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Abstract

We study a first-order method to find the minimum cross-sectional

area ellipsoidal cylinder containing a finite set of points. This problem

arises in optimal design in statistics when one is interested in a subset of

the parameters. We provide convex formulations of this problem and

its dual, and analyze a method based on the Frank-Wolfe algorithm

for their solution. Under suitable conditions on the behavior of the

method, we establish global and local convergence properties. However,

difficulties may arise when a certain submatrix loses rank, and we describe

a technique for dealing with this situation.

1 Introduction

We study the problem of finding an ellipsoidal cylinder containing a finite set of
points in IRn, such that its cross-section with a k-dimensional subspace has
minimum area. This is a generalization of the minimum-volume enclosing
ellipsoid (MVEE) problem, which has been much studied, with applications
in data analysis and (via its dual) the D-optimal design problem in statistics.

The minimum-area enclosing ellipsoidal cylinder (MAEC) problem has also
been widely studied, mainly because its dual is another optimal design problem
in statistics, where now one is interested in estimating just k out of n parameters
in a regression problem by choosing the design points optimally in some sense.
See Fedorov [5], Silvey and Titterington [11], Atwood [2, 3], and Pukelsheim [8]
for more details.

Our interest in this problem is mainly algorithmic: we study a first-order
method based on the Frank-Wolfe method [6] with Wolfe’s away steps [13],
which was introduced in the context of optimal design by Atwood [3]. However,
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no detailed analysis of this method has been performed, and in certain cases it
breaks down unless modified to keep an appropriate matrix positive definite.

We show that under reasonable conditions on the iterates produced by the
algorithm, global complexity estimates and local convergence properties can
be established. These conditions require that a certain principal submatrix of a
positive semidefinite matrix produced by the algorithm remain positive definite.

We also provide a technique that allows the iterations to proceed when rank
deficiency occurs; although we have no guarantee of convergence in this case,
the method appears to work in practice. Finally, some computational results
for large random problems are given.

The paper is organized as follows. In the next section, we state convex
formulations of the MAEC problem and its dual. Although previous papers
have included formulations with some convexity properties, they have not been
fully convex. Section 3 describes the basic algorithm of Atwood [3]. We prove
global and local convergence results in Section 4. The case of rank-deficiency of
a critical submatrix is discussed in Section 5, and Section 6 contains the results
of our computational study. We conclude in Section 7 with some final remarks.

2 Problem formulation and duality

In this section we provide convex formulations of the MAEC problem and its
dual. Previous formulations, such as that in Silvey and Titterington [11], have
not been convex in all the variables (see problem (P �) below), although they have
some convexity properties, and the dual problem involved a Schur complement
rather than our simpler formulation (D).

We also relate these formulations to earlier ones and prove duality results.
The section ends by defining notions of approximate optimality, which will be
used in our algorithms.

2.1 Problem definition, convex formulation

Suppose we are given a matrix X = [x1, x2, . . . , xm] ∈ IRn×m whose columns,

the points x1, . . . , xm, span IRn. Let X =
�

Z
Y

�
be a partition of X, where

Z ∈ IR(n−k)×m and Y ∈ IRk×m. If H � is a symmetric matrix of order k that is
positive definite (we write H � � 0) and E is a matrix of order k× (n− k), then
the set

C(0;E;H �) := {[z; y] : z ∈ IRn−k, y ∈ IRk, (y + Ez)T H �(y + Ez) ≤ k}

is a central (i.e., centered at the origin) ellipsoidal cylinder whose intersection
with the subspace

Π := {[z; y] ∈ IRn : z ∈ IRn−k, y ∈ IRk, z = 0}

has volume (detH �)−1/2 times that of a Euclidean ball in IRk of radius
√

k. H �

determines the shape of the cross-section and E the “directions of the axes” of
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the cylinder. Hence, finding a central ellipsoidal cylinder, which contains the
columns of X and has minimum-volume (area) intersection with Π, amounts to
solving

minH��0 f̄(H �, E) := − ln detH �

(P �) (yi + Ezi)T H �(yi + Ezi) ≤ k, i = 1, . . . ,m,

where the variables are H � and E. This is called the minimum-area enclosing
ellipsoidal cylinder (MAEC) problem.

This problem is nonconvex. The following lemma proves that it can be
reformulated as a convex programming problem as follows:

minHY Y �0 f(H) := − ln detHY Y

(P ) xT

i
Hxi ≤ k, i = 1, . . . ,m,

H � 0,

where the variable H is partitioned as
�

HZZ HZY

HT

ZY
HY Y

�
and HY Y ∈ IRk×k.

Lemma 2.1 Problems (P ) and (P �) are equivalent.

Proof: To see this, consider any feasible solution H to (P ). Note that given
HY Y � 0, H � 0 holds iff HZZ � HZY H−1

Y Y
HT

ZY
. We can therefore assume

that HZZ = HZY H−1
Y Y

HT

ZY
without loss of generality, since replacing HZZ by

the right-hand side will preserve feasibility and leave unchanged the objective
value. Then

xT

i
Hxi ≤ k

iff
yT

i
HY Y yi + 2yT

i
HT

ZY
zi + zT

i
HZY H−1

Y Y
HT

ZY
zi ≤ k.

If we let E = H−1
Y Y

HT

ZY
, the latter inequality holds iff

yT

i
HY Y yi + 2yT

i
HY Y Ezi + zT

i
ET HY Y Ezi ≤ k

or
(yi + Ezi)T HY Y (yi + Ezi) ≤ k,

and we obtain a feasible solution to problem (P �) with the same objective value.
Conversely, given any feasible solution to (P �), we can set HY Y := H �, HZY :=
ET HY Y , and HZZ := HZY H−1

Y Y
HT

ZY
to get a feasible solution to (P ) with the

same objective value. Thus, problems (P ) and (P �) are equivalent. ��
When k = n, the MAEC problem reduces to the minimum-volume enclosing

ellipsoid (MVEE) problem. We note that searching for a central ellipsoidal
cylinder containing the columns of X is without loss of generality: if an arbitrary
ellipsoidal cylinder is sought, it can be obtained by finding a central ellipsoidal
cylinder in IRn+1 containing the points (1; xi), i = 1, . . . ,m, with the same value
of k.
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2.2 Weak and strong duality, and optimality conditions

Problem (P ) is convex with linear inequality constraints. After some simplifi-
cation, its Lagrangian dual can be written as

maxu,K�0 g(u,K) := ln detK

XUXT −K := XUXT −
�

0 0
0 K

�
� 0,

(D) eT u = 1,
u ≥ 0,

where matrix U is a diagonal matrix with the components of u on its diagonal
and e is a vector of ones in IRm. Problem (D) is also the statistical problem
of finding a Dk-optimal design measure u on the columns of X, that is, one
that maximizes the determinant of a k × k Schur complement of the Fisher
information matrix E[xxT ] = XUXT : see, e.g., Silvey and Titterington [11]
and Fedorov [5].

We say H is feasible in (P ) if it is positive semidefinite and satisfies the
constraints of (P ) and HY Y is positive definite; similarly, (u,K) is feasible in
(D) if it satisfies the constraints of (D) and K is positive definite. We first
establish weak duality:

Lemma 2.2 f(H) ≥ g(u,K) for any H and (u,K) feasible in (P ) and (D),
respectively.

Proof: Since H and XUXT −K are positive semidefinite,

0 ≤ H •
�
XUXT −K

�
=

�

i

uix
T

i
Hxi −H •K ≤ keT u−HY Y •K. (2.1)

(We use • to denote the trace inner product on symmetric matrices: V •W :=
Tr(V W ).) Hence we have

− ln detHY Y − ln detK = − ln detHY Y K

= −k ln(Πk

i=1λi)1/k

≥ −k ln

��
k

i=1 λi

k

�

≥ −k ln
�

k

k

�

= 0,

where the λi’s are the positive eigenvalues of HY Y K (or of HY Y
1/2KHY Y

1/2),
and (2.1) shows their sum is at most k. ��

Hence feasible solutions H and (u,K) are optimal if f(H) = g(u,K). We
next show that strong duality holds, so that this condition is necessary as well
as sufficient.
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Theorem 2.1 There exist optimal solutions for problems (P ) and (D). Fur-

thermore, the following conditions, together with primal and dual feasibility, are

necessary and sufficient for optimality in both (P ) and (D):

(a) H • (XUXT −K) = 0,

(b) ui > 0 only if xT

i
Hxi = k, and

(c) HY Y = K−1
.

Proof: Let H be a feasible solution for problem (P ). Summing up the linear
constraints, we must have

�
xT

i
Hxi = H • XXT ≤ km. Since XXT � 0 and

km > 0, {H � 0 : H •XXT ≤ km} is a compact set. Hence the feasible region
for problem (P ) is also a compact set (since it is the intersection of a compact
set with a finite set of halfspaces). Moreover, H = �I is feasible for (P ) for
sufficiently small positive �, so we can add the constraint that ln det HY Y ≥
k ln �, and the feasible region remains compact and has the same set of optimal
solutions. Now the objective function is continuous on the compact feasible
region, so an optimal solution exists for problem (P ). Existence of an optimal
solution for (P ) implies the existence of optimal solutions for (P �) and also for
(D) as will be discussed later.

