size; otherwise as in Table IV.   

when a = d1 = d2 = 0 and the sharp null is true (panels c and d) other-treatment-stratified permutation is 

always finite sample exact, whereas otherwise this is only true of the impractical "β0~j = β~j" and, when the 

xji are independent, permute-one.  This is shown in panels (c), with v = 2.1, and (d), where v = .21 

magnifies the deviations from nominal level of non-exact methods.  "max over β0~j" & "constrained max" 

provide control of rejection probabilities when the sharp null is true, albeit very conservatively in panel 

(d).  This raises concerns over power, which is explored in Table VI which reports rejection rates when 

parameters are such that the conventional test has a .50 rejection frequency when the sharp null is true.36  

"max over β0~j" has persistently lower rejection rates than other methods, although not as low as might be 

expected from Table V, while the "constrained max" has power that converges to that of "β0~j = β~j".  As 

noted earlier, other-treatment-stratified permutation also has issues of power when inter-treatment

                                                 
36As the conventional test has sustained distortions away from nominal level when the regressors or errors 

don't satisfy the assumptions needed for asymptotic conventional accuracy (Tables IV and V earlier), rejection 
probabilities for randomization inference do not necessarily converge to the .50 level in the table. 
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 Table VI: Power When the Sharp Null is True 

(randomization inference rejection rates for dgp (4.2) with .50 conventional rejection rates) 
 

permute-one jj ~~0 ̂   jj ~~0    constrained 
max over j~0  

max over j~0  x~j stratified 

 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

 (a) dgp of Table IV (c), v = 42.1 

20  
200 

2000 
20000 

.482 

.517 

.512 

.511 

.298 

.427 

.482 

.503 

.458 

.512 

.512 

.511 

.272 

.425 

.482 

.503 

.459* 

.513* 

.512* 

.511* 

.278* 

.425* 

.483* 

.503* 

.385 

.484 

.499 

.503 

.210 

.392 

.470 

.498 

.376# 

.456# 

.467# 

.464# 

.201# 

.355# 

.436# 

.463# 

na 
na 
na 
na 

na 
na 
na 
na 

 (b) dgp of Table IV (d), v = .421 

20  
200 

2000 
20000 

.272 

.200 

.165 

.150 

.251 

.174 

.123 

.093 

.307 

.265 

.192 

.163 

.291 

.263 

.186 

.149 

.301* 

.248* 

.183* 

.160* 

.283* 

.248* 

.178* 

.146* 

.246 

.214 

.175 

.156 

.219 

.212 

.169 

.142 

.200# 

.204# 

.167# 

.151# 

.166# 

.203# 

.162# 

.136# 

na 
na 
na 
na 

na 
na 
na 
na 

 ind corr ind corr ind corr ind corr ind corr ind corr 

 (c) dgp of Table V (c), v = 2.1 

20  
200 

2000 
20000 

.505* 

.519* 

.512* 

.509* 

.508 

.517 

.513 

.509 

.494 

.519 

.512 

.509 

.438 

.514 

.513 

.509 

.503* 

.518* 

.512* 

.509* 

.458* 

.515* 

.513* 

.509* 

.417 

.492 

.499 

.503 

.366 

.480 

.498 

.501 

.398# 

.466# 

.466# 

.465# 

.356# 

.462# 

.469# 

.465# 

.433* 

.518* 

.513* 

.509* 

.302* 

.383* 

.391* 

.388* 

 (d) dgp of Table V (d), v = .21 

20  
200 

2000 
20000 

.570* 

.616* 

.638* 

.646* 

.579 

.611 

.634 

.647 

.532 

.564 

.589 

.601 

.508 

.543 

.563 

.580 

.566* 

.613* 

.634* 

.643* 

.553* 

.596* 

.619* 

.632* 

.491 

.517 

.545 

.568 

.483 

.509 

.526 

.547 

.486# 

.497# 

.497# 

.497# 

.481# 

.496# 

.498# 

.498# 

.565* 

.617* 

.637* 

.646* 

.543* 

.492* 

.442* 

.384* 

  Notes:  Reported figures in panels (c) and (d), where treatment distributions are symmetric, are the average rejection 
probability of the two coefficients.  β1 and β2 in (4.1) & (4.2) are adjusted so the conventional heteroskedasticity 
robust test of the null of 0 has a  .50 rejection rate for each test.  As there are two (+ and -) values for which this is 
true for each of two parameters, reported figures in each cell in panels a & b (c & d) are the average of two (four) 
rejection rates for two (four) different Monte Carlos with 10k iterations each.  "na" = the subset permutation 
distribution is degenerate (i.e. only one outcome is possible) in these simulations.  Otherwise as in Tables IV & V. 

correlation restricts the range of outcomes observed in stratified permutations, with rejection rates 

perversely declining with sample size in panel (d) of Table VI. 

 We postpone a summary evaluation of subset testing methods to the next section, which applies 

randomization inference to a broad practical sample of published papers.  Instead, Table VII examines the 

convergence of the individual p-values of other methods to those of the finite sample exact, broadly 

asymptotically valid, and totally impractical "β0~j = β~j" subset testing method by reporting the average 

absolute difference of p-values in testing true and false nulls in the realizations of the dgps of Tables IV - 

VI above.  As can be seen, when the moment conditions hold, panels (a) and (c), the p-values of 

"constrained max" and especially " jj ~~0 ̂  " converge to those of "β0~j = β~j", while this is sometimes 

the case (panel b) and sometimes not (panel d) when the sufficient conditions do not hold.  In contrast, in 
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Table VII:  Absolute Difference of P-Values from those of β0~j = β~j in Tests of True & False Nulls 

 conventional 
robust jj ~~0 ̂   

constrained 
max over j~0  

max over j~0  other-treatment-
stratified 

 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 

(a) dgp of Table IVa, IVb, & IVc: moment conditions hold, sharp & heterogeneous treatment effects 

20
200

2000
20000

.034 

.016 

.012 

.010 

.094 

.045 

.021 

.014 

.009 

.004 

.002 

.001 

.014 

.003 

.001 

.001 

.025 

.013 

.008 

.005 

.036 

.012 

.006 

.003 

.031 

.020 

.017 

.016 

.039 

.018 

.014 

.015 

na 
na 
na 
na 

na 
na 
na 
na 

(b) dgp of Table IVd: moment conditions don't hold, sharp treatment effects 

20
200

2000
20000

.118 

.178 

.206 

.217 

.122 

.178 

.209 

.222 

.032 

.020 

.008 

.004 

.031 

.019 

.008 

.004 

.038 

.014 

.006 

.003 

.038 

.014 

.006 

.003 

.043 

.017 

.010 

.008 

.043 

.017 

.009 

.007 

na 
na 
na 
na 

na 
na 
na 
na 

 ind corr ind corr ind corr ind corr ind corr 

(c) dgp of Table Va, Vb, & Vc: moment conditions hold, sharp & heterogeneous treatment effects 

20
200

2000
20000

.019 

.011 

.010 

.009 

.025 

.012 

.010 

.009 

.006 

.003 

.002 

.001 

.008 

.003 

.002 

.001 

.018 

.011 

.006 

.003 

.021 

.012 

.007 

.004 

.021 

.016 

.016 

.017 

.022 

.016 

.016 

.016 

.073 

.030 

.029 

.028 

.138 

.095 

.092 

.091 

(d) dgp of Table Vd: moment conditions don't hold, sharp treatment effects 

20
200

2000
20000

.112 

.173 

.184 

.186 

.092 

.154 

.176 

.182 

.045 

.065 

.065 

.056 

.051 

.058 

.061 

.056 

.046 

.058 

.057 

.049 

.050 

.053 

.055 

.050 

.047 

.062 

.068 

.070 

.051 

.056 

.063 

.065 

.096 

.032 

.018 

.014 

.119 

.078 

.085 

.097 
  Notes:  Tests of true and false nulls as in Tables IV, V and VI above.  Reported figures are the average of average 
rejection rates for true nulls and false nulls.  For false nulls, the average is across the two (positive & negative) 
parameter values yielding a .50 conventional rejection rate; for "ind" (independent) and "corr" (correlated), averages 
are calculated across the individual rejection rates for the two symmetric regressors.  "na" = the subset permutation 
distribution is degenerate (i.e. only one outcome is possible) in these simulations.   

large samples p-values for "max over β0~j" generally remain substantively bounded away from "β0~j = β~j", 

confirming the persistent conservatism of this approach.  Finally, while conventional robust p-values 

converge to those of "β0~j = β~j" when the moment conditions hold, those of other-treatment-stratification 

remain quite different, especially when treatment measures are correlated, in both small and large samples.  

This complicates the interpretation of results, as large differences between other-treatment-stratification 

and conventional and other forms of randomization inference may be due to failings of the latter, the more 

limited applicability of the former, or random chance in environments where both are valid.  As shown 

below, in practice large absolute differences between conventional and other-treatment-stratification p-

values arise frequently in environments where, based upon sample size and the influence of individual 

observations, conventional inference appears to have much of its asymptotic validity. 
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V. Randomization & Conventional Confidence Intervals in a Practical Sample 

 This section compares randomization and conventional confidence intervals in the sample of 53 

published experimental papers examined in Young (2019), 44 of which contain reported results based on 

OLS regressions.  I focus on treatment specifications that fit the framework used in this paper and the 

extensions in the on-line appendix, namely where (possibly stratified) permutations of treatment across 

observations or groupings of observations are counterfactual potential outcomes.  This removes 

regressions where treatment is calculated from group characteristics or applied using multiple cross-

cutting criteria in a fashion that does not allow for counterfactual permutation,37 leaving 3213 treatment 

measures in 1066 OLS regressions in 39 papers (listed in the on-line appendix).  The extension of this 

paper's results to stratification in the on-line appendix assumes that the number of strata is finite and the 

first and second moments of treatment are balanced across asymptotically non-negligible strata.  

Consequently, I also remove regressions where procedures ensure that the number of strata grows with the 

number of treatment groupings38 or that treatment is not, at least in principle, asymptotically balanced 

across non-negligible strata.39  Reduction in this fashion leaves 2944 treatment measures in 1013 

regressions in 35 papers. 40  Results including all regressions dropped on the basis of stratification issues, 

                                                 
37As an example of the former, Duflo et al (2011) randomly assigned students to class sections in Kenyan 

schools and in some regressions the treatment variable is the average baseline test score of peers, permutations of 
which are not potential outcomes as individual’s own scores contribute to the treatment measure for others but 
cannot contribute to the treatment measure for themselves.  As an example of the latter, Dupas and Robinson (2013) 
randomized the provision of health savings technologies to members of credit associations in Kenya with individuals 
receiving multiple treatments depending upon which associations they belonged to.  Permutations of these are not a 
potential outcome, as treatment received depends upon the configuration of individuals’ memberships.  In both cases, 
repeating the random treatment allocation procedure and recalculating regressors accordingly produces potential 
outcomes and allows for exact tests of sharp nulls, but these potential outcomes are not permutations of the baseline 
treatment regressors and hence do not fit within the framework of this paper. 

38For example, Angrist & Lavy (2009) divided schools into treatment/control pairs on the basis of 
characteristics, so the number of strata equals the number of treatment groupings divided by 2. 

39As examples: In Fong and Luttmer's (2009) investigation of racial group loyalty and charitable generosity 
whites and ethnic minorities were given different audiovisual treatment combinations.  Regressions containing both 
strata are dropped from the analysis here.  In contrast, although subjects in Robinson's (2012) income shocks 
experiment mentioned earlier did not receive an income shock in week 0, making that and the following 13 weeks 
separate strata with different mean treatments, as week 0 is in principle asymptotically negligible, and in practice 
accounts for only 5% of observations, I retain all those regressions.  

40Bugni, Canay & Shaikh (2018, 2019) show that White's heteroskedasticity robust covariance estimate is 
conservative (i.e. too large) when stratified treatment balance is greater than that achieved by random sampling and 
there is heterogeneity of treatment effects across strata.  For amenable equations in my sample (370 treatment effects 
in 168 equations in 7 papers), I have calculated the smallest standard error estimate implied by their theory (that 
mechanisms to balance treatment within strata ensure that root-N times the deviation of strata mean treatment from 
the target value has asymptotically zero variance), and find that on average it is only 3 percent smaller than White's 
standard error estimate (with strata fixed effects, which appear in some form in most of the equations in my sample; 
without strata fixed effects the difference rises to 6 percent) and no more than 10 percent smaller in 95 percent of 
cases.  Since this standard error estimate mechanically equals White's when there is no heterogeneity of average 
treatment effects across strata, this result suggests that these concerns are generally not of substantive importance.  (I 
say "amenable" because their theory concerns regressions without covariates other than strata fixed effects where 
treatment is measured by mutually exclusive dummies and applied to single observations.  Only 2 such regressions 
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shown in the on-line appendix, are all but identical.  In the case of a handful of regressions where authors 

do not include covariates interacted with treatment as separate regressors in their own right (assumption 

A2), I add these to the regression specification.  Authors use a variety of standard error estimates, 

homoskedastic, heteroskedasticity robust, and clustered at, below, and across treatment groupings, as well 

as the occasional bootstrap or jackknife.  The on-line appendix proves the asymptotic equivalence of 

conventional and randomization inference with clustering at levels other than the treatment grouping 

(when allowed by the cross-correlations in errors), but clustering decisions themselves often have 

substantive effects.  To ease comparison, I homogenize methods by always calculating conventional and 

randomization test statistics using standard errors clustered at the treatment grouping level (equivalently, 

the heteroskedasticity robust standard error estimate when treatment is applied to individual observations). 

 Figure I graphs the ratio of the overlap to the union41 of the .95 conventional and randomization  

confidence intervals for individual coefficients.  In the case of equations with multiple treatment 

measures, as a baseline I set the randomization null on not-directly-tested measures equal to their 

estimated effects, reviewing results with alternative approaches later on.  As the number of estimated 

treatment effects in a given paper ranges from a low of 4 to a median of 52 and an extraordinary high of 

794, the figure reports results for individual treatment effects but also paper means, where each paper 

carries equal weight in the presentation.  On the x-axes I place the log10 number of treatment groupings or 

the largest coefficient leverage share of any treatment grouping in the regression.  While leverage is 

usually defined in terms of the diagonal elements of the hat matrix ))(( 1XXXX   , for the case of a single 

coefficient one can define the same using the diagonal elements of the hat matrix for the partitioned 

regression, xxxx    1)( , where ‿ denotes the residuals from the projection on the remaining regressors.  

While maximum coefficient leverage generally falls with sample size, as noted earlier it does not do so 

when the tails of the distribution of the regressor are excessively thick, so that a finite number of 

observations retain a non-negligible influence on coefficient and standard error estimates, invalidating the 

assumptions of asymptotic theorems.  Regressing the confidence interval overlaps or the absolute 

differences in p-values of randomization and conventional inference in the figure on the maximum  

leverage share of a single treatment grouping/cluster and the log10 number of clusters (in the on-line 

appendix), I find the leverage share produces higher R2s and is more consistently statistically significant, 

and hence provides a better summary of conditions under which the two inference methods converge. 

 As seen in Figure I, in practical application randomization confidence intervals converge to their 

conventional counterparts as either the number of observations increases or, more clearly, the maximum  

                                                                                                                                                              
appear in my 1000+ practical sample.  To broaden the comparison, I take all equations where treatment regimes are 
applied to single observations and can be recoded as mutually exclusive treatment effects and strip out all covariates 
other than strata fixed effects, producing the 168 regressions just mentioned.) 

41In 33 (of 2992) cases the .95 randomization confidence interval is unbounded (due to there only being 4 or 5 
treatment groups and hence a very small number of potential realizations) & the overlap ratio is zero.  In an 
additional 3 cases the confidence interval is not convex and the convex cover is used to calculate the overlap. 
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leverage share of a cluster/treatment grouping goes to zero.  Figure II graphs the conventional and 

randomization p-values for individual treatment effects against each other, as well as the paper average of 

the absolute difference between the two against the paper average maximum cluster/treatment grouping 

leverage share.  As can be seen, randomization p-values are often substantially larger than conventional 

estimates when the conventional p-value is low and where regression design is highly unbalanced, with 

one cluster exerting an unusually large influence, a factor that is known to produce size distortions in  
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Figure I: Overlap/Union of .95 Conventional and Randomization Confidence Intervals
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conventional tests.42  Of the 756 treatment effects which are conventionally .05 significant, 70 are .05 

randomization inference insignificant with an average maximum leverage share of .202, while of 707 

treatment effects which are .05 randomization inference significant, 21 are conventionally .05 insignificant 

with an average maximum leverage share of .042.  In contrast, for the 2853 treatment effects where the 

two methods agree on .05 significance or insignificance the average leverage share is merely .026. 

Of the 2944 coefficients tested in Figures I and II, 2462 appear in equations with more than one 

treatment effect, and for these I set the randomization-inference null on untested treatment effects equal to 

estimated values ( jj ~~0 β̂β  ).  As noted earlier, an alternative approach to subset testing is to permute 

each treatment measure within the strata created by values of other treatment measures.  Figure III 

implements this approach for the 1540 coefficients in 435 multi-treatment regressions in 24 papers where 

the resulting permutation distribution is not degenerate.43 In the Monte Carlos above, it was seen that this 
                                                 

42In such circumstances, the robust standard error estimate is more volatile than indicated by standard degrees 
of freedom corrections (see Chesher 1989, Young 2016). 

43As also noted earlier, D'Haultfoeuille & Tuvaandorj (2022) implement this method by stratifying on all 
covariates, but I take advantage of the fact that treatment is independent of non-treatment covariates and only stratify 
by other treatment measures (including treatment x covariate interactions) crossed with overall experimental strata, if 
such exist, so as to produce a valid subset of the potential outcomes of the experimental procedure.  Because 
covariates often take on many values, implementing D'Haultfoeuille & Tuvaandorj's actual procedure produces non-
degenerate distributions for only 667 coefficients (276 of which reside in regressions without non-treatment 
covariates).  The results, in the on-line appendix, show more extreme versions of the same patterns, as the "strata" 
now account for even more of the variation in treatment. 
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Figure III: Randomization Inference using Other-Treatment-Stratification Compared with Other Methods
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approach gives rise to substantially different results than conventional and other forms of randomization 

inference when treatment measures are correlated.  To this end, in panel (a), which compares the p-values 

found using this method to those found setting jj ~~0 β̂β  , the results are divided according to whether the 

R2 of the regression of the permuted treatment measure on other-treatment-stratification dummies is > .5, 

< .5 or < .01.44  As seen, differences in the p-values delivered by the two methods are often very large 

when the R2 is greater than .5, but virtually disappear when the R2 is less than .01.  These differences 

translate into similarly large differences with conventional p-values and confidence intervals and appear 

even when regressor leverage is minimal (panel b) and, given well-behaved errors, conventional inference 

is likely to have more of its asymptotic accuracy.45  The correlation of treatment regressors is also strongly 

associated with the width of confidence intervals and the frequency with which treatment effects are found 

to be significant.  For the 628 treatment measures where the R2 of the regression on other-treatment 

dummies is greater than .5, the average ln ratio of the width of the other-treatment-stratified .95 

confidence interval to that found using jj ~~0 β̂β  is .52746 while 116 treatment measures are found to be 

.05 significant using jj ~~0 β̂β   but only 96 using other-treatment-stratification.  In contrast, for the 906 

treatment measures where the R2 is less than .5, the average ln ratio of confidence intervals is only .017, 

while 247 and 238 treatment measures are found to be .05 significant using jj ~~0 β̂β   and other-

treatment-stratification, respectively. 