Sufficiency follows from the previous lemma, since the conditions imply
equality in the weak duality inequality. In order to prove necessity, let

H̃ =
�

H̃ZZ H̃ZY

H̃T

ZY
H̃Y Y

�
be an optimal solution for (P ), so that (H � = H̃Y Y , Ẽ =

H̃−1
Y Y

H̃T

ZY
) is an optimal solution for the primal problem (P �). Hence the

Karush-Fritz-John conditions must hold for this solution, i.e., there exist
nonnegative multipliers ṽ ∈ IR and ũ ∈ IRm with at least one of the multipliers
nonzero and the following equalities hold:

−ṽH �−1 +
m�

i=1

ũi(yi + Ẽzi)(yi + Ẽzi)T = 0, (2.2)

2
m�

i=1

ũiH
�yiz

T

i
+ 2

m�

i=1

ũiH
�Ẽziz

T

i
= 0, and (2.3)

ũi((yi + Ẽzi)T H �(yi + Ẽzi)− k) = 0,∀i. (2.4)

For one moment let’s assume that ṽ = 0. Then (2.2) becomes
�

ũi(yi + Ẽzi)(yi + Ẽzi)T = 0,

and hence, by taking the inner product with H �, we see that (2.4) implies that
k

�
ũi = 0. Since at least one of the ũi’s is positive, this is a contradiction and
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we must have ṽ > 0. We can without loss of generality assume that ṽ = 1, and
conclude that any optimal solution (H �, Ẽ) must satisfy

−H �−1 +
�

ũi(yi + Ẽzi)(yi + Ẽzi)T = 0, (2.5)

which together with (2.4) implies
�

ũi = 1. (2.6)

Since H � � 0, equation (2.3) can be written as Y ŨZT +ẼZŨZT = 0, and hence
(2.5) becomes

H �−1 = Y ŨY T + Y ŨZT ẼT + ẼZŨY T + ẼZŨZT ẼT

= Y ŨY T − ẼZŨZT ẼT . (2.7)

Let K̃ := Y ŨY T −ẼZŨZT ẼT . Then it is easy to check that (ũ, K̃) is a feasible
solution for the dual problem, and that strong duality holds for the solution pair
H̃ and (ũ, K̃). So strong duality must hold for any pair of optimal solutions H
and (u,K). Hence conditions (a)− (c) are both necessary and sufficient. ��

Note that, by the strict convexity of the function − ln det, the HY Y -part of
the optimal solution H of (P ) is unique, and hence by the theorem, so is the
K part of the dual solution. However, there may be several optimal u’s, and
there may be several optimal E’s for (P �) (and H’s for (P )). Indeed, as we show
below, for any nonnegative u there may be several associated matrices E, but
there is a unique associated K = K(u), which is defined as is K̃ in the proof
above.

Lemma 2.3 Let u be dual feasible (nonnegative with components adding to

one). Then:

a) There exists E satisfying

EZUZT = −Y UZT ; (2.8)

b) K(u) := Y UY T −EZUZT ET
is independent of which E satisfying (2.8)

is chosen; and

c) XUXT − K̄ is positive semidefinite iff K � K(u).

Proof: a) Suppose not. Then there is some q with ZUZT q = 0 but Y UZT q
nonzero. But then

0 ≤
�

q
p

�T �
ZUZT ZUY T

Y UZT Y UY T

� �
q
p

�

= qT ZUZT q + 2pT Y UZT q + pT Y UY T p,

which is negative for p a sufficiently small negative multiple of Y UZT q, a
contradiction.
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b) Suppose E and E� satisfy (2.8). Then we have (E − E�)ZUZT = 0 and
hence

EZUZT ET − E�ZUZT (E�)T = (E − E�)ZUZT E� + EZUZT (E − E�)T = 0,

so that K(u) is uniquely defined.
c) For any q and p, and any E satisfying the equation in (a),

�
q
p

�T

(XUXT − K̄)
�

q
p

�T

=
�

q
p

�T ��
ZUZT ZUY T

Y UZT Y UY T −K

�� �
q
p

�T

=
�

q
p

�T �
ZUZT −ZUZT ET

−EZUZT EZUZT E

� �
q
p

�T

+
�

q
p

�T �
0 0
0 K(u)−K

� �
q
p

�T

= (q − ET p)T ZUZT (q − ET p) + pT (K(u)−K)p,

and the result follows. ��
The lemma implies that, for any dual feasible u, we can assume without loss

of generality that K = K(u), because the latter is feasible and yields at least
as good an objective value. We therefore write g(u) for g(u,K(u)), abusing
notation slightly. It is easy to see that g is concave on the set of feasible u’s.
If u and u� are dual feasible, and ū := (1 − λ)u + λu� for 0 ≤ λ ≤ 1, then
(ū, (1 − λ)K(u) + λK(u�)) is feasible in (D), and hence g(ū) ≥ ln det((1 −
λ)K(u) + λK(u�)). The result now follows from the concavity of ln det. The
problem of maximizing g(u,K(u)) subject to u lying in the unit simplex is the
formulation used earlier for the Dk-optimal design problem: see, e.g., Atwood
[3] or Silvey and Titterington [11].

We have seen above two definitions of the axis matrix E: one from the primal
problem (P ), E = H−1

Y Y
HT

ZY
, and one from a dual feasible solution as in (2.8).

We now show that the first notion implies the second when feasible solutions
H and u satisfy optimality condition (a): H • (XUXT − K̄) = 0. (Here K̄ is
defined using K = K(u).)

Indeed, if this equation holds, it also holds when HZZ is replaced by
ET HY Y E, where E = H−1

Y Y
HT

ZY
, which maintains positive semidefiniteness.

But then

0 = (
�

ET

I

�
HY Y [E I]) •

�
ZUZT ZUY T

Y UZT Y UY T −K

�

= HY Y • ([E I]
�

ZUZT ZUY T

Y UZT Y UY T −K

� �
ET

I

�
).

Since HY Y is positive definite and the second matrix above is positive
semidefinite, the latter must be zero. This then implies (e.g., by considering
the positive semidefinite square root of XUXT − K̄) that

[E I]
�

ZUZT ZUY T

Y UZT Y UY T −K

�
= 0,
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which implies (2.8).

Definition 2.1 We call a dual feasible point (u,K,E), i.e., u ≥ 0, eT u = 1,
Y UZT = −E(ZUZT ) and K = Y UY T − EZUZT ET � 0, �-primal feasible
if (yi + Ezi)T K−1(yi + Ezi) ≤ (1 + �)k for all i, and say that it satisfies the

�-approximate optimality conditions or it is an �-approximate optimal solution
if moreover (yi + Ezi)T K−1(yi + Ezi) ≥ (1− �)k whenever ui > 0.

Lemma 2.4 Given a dual feasible solution (u,K,E) which is �-primal feasible,

we have 0 ≤ g∗ − g(u) ≤ k ln(1 + �), where g∗ is the optimal objective function

value of (D) and g(u) := g(u,K).

Proof: The �-primal feasibility implies that ((1 + �)−1K−1, E) is feasible for
the primal problem (P �). Then by weak duality we have

0 ≤ g∗ − g(u) ≤ f̄((1 + �)−1K−1, E)− ln detK = k ln(1 + �).

��

3 The algorithm

In the following two sections, we will assume that u and u+ satisfy the following
assumption:

Assumption 3.1 The dual feasible variable u satisfies ZUZT � 0 where U :=
Diag (u).

(We remark that the rank deficiency of ZU∗ZT for the optimal solution u∗

does not contradict this assumption’s holding at all iterations, although some
numerical instability might be expected.)

We will show that this assumption is not too restrictive by proposing a
method for dealing with the rank-deficient case in Section 5. (Note that Atwood
[3] suggests just reducing ui to a very small positive value if making it zero during
the algorithm would lead to rank deficiency.)

Using this assumption and the discussion in the previous section, we see that
each dual feasible solution u is associated with a unique dual feasible variable
K = K(u) = Y UY T − Y UZT (ZUZT )−1ZUY T and a unique axis matrix E =
E(u) = −(Y UZT )(ZUZT )−1. As above, we will use g(u) instead of g(u,K).
We can now motivate and describe our algorithm.

3.1 Updating variances

As shown in Section 8.2 of the appendix, the objective function g of (D) has
gradient

ω(u) := ∇g(u) =
�
(yi + Ezi)T K−1(yi + Ezi)

�m

i=1
. (3.9)

If we make an update such as

u+ := (1− τ)u + τej , (3.10)
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where ej denotes the jth unit vector, rank-one update formulae lead to cheap
updates of the objective function value and the gradient as we will discuss.
Please note that the algebraic details of the derivations in this section are
presented in the appendix (see Section 8.2) for the sake of brevity; notation is
listed in Section 8.1. Let ξi(u) := xT

i
(XUXT )−1xi and ζi(u) := zT

i
(ZUZT )−1zi.

First, as proved in Lemma 8.1, any dual feasible solution u satisfies the following
equality

ξi(u) = ωi(u) + ζi(u), i = 1, . . . ,m. (3.11)

(Those readers familiar with the MVEE problem will notice that the MVEE
problem is a special case in which we have k = n, ω(u) = ξ(u) and ζ(u) = 0.)
Now let λ := τ

1−τ
and µ := λ

1+λζj(u) ; then we have

(ZU+ZT )−1 =
1

1− τ
((ZUZT )−1 − µ(ZUZT )−1zjz

T

j
(ZUZT )−1), (3.12)

E+ = E − µ(yj + Ezj)((ZUZT )−1zj)T , (3.13)

and

K+ = (1− τ)(K + µ(yj + Ezj)(yj + Ezj)T ). (3.14)

This leads to

ln detK+ = ln detK − k ln(1 + λ) + ln(1 + µωj(u)), (3.15)

whose derivative is

∂ ln detK+

∂λ
=

−k

(1 + λ)(1 + λζj(u))(1 + λξj(u))

�
aλ2 − 2bλ + c

�
,

(3.16)

where a := ζj(u)ξj(u) ≥ 0, b := −ζj(u)− ωj(u)
2 + ωj(u)

2k
≤ 0, and c := 1− ωj(u)

k
.