 When individual treatment measures are independently randomized, permuting those measures 

alone without stratification by other treatment provides finite sample exact randomization tests of sharp 

nulls that are also asymptotically valid within the general framework of W1-W4, as noted earlier.  In my 

sample, I find only 94 treatment measures in 51 multi-treatment equations in 4 papers that are 

independently randomized.47 Figure IV graphs the permute-one randomization p-values of this method  

                                                 
44Where the original experiment is stratified, the non-permuted treatment variables are crossed with the 

original stratification variable to create new strata so as to generate a subset of potential outcomes consistent with the 
experimental procedure.  In such cases, the R2 reported in the figure is the partial R2 taking the regression on the 
original stratification dummies as the reduced model. 

45I should note that the impact of the original experimental stratification on randomization p-values is 
minimal.  The average R2 of the regression of treatment measures on experimental strata dummies (for 2295 
treatment measures in 21 papers which stratify) is .036 (including cases noted above removed on the grounds of 
unbalanced treatment across strata) and the correlation between the p-values found using randomization inference 
with and without the original stratification in such papers (in both cases setting untested nulls equal to estimated 
values) is .999, while the average overlap/union of confidence intervals is .980.  In contrast, in Figure III the average 
partial R2 of the regression of treatment measures on other-treatment strata is .433 and the correlation of the p-values 
using the two methods shown in panel (a) is .887 (.736 when the partial R2 is > .5 and .508 when it is > .75). 

46Excluding here and in the next sentence 6 cases where the other-treatment-stratified .95 confidence interval 
is unbounded. 

47I determine these based upon methods described in the paper and the fact that the distribution of the 
treatment measure is largely invariant across strata defined by other treatment measures.  Aside from the percentage 
discounts in Cole et al (2013) discussed above (which provide 4 measures in 4 regressions), I also find: (a) Beaman 
and MacGruder's (2012) investigation of social networks separately randomized the puzzle type given to participants 
(4 measures in 4 regressions); (b) Wisdom et al's (2010) investigation of information and healthy food choices 
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Figure IV: Randomization P-Values for Independently Randomized Treatment Effects by Method
(94 individual treatment effects)

 

against those found using jj ~~0 β̂β   or other-treatment-stratification.  As can be seen, the jj ~~0 β̂β  p-

values are virtually identical to permute-one, with an average absolute difference of .002.  Other-

treatment-stratification p-values vary somewhat more from permute-one, with an average absolute 

difference of .008, but are still quite close as the R2 of the regression on other-treatment-stratification  

dummies is less than .01 in 88 of the 94 cases. 

The third approach to subset testing that provides control of size under sharp nulls discussed earlier 

above is that of calculating the maximum p-value across all possible nulls for untested measures.  As was 

noted, for equations with two treatment measures, the maximum p-value across the one untested null can 

be calculated analytically.  For equations with n > 2 treatment measures, with n - 1 untested nulls, the 

maximum p-value on unbounded opposite-rays can be calculated analytically.  Thus, as shown in the on-

line appendix, after transformation to spherical coordinates, the search for the maximum p-value in the 

unbounded ℝn-1 space of nulls for untested measures can be reduced to one of searching in the bounded   

n-2 dimensional square of spherical angles on [0,π]n-2.  This is still challenging, as the objective function is 

discrete and non-differentiable, involving the comparison of values of the test statistic under untested nulls 

for each permutation T of X.  For n = 3 (n-2=1) I implement a simple grid search, dividing [0,π] evenly 

into 100, 1000 and 10000 points, finding virtually no change between 1000 and 10000 points in the 330 

such cases in my sample.  For n > 3 (reaching as high as 18 in one paper) I implement a variety of search 

methods so as to evaluate their relative effectiveness: 

(a)  Grid search.  Divide each angle evenly into m points such that the total number of points mn-2 

is 10 to 15 thousand and calculate the maximum p-value on the opposite rays defined by each set of 

spherical angles.  By n = 8 the grid is very sparse and results are clearly dominated by other 

techniques, so grid search is not used for n > 8. 

                                                                                                                                                              
appears to have separately randomized the calorie content and calorie recommendation information (34 measures in 
17 regressions); (c) In Robinson's (2012) study of income shocks the marginal distribution of each partner's shock is 
largely unaffected by the realization of the other partner's shock (52 measures in 26 regressions). 
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(b)  Random search.  Draw a random vector from the uniform distribution on [0,π]n-2 and calculate 

the maximum p-value on the opposite rays defined by those spherical angles.  Call this max and set 

the counter CR equal to 1.  Draw another random vector.  If max is exceeded, reset the value of max 

and CR, else increase CR by 1.  Continue drawing from the uniform distribution on [0,π]n-2 until the 

counter CR hits 10000, i.e. no improvement on the current max is found in 10000 random draws.   

(c)  Nelder-Mead (1965) simplex method.  Draw n-1 random vectors from the uniform distribution 

on [0,π]n-2 and calculate the maximum on the opposite rays defined by each set of spherical angles.  

Implement the Nelder-Mead search algorithm across this simplex, recalculating the maximum across 

opposite rays for each point in [0,π]n-2 considered, until the method converges.  Call this max and set 

CNM to 1.  Draw a fresh set of n-1 vectors from [0,π]n-2 and implement the Nelder-Mead search again.  

If max is exceeded, reset max and CNM, else increase CNM by 1.  Continue creating simplexes and 

implementing Nelder-Mead until the counter CNM hits 100 or 1000.  I found little change in the 

maximum between CNM = 100 and 1000.  Of 253 coefficients in equations with n > 4 found to be .05 

significant with CNM = 100, only one is rendered .05 insignificant with CNM = 1000.  

(d) Greedy sequential grid search.  Draw a random vector from the uniform distribution on [0,π]n-2.  

Implement a sequential 100 point grid search on each of the n-2 dimensions (selected in random 

order), greedily setting the value for each dimension equal to that which maximizes the objective 

function in its 100 point unidimensional search (choosing randomly across values in case of ties).  

Continue until a full round of n-2 sequential grid searches fails to improve the value.  Call this max 

and set CGR equal to 1. Draw a new random vector and implement the sequential greedy grid search 

again.  If the previous maximum is exceeded, reset max and CGR, else increase CGR by 1.  Continue 

until CGR equals 10.  This method was found to be computationally more costly and less effective 

than Nelder-Mead with CNM = 100, and hence higher values of CGR were not implemented. 

Of the above methods, I find Nelder-Mead search with CNM = 1000 to be the most effective, 48 as it equals 

the maximum p-value across all methods 90 percent of the time, and differs from that maximum by an 

average of only .003 (.591 versus .594) in the remaining 10 percent of cases, where in no instance is a .05 

significant Nelder-Mead result found to be .05 insignificant using other search techniques.  Nelder-Mead 

with CNM = 100 alone on average outperforms all other methods.49  

Figure V below graphs the maximum randomization p-value across untested nulls found across all 

search methods described above against that found using the baseline approach setting jj ~~0 β̂β  .   As  

                                                 
48The actual number of Nelder-Mead searches used to find the maximum which is then not improved in 1000 

subsequent tries is less than 1000 in .83 of cases and less than 2000 in .98 of cases. 
49Average maximum p-values for individual coefficients in equations with n > 4 are .448 with random search 

until 10000 failures to improve, .455 with the computationally costly greedy sequential 100 point grid search until 10 
failures to improve and .456 with comparatively rapid Nelder-Mead simplex search until 100 failures to improve.  
Nelder-Mead simplex search until 1000 failures to improve raises this average to .460 with, as noted above, almost 
no change for results found to be .05 significant with CNM  = 100. 
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shown in panel (a), the maximum p-value is in some cases very much higher, although these typically 

involve nulls on untested measures that are very far removed from estimated treatment effects.  Panel (b) 

illustrates this by constraining the untested nulls to the region where the p-value of the conventional Wald 

statistic, )ˆ()ˆ()ˆ( ~0~
1

~~0~ jjjjj βββVββ  
,  is greater than 10-10.  Most of the extreme maximum p-values 

disappear.  Regression analysis in the on-line appendix finds that differences between the "max across 

β0~j" (whether constrained or not) and jj ~~0 β̂β  p-values are strongly related to the maximum leverage of 

an individual treatment grouping. 50  Notwithstanding that, large differences do arise in cases with low 

maximum leverage, although these are largely eliminated by imposing bounds on the nulls, as illustrated  

                                                 
50Also significant, albeit less robustly so across specifications, are the number of untested treatment measures 

and the p-value and p-value squared found setting the null equal to estimated values (with p-values near one found to 
be, rather obviously, more difficult to raise, as also are p-values near zero).   

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pm
ax

 (m
ax

im
um

 a
cr

os
s a

ll 
nu

lls
)

Pestvalue (untested nulls = estimated values)

(a) comparing p-values

Figure V: Maximum P-Value Across all Nulls for Untested Measures
Compared with Setting Untested Nulls Equal to Estimated Effects

(2462 individual treatment effects in 531 multi-treatment estimating equations)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Pc

on
m

ax
(c

on
st

ra
in

ed
 m

ax
im

um
)

Pestvalue (untested nulls = estimated values)

(b) comparing p-values

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Pm
ax

 -
Pe

st
va

lu
e

maximum treatment grouping leverage

(c) p-value differences & leverage

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Pc
on

m
ax

 -
Pe

st
va

lu
e

maximum treatment grouping leverage

(d) p-value differences & leverage



37 

in panels (c) and (d) of the figure.   

In equations with more than one treatment regressor, jj ~~0 β̂β   finds 531 treatment measures to be 

statistically significant at the .05 level, but only 423 of the same are found to be so using the maximum p-

value across all j~0β  nulls, suggesting relative power of .8 if failures to reject are taken to be Type II 

errors.  Imposing the lax bound used in panel (b) raises the number of .05 significant effects to 469, or 

close to .9 of the level found setting nulls equal to estimated effects.  Comparing results across the reduced 

set of coefficients that can be tested using other-treatment-stratification as well, the unconstrained 

maximum across j~0β  nulls finds .83 of jj ~~0 β̂β  .05 significant results to be .05 significant, while other-

treatment-stratification finds .87 of these to be .05 significant.51  Changes in p-values from those setting 

jj ~~0 β̂β   are much larger with other-treatment-stratification, averaging .069 across the panels of Figure 

III (a), while in the same sample the difference between the maximum across j~0β nulls and jj ~~0 β̂β  is 

only .038.  When other-treatment-stratification finds an otherwise jj ~~0 β̂β   .05 significant result to be 

.05 insignificant, only .33 of the other-treatment-stratification p-values lie below .1.  In contrast, when the 

maximum across j~0β  nulls finds an otherwise jj ~~0 β̂β   .05 significant result to be .05 insignificant, 

fully .89 of the maximum p-values still lie below .1. 

To summarize the results and discussion of this and the preceding section:  Whenever treatment is 

independently applied, inference for a subset of treatment measures based upon permuting those treatment 

measures alone (permute-one) provides exact tests of sharp nulls while retaining broad asymptotic 

validity, making this procedure a natural choice.  When treatment measures are correlated, other-

treatment-stratification provides exact tests of sharp nulls for subsets of treatment measures, but may 

exhibit size distortions in both small and large samples when there is heterogeneity in average linear 

treatment effects across the strata defined by other treatment measures, i.e. it provides a biased test in 

environments where E(xjiεi|x~ji) ≠ 0 but E(xjiεi) = 0 and OLS remains consistent and conventional inference 

asymptotically accurate.  When treatment measures are strongly correlated, as is often the case, it 

frequently produces very different p-values than conventional inference, even when regressor leverage is 

low and the latter is more likely to have some of its asymptotic validity, complicating the evaluation of 

results.  Confidence intervals are also wider, producing lower power.  Finally, in many circumstances, 

such as when treatment is interacted with covariates, this approach simply cannot be implemented, as the 

other-treatment stratified permutation distribution is degenerate.  

Setting the null on untested measures equal to estimated values ( jj ~~0 β̂β  ), while not finite sample 

exact, remains asymptotically valid in the broad environment where OLS is consistent and conventional 

inference asymptotically accurate and in practice produces results that converge to conventional values as 

the influence of individual observations goes to zero.  When the data generating process allows for 

                                                 
51Overall, other-treatment-stratification achieves .92 of the 05 rejection rate found setting untested nulls equal 

to estimated values as it finds a number of otherwise insignificant results to be significant. 
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asymptotically valid tests of heterogeneous treatment effects, randomization inference is asymptotically 

locally insensitive to the nulls on untested treatment effects while j~β̂ converges to the true parameter 

values.  Not surprisingly, in these circumstance jj ~~0 β̂β   produces small sample results that are very 

close to exact methods such as permute-one (when that is valid) or setting the null on untested coefficients 

(impractically) equal to true values.  This approach, however, is not exact, and may fail badly when the 

data generating process does not allow for asymptotically valid inference. 

 Calculating the maximum p-value across all j~0β  nulls for untested treatment measures provides 

control of rejection probabilities for tests of sharp nulls and hence insurance against some of the worst-

cases scenarios that may be encountered when setting jj ~~0 β̂β  .  The loss of power in both small and 

large samples brought on by this conservative approach can be ameliorated if the range of plausible nulls 

for untested measures can be restricted.  If this restriction keeps the universe of acceptable nulls root-N 

local to true parameter values, as it does when based upon the conventional Wald statistic if the latter is 

asymptotically valid, then both power and p-values asymptotically converge to those of conventional 

inference.  Selection of very lax bounds allows for this while still providing, as seen in Monte Carlos, 

control of null rejection probabilities below nominal level with extreme data generating processes.  The 

two approaches, jj ~~0 β̂β  and max over j~0β , can be implemented in all of the environments considered 

in this paper, including the common interaction of treatment with covariates. 

When providing confidence intervals and p-values for individual coefficients in multi-treatment 

equations the Stata package randcmdci reports results using jj ~~0 β̂β   as a baseline.  It also allows the 

user to call for the calculation of the maximum randomization p-value across j~0β nulls, with or without 

bounds, so as to determine the sensitivity of individual coefficient results to nulls on untested measures.52 

VII. Conclusion 

 Randomization inference provides researchers with a rare tool: tests of certain null hypotheses 

which are exact, regardless of sample size or the characteristics of regressors or errors.  While the sharp 

null may seem restrictive, in some circumstances it is quite natural.  A sharp null of 0, for example, is a 

test of complete and total irrelevance, a benchmark that most experimentalists would like to reject.  This 

test remains exact in circumstances where, because of heavy tailed regressor or error distributions, 

conventional tests may have extraordinarily large size distortions, as seen in the tables above.  However, 

consideration of confidence intervals, i.e. the range of non-zero population average linear treatment effects 

statistically consistent with experimental results, naturally suggests the possibility of heterogeneity in the 

response to experimental treatment.  This paper builds on a literature that shows that permutation-based 

tests, despite mistakenly assuming the absence of interdependence between permuted treatment variables 

and errors such as would be induced by heterogeneous treatment effects and specification error, have an 

asymptotic validity for quite general treatment regressors equal to that of conventional tests. 

                                                 
52Users of randcmdci interested in applying other-treatment-stratification can do so by simply creating and 

specifying a stratum indicator based upon the values of other treatment measures. 
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 This paper and its accompanying on-line appendix aim to provide results and techniques for the 

types of regression specifications found in applied experimental work.  The above focuses on treatment 

applied at the observation level and interacted with non-treatment covariates, with population inference 

for not-identically-distributed data using heteroskedasticity robust covariance estimates.  The on-line 

appendix generalizes the results to the remaining frameworks found in the published papers surveyed in 

Young (2019).  If treatment is applied to groups of observations and the errors and other regressors are 

correlated across observations, the moment conditions in W1 - W4 and A1 - A3 can be defined in terms of 

groupings of observations.  In this case, provided error correlations are such that conventional standard 

error estimates with clustering at, below, above or even across treatment groupings are asymptotically 

valid, Wald based randomization tests using the same covariance estimates are equally accurate if one 

adds the additional randomization assumption:  (A4) the maximum size of an interdependent observational 

grouping is bounded.  If treatment is stratified and hence only exchangeable and permuted within strata, 

within White's framework it suffices to add that: (A5) across strata treatment measures share the same 

asymptotic average first and second moments.  These requirements are usually satisfied in experimental 

settings as potential correlations between observations are typically the result of locational groupings of 

bounded size, while experiments are stratified precisely in order to achieve treatment balance across strata.  

Without severely restrictive additional assumptions, randomization inference has an asymptotic validity 

equal to that of conventional population inference methods for the range of empirical specifications found 

in published experimental research, while providing finite sample exact tests of sharp nulls such as that of 

complete treatment irrelevance.  
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Table A1: Notation Used in Appendices A, B & C 

(a) Sample means:  m(xi) = N-1 

N

i ix
1 . 

(b) 1N & 0N denote Nx1 vectors of 1s & 0s, 0QxQ a QxQ matrix of 0s & IQ the QxQ identity matrix. 

(c) Sample demeaned variables: ΟHH ~
, where NNNN /11IΟ  . 

(d) Symmetric "square root" of a symmetric positive definite matrix: A-½ such that A-½A-½ = A-1. 

(e) Kronecker product& face-splitting (or row by row Kronecker) product  , with WTTW  .  

(f) As N → ∞ converges almost surely across the distribution of the data D = (X,Z,ε):
..sa

 . 

(g) As N → ∞ converges in probability or distribution across the permutations T of X: 
p

  &
d

 . 

(h) Expectation across row permutations t of x: Et, as in Et(ti) = m(xi) .  

(i) Counterfactual outcome, coefficient estimates and estimated residuals associated with permutation T of 

X under null β0:  y(T,β0), ).,(ˆ&),(ˆ
00 βTεβTβ  

(j) Residual maker with respect to Z: ZZZZIM  1)(N . 

(k) Rows, columns and elements of matrices: iWx , xWj and xWij are the ith row, jth column and ijth element 

of XW (rows distinguished by use of subscript i, with columns referenced with j, k, l ... ). 

(l) Elements of matrices associated with particular columns of a   product:  tip(j)wiq(j), where p(j) and q(j) 

denote the columns of T and W associated with the jth column of TW. 

(m) Probability of the event a ≥ b: Pr{a ≥ b}. 

(n) nPQ = the multivariate iid standard normal, indicated by nPQ ~ N(0PQ,IPQ).  

Appendices 

A. Foundational Theorems 

 The main result of this paper rests on a theorem first proven by Wald & Wolfowitz (1944) and 

later refined by Noether (1949) and Hoeffding (1951), regarding the asymptotic distribution of N times 

the correlation of a permuted sequence with another sequence: 

Theorem I: Let x' = (x1, ... , xN) and d' = (d1, ... , dN) denote sequences of real numbers, not all equal, 

and t' = (t1, ... , tN) any of the N! equally likely permutations of x.  Then as N → ∞, the distribution 

across the realizations of t of the random variable 
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The proof is based upon showing that the moments of n(ti,di) converge to those of the standard normal.  A 

straightforward multivariate extension, proven in the on-line appendix, is that if ),...,( 1 NxxX  and 
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),...,( 1 NddD  are sequences of vectors, T any of the row permutations of X, A½ the "square root" of 

symmetric positive definite matrix A,53  /NNNN 11IΟ  the centering matrix, ΟHH ~
, and denotes 

the Kronecker product and   as above the row-by-row Kronecker product, then all the moments of 
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converge to those of the multivariate iid standard normal if (Ib) holds for all pairwise combinations of the 

elements of the columns of X and D and the matrices N/
~~
XX and N/

~~
DD  are bounded with determinant 

> γ > 0 for all N sufficiently large. 