The multiplier on the left of the quadratic is negative for all feasible values of
λ. We can find the best step size τ∗ (or λ∗) by investigating the roots of the
quadratic equation aλ2 − 2bλ + c = 0 and the boundary condition (λ∗ ≥ −uj)
arising from the nonnegativity of the dual feasible solutions. Once we determine
the step size τ , we can find ω(u+) and ζ(u+) cheaply (in O(mn) work) from

ωi(u+) =
1

1− τ

�
ωi(u)− ηω2

ij
(u)− 2ηζij(u)ωij(u) + ηµωj(u)ζ2

ij
(u)

�
,

and

ζi(u+) =
1

1− τ

�
ζi(u)− µζij(u)2

�
, (3.17)

where η := λ

1+λξj(u) , ξij(u) := xT

i
(XUXT )−1xj , ζij(u) := zT

i
(ZUZT )−1zj and

ωij(u) := (yi + Ezi)T K−1(yj + Ezj). For this, we need only compute inner
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products once we have (XUXT )−1xj , (ZUZT )−1zj , and K−1(yj + EZj), all of

which are easy to obtain if we maintain a Cholesky factor L =
�

LZZ 0
LY Z LY Y

�

of XUXT , since then LZZ is a Cholesky factor of ZUZT and LY Y of K.
Note that (3.17) gives in particular

ζj(u+) =
(1− µζj(u))ζj(u)

1− τ
=

(1 + λ)ζj(u)
1 + λζj(u)

(3.18)

and it is easy to see that similar arguments lead to

ξj(u+) =
(1 + λ)ξj(u)
1 + λξj(u)

. (3.19)

3.2 Algorithm with away steps

Consider the following Frank-Wolfe type algorithm:

Algorithm 1: Computes an �-approximate optimal solution for (D).
Input: X ∈ IRn×m, k ∈ {1, . . . , n} and � > 0.
Step 0. Initialize u = e/m. Compute K, E, ω(u), and ζ(u).
Step 1. Find s := arg max{ωi(u)− k}, t := arg min{ωi(u)− k : ui > 0}.

If ωs(u)− k ≤ �k and ωt(u)− k ≥ −�k,
STOP: u is an �-approximate optimal solution.

Else,

if ωs(u)− k > k − ωt(u), go to Step 2;
else, go to Step 3.

Step 2. Replace u by u+ := (1− τ)u + τes, where τ > 0 is chosen as in
Section 3.1 to maximize g. Go to step 4.

Step 3. Replace u by u+ := (1− τ)u + τet, where now τ is chosen from
negative values to maximize g subject to u+ remaining feasible.

Step 4. Update K, E, ω(u), and ζ(u). Go to Step 1.

The algorithm starts with a feasible dual solution u = e/m and stops when
an �-approximate optimal solution is found. Theoretically, we are able to prove
that the initial solution described above is not far from the optimal one in
some sense. In practice, using the procedure described by [7] provides better
initial solutions but without any performance guarantee. Until an �-approximate
optimal solution is found, a Frank-Wolfe type step such as (3.10) is taken at
each iteration (Steps 2,3, and 4 above). At each iteration one of the m vertices
of the unit simplex is chosen and the new solution is obtained by either moving
towards (called an increase or add step) or away from (called a decrease or
drop step) this vertex. (Away steps were introduced by Wolfe [13].) There
are alternative ways to choose the vertex. Algorithm 1 picks one of the two
vertices which maximize or minimize a linear approximation to g. (Choosing
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one of these two vertices has both theoretical and practical advantages as we will
discuss later.) Once this decision is made, the best step size is found by a line
search on the line segment joining our current iterate to the optimal solution of
the linearized problem. Alternatively, we can calculate the improvement in the
objective function value g for each vertex and choose the best one. This version
will be referred as Algorithm 1ALL. We will discuss the practical implications
of these decisions in Section 6.

4 Convergence Analysis of the Algorithm

We discuss the global and local convergence properties of the algorithm in the
next two subsections.

4.1 Global convergence of the algorithm

The following lemma will be very useful in our analysis.

Lemma 4.1 For any dual feasible solution u satisfying Assumption 3.1, we

have

m�

i=1

uiωi(u) = k. (4.20)

Proof: Using (3.11)

m�

i=1

uiωi(u) =
m�

i=1

ui (ξi(u)− ζi(u))

=
m�

i=1

uiξi(u)−
m�

i=1

uiζi(u)

=
m�

i=1

uix
T

i
(XUXT )−1xi −

m�

i=1

uiz
T

i
(ZUZT )−1zi

= XUXT • (XUXT )−1 − ZUZT • (ZUZT )−1

= n− (n− k) = k. ��

If we look closely at the algorithm described in the previous section, we can
identify four different types of iterations. Let ul be the dual feasible solution at
hand at iteration number l, ejl be the vertex that we use in our update and τl

be the step size associated with this update. We refer to iteration l as

- an increase step if ul

jl
> 0 and τl > 0,

- an add step if ul

jl
= 0 and τl > 0,

- a decrease step if ul

jl
> 0 and

−u
l
jl

1−u
l
jl

< τl < 0, and
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- a drop step if ul

jl
> 0 and τl =

−u
l
jl

1−u
l
jl

.

Note that after a drop step we have ul+1
jl

= 0. In a drop step, we may not be able
to improve the objective function as much as we desire. Fortunately, the number
of drop steps is bounded above by the number of add steps plus a constant (m,
the number of positive components of the initial solution), and hence studying
only the first three types of steps will be enough to obtain convergence results.

The following lemma gives a bound on the improvement obtained at each
iteration, assuming that all the quantities ξi(ul) are uniformly bounded by some
positive C at all iterations. The global convergence estimate then depends on
this constant C. In practice it appears that these quantities are bounded by a
reasonable constant; unfortunately, we have not been able to establish global
convergence without this assumption.

Lemma 4.2 Let ul
be the dual solution at the lth iteration of the algorithm

and gl := g(ul). Assume that ul
satisfies Assumption 3.1 for all l = 1, 2, . . . Let

�l be the smallest number such that ul
satisfies the �l-approximate optimality

conditions. If for some positive constant C

ξ(ul) ≤ Ce for all l = 1, 2, . . . ,

then we have

g0 > −∞, �0 ≤ m− 1, (4.21)

∆l = gl+1 − gl ≥ ln(1 + ĉ�2
l
), l = 0, 1, . . . , (4.22)

whenever l is not a drop step, where ĉ = ĉ(C) > 0, and

δl = g∗ − gl ≤ k ln(1 + �l), l = 0, 1, . . . . (4.23)

Proof: From Lemma 4.1 we have

1
m

m�

i=1

ωi(u0) = k.

By definition of �0,

k(1 + �0) = max{ωi(u0)|i = 1, ..,m} ≤ km,

or
k(1− �0) = min{ωi(u0)|i = 1, ..,m} ≥ 0,

which implies �0 ≤ max{1, m− 1}, and hence (4.21) holds.
For simplicity of notation, let j := jl. In order to prove (4.22), we can use

(3.18) and (3.19) to get

ωj(ul+1) = ξj(ul+1)− ζj(ul+1)

=
(1 + λl)ξj(ul)
1 + λlξj(ul)

− (1 + λl)ζj(ul)
1 + λlζj(ul)

=
(1 + λl)ωj(ul)

(1 + λlξj(ul))(1 + λlζj(ul))
. (4.24)
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Now, let’s assume that iteration l is an add or increase step, i.e., j =
arg maxi ωi(ul) and ωj(ul) = (1 + �l)k, so that λ̂l (the optimal step length)
is positive. Then for any λl such that 0 ≤ λl ≤ λ̂l,

k ≤ (1 + λl)ωj(ul)
(1 + λlξj(ul))(1 + λlζj(ul))

≤ (1 + λl)ωj(ul)
(1 + λlζj(ul))2

. (4.25)

Therefore we have

(1 + λlζj(ul))2 ≤ (1 + λl)ωj(ul)/k = (1 + λl)(1 + �l),

which gives

1 + λlζj(ul) ≤ (1 + λl)
√

1 + �l. (4.26)

Note that since �l is bounded above ((1 + �l)k = ωj(ul) ≤ ξ(ul) ≤ C) we can
find a constant c1 > 0 such that

√
1 + �l ≥ 1 + c1�l, and using this and (3.15),

we obtain (for λl < 1/k)

gl+1 − gl = ln{(1 + λl)−k

�
1 +

λlωj(ul)
1 + λlζj(ul)

�
}

≥ ln{(1− kλl)
�

1 +
λlk(1 + �l)

(1 + λl)
√

1 + �l

�
}

= ln{(1− kλl)
�

1 +
λlk

√
1 + �l

1 + λl

�
}

≥ ln{(1− kλl)
�

1 +
λlk(1 + c1�l)

1 + λl

�
}. (4.27)

Now choose λ� and c0 positive and small enough such that for all 0 ≤ λ ≤ λ�

the following inequality holds:

(1− kλ)(1 +
λk(1 + c1�l)

1 + λ
) ≥ 1 + λc0�l. (4.28)

For λl = min{λ̂, λ�}, this leads to the following bound:

gl+1 − gl ≥ ln(1 + λc0�l). (4.29)

Note that (4.28) can be rewritten as

(1− kλ)(1 + λ + λk + λkc1�l) ≥ (1 + λc0�l)(1 + λ), or
λkc1�l − kλ2 − k2λ2 − k2λ2c1�l ≥ λc0�l + λ2c0�l, or

λ2(c0�l + k + k2 + k2c1�l) + λ(c0�l − kc1�l) ≤ 0. (4.30)
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We can assume that λ� = −c0�l+kc1�l
c0�l+k+k2+k2c1�l

and choose c0 < kc1, and have the
following bound for some constant c2:

λ� ≥ c2�l > 0. (4.31)

On the other hand, since λ̂ is the optimal step length we have

k = ωj(ul+1) =
(1 + λ̂)ωj(ul)

(1 + λ̂ξj(ul))(1 + λ̂ζj(ul))

≥ (1 + λ̂)ωj(ul)
(1 + λ̂ξj(ul))2

.

Therefore we have

(1 + λ̂ξj(ul))2 ≥ ωj(ul)/k = 1 + �l,

which leads to

1 + λ̂ξj(ul) ≥ 1 + c1�l

and hence

λ̂ ≥ c1

ξj(ul)
�l ≥

c1

C
�l = c3�l. (4.32)

Equations (4.31) and (4.32) can be combined to obtain

λl = min{λ�, λ̂} ≥ c4�l > 0, (4.33)

where c4 = min{c2, c3}. This inequality together with (4.29) gives (4.22)
whenever iteration l is an add or increase step. The proof of the case where
iteration l is a decrease step is very similar and presented in Section 8.3 of the
appendix.