 Theorem I is easily extended to a probabilistic environment by noting the following result due to 

Ghosh (1950) that allows us to translate the almost sure characteristics of an infinite number of moment 

conditions into an almost sure statement regarding a distribution:  

Theorem II: : If all the moments of the cumulative distribution function FN(x) converge almost 

surely (in probability) to those of F(x) which possesses a density function and for which, with μk+1 

denoting the absolute moment of order k+1, 


 of egiven valuany for   0

!2
lim)IIa( 1

2







 k
k

k

k
, 

then FN(x) converges almost surely (in probability) to F(x). 

Condition (IIa) is, of course, true for the normal distribution.  Hoeffding (1952) provides an alternate 

proof of convergence in probability without use of condition (IIa) to any F(x) that is uniquely determined 

by its moments.  By virtue of the Cramér-Wold device, Ghosh's Theorem covers the multivariate case 

given in (Ic) above, as for all λ such that 1λλ , all moments of ),( ii dtnλ converge to those of the 

standard normal.  Below, Theorems I and II and almost sure moment characteristics of the sequences X, Z 

and ε guaranteed by White's assumptions W1 - W4 and the additional randomization assumptions A1 - A3 

above are used to characterize the almost sure asymptotic distribution across row permutations T of X of 

products such as N/ΟεT .   

 A less demanding form of Theorem I provides weaker conditions under which the mean of 

products converges in probability across permutations to the product of means: 

Theorem III: Let x' = (x1, ... , xN) and d' = (d1, ... , dN) denote sequences of real numbers, possibly all 

equal, and t' = (t1, ... , tN) any of the N! equally likely permutations of x.  Then as N → ∞, across the 

permutations t of x the random variable  
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53With E the matrix of eigenvectors & Λ½ the diagonal matrix of square roots of the eigenvalues, A½ = EΛ½E'. 
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If cN is a sequence that converges to zero and the stronger condition  

boundedally asymptotic is 
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The proof is short and can be given here.  If either the xi or di are all identical (xi = x or di = d), then IIIa 

and IIId follow immediately as   

).()(or      )()()1A.(
1111

ii

N

i

i
N

i

ii
ii

N

i

i
N

i

ii dmxm
N

t
d

N

dt
dmxm

N

d
x

N

dt
 



 

Assuming this is not the case, we first use the symmetry and equal likelihood of permutations to calculate 

the expectation of ti and products of ti across the row permutations t of x: 
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Next, we calculate the mean and variance of m(tidi) - m(xi)m(di) across the realizations of t:  
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where subscripted i,j denotes the summation across the two indices excluding ties between them.   If the 

last line of (A.3) converges to 0 (condition IIIb), then across the permutations t of x m(tidi) - m(xi)m(di) 

converges in mean square and hence in probability to 0, as stated in IIIa.  If ])()([ 22
ii xmxm  * 

])()([ 22
ii dmdm   is bounded (condition IIIc), )]()()([ iiii dmxmdtmN   is a mean zero random variable 

with bounded variance, so if 0Nc  then Niiii cdmxmdtmN )]()()([   converges in probability to zero, as 

stated in the IIId. 

 Theorem III is used in proofs to make statements regarding the convergence in probability of 

means of products, such as N/ZT .  If the sequences X and D are such that conditions (IIIb) and (IIIc) 

hold almost surely and 0
..sa

Nc  , we can speak of (IIIa) and (IIId) almost surely (across the sequences of the 

data) converging in probability (across the distribution generated by permutations T of X given the data).  

All references to almost sure convergence below refer to the sequences of the data, while all references to  
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convergence in probability and distribution are with respect to the permutations T of X. 

B.  Proof of (R1)  

 Following each permutation of treatment, the dependent variable is adjusted in accordance with 

the null and the realization T of treatment 
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With ZZZZIM  1)(  denoting the residual maker with respect to Z, using the fact that MZ = 0NxK the 

estimated coefficients and residuals associated with T and β0 are seen to be 
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We begin by calculating the asymptotic distribution of the coefficients associated with permuted treatment 

and then establish the probability limits of the covariance estimates. 

 The following Lemma, proven in Appendix C below, will be useful: 

Lemma 1:  White's assumptions W1 - W4 and the additional A1 - A3 ensure that  

(a) ] [where/
~~

&/
~~

,/,/ εWWWWXXWWZZ εεε  NNNN  are all almost surely strictly 

positive definite with determinant > γ  > 0 for all N sufficiently large. 

(b) .//
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(c) The sample means of the product of the elements of one through four columns of X or the 

elements of one, two or four columns of D = (XW,Z,ε) (no more than two of which are εi) are 

almost surely bounded, as are .)/
~~

(&)/
~~
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As elsewhere in this paper, almost sure limits are with respect to the data sequence D = (XW,Z,ε), while  

probability limits and limiting distributions are with respect to the probability distribution generated by the 

N! equally likely row permutations T of X. 
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  (a) Asymptotic Distribution of Coefficient Estimates 

 Multiplying (B.2) by N , we have 

NNNN
N

MεTMTT
r

MXTMTT
ββTβ WWWWWWW 







 










 


 11

00 )),(ˆ()B.4( , 

where )( 0ββr  N .  Let tWk and xWl denote the kth and lth columns of WT and WX , with the ith elements 

of these vectors given by )()( kiqkip wt  and )()( liqlip wx , where p(j) and q(j) denote the columns of T (or X) and 

W associated with the jth column of TW (or XW).  With this notation, we see that the klth element of  

N/WWMTT can be expressed as 

,0)()()]()()([

)]()()([)()(

)]()()([)]()()([

])()()()[()()]()()([

)()]()()([   so

),()()(
])([

)B.5(

1c) (Lemma  bounded a.s.

)()(

1

1d) (Lemma 

)()()()(

1d) (Lemma 

)()()()(

1c) (Lemma  bounded a.s.

1

)()(

1d) (Lemma 

)()()()(

1c) (Lemma  bounded a.s.

1

1d) (Lemma 

)()()()(

1a) (Lemma largely sufficient for  )(a.s.

)(

1

)()()()()(

1d) (Lemma 0

)()()()()()()()(

)()()()()()(

)()(

1

)()()()()()(

1

)()(

p

iliqlipikiqkipikiqkip

iliqlipiliqlipikiqkip

iliqlipiliqlipikiqkipikiqkip

Nwwm

iliqikiqliqkiqlipkipliqkiqlipkipliqkiqlipkip

liqkiqlipkiplipkip
lk

iliqlipikiqkipliqkiqlipkip
lNklk

wxm
N

wxmwt

wxmwt
N

wxm

wxmwt
N

wxmwt

w
N

wwwmxmxmwwmxxmwwttm

wwmxmxmxxm
N

wt
N

wtwwttm
NN

K

p

K

p

K

p

K

p

liqkiq

p







 









 









 









 












 





























  
  

  
  

  


  

  
  

zm
ZZ

zmzm

zmzm
ZZ

zm

zmzm
ZZ

zmzm

zm
ZZ

zm

Mtt

zm
ZZ

zm
tZZZZItMtt

0

0

00

WW

WWWW
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where in the last line we again use the assumption that W is included in Z. 

 Combining these results, we have: 
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Finite values of )( 0ββr  N , multiplied by N/WWMXT , asymptotically have no influence in (B.4).  

As can be seen, assumption A2 that W is a part of Z (or the less plausible alternative that the mean of the 

xip are asymptotically zero) is key to this result. 

 The remaining part of (B.4) is the vector N/MεTW , the kth term of which equals: 

.)()()()(
)()(

)(

)()(

)(
)()()8B.(

1a) (Lemma largely sufficient for  )(a.s.

1

)()()()(

1d) (Lemma  0

1c) 1b, (Lemmas 

1

)()(

)()(

)()(

)()(
1

)()()()(

)(
.. 

























 










 





















 









 
















  

  



  

Nwm

ikiqkipikiqkip
ikiqkip

ikiqkip

v

ikiqkip

ikiqkip

ikiqkipikiqkip
k

ikiq

p

K

sa

k

NN
wxmwmxmN

NNwxm

wt
N

wmxm

wtm
N

NN
wtNwtmN

N










εZZZ
zm

εZZZ
zm

zm

εZZZ
zm

Mεt

0

W

 

The only term that asymptotically is non-zero is vk which, as )()( )()( kipkip xmtm  , equals the kth element of 
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 (b) Probability Limit of the Heteroskedasticity Robust Covariance Estimate 

 For the heteroskedasticity robust covariance estimate we have 
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with klth term given by 
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using the formula for ),(ˆ 0βTε from (B.3) earlier with )( 0ββr  N , )),(ˆ(ˆ 00 ββTβr  N ,  
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As for all N sufficiently large )(
1)( kqwZZZ   is a vector of zeros with a 1 in the row corresponding to the 

column position of wq(k) in Z and m(xip(k)) is known to be bounded by Lemma 1c, plim ak̂ = 0 unless a is 

the column position of wq(k) in Z, in which case plim 0)(ˆ
)(  kipak xm .  The elements of r are finite and of 

r̂ are asymptotically multivariate normal with almost surely bounded variance, so when divided by a 

positive power of N have a plim of zero. 

 When the terms in (B.12) are multiplied out, most involve a product with an element of N/r , 

N/r̂ , or η̂  that has a plim of zero, 0 to 4 parameters ̂  and ̂  with bounded probability limits, and the 

mean of the product of the elements of 0 to 4 columns of T and the elements of 4 columns of D = (XW,Z,ε) 

(no more than two of which are εi).  The following lemma shows that the plim of all such terms is zero: 

Lemma 2:  White's assumptions W1 - W4 and the additional A1 - A3 ensure that for some a in (0,½) 

condition IIIb of Theorem III almost surely holds for the mean of the product of the elements of n = 
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 The sample means of the product of the elements of one through four columns of X or four 

columns of D are almost surely bounded (Lemma 1c), so the probability limit in the Lemma is bounded 

when n = 1 or 2 and 0 when n = 3 or 4.  Consequently, in (B.12) every term that involves the product of an 

element of N/r , N/r̂ , or η̂  that has a plim of zero with the mean of the product of four columns of D 

with zero, one or two columns of T has a probability limit of zero.  Every term in (B.12) that involves the 

product of n = three or four columns of T with four columns of D also includes at least   n - 2 N/r̂ terms 

which can be re-expressed as )1()/ˆ( -½ aa /NNr for some a in (0,½).  The a/N1 parts can be used to satisfy 

Lemma 2, while the aN -½/r̂ part converges in probability to 0.  Thus, all such terms also have a plim of 0. 