Finally, (4.23) follows from Lemma 2.4. ��

Lemma 4.3 Let � ∈ (0, 1). Under the assumptions of Lemma 4.2, Algorithm 1

obtains an �-approximate optimal solution in at most

L(�) = O(m + k(�−1 + ln k + ln lnm)) (4.34)

iterations.

Note that the “big oh” here and in Theorem 4.1 below contains constants that
depend on C in Lemma 4.2, which relies on Assumption 3.1.
Proof: We will first show that

L(1) := min{l : �l ≤ 1} = O(k(ln k + ln lnm)). (4.35)

14



First note that as long as �l ≥ 1, the lth iteration of Algorithm 1 can only be
an add or increase step. Furthermore, �l ≥ 1, (4.22), and (4.23) imply that

δl − δl+1 = ∆l ≥ ln(1 + ĉ�2
l
) ≥ ln(1 + ĉ�l) ≥ c̃ ln(1 + �l) ≥

c̃

k
δl

for some c̃ = C̃(c) = min{1, log2(1 + ĉ)} > 0. Hence

δl+1 ≤ (1− c̃

k
)δl,

which implies

δl ≤ δ0(1−
c̃

k
)l ≤ δ0e

−c̃l/k. (4.36)

From (4.21) and (4.23), we have

δ0 ≤ k ln(1 + �0) ≤ k lnm. (4.37)

�l ≥ 1 also implies that

δl ≥ ∆l ≥ c̄ > 0, (4.38)

where c̄ = ln(1 + ĉ). Hence from (4.36), (4.37) and (4.38), we get

L(1) ≤ k

c̃
ln

k lnm

c̄
≤ O(k(ln k + ln lnm)).

Now assume that �l ≤ 1, and let h(�l) be the number of add, increase, and
decrease steps required to obtain an �l/2-approximate optimal solution starting
with an �l-approximate optimal solution. As long as �l+h ≥ �l/2 and l + h is an
add, increase, or decrease step, we also have

∆l+h ≥ ln(1 + ĉ(�l/2)2) ≥ ĉ1

8
�2
l

> 0,

where ĉ1 := min{4, ĉ}. Since we have δl ≥ δl+1 ≥ . . . , and

δl ≤ k ln(1 + �l) ≤ k�l,

we obtain the following bound:

h(�l) ≤
δl

ĉ1�2l /8
≤ 8k

ĉ1�l

. (4.39)

Applying this argument repeatedly, we conclude that we need at most

H(�) = h(�l) + h(�l/2) + . . . + h(�l/2�log �l/��−1)

≤ 8k

ĉ1

�
1
�l

+
2
�l

+ . . . +
2�log �l/��−1

�l

�
≤ 16k

ĉ1�
= O

�
k

�

�
(4.40)
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Figure 1: Behavior of the algorithm for (m, n, k) = (10000, 100, 80).

add, increase, and decrease iterations to obtain an �-approximate optimal
solution starting with an �l-approximate optimal solution where �l ∈ (0, 1].
Since the number of drop steps is bounded above by the number of add steps
plus m (the number of positive components of the initial solution u0), (4.34) is
immediate. ��

We can implement this algorithm using rank-one update formulae so that
each iteration takes O(nm) arithmetic operations and comparisons. Hence the
following theorem follows from Lemma 4.3.

Theorem 4.1 Let � ∈ (0, 1). Under the assumptions of Lemma 4.2, Algorithm

1 finds an �−approximate optimal solution to the MAEC problem in

N(�) = O(knm(�−1 + ln k + ln lnm) + nm2) (4.41)

arithmetic operations and comparisons.

4.2 Local convergence of the algorithm

In this section, we will show that Algorithm 1 is locally linearly convergent,
i.e., the number of iterations grows with O(ln �−1) not O(�−1) asymptotically
under certain assumptions. The typical behavior of the algorithm as illustrated
in Figure 1 illustrates this property. Unfortunately, this bound depends on the
data of the problem as well as the dimensions and the constant C in Lemma
4.2, and so does not provide a global complexity bound better than that above.

We use the following perturbation of (P �):

minH��0 f̄(H �, E) := − ln detH �

(P �(κ)) (yi + Ezi)T H �(yi + Ezi) ≤ k + κi, i = 1, . . . ,m.

Given a dual feasible u which with its associated K = K(u) and E = E(u)
satisfies the γ-approximate optimality conditions, let H � = K−1 and define
κ := κ(u, γ) ∈ IRm by

κi :=
�

γk if ui = 0
(yi + Ezi)T K−1(yi + Ezi)− k else.
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Observe that each component of κ has absolute value at most γk, and that
this property may fail if we merely assume that (u,K,E) is γ-primal feasible.
Moreover using (4.1),

uT κ =
�

i:ui>0

uiκi = uT ω(u)− keT u = k − k = 0. (4.42)

Lemma 4.4 Suppose (u,K,E) satisfies the γ-approximate optimality condi-

tions. Then (H �, E) is optimal in (P �(κ(u, γ))).

Proof: We note that (H �, E) is feasible. Furthermore, u provides the required
vector of Lagrange multipliers that satisfy the necessary and sufficient conditions
for optimality given in the proof of Theorem 2.1 for (P �(κ(u, γ))). ��

As discussed in Section 2 and proved in Lemma 2.1, there is an equivalent
convex problem, say (P (κ)), to (P �(κ)). Let φ(κ) denote the value function, the
optimal value of (P (κ)). Then φ is convex, and if u� is any vector of Lagrange
multipliers for the optimal solution of (P (κ)), then u� is a subgradient of φ at κ.
In particular, if u∗ is any vector of Lagrange multipliers for the optimal solution
of (P ), then u∗ is a subgradient of φ at 0.

For any u satisfying the γ-approximate optimality conditions and κ :=
κ(u, γ),

g(u) = f̄(K−1, E) = φ(κ) ≥ φ(0) + uT

∗ κ
= g∗ + (u∗ − u)T κ
≥ g∗ − �u− u∗��κ�.

(4.43)

Here the last equality follows from (4.42). We have already noted that �κ� ≤
k
√

mγ. To obtain an improvement on Lemma 4.2, we would like to prove that

�u− u∗� ≤ L�κ� ≤ Lk
√

mγ (4.44)

whenever �κ� is sufficiently small. We will use the following assumption:

Assumption 4.1 The strong second-order sufficient condition for local opti-

mality and the linear independence of the active constraints hold for the optimal

solution (H �∗, E∗) for problem (P �) and the corresponding multipliers u∗.

We have shown that the optimal solutions for problem (P �(κ)) and points
that satisfy the corresponding KKT system coincide (see the proof of Theorem
2.1). If Assumption 4.1 holds, we know that u∗, the vector of multipliers for
the optimal solution, is unique. Furthermore, the set-valued map SKKT , which
maps a perturbation vector κ to the set of optimal solutions for problem (P �(κ))
(and corresponding solutions for (P (κ))) and their corresponding multipliers, is
locally single-valued and locally upper Lipschitz around (0, (H �∗, E∗), u∗) (see
Robinson [9] or Theorem 4.2 of Dontchev and Rocakfellar [4]). Also, the set-
valued map XKKT , which maps a perturbation vector κ to the set of optimal
solutions is single-valued around (0, (H �∗, E∗)) (see Corollary 3.5 in Dontchev
and Rocakfellar [4]). There exist neighborhoods V around 0 and W1×W2 around
((H �∗, E∗), u∗), such that the SKKT map is single-valued in W1 × W2 for all
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κ ∈ V and the XKKT map is single-valued in W1 for all κ ∈ V . Therefore, when
γ is small enough so that κ lies in V , there must exist a pair of optimal solutions
(Ĥ �, Ê) for (P �(κ)) (and also Ĥ for (P (κ))) and multipliers û such that (Ĥ �, Ê)
is the only solution in W1 for (P �(κ)) and ((Ĥ �, Ê), û) is the only solution-
multiplier pair in W1 ×W2. If û = u, the local Lipschitz property of the SKKT

map provides that �u− u∗� ≤ L�κ� ≤ Lk
√

mγ and we are done. Now assume
that û �= u. There are two cases, (H �, E) = (Ĥ �, Ê) and (H �, E) �= (Ĥ �, Ê). We
will show that both cases lead to a contradiction and hence û must be equal
to u. When (H �, E) �= (Ĥ �, Ê), we can come up with two different solutions
H and Ĥ for the convex problem (P �(κ)) which are both optimal. Then any
convex combination of the points H and Ĥ must be optimal, too. We can find
an optimal solution H̃ arbitrarily close to Ĥ; hence we can find an optimal
solution (H̃ �, Ẽ) for (P �(κ)), which is arbitrarily close to (Ĥ �, Ê). This violates
the local single-valuedness property of the XKKT map at (Ĥ �, Ê), so we must
have (H �, E) = (Ĥ �, Ê). On the other hand, if we have two different vectors of
multipliers, u and û, both corresponding to the primal optimal solution (H �, E),
then we can find another vector of multipliers, say ũ, arbitrarily close to û. This
violates the local uniqueness property of the SKKT map and hence leads to a
contradiction. Hence, we have shown that û = u whenever Assumption 4.1
holds and (4.44) is valid.

From (4.44) and (4.43), we conclude

Proposition 4.1 If Assumption 4.1 holds, there is some constant M > 0
(depending on the data of problem (P )) such that, whenever (u,K,E) is a γ-

approximate optimal solution for some sufficiently small γ, we have

g∗ − g(u) ≤ Mγ2. (4.45)

Let h and H be defined as in the proof of Lemma 4.3. Applying Proposition
4.1 instead of Lemma 4.2 in (4.39), we obtain

h(γ) ≤ Mγ2

ĉγ2/8
=

8M

ĉ
for sufficiently small γ, (4.46)

and this yields, using the argument above (4.40), the existence of a constant
Q > 0 with

H(�) ≤ Q +
16M

ĉ
ln(1/�) for sufficiently small �.

We therefore have

Theorem 4.2 If Assumption 4.1 holds, then there exist data-dependent con-

stants Q̃ and M̃ such that Algorithm 1 requires at most Q̃+M̃ ln(1/�) iterations

to obtain an �-approximate optimal solution.

5 Rank-Deficient Case

As we have briefly discussed above, providing a complete algorithm for the
MAEC problem is problematic. Assume we are at the lth iteration with
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ZU l−1ZT nonsingular, and produce a new iterate ul with ZU lZT singular (we
will show below that this can only occur at a drop iteration). It is then far
from clear how we can continue the algorithm, because our update formulae in
Section 3 assume nonsingularity of ZUhZT for h = 1, 2, . . .. In this section we
show how the algorithm can be modified to deal with this case.

Lemma 5.1 Given Z = [z1, . . . , zm] ∈ IRr×m
, range (ZUZT ) = span ({zi : ui >

0}). Hence rank (ZUZT ) = dim span ({zi : ui > 0}).

Proof: It is a direct consequence of the singular value decomposition that for
any matrix Z̃ we have range (Z̃) = range (Z̃Z̃T ). Let Z+ be a matrix whose
columns are the elements of the set {zi : ui > 0} and U+ (U+,1/2) be a diagonal
matrix with (the square roots of) the positive ui’s on the diagonal. Substituting
Z̃ = Z+U+,1/2 gives the desired result since

range (ZUZT ) = range (Z+U+Z+T ) = range (Z+U+,1/2)
= range (Z+) = span ({zi : ui > 0}). (5.47)

��
The result above shows that difficulties only occur at drop iterations. To

simplify the discussion, we rename ul−1 as û and let u = 1
1−ûd

(û− ûded), so that
xd is dropped. We suppose ZUZT is singular, so that there are many solutions
to Y UZT = −EZUZT . However, one is particularly easy to find:

Lemma 5.2 Let Ê satisfy Y ÛZT + ÊZÛZT = 0. If rank (ZÛZT ) = r and

rank (ZUZT ) = r − 1, then we have the following equalities:

i. yd + Êzd = 0;

ii. Y UZT + ÊZUZT = 0;

iii. K(u) = 1
1−ûd

K(û); and

iv. ûdζd(û) = 1.

Proof: First observe that û = (1 − ûd)u + ûded. Since ZUZT is singular and
XUXT � 0, there exists a vector w �= 0 ∈ IRr such that ZUZT w = 0 and
Y UZT w = 0. Then we have

ûd(yd + Êzd)zT

d
w = ûdydz

T

d
w + ûdÊzdz

T

d
w

= (1− ûd)Y UZT w + ûdydz
T

d
w + . . .

(1− ûd)ÊZUZT w + ûdÊzdz
T

d
w

= Y ÛZT w + ÊZÛZT w = (Y ÛZT + ÊZÛZT )w = 0.

Since ûd > 0, we must have either yd + Êzd = 0 or zT

d
w = 0. Assume that

zT

d
w = 0: then we have ZÛZT w = ((1 − ûd)ZUZT + ûdzdzT

d
)w = 0, which
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contradicts the nonsingularity of ZÛZT . Hence we must have yd + Êzd = 0 as
claimed in (i). Y ÛZT + ÊZÛZT = 0 and (i) imply that

Y UZT + ÊZUZT =
1

1− ûd

(Y ÛZT + ÊZÛZT − ûdydz
T

d
− ûdÊzdz

T

d
)

=
1

1− ûd

(Y ÛZT + ÊZÛZT − ûd(yd + Êzd)zT

d
) = 0,

from which we get (ii). Similarly, we have

K(u) =
1

1− ûd

(Y ÛY T + ÊZÛY T − ud(yd + Êzd)yT

d
)

=
1

1− ûd

(Y ÛY T + ÊZÛY T ) =
1

1− ûd

K(û),

which proves (iii). In order to prove (iv), we know that rank (ZUZT ) = r − 1
implies that det(ZUZT ) = 0. We have

det(ZUZT ) = (1− ûd)−r det(ZÛZT − ûdzdz
T

d
)

= (1− ûd)−r det(ZÛZT )(1− ûdζd(û)) = 0.

Since det(ZÛZT ) > 0, we must have (iv). Note that the reverse claim is also
correct, i.e., ûdζd(û) = 1 implies that ZUZT is singular. ��

This result can be generalized as follows:

Lemma 5.3 Let û be a dual feasible solution that satisfies rank (ZÛZT ) = r
with associated matrix Ê such that Y ÛZT + ÊZÛZT = 0. Define R(û) :=
{i : rank (ZÛZT − ûizizT

i
) < r} and suppose R ⊆ R(û) is such that σ :=

1−
�

i∈R
ûi > 0. Let u = 1

σ
(û−

�
i∈R

ûiei); then

i. Y UZT + ÊZUZT = 0 and

ii. K(u) = 1
σ
K(û).

Proof: The proof is very similar to that of the previous lemma. We have
yi + Êzi = 0 for all i ∈ R from Lemma 5.2, so that

Y UZT + ÊZUZT =
1
σ

(Y ÛZT + ÊZÛZT −
�

i∈R

ûi(yi + Êzi)zT

i
)

=
1
σ

(Y ÛZT + ÊZÛZT ) = 0,

which gives (i). Similarly,

K(u) =
1
σ

(Y ÛY T + ÊZÛY T −
�

i∈R

ui(yi + Êzi)yT

i
)

=
1
σ

(Y ÛY T + ÊZÛY T ) =
1
σ

K(û),
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and hence we get (ii). ��
Let u be the current iterate, and assume that we have û such that ZÛZT

is nonsingular and u = 1
σ
(û −

�
i∈R

ûiei) for some index set R ⊆ R(û) and
σ = 1−

�
i∈R

ûi. Also suppose E satisfies Y ÛZT + EZÛZT = 0. If R �= R(û),
it is immediate from Lemma 5.3 that replacing u by 1

σ
(û−

�
i∈R(û) ûiei) increases

ln det(K(u)), so we can assume that R = R(û). The lemma above shows that
much of the information required related to the current iterate u follows from
information for the associated vector û for which ZÛZT is nonsingular. We
refer to iterations where we drop points xd for d ∈ R as deferred updates since
we maintain information such as ω, ζ, K, etc., for the vector û, which is the
dual vector before dropping the points xd, d ∈ R.

Now, assume that we make an update of the form u+ = (1 − τ)u + τej . If
we set τ̂ = τσ

1−τ+τσ
, then the update û+ = (1 − τ̂)û + τ̂ ej will satisfy u+ =

1
σ+

(û+ −
�

i∈R
û+iei) where σ+ = 1 −

�
i∈R

ûi+ = σ

1−τ+τσ
. We can assume

that j /∈ R without loss of generality because j ∈ R implies that yj + Ezj = 0
which in turn implies ωj(û) = 0, and such a choice of j would never be made
by our algorithm. Let us assume for now that R(û+) = R.

Letting λ̂ = τ̂

1−τ̂
(which implies that λ̂ = σλ), and using the update formulae

in Section 3, we obtain

K(u+) =
(1− τ̂)

σ(1− τ̂) + τ̂

�
K(û) +

λ̂

1 + λ̂ζj(û)
(yj + Ezj)(yj + Ezj)T

�
.

We have

ln detK(u+) = ln detK(û)− k ln
�

σ(1− τ̂) + τ̂

1− τ̂

�
+ ln

�
1 +

λ̂ωj(û)
1 + λ̂ζj(û)

�

= ln detK(û)− k ln
�
σ + λ̂

�
+ ln

�
1 +

λ̂ωj(û)
1 + λ̂ζj(û)

�
,

whose derivative is

∂ ln detK(u+)
∂λ̂

= − k

σ + λ̂
+

1

1 + λ̂ωj(û)

1+λ̂ζj(û)

�
ωj(û)

1 + λ̂ζj(û)
− λ̂ζj(û)ωj(û)

(1 + λ̂ζj(û))2

�

= − k

σ + λ̂
+

ωj(û)
(1 + λ̂(ζj(û) + ωj(u)))(1 + λ̂ζj(û))

=
−k

(σ + λ̂)(1 + λ̂ζj(û))(1 + λ̂(ζj(û) + ωj(û)))

�
âλ̂2 − 2b̂λ̂ + ĉ

�
,

(5.48)

where â := ζj(û)(ζ(û) + ω(û)) ≥ 0, b̂ := −ζj(û) − ωj(û)
2 + ωj(û)

2k
≤ 0, and

ĉ := 1 − σωj(û)
k

. Note that this derivative at λ̂ = 0 is positive or negative
according as ĉ is negative or positive, or equivalently according as σωj(û) (which
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is ωj(u) = (yj + Ezj)T K(u)−1(yj + Ezj) by Lemma 5.3) is greater or less than
k, as in the full-rank case.

Now we can try to find the optimal step length that maximizes the objective
function value of the new iterate u+ as before. We need to be careful at this
point. If the choice of the vertex xj used in the update and the corresponding
optimal step length results in an increase, decrease, or drop iteration, then we
must have R(û+) = R(û) = R, and hence performing this update is the best
option we have available. (Note that a drop iteration cannot lose rank, because
we have already dropped all such points by our assumption that R = R(û).)
On the other hand, if the current update turns out to be an add iteration, we
may have R(û+) �= R and we can perform one of the deferred updates in the
list R at the same time as we perform the add iteration. As we discuss below,
an appropriate choice of step lengths then results in a new iterate u+ identical
to the current iterate u, but we will find a new û+ and a new matrix E+ which
satisfies Y U+ZT + E+ZU+ZT = 0. This feature allows the continued progress
of the algorithm.

Assume we would like to perform an add iteration in which ûj will be
increased from 0 to a positive value. This may result in a new iterate for
which at least one of the deferred updates, say that corresponding to dropping
xd, may be performed without violating the nonsingularity assumption. If this
is the case, we will consider a combined update which simultaneously adds xj

and drops xd, with d in the deferred update list R. Therefore updates of the
following form will be of interest:

û+ = (1− τ̂)
�

û− ûded

1− ûd

�
+ τ̂ ej

=
�

1− τ̂

1− ûd

�
û− (1− τ̂)ûd

1− ûd

ed + τ̂ ej .