 The above only leaves terms in (B.12) that involve the product of two or less columns of T and do 

not include an element of N/r , N/r̂ , or η̂ , namely 
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where we use the boundedness of means of products of up to four terms (Lemma 1c) and the fact noted 

above that plim ak̂ = 0 unless a is the column position of wq(k) in Z, in which case plim )(ˆ
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and consequently for the heteroskedasticity robust covariance estimate we have  
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which from (B.10) and Lemma 1b is seen to be the asymptotic covariance matrix of normally distributed 

)),(ˆ( 00 ββTβ N .  This establishes that for bounded )( 0ββr  N the distribution of the Wald statistic 

τ(T,β0) across permutations T converges to that of the chi-squared with PQ degrees of freedom.  

Moreover, every appearance of r in the equation for τ(T,β0) is multiplied by a term that in probability 

across T converges to 0, so that in probability τ(T,β0) converges to τ(T,β), as stated in (R1). 

C. Proofs of Lemmas used in Appendix B 

 We make use below of corollaries to Markov's Law of Large Numbers and the Continuous 

Mapping Theorem given by White (1984) and to the Borel-Cantelli Lemma given by Galambos (1978): 

Markov Corollary:  Let di be a sequence of independent random variables such that 

 ΔdE i )|(| 1  for some δ > 0 and all i.  Then .0))((()(
..sa

ii dEmdm   

Continuous Mapping Theorem Corollary:  Let g: ℝk→ ℝl be continuous on a compact set Cℝk .  

Suppose that bN(ω) and cN are kx1 vectors such that bN(ω) - cN 

 .s.a

  0, and for all N sufficiently large, 

cN is interior to C uniformly in N.  Then g(bN(ω)) - g(cN) 
 ..sa

  0. 

Borel-Cantelli Corollary:  Let d1, d2, ... be an infinite sequence of random variables, Fj(d) the 

probability dj < d, and uN a non-decreasing sequence of real numbers such that for all j  

Pr{dj < supN uN} = 1, then  

.0often infinitely }MaxPr{)](1[
1
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
 Ni

Ni
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jj uduF  

 Lemma 1a:  By assumption W2 that E(| ikij zz  |1+δ) < Δ, and the Markov and Continuous Mapping 

Theorem Corollaries, N/ZZ converges almost surely to the matrix MN in W2 and is non-singular with 

determinant > γ > 0 for all N sufficiently large.  Using Jensen's Inequality on ΔzzE ikij 
 )|(| 1  , its trace is 
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almost surely bounded from above by Δ1/(1+δ)K+.  By the trace and determinant property of eigenvalues we 

then know its smallest eigenvalue is greater than λ= γ/(Δ1/(1+δ)K+)^(K+-1) > 0.  For a real symmetric matrix 

V, the min across all non-zero vectors x of the Rayleigh quotient xxVx/x  equals the minimum eigenvalue 

of V.  Since Z and W are part of Z+, it follows that the minimum eigenvalues of the sub-matrices N/ZZ  

and N/WW are greater than or equal to that of N/ZZ .  Consequently, for all N sufficiently large both 

matrices are almost surely positive definite with determinants > λK and λQ, respectively.   

 By Jensen's Inequality the assumption ΔxE ip  )|(| *14   in A3 implies that 4/*1 )|(| nn
ip ΔxE   for n 

= 1...3, so by the Markov Corollary  
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which using A1 and the Continuous Mapping Theorem Corollary implies that the determinant of N/
~~
XX  

is almost surely greater than γ > 0 for all N sufficiently large.  By assumption W3 ΔzzE ikiji 
 )|(| 12   

and, using Jensen's Inequality, 
 )|(| 1  iki zE  


½½122 )|(| ΔzE iki

 .  Applying the Markov Corollary 
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where we make use of assumption W1   KiiE 0z )( , so that QiiEm 0w ))((  .  As the minimum 

eigenvalue of    
N

i iiiN NE
1

2 /)( zzV  given in W3 is again greater than λ= γ/(K+ Δ1/(1+δ))^(K+-1) and wi is 

part of z+i, following the argument above we can say that almost surely for all N sufficiently large 

N/
~~

εεWW  is positive definite with determinant greater than λQ > 0. 

 Lemma 1b:  Above we saw that 


½1 )|(| ΔzE iki
  and by W1   KiiE 0z )( , so by the 

Markov Corollary   K

sa

iim 0z
..

 )( , which establishes the first part as Z and XW are both part of Z+.  The 

second part then follows as )()(//
~~  iiii mmNN wwWWWW εεεε  and W is part of Z. 

 Lemma 1c:  Regarding the sample mean of the product of the elements of one, two or four 

columns of D = (XW,Z,ε) = (Z+,ε) (no more than two of which are εi) from W2 and W4 we know that for 

positive finite constants δ and Δ ΔE i  )|(| 12   and ΔzE ik 
 )|(| 14  .  Jensen's Inequality then tells us that 

½1 )|(| ΔE i  and 4/1 )|(| nn
ik ΔzE 


  for n = 1, 2 or 3, and also that )(12/|)(|   nn

i ΔE for n = 1 or 2 

and )1(4/|)(| 
  nn

ik ΔzE  for n = 1 through 4.  Applying the Markov Corollary, we have  
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tells us that both )(  &  )( n
ik

n
i zmm  are almost surely bounded.  The proof of 1b showed that )( iki zm   

converges almost surely to zero.  As by W3 ΔzzE ikiji 
 )|(| 12   by a similar application of Jensen's 

Inequality and the Markov Corollary the sample mean of the product of 2
i  with any two of the columns 

of Z+ is seen to be almost surely bounded.  What remains is the product of two or four separate columns of 

Z+ or the product of εi with any three of the columns of Z+, but given the preceding results these can be 

bounded by repeatedly applying the Cauchy-Schwarz Inequality 
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as the right hand sides of these expressions have already been shown to be almost surely bounded. 

 Turning to the mean of the product of the elements of one through four columns of X, by Jensen's 

Inequality the assumption ΔxE ip  )|(| *14   in A3 implies that 4/*1 )|(| nn
ip ΔxE   and *)1(4/|)(|  nn

ip ΔxE for 

n = 1, 2, 3 or 4, so by the Markov Corollary  0 ))(()(
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n
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n
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n
ip xEmxEm   

*)1(4/  nΔ .  The sample mean of products of 2, 3 or 4 different columns of X can then be bounded using 

the Cauchy-Schwarz inequality, as was done in (C.4) above.  With regards to the matrix inverses in the 

Lemma, for an invertible positive definite matrix A the largest eigenvalue of 1A is equal to the inverse of 

the smallest eigenvalue of A.  Since from the proof of Lemma 1a, we know that each of the matrices in 

Lemma 1a is invertible with a smallest eigenvalue almost surely greater than some λ > 0 for all N 

sufficiently large, it follows that the elements of their inverses are all almost surely bounded. 

 Lemma 1d:  We are considering the mean of the product of the elements of one or two of the 

columns of T with the elements of two columns of D = (XW,Z,ε) (no more than one of which is εi).  To 

prove IIIc we need only show that the sample moments of the product of the elements of one, two or four 

columns of T and the product of two (at most one of which is εi) or four columns (of which possibly two 

are εi) of D are bounded.  This has already been established in 1c. 

 Lemma 1e:  Lemmas 1a and 1c already established that NN /
~~

&/
~~

εεWWXX  are almost surely 

bounded with determinant > γ > 0 for all N sufficiently large, so all that remains is condition Ib.  Define 

wiqε = wiqεi and, as elsewhere, let superscripted ~ denote sample demeaned values.  Our objective is to 

prove that for all integer τ > 2 and all p and q 
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We begin by noting that: 
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From A3 we have bounds, E(| 22
iiqw  |1+θ) < Δ and E(| 4

ipx |1+θ*) < Δ  for some θ and θ* > 0 & Δ < ∞, which by 

Jensen's Inequality imply that E(|wiqεi|
1+θ) < Δ½ & E(| n

ipx |1+δ) < Δn/4 for n = 1 or 2, as well as E( 22
iiqw  ) < 

Δ1/(1+θ), E(|wiqεi|) < Δ1/2(1+θ), E( 2
ipx ) < Δ1/2(1+θ*) & E(|xip|) < Δ1/4(1+θ*).  Consequently, with regards to the 

denominator above, by the Markov Corollary we know that for di = xip or wiqε  
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For a K x K positive definite matrix V with determinant > γ > 0 and non-negative diagonal elements 

bounded from above by Δ', by the trace and determinant property of eigenvalues the smallest eigenvalue is 
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bounded from below by λ(K)= γ/(KΔ')^(K-1).  By the Schur-Horn Theorem, the smallest diagonal element 

of a real symmetric matrix is greater than or equal to its smallest eigenvalue.  Lemmas 1a and 1c showed 

that almost surely NN /
~~

&/
~~

εεWWXX  are bounded with determinants > γ for all N sufficiently large, so 

almost surely the denominator on the right of (C.6) is > λ(P)λ(Q) > 0 for all N sufficiently large. 