Let λ̂ = τ̂(1−ûd)
1−τ̂

, so that we can write the update above as

û+ = (1− ûd + λ̂)−1(û− ûded + λ̂ej). (5.49)

Let us see when such a deferred drop can be made. This will be the case exactly
when the corresponding matrix ZÛZT + λ̂zjzT

j
− ûdzdzT

d
is nonsingular (since

the factor 1− ûd + λ̂ is always positive). Now we use

(ZÛZT + λ̂zjz
T

j
)−1 = (ZÛZT )−1 − λ̂(1 + λ̂ζj(û))−1(ZÛZT )−1zjz

T

j
(ZÛZT )−1

to see that the above matrix is nonsingular iff 1 �= ûdzT

d
(ZÛZT + λ̂zjzT

j
)−1zd =

ûdζd(û) − λ̂ûdζdj(û)2(1 + λ̂ζj(û))−1. Thus, using ûdζd(û) = 1, we see that
xd can be dropped exactly when ζdj(û) is nonzero. If all ζdj(û), d ∈ R,
are zero, we proceed with the add iteration without performing any deferred
updates. Suppose now that one of these quantities is nonzero. Then we choose
a corresponding d and update û as in (5.49). Note that Lemmas 5.1 and 5.3
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show that ZÛZT − ûdzdzT

d
− ûd�zd�zT

d� has rank r− 2 for any two indices d and
d� in R, so we can only perform at most one deferred update.

If û is updated as in (5.49), then we have

Y Û+Y T = (1− ûd + λ̂)−1(Y ÛY T − ûdydy
T

d
+ λ̂yjy

T

j
), (5.50)

Y Û+ZT = (1− ûd + λ̂)−1(Y ÛZT − ûdydz
T

d
+ λ̂yjz

T

j
), (5.51)

and

ZÛ+ZT = (1− ûd + λ̂)−1(ZÛZT − ûdzdz
T

d
+ λ̂zjz

T

j
). (5.52)

We would like to find a matrix E+ that satisfies E+ZÛ+ZT +Y Û+ZT = 0. Let
us assume that it can be chosen of the form E+ = E + pqT for some p ∈ IRk

and q ∈ IRr. Keeping in mind that EZÛZT = −Y ÛZT and yd + Ezd = 0 (see
Lemmas 5.3 and 5.2), we can find appropriate vectors p and q as follows. We
would like to satisfy:

E+ZÛ+ZT = −Y Û+ZT , or
(E + pqT )(ZÛZT − ûdzdz

T

d
+ λ̂zjz

T

j
) = −(Y ÛZT − ûdydz

T

d
+ λ̂yjz

T

j
), or

λ̂(yj + Ezj)zT

j
= −p(qT (ZÛZT − ûdzdz

T

d
+ λ̂zjz

T

j
)).

Setting p = yj + Ezj , and q = π(ZÛZT )−1zd, this holds as long as

−λ̂zj = πzd − ûdπζd(û)zd + λ̂πζdj(û)zj = λ̂πζdj(û)zj

where we have used ûdζd(û) = 1 since d ∈ R. This requires that π = − 1
ζdj(û) ,

and we have therefore found a matrix

E+ = E + pqT

= E − 1
ζdj(û)

(yj + Ezj)zT

d
(ZÛZT )−1,

which can be used in further arguments. Using again the fact that ûdζd(û) = 1
and also that yd + Ezd = 0, we get

K(û+) = Y Û+Y T + E+ZÛY T

= (1− ûd + λ̂)−1(Y ÛY T − ûdydy
T

d
+ λ̂yjy

T

j
+ . . .

(E + pqT )(ZÛY T − ûdzdy
T

d
+ λ̂zjy

T

j
))

= (1− ûd + λ̂)−1(K(û) + λ̂(yj + Ezj)yT

j
− . . .

1
ζdj(û)

(yj + Ezj)(−zT

d
E − ûdζd(û)yT

d
+ λ̂ζdj(û)yT

j
))

= (1− ûd + λ̂)−1(K(û) + λ̂(yj + Ezj)yT

j
− . . .

1
ζdj(û)

(yj + Ezj)((1− ûdζd(û))yT

d
+ λ̂ζdj(û)yT

j
))

= (1− ûd + λ̂)−1K(û). (5.53)
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Since xd will be dropped, it appears that we will have R+ = R − {d} which
yields σ+ = 1−

�
i∈R+

ûi+ = 1−τ̂

1−ûd
σ + τ̂ = σ+λ̂

1−ûd+λ̂
. Therefore we can write the

new objective function value as

ln detK(u+) = ln det
1

σ + λ̂
K(û)

= ln detK(û)− k ln(σ + λ̂), (5.54)

which is maximized at λ̂ = τ̂ = 0. However, if we choose τ̂ to be zero, we find
that ZÛ+ZT is singular. We deal with this situation by setting τ̂ positive, but
then as we will see letting xj be a deferred drop instead of xd.

As before, we can update ω(û+) cheaply:

ωi(û+) = (yi + E+zi)T K(û+)−1(yi + E+zi)

= (1− ûd + λ̂)
�

yi + (E − 1
ζdj(û)

(yj + Ezj)zT

d
(ZUZT )−1)zi

�T

K(û)−1

. . .

�
yi + (E − 1

ζdj(û)
(yj + Ezj)zT

d
(ZUZT )−1)zi

�

= (1− ûd + λ̂)
�

yi + Ezi −
ζdi(û)
ζdj(û)

(yj + Ezj)
�T

K(û)−1

. . .

�
yi + Ezi −

ζdi(û)
ζdj(û)

(yj + Ezj)
�

= (1− ûd + λ̂)

�
ωi(û)− 2ζdi(û)

ζdj(û)
ωij(û) +

ζ2
di

(û)
ζ2
dj

(û)
ωj(û)

�
. (5.55)

Furthermore we have

(ZÛ+ZT )−1 = (1− ûd + λ̂)(ZÛZT − ûdzdz
T

d
+ λ̂zjz

T

j
)−1

= (1− ûd + λ̂)((ZÛZT )−1 +
1 + λ̂ζj(û)

λ̂ζ2
dj

(û)
(ZÛZT )−1zdz

T

d
(ZÛZT )−1

. . .− 1
ζdj(û)

(ZÛZT )−1(zdz
T

j
+ zjz

T

d
)(ZÛZT )−1), (5.56)

which leads to

ζi(û+) = (1− ûd + λ̂)

�
ζi(û) +

(1 + λ̂ζj(û))ζ2
di

(û)
λ̂ζ2

dj
(û)

− 2ζdi(û)ζij(û)
ζdj(û)

�
.(5.57)

We have û+jζj(û+) = τ̂ (1−ûd+λ̂)

λ̂
= 1, which implies that j ∈ R(û+). Therefore

we can perform a combined step in which xj is added while xd is dropped
and add j to the deferred update list. The new deferred update list R+ =
R−{d}∪{j} satisfies R+ = R(û+) since we cannot have any more new deferred
updates. The choice of λ̂ is irrelevant because the new feasible point u+ has as its
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components not in R+ scalings of those of û− ûded + λ̂ej and so is independent
of λ̂ and in fact equal to u. We prefer to use λ̂ = ûd since it simplifies the
calculations (see (5.49)) and σ is unchanged.

Based on this discussion we can modify Algorithm 1 as follows:

Algorithm 2: The modified algorithm that computes an
�-approximate optimal solution for (D).

Input: X ∈ IRn×m, k ∈ {1, . . . , n} and � > 0.
Step 0. Initialize u = e/m, û = u, R = ∅ and σ = 1,

compute K(û), E(û), ω(û), and ζ(û),
and set ω(u) = ω(û), and ζ(u) = ζ(û).

Step 1. Find s := arg maxi{ωi(u)− k}, t := arg mini{ωi(u)− k : ui > 0}.
If ωs(u)− k ≤ �k and ωt(u)− k ≥ −�k,

STOP: u satisfies the �-approximate optimality conditions.
Step 2. If ωt(u) = 0, let D = {i : ûiζi(û) = 1},

and set R = R ∪D, σ = 1−
�

i∈R
ûi, u = σ−1û, u(R) = 0,

ω(u) = σω(û), and ζ(u) = σζ(û). Go to Step 1.
Step 3. If ωs(u)− k < k − ωt(u), set j = t and go to Step 6. Else j = s.
Step 4. If ûj = 0 and R �= ∅, calculate ζd�j(û) for d� ∈ R,

and find d := arg maxd�∈R{|ζd�j(û)|}.
If ζdj(û) = 0, go to Step 5.
Otherwise, replace û by û− ûded + ûdej ,
set R = R− {d} ∪ {j}, update E(û), ω(û), and ζ(û),
and set ω(u) = σω(û) and ζ(u) = σζ(û). Go to Step 1.

Step 5. Replace û by û+ := (1− τ̂)û + τ̂ ej , where τ̂ > 0 is chosen as in
Section 5 to maximize g(u). Go to Step 7.

Step 6. Replace û by û+ := (1− τ̂)û + τ̂ ej , where now τ̂ is chosen from
negative values to maximize g(u) subject to û+ remaining feasible.

Step 7. Update K(û), E(û), ω(û), and ζ(û),
set σ = 1−

�
i∈R

ûi, u = σ−1û, u(R) = 0,
ω(u) = σω(û) and ζ(u) = σζ(û). Go to Step 1.

This algorithm also starts with a dual feasible solution. We can use any
initial solution u as long as ZUZT � 0. A good candidate is u = e/m since
the zi’s span Rr. Each feasible solution vector u is associated with a lifted
solution vector û satisfying u = σ−1û and uR = 0. R is the set of deferred
updates accumulated since the first iteration and σ is the weight of the remaining
components of û. We work with û for which ZÛZT � 0 by construction,
although the solution that we are interested in is u for which ZUZT may be
singular. As proved in Lemma 5.3, û provides all the information we need in
order to calculate the variance and the objective function associated with u, so
that we can figure out the next iterate and step length which maximizes g(u)
while taking a Frank-Wolfe step such as u+ = (1 − τ)u + ej (or equivalently,
û+ = (1 − τ̂)û + τ̂ ej). At each iteration, we check whether we can add more
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deferred drop iterations, since each will increase g(u). In some of the iterations,
we are able to make a step where we exchange one of the points in the deferred
set R with a new point. Although this step does not improve the objective
function, it changes the axis of the cylinder at hand which may lead to better
iterates. The following example demonstrates how the algorithm works on a
toy problem. The cylinders generated at each iteration of the algorithm are
illustrated below in Figure 2. Note that Algorithm 1 would fail at the first
iteration for this example if we chose j = 2.