 Turning to the numerator, since 
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~
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and m(wiqεi) converges to zero while m(xip) is bounded (Lemma 1c), to prove (Ib) all that remains is to 

show that .0/MaxMax
..
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iqNiipNi Nwx     From assumption A3 we know that there exist finite positive 

constants θ, θ* and Δ, with θ(1+2θ*) > 1, such that ΔxE i  )|(|
*14   and ΔwE iq  )|(| 12 

 .  Consequently, 

applying Markov's Inequality 
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Both conditions can be met with a > 0, b > 0 and a + b < 1 if θ(1+2θ*) > 1 as 
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 Lemma 2:  The sample means of 1 through 4 columns of X and any 4 columns of D = (XW,Z,ε) 

(no more than two of which are ε) are known to be almost surely bounded (Lemma 1c), so to establish 

condition IIIb it suffices that there exists an a in (0,½) such that the following are almost surely bounded 
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where we select indices so that when two elements are εi, dij represents one and dil the other.  Lemma1c 

already established that )( 22
ilik xxm  & )( 22

imil ddm are almost surely bounded and in the proof of 1e we saw that 
a

ijNi Nx /Max 2
 is almost surely bounded for ½ > a > ½(1+θ*)-1.  From (W3), (W4) & Hӧlder's Inequality 

we have ΔzE iij  )|(| 122   & ΔzEzEzzE ikijikij   ½14½14122 )|(|)|(|)|(|  .  Applying Markov's Inequality 
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As δ > 0, we know that there exists a b < 1 such that (C.14) holds, so by the Borel-Cantelli Corollary 
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Table A2: Notation Used in Appendix D 

(a) Coefficient & heteroskedasticity robust covariance estimates for the regression using X, )ˆ(ˆ&ˆ βVβ , and 

using permutation T of X under the null β0, )),(ˆ(ˆ&),(ˆ
00 βTβVβTβ . 

(b) Subsets of parameters and the null: Pββ   & 00 Pββ  , where P is a k x PQ matrix of zeros of full 

rank with a single one in each row. 

(c) Wald statistics for subset tests:  , as in )ˆ(])ˆ(ˆ[)ˆ(),( 0
1

00 ββPPβVPPβββX    & 

 ),( 0βT )),(ˆ(])),(ˆ(ˆ[)),(ˆ( 00
1

000 ββTβPPβTβVPPββTβ   . 

(d) Ceilings and floors: i* denotes the smallest integer greater than or equal to (D+1)(1-α) & v the greatest 

integer less than or equal to v. 

(e) FTj the probability ),( 0βT is less than or equal to ),( 0βTj
 , Tj a draw from the universe of 

permutations T of X, and pTj the probability ),( 0βT equals ),( 0βTj
 . 

(f) Auxiliary test statistic g(Tj,β0) = FTj - uTjpTj, where uTj is a draw for each Tj from the uniform 

distribution on [0,1]. 

(g) PrT|D{a < b} = probability of the event a < b across the permutation distribution T of X given the data 

D = (Z,XW,ε), and PrD{a < b} = the probability of the event a < b across the data D. 

(h) P(I1) = Pr{u > i* - (D+1)(1-α)}, where u is uniformly distributed on [0,1]. 

(i) Cumulative distribution functions of central & non-central chi-squared with k degrees of freedom and 

non-centrality parameter λ: )(2 xF k  & )(2
, xF k  . 

(j) Non-central coverage rates with central critical values: ))(()( 2
,, axFaG kk   , x such that axF k )(2 . 

(k) Expectation across permutations T of X: ET. 

 D:  Proof of (R2) - (R5) 

 We prove (R2) - (R5) generalized to cover subsets of coefficients.  Let P denote a k x PQ matrix 

of zeros of full rank with a single one in each row and define )ˆ(])ˆ(ˆ[)ˆ(),( 0
1

00 ββPPβVPPβββX   ,  

 ),( 0βT )),(ˆ(])),(ˆ(ˆ[)),(ˆ( 00
1

000 ββTβPPβTβVPPββTβ   , 00 Pββ   and Pββ  .  While 

),( 0
 βX is only a function of 

0β , in finite samples ),( 0βT  is a function of 0β as the full vector affects 

the calculation of counterfactual output ),( 0βTy .  White's conditions W1 - W4 ensure that for a test of the 

true null ),(  βX is asymptotically distributed chi-squared with k degrees of freedom.  (R1) showed that 

in a finite N neighbourhood of 0β around β ),( 0βT is asymptotically distributed chi-squared with k 

degrees of freedom and in probability equal to ),( βT . 

 R2:  As in the text define i* as the smallest integer greater than or equal to (D+1)(1-α) and τ1 < ... 

< τD as the ordered values of ),( βT , where if needed define τ0 as 0 and τD+1 as ∞.  The logic behind (R2) 

is illustrated in Figure A1.  For all 
0β such that ),(),( 10 ii  

 βX , D - i + 1 of the ),( βT outcomes are 

greater than ),( 0
 βX and none equal, and hence the randomization p-value (2.4) for these nulls is  

τi*-2 τi*-1 τi* τi*+1 

p(τi*-1) p(τi*) p(τi*+1) 

Figure A1 

τi 0 
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[D-i+1+u]/(D+1), where u is a draw from the uniform distribution.  The conditions for the p-values in 

each of the regions illustrated in the figure to be greater than some nominal level α are then54 
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Given that i* is the smallest integer greater than or equal to (D+1)(1-α), the p-value for the region below 

τi*-1 is always greater than α and the p-value for the region above τi* is always less than α.  Hence, the 

confidence interval is determined by τi* if  u > i* - (D+1)(1-α), and by τi*-1 otherwise, as described in (R2).   

 R3 & R4:  The proofs of (R3) & (R4) use ideas present in Jockel (1986) and Hoeffding (1952).  

We finesse complexities introduced by the discreteness of finite sample distributions by constructing an 

auxiliary test statistic whose distribution is always uniform.  Let Ω denote the universe of permutations T 

of X, Tj one of those permutations, FTj the probability ),( 0βT is less than or equal to ),( 0βTj
 , and pTj 

the probability ),( 0βT equals ),( 0βTj
  (> 0, as the number of permutations is finite).  Define the new 

"test statistic" g(Tj,β0) = FTj - uTjpTj, where uTj is a draw for each Tj from the uniform distribution on [0,1].  

g(Tj,β0) is by construction uniformly distributed across permutations T of X for all β0 in all sample sizes.  

Since X itself is one of the permutations of X, we also have g(X,β0), which with probability one lies in 

(0,1).  Defining the p-value using (2.4), we will show that the probability of rejection at a level α using 

g(T,β0) is always the same as using ),( 0βT .  Consequently, if (R3) & (R4) apply for g(T,β0), even 

though it is never actually observed, we know they apply for ),( 0βT  and the proof is complete. 

 We begin by noting that ),( 0βTi
  < ),( 0βTj

 implies g(Ti,β0) < g(Tj,β0), as with probability 

one FTj – uTjpTj > FTj – pTj ≥ FTi > FTi – uTipTi, since the probability uTj = 1 and uTi = 0 is zero.  Let the 

draws T1, T2, ... TD from Ω contain G draws with values of ),( 0βT strictly greater than ),( 0
 βX  and E 

draws with values of ),( 0βT  equal to ),( 0
 βX .  Using (2.4), the p-value for ),( 0βT is given by [G 

+ u(E+1)]/(D+1), while the p-value for g(T,β0) is given by 
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


D

uEG G  

where EG ≤ E denotes the number of draws Tj with ),( 0βTj
 = ),( 0βX which end up with g(Tj,β0) > 

g(X,β0) after the realization of the draws uTj which determine g(Tj,β0).  Select an α and let v denote the 

greatest integer less than or equal to v.  If G ≥ α(D+1)+1 the p-value for both ),( 0βT  and g(T,β0) is 

greater than α, i.e. neither test rejects, while if G + E + 1 < α(D+1) the p-value for both is less than α, i.e. 

both tests reject.  Consequently, we need only concern ourselves with the case where G ≤ α(D+1) and G + 

E + 1 ≥ α(D+1).  In these circumstances, the test with ),( 0βT  rejects with probability (α(D+1)-

G)/(E+1).  Given the uX which determined g(X,β0) = FX - uXpX, the probability a given element of the set 

                                                 
54Each calculation is for within the region bounded by two τi, as illustrated in the figure.  The τi themselves, 

where the number of tied outcomes is 1, are of measure zero in the confidence interval. 



55 

of draws that have ),( 0βTj
 = ),( 0βX  ends up with g(Tj,β0) > g(X,β0) is uX.  Say G = α(D+1).  For 

given uX, the probability (D.2) is less than or equal to α equals the probability EG = 0 times the probability 

u in (D.2) is less than α(D+1)-G, or: 

).)1(()1()3.D( GDu E  X  

Integrating across the uniform distribution of uX yields 
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which is the same probability as the test statistic using ),( 0βT .  If G ≤ α(D+1) – 1, for given uX the 

probability (D.2) is less than or equal to α is given by the probability EG ≤ α(D+1) – G – 1 plus the  

probability EG = α(D+1) – G times the probability u in (D.2) is less than or equal to α(D+1)-α(D+1), or: 
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Again, integrating across the uniform distribution of uX 
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which again is the same as in the case of the ),( 0βT statistic.  These examples cover all possible cases 

for G and E, so we see that for any null β0 and realized draws T1, T2, ... TD from Ω, the p-value calculated 

using ),( 0βT  has the same probability of rejecting at level α as the p-value calculated using g(T,β0). 

 We now focus on inference using g() alone.  Let g1 < ... < gD denote the ordered values of g(T,β0) 

across D draws of T from Ω.  By construction g(T,β0) is uniformly distributed across draws T from Ω, so 

ties are a probability zero event, as are g1 = 0 or gD = 1.  As before let i* denote the smallest integer greater 

than or equal to (D+1)(1-α).  If u in (D.2) is > i* - (D+1)(1-α), the p-value is greater than α as long as 

g(X,β0) < gi*, whereas if u is  < i* - (D+1)(1-α) the p-value is greater than α as long as g(X,β0) < gi*-1.  If 

we define g0 = 0 & gD+1 = 1 these rules cover the case where i* equals 1 or D+1.55  Since g(T,β0) is always 

uniformly distributed on [0,1], the probability gi = a is always iDi aaiiDD   )1(])!1()!/(![ 1 .  With PrT|D 

denoting the probability across the permutation distribution T given the data D, g(X,β0) can be bounded: 

)}.,(),({Pr),()},(),({Pr)7.D( 00|000|
  βXβTβXβXβT DTDT  g  

The distribution of ),( 0βT  across draws T given the data D (for β0 in a finite N neighbourhood of β) 

almost surely converges to the chi-squared, as does that of ),( 0
 βX (for β0 = β) across the data D, and as 

                                                 
55If i* equals D+1, α(D+1) is < 1.  If u > i* - (D+1)(1-α) = α(D+1), the p-value is always greater than α, which 

is equivalent to saying g(X,β0) < gi* = gD+1 = 1, otherwise the p-value is greater than α if at least one of the D draws 
of g(T,β0) is greater than g(X,β0), i.e. g(X,β0) < gD.  If i* equals 1, α(D+1) is ≥ D.  If u > i* - (D+1)(1-α) and all D 
draws are greater than g(X,β0), then the p-value is greater than α, equivalent to saying g(X,β0) < g1, while if u < i* - 
(D+1)(1-α) (which is only possible if α(D+1) is > D) it is impossible for the p-value to be greater than α, equivalent 
to saying g(X,β0) < gi*-1 = g0 = 0. 
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the chi-squared is continuous that convergence is uniform (Rao 1973, p. 120), so for each Δ > 0 there 

exists an N(Δ) such that for all N > N(Δ) the two cumulative distributions are within Δ/2 of the chi-squared 

with k degrees of freedom.  Consequently, for β0 = β almost surely for all N > N(Δ)  

,}),({Pr(D.7) using so

}2/)),(({Pr}2/)),(({Pr&

2/)),(()},(),({Pr)},(),({Pr2/)),(()8.D(

0

22

0200|00|02

ΔaagΔa

ΔaΔaFΔaFΔa

ΔFΔF










βX

βXβX

βXβXβTβXβTβX

D

DD

DTDT









  

and we see that the cumulative distribution function of g(X,β0=β) across D converges to that of the 

uniform on (0,1).  As N(Δ) does not depend upon a, the convergence is uniform.  

 Using the above, we see that the probability across the data D that g(X,β) will be less than the ith 

order statistic gi of D draws from the permutation distribution T of X converges to  
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where uniform convergence of PrD{g(X,β) < a} = PrD{g(X,β) ≤ a}, which is bounded continuous (as by 

construction g(X,β) is continuous without mass points) and hence Riemann integrable, allows the limit of 

the Riemann integral.  If i* lies in [2,D] the probability the p-value is greater than α then equals: 
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For the special cases where i* equals 1 or D+1, we have: 
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This establishes that the coverage probability of the true null of a test based upon g(), and hence one based 

upon  as well, converges to 1-α, proving (R3). 

 Turning to (R4), for 
0β ≠ β within a finite N neighbourhood of β, ),( 0

 βX is asymptotically 

distributed non-central chi-squared with k degrees of freedom and non-centrality parameter 

NNN )()]ˆ(ˆ[)( 0
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0
  βββVββ , which we denote as 

2
,k , and cumulative distribution function:  
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The critical value x associated with the ath percentile of the central chi-squared is determined by 
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Consequently, for  
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that is, the conventional coverage probability of an incorrect null is convex in the nominal level.  dG/da is 

bounded from above by 2eλx(a)/4. 

 We prove pointwise convergence of the cumulative distribution of g(X,β0≠β) to Gk,λ for β0 in a 

N neighbourhood of β.  For every a in (0,1) and 0 < Δ/2 < min(a,1-a), let x* = x(a+Δ/4).  There exists an 

N(a, Δ) such that for all N > N(a, Δ) the distribution of ),( 0βT differs from the chi-squared by no more 

than Δe-λx*/4/4 and that of ),( 0
 βX from the non-central chi-squared by no more than Δ/2, so that we may 

modify (D.8) to read 
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proving pointwise convergence of PrD{g(X,β0≠β) ≤ a} to ).(, aGk    For ββ 0  we then have: 
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where the limit of the integral follows from Arzelà's Dominated Convergence Theorem and the fact that 

the functions in the sequence are bounded and continuous (hence Riemann integrable).  The inequality 

follows from Jensen's Inequality and the fact that 
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so the integral on the right hand side can be considered the expectation across the random variable a of 

Gk,λ(a).  Letting P(I1) denote the probability u > i* - (D+1)(1-α) and the p-value is based on the i* order 

statistic, the probability the incorrect null lies in the 1-α confidence interval is then seen to be 
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where in the second line we again use the fact that Gk,λ(a) is a convex function of a, while 1-α is the 

expectation of the "random variable" that takes on the values i*/(D+1) and (i*-1)/(D+1) with probabilities 

P(I1) and 1- P(I1).  In the special cases where i* = 1 or D+1, using the same techniques we have 
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So we see that the coverage probability of an incorrect null for tests based upon g(), equivalently  , is 

asymptotically greater than that of the conventional test, resulting in lower power, as stated in (R4). 

 Regarding the double limit D,N→∞, as noted above the integral in (D.16) can be thought of as the 

expectation of a function across the random variable a.  Its variance is given by  
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which converges to 0 as D → ∞, while its mean in (D.17) converges to 1 - α for i = i* or i*-1.  As 

PrD{g(X,β0≠β) < a} is non-decreasing in a, with PrD{g(X,β0≠β) < 0} = 0 & PrD{g(X,β0≠β) < 1} = 1, we 

can construct bounds on the left-hand side integral in (D.16) for i = i* or i* - 1 using  
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Furthermore, the probability the incorrect null lies in the RCI , given by the first line of (D.18), is bounded 

from above and below (respectively) by }),({Pr *0 i
gg  ββXD  & }),({Pr

10 *


i
gg ββXD .  The 

probability the incorrect null lies in the CCI is given by the probability ),( 0
 βX  is less than x(1-α), i.e. 

the critical value for the 1-α percentile of the chi-squared with k degrees of freedom.  So, we can say that  

 

   .)}1(),({Pr1)(
1

),(Pr

)}1()(Pr{)},1()(Pr{

)}1(),({Pr1)(
1

1
),(Pr)22.D(

0
½½4

*

0

00

0
½4

*

0










































xDDaD
D

i
g

CCIDRCI

xDaD
D

i
g

βXβX

ββββ

βXβX

DD

DD

 

 For the right-hand side of (D.22), with v = i*/(D+1)+D¼σ(a) we can say: 
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The convergence of PrD{g(X,β0≠β) < a} is pointwise, but since the x* used in (D.15) is increasing in a and 

for large enough D v can be made to lie arbitrarily close to 1-α, by choosing x* to be the maximum for that 

neighbourhood  |)(}),({Pr| ,0 vGvg k βXD can be made arbitrarily small for sufficiently large N.  So, for 

each α & Δ there exists an M(α, Δ) such that for all N & D > M(α, Δ) each of the four absolute values on 

the second line is less than Δ/4 and the sum is less than Δ.  A similar decomposition allows us to show that 

the absolute value of the left-hand side of (D.22) can be made less than Δ, establishing that for any α in 

(0,1) and Δ > 0 it is possible to find an M(α, Δ) such that for N & D > M(α, Δ) | )},1()(Pr{ 0 DRCI  ββ -

)}1()(Pr{ 0  CCIββ | < Δ, as stated in (R4).  

 The proof above mirrors the intuition given in the text, although we finesse complications by 

using an unobserved auxiliary variable that smoothes the finite sample permutation distribution.  

Asymptotically the order statistics are a random variable with expectation equal to the 1-α percentile of 

the chi-squared.  For a test of a true null, the conventional coverage probability is an accurate linear 

function in the percentiles of the chi-squared, and hence using the order statistics to evaluate significance 

produces a 1-α rejection probability.  For tests of false nulls, the conventional coverage probability is a 

convex function of the percentiles of the chi-squared, and hence by Jensen's inequality using the order 

statistics produces higher coverage probabilities and lower power, unless the number of draws D is taken 

to ∞, so that the distribution of the relevant order statistic converges to a point. 

 R5:  The conventional test yields a p-value of 1 - )),(( 0
2  βXkF .  The randomization p-value is 

given by (G+u(E+1))/(D+1).  Let gi and ei denote the iid binary (0,1) random variables that indicate 

whether on the ith random permutation T of X ),( 0βT is greater than or equal, respectively, to ),( 0
 βX , 

and ET and PrT the expectation and probability across permutations T of X, with ET(gi) = 1 - PrT{ ),( 0βT  

≤ ),( 0
 βX } & ET(ei) = PrT{ ),( 0βT = ),( 0

 βX }.  We have: 
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As each draw of T is iid, and G and E equal the sum of the realizations of gi and ei, by the Strong Law of 

Large Numbers "b" and "d" almost surely converge to 0 as D→∞.  For tests of nulls within a 

finite N neighbourhood of β, ),( 0βT  almost surely converges in distribution to the chi-squared with k 

degrees of freedom as N→∞.  So almost surely 1 - PrT{ ),( 0βT ≤ ),( 0
 βX } converges to 1 - 

)),(( 0
2  βXkF  and PrT{ ),( 0βT = ),( 0

 βX } to 0.56  Consequently, for each Δ and ),( 0
 βX  there exists 

an M(Δ, ),( 0
 βX ) such that almost surely for all N & D > M(Δ, ),( 0

 βX ) each of the absolute values in 

the second row of (D.24) is less than Δ/5, establishing (R5). 

                                                 
56If the latter does not hold, the asymptotic cumulative distribution is discontinuous and cannot converge to 

the chi-squared, establishing a contradiction. 