Example 5.1 For X =
�

3 2 0 0 6
1 2 3 4 0

�
and k = 1, Algorithm 2 obtains a

10−7
-approximate optimal solution in 3 iterations as shown below:

Iteration 0: Initialization
û0 =

�
0 0.5 0.5 0 0

�
u0 =

�
0 0.5 0.5 0 0

�

ω(û0) =
�

0.889 0 2 3.556 8
�

ω(u0) =
�

0.889 0 2 3.556 8
�

R0 = ∅ E0 = −1 σ0 = 1 τ̂0 = 0 τ0 = −1 j0 = 2
Iteration 1: Dropping x2 is deferred

û1 =
�

0 0.5 0.5 0 0
�

u1 =
�

0 0 1 0 0
�

ω(û1) =
�

0.889 0 2 3.556 8
�

ω(u1) =
�

0.445 0 1 1.778 4
�

R1 = {2} E1 = −1 σ1 = 0.5 τ̂1 = N/A τ1 = N/A j1 = 5 d1 = 2
Iteration 2: x2 is dropped and x5 is deferred

û2 =
�

0 0 0.5 0 0.5
�

u2 =
�

0 0 1 0 0
�

ω(û2) =
�

0.222 0.889 2 3.556 0
�

ω(u2) =
�

0.111 0.445 1 1.778 0
�

R2 = {5} E2 = 0 σ2 = 0.5 τ̂2 = 1 τ2 = 1 j2 = 4
Iteration 3: x4 is added

û3 =
�

0 0 0 1 0
�

u3 =
�

0 0 0 1 0
�

ω(û3) =
�

0.063 0.25 0.563 1 0
�

ω(u3) =
�

0.063 0.25 0.563 1 0
�

R3 = {5} E3 = 0 σ3 = 1 τ̂3 = N/A τ3 = N/A j3 = N/A

Table 1: Execution of Algorithm 2 for a 2-D Toy Example

We also consider another version of this algorithm in which Step 3 is modified
to calculate the possible improvement in the objective function for each vertex
(not just the two with the maximal and minimal version as in Algorithm 2).
In this version, the vertex which gives the best improvement is chosen. This
algorithm will be referred to as Algorithm 2ALL. Both versions have attractive
features as will be discussed in the next section.

6 Computational Study

In order to illustrate the efficiency of the algorithm, we have carried out
computational tests with Algorithm 2 and Algorithm 2ALL. The computational
experiments were carried out on a 3.40 GHz Pentium IV processor with 1.0
GB RAM using MATLAB version R2006b. The first data set was randomly
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Figure 2: Cylinders generated by Algorithm 2 for Example 5.1.

generated as in [12] with sizes (n, m) varying from (10, 500) to (100, 100000).
For each (n, m) value, we have solved the problem for three different values of
k (k = 0.2n, 0.5n, 0.8n). We have set � = 10−4. For each fixed (n, k, m) ten
different problem instances were generated for each data set. The computational
results are reported in terms of averages over these instances in Table 2, which
is divided into three sets of columns. The first set of columns reports the size
(n, k, m). The second set of columns presents the results regarding the CPU
time and is further divided into two parts, the first of which is devoted to the
CPU time in seconds in order to obtain an �−approximate optimal solution using
Algorithm 2 while the second one displays the CPU time using Algorithm 2ALL.
The last set of columns reports the number of iterations and also further divided
into two columns, displaying the number of iterations needed by Algorithm 2
and Algorithm 2ALL in this order. We have used the initialization algorithm in
[7] to find the initial feasible solutions in our experiments. It was observed that
these initial solutions decrease the number of iterations needed by the algorithms
in practice. Finding a provably better initialization method would improve the
theoretical complexity results in Section 4 and devising such a method remains
as a challenge for us.

As demonstrated by Table 2, both algorithms are capable of solving very
large instances of the problem in a reasonable amount of time. Although using
Algorithm 2ALL may decrease the number of iterations needed, the total CPU
time spent by Algorithm 2ALL is always worse than that by Algorithm 2 due
to the large amount of calculation needed at each iteration.

Although the theoretical results suggest that the number of iterations and
the total time spent by the algorithms are increasing with k, the experimental
results demonstrate that in practice the problem becomes easier as the number
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Table 2: Mean of the numbers of iterations and the solution times of two versions
of Algorithm 2 for random samples of 21 problems, using data sets for Table 2
of Sun and Freund [12].

CPU Time (Seconds) No. of Iterations
n k m Alg 2 Alg 2ALL Alg 2 Alg 2ALL
10 2 500 0.5531 0.8141 1047.9 880
10 5 500 0.325 0.5609 624.1 623
10 8 500 0.2062 0.3344 385.2 372.3
10 2 1000 0.5562 1.1703 1008.6 985.4
10 5 1000 0.5688 1.1047 979.1 908.4
10 8 1000 0.3812 0.8672 685 680.4
20 4 5000 4.2844 13.2078 3300.2 3058.6
20 10 5000 2.5156 9.175 2147.1 2189.4
20 16 5000 1.3719 5.4859 1260.1 1346.7
20 4 10000 8.375 31.2656 3670.7 3917.8
20 10 10000 4.1594 16.0328 1988.2 2056.3
20 16 10000 3.1875 12.6797 1577.9 1595.4
30 6 30000 40.4906 136.6312 5685.7 5771.4
30 15 30000 22.6766 78.5375 3355.4 3372.2
30 24 30000 17.75 65.8656 2812.9 2863.4
50 10 50000 156.025 412.7125 9477.5 9159.1
50 25 50000 99.8188 287.0797 6537.3 6593.7
50 40 50000 68.1203 207.375 4983.4 4937.6
100 20 100000 1120.3438 2302.5906 16826.9 17090.6
100 50 100000 783.3844 1700.3109 13125.3 13289.5
100 80 100000 555.7641 1279.6516 10535.4 10540.8

of parameters to be estimated are increased. This may be explained by the
fact that as k increases the MAEC problem becomes increasingly closer in
structure to the much easier MVEE problem. It is observed that for a problem
instance with fixed (n, 0.8n, m), the number of iterations required to solve the
corresponding MVEE problem to the same level of precision is around 90 percent
of the number of iterations required to solve the MAEC problem. In order to
take a closer look at this phenomenon, we have conducted experiments on 10
data sets, where (n, m) = (100, 10000). The instances are randomly generated
as above and k is chosen from the set {5, 10, . . . , 95, 100}. The results are
summarized in Figure 3. In both figures the horizontal axis corresponds to the
various values of the parameter k. The vertical axis corresponds to the average
CPU time (left) and the average number of iterations (right) spent by the
algorithm to solve 10 instances of the problem with parameter set (100, k, 10000)
in Figure 3. The problem instances are generated as in Table 2.
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Figure 3: Average CPU times (left) and average number of iterations required
(right) to obtain a 10−4-approximate optimal solution using Algorithm 2 for
randomly generated data sets with (n, m) = (100, 10000) and various values of
k

7 Discussion and Conclusions

In this paper, we have developed and analyzed an algorithm for the Minimum-
Area Enclosing Ellipsoidal Cylinder problem. We have shown that this problem
is a generalization of the Minimum-Volume Enclosing Ellipsoid problem. Our
theoretical discussion and computational results show that the more general and
harder MAEC problem can be solved by a Frank-Wolfe type algorithm just as
the MVEE problem. Unfortunately developing this algorithm and analyzing its
properties is not as straightforward as it is for the MVEE problem. We have
illustrated this fact using a simple example and suggested a modification of the
algorithm. One may suspect that the modified algorithm can cycle for some
instances and fail. In our experience this never happens. We are not yet able
to prove but we strongly believe that the modified algorithm does not cycle.

Our work shows how to use first-order methods to solve this problem. It is
obvious that large instances of the problem can only be attacked by these type
of techniques. The addition of Wolfe’s away steps makes a huge difference in
the number of iterations required to obtain a certain accuracy level in practice.
The local convergence result in Section 4.2 provides a theoretical explanation
to this phenomenon. Similar behavior is observed for the MVEE problem as
discussed in [1].

We claim that this paper has three important contributions to the literature.
First, we provide the first convex formulation of the MAEC problem. This
formulation provides a clear characterization of the optimal solutions. Second,
we analyze the convergence properties of an efficient algorithm which works
for all practical instances. Our last contribution is computational. We solve
very large instances of the problem and illustrate the behavior of the algorithm
graphically. We hope that our computational results will provide a benchmark
for future researchers.
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8 Appendix

8.1 Notation

ωi(u) := (yi + Ezi)T K−1(yi + Ezi);
ξi(u) := xT

i
(XUXT )−1xi;

ζi(u) := zT

i
(ZUZT )−1zi;

ωij(u) := (yi + Ezi)T K−1(yj + Ezj);
ξij(u) := xT

i
(XUXT )−1xj ;

ζij(u) := zT

i
(ZUZT )−1zj ;

λ :=
τ

1− τ
;

µ :=
λ

1 + λζj(u)
; and

η :=
λ

1 + λξj(u)
=

µ

1 + µωj(u)
.

8.2 Algebraic details of Section 3.1

As in Section 3.1, we will assume that all dual solutions u and u+ used in
this section satisfy Assumption 3.1. The following lemma will be useful in our
analysis.

Lemma 8.1 ξi(u) = ζi(u) + ωi(u) for all i.

Proof: Note first that

XUXT =
�

ZUZT ZUY T

Y UZT Y UY T

�
=

�
I 0
−E I

� �
ZUZT 0

0 K

� �
I −ET

0 I

�
.

(8.58)
Hence we have

ξi(u) = xT

i
(XUXT )−1xi

=
�

zT

i
yT

i

� �
ZUZT ZUY T

Y UZT Y UY T

�−1 �
zi

yi

�

=
�

zT

i
yT

i

� �
I ET

0 I

� �
(ZUZT )−1 0

0 K−1

� �
I 0
E I

� �
zi

yi

�

=
�

zT

i
yT

i
+ zT

i
ET

� �
(ZUZT )−1 0

0 K−1

� �
zi

yi + Ezi

�

= zT

i
(ZUZT )−1zi + (yi + Ezi)T K−1(yi + Ezi)

= ζi(u) + ωi(u). ��
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First note that assuming ZUZT � 0, from (8.58) we get det K = det XUX
T

det ZUZT .
Hence

∇g(u) = ∇(ln detXUXT − ln detZUZT )
= ξ(u)− ζ(u) = ω(u). (8.59)

Let u+ = (1 − τ)u + τej where ej = (0, . . . , 1, . . . , 0)T is the jth unit vector.
Then

ZU+ZT = (1− τ)
�

ZUZT +
τ

1− τ
zjz

T

j

�
= (1− τ)(ZUZT + λzjz

T

j
),

and using the Sherman-Morrison formula, we have

(ZU+ZT )−1 =
1

1− τ

�
(ZUZT )−1 − λ

1 + λζj(u)
(ZUZT )−1zjz

T

j
(ZUZT )−1

�

=
1

1− τ

�
(ZUZT )−1 − µ(ZUZT )−1zjz

T

j
(ZUZT )−1

�
. (8.60)

Next,

Y U+ZT = (1− τ)(Y UZT + λyjz
T

j
), (8.61)

and so

E+ = −(Y U+ZT )(ZU+ZT )−1

= −(Y UZT + λyjz
T

j
)
�

(ZUZT )−1 − µ(ZUZT )−1zjz
T

j
(ZUZT )−1

�

= E − λyjz
T

j
(ZUZT )−1 − µEzjz

T

j
(ZUZT )−1 + µλζj(u)yjz

T

j
(ZUZT )−1

= E −
�

λ(1− µζj(u))yj + µEzj

�
zT

j
(ZUZT )−1

= E − µ(yj + Ezj)zT

j
(ZUZT )−1. (8.62)

Finally,

Y U+Y T = (1− τ)(Y UY T + λyjy
T

j
), (8.63)

so

K+ = Y U+Y T + Y U+ZT ET

+

= (1− τ)
�

Y UY T + λyjy
T

j
+ (Y UZT + λyjz

T

j
)(ET − µ(ZUZT )−1zj(yj + Ezj)T )

�

= (1− τ)
�

K + λyj(yj + Ezj)T + µEzj(yj + Ezj)T − λµζj(u)yj(yj + Ezj)T

�

= (1− τ)
�

K + (λ(1− µζj(u))yj + µEzj)(yj + Ezj)T

�

= (1− τ)
�

K + µ(yj + Ezj)(yj + Ezj)T

�
. (8.64)
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We have

ln detK+ = ln detK − k ln(1 + λ) + ln(1 + µωj(u)),

whose derivative is

∂ ln detK+

∂λ
=

−k

1 + λ
+

1
1 + λωj(u)

1+λζj(u)

�
ωj(u)

1 + λζj(u)
− λζj(u)ωj(u)

(1 + λζj(u))2

�

=
−k

1 + λ
+

ωj(u)
(1 + λ(ζj(u) + ωj(u)))(1 + λζj(u))

=
−k

(1 + λ)(1 + λζj(u))(1 + λξj(u))

�
aλ2 − 2bλ + c

�
,

(8.65)

where a := ζj(u)ξj(u) ≥ 0, b := −ζj(u)− ωj(u)
2 + ωj(u)

2k
≤ 0, and c := 1− ωj(u)

k
.

The multiplier on the left is negative.

• If c > 0 (i.e., ωj(u) < k), the derivative is negative for λ = 0, so we want
to decrease λ.

– If a = 0 and b < 0, set λ = max{ c

2b
,−uj}; if a = b = 0 set λ = −uj ;

– if a > 0 and −b ≤ √
ac, then the derivative is negative for all λ < 0

(possibly zero at one point), so set λ = −uj and hence τ = −uj

1−uj
so

that (u+)j = 0; and
– if a > 0 and −b >

√
ac, then the derivative is negative up to the root

of the quadratic, so set λ = max{ c

b−
√

b2−ac
,−uj}.

• If c < 0 (i.e., ωj(u) > k), the derivative is positive for λ = 0, so we want
to increase λ.

– If a = 0 and b < 0, set λ = c

2b
; if a = b = 0, set λ = ∞ and τ = 1

(this can nly happen if k = 1); and
– if a > 0, so ac < 0 and hence the quadratic has a positive root, set

λ = c

b−
√

b2−ac
.

We can update ω(u+) and ζ(u+) cheaply. First, note that

K−1
+ =

1
1− τ

(K−1 − λ

1 + λξj(u)
K−1(yj + Ezj)(yj + Ezj)T K−1)

=
1

1− τ
(K−1 − ηK−1(yj + Ezj)(yj + Ezj)T K−1), (8.66)

where η := λ

1+λξj(u) . Then

ωi(u+) = (yi + E+zi)T K−1
+ (yi + E+zi)
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=
1

1− τ
(yi + (E − µ(yj + Ezj)zT

j
(ZUZT )−1)zi)T (K−1 − ηK−1(yj + Ezj)

. . . (yj + Ezj)T K−1)(yi + (E − µ(yj + Ezj)zT

j
(ZUZT )−1)zi)

=
1

1− τ
(yi + Ezi − µζij(u)(yj + Ezj))T (K−1 − ηK−1(yj + Ezj)(yj + Ezj)T K−1)

. . . (yi + Ezi − µζij(u)(yj + Ezj))

=
1

1− τ
(yi + Ezi − µζij(u)(yj + Ezj))T (K−1(yi + Ezi)− ηξij(u)K−1(yj + Ezj))

=
1

1− τ
(ωi(u)− ηω2

ij
(u)− 2ηζij(u)ωij(u) + ηµωj(u)ζ2

ij
(u)),

and

ζi(u+) = zT

i
(ZU+ZT )−1zi

=
1

1− τ

�
zT

i

�
(ZUZT )−1 − µ(ZUZT )−1zjz

T

j
(ZUZT )−1

�
zi

�

=
1

1− τ

�
ζi(u)− µζij(u)2

�
, (8.67)

where ξij(u) := xT

i
(XUXT )−1xj , ζij(u) := zT

i
(ZUZT )−1zj and ωij(u) := (yi +

Ezi)T K−1(yj + Ezj). Note that, the following lemma has been used in the
previous derivations and can be proved with arguments similar to those used in
the proof of Lemma 8.1.

Lemma 8.2 ξij(u) = ζij(u) + ωij(u), for all i and j.

8.3 Proof of Lemma 4.2 for decrease steps

Proof: (continued) Let’s assume that iteration l is a decrease step, i.e., j =
arg min{ωi(ul) : ul

i
> 0}, ωj(ul) = (1 − �l)k and λ̂l (the optimal step length)

satisfies −ul

j
< λ̂l < 0. For any λl such that 0 ≥ λl ≥ λ̂l, we have

k ≥ (1+λl)ωj(ul)
(1+λlζj(ul))2

. (8.68)

Therefore we get

(1 + λlζj(ul))2 ≥ (1 + λl)ωj(ul)/k ≥ (1 + λl)2(1− �l),

which in turn gives

1 + λlζj(ul) ≥ (1 + λl)
√

1− �l. (8.69)

Hence we have

gl+1 − gl = ln (1 + λl)−k(1 +
λlωj(ul)

1 + λlζj(ul)
)

≥ ln (1− kλl)(1 +
kλl(1− �l)

(1 + λl)
√

1− �l

)
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≥ ln (1− kλl)(1 +
kλl

√
1− �l

(1 + λl)
)

≥ ln (1− kλl)(1 +
kλl(1− �l/2)

(1 + λl)
). (8.70)

Now choose λ� < 0 large enough such that for all 0 ≥ λ ≥ λ� the following
inequality holds:

(1− kλ)(1 +
kλ(1− �l/2)

(1 + λ)
) ≥ 1− λk�l

3
. (8.71)

For λl = max (λ̂, λ�), we have the following bound:

gl+1 − gl ≥ ln
�
1− λlk�l

3

�
. (8.72)

Note that (8.71) can be rewritten as

(1− kλ)(1 + λ + λk − λk�l/2) ≥ 1 + λ− λk�l/3− λ2k�l/3, or
−λk�l/2− λ2k − λ2k2 + λ2k2�l/2 ≥ −λk�l/3− λ2k�l/3, or

λ2(k2 + k − k�l/3− k2�l/2) + λ(k�l/2− k�l/3) ≤ 0. (8.73)

Hence we can choose λ� = �l/3−�l/2
k+1−�l/3−k�l/2 , and we have

|λ�| ≥ c5�l. (8.74)

Since λ̂ is the optimal step length we have

k = ωj(ul+1) =
(1 + λ̂)ωj(ul)

(1 + λ̂ξj(ul))(1 + λ̂ζj(ul))

≤ (1 + λ̂)ωj(ul)
(1 + λ̂ξj(ul))2

,

which gives

(1 + λ̂ξj(ul))2 ≤ ωj(ul)/k = 1− �l. (8.75)

From this we get 1+ λ̂ξj(ul) ≤
√

1− �l ≤ 1− �l/2. Hence λ̂ ≤ −�l
2ξj(ul)

≤ −�l
2C

and

|λ̂| ≥ c6�l. (8.76)

Equations (8.74) and (8.76) lead to

|λl| ≥ min{c5, c6}�l = c7�l, (8.77)

which combined with (8.72) gives (4.22) for decrease steps and hence completes
the proof of Lemma 4.2. ��
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