
IDENTIFICATION AND ELIMINATION OF INTERIOR POINTS

FOR THE MINIMUM ENCLOSING BALL PROBLEM

S. DAMLA AHIPAŞAOĞLU∗ AND E. ALPER Yıldırım†

Abstract. Given A := {a1, . . . , am} ⊂ R
n, we consider the problem of reducing the input

set for the computation of the minimum enclosing ball of A. In this note, given an approximate
solution to the minimum enclosing ball problem, we propose a simple procedure to identify and
eliminate points in A that are guaranteed to lie in the interior of the minimum-radius ball enclosing
A. Our computational results reveal that incorporating this procedure into the two recent algorithms
proposed by Yıldırım leads to significant speed-ups in running times especially for randomly generated
large-scale problems. We also illustrate that the extra overhead due to the elimination procedure
remains at an acceptable level for spherical or almost spherical input sets.

Key words. Minimum enclosing balls, input set reduction, approximation algorithms.

AMS subject classifications. 90C25, 90C46, 65K05

1. Introduction. Given A := {a1, . . . , am} ⊂ R
n, we denote the unique

minimum enclosing ball of A by MEB(A), i.e.,

MEB(A) = Bc∗,ρ∗ := {x ∈ R
n : ‖x − c∗‖ ≤ ρ∗},

where c∗ ∈ R
n is the optimal center, ρ∗ ∈ R is the optimal radius, and ‖·‖ denotes the

Euclidean norm. Given ǫ > 0, a ball Bc,ρ is said to be a (1 + ǫ)-approximate solution
to MEB(A) if

ρ ≤ ρ∗, A ⊂ Bc,(1+ǫ)ρ . (1.1)

In this note, given a (1 + ǫ)-approximate solution Bc,ρ to MEB(A), we propose a
simple condition that should be satisfied by each point in A that lies on the boundary
of MEB(A). Furthermore, we derive an upper bound on the Euclidean distance
between c and c∗.

2. Main Result. Lemma 2.1. Given A := {a1, . . . , am} ⊂ R
n and ǫ > 0, let

Bc,ρ be a (1 + ǫ)-approximate solution to MEB(A). Then,

‖c − c∗‖ ≤ (2ǫ + ǫ2)1/2ρ. (2.1)

Furthermore, each point ai ∈ A on the boundary of MEB(A) satisfies

‖ai − c‖ ≥ (1 − (2ǫ + ǫ2)1/2)ρ. (2.2)

Proof. Suppose that c 6= c∗. Consider the hyperplane H passing through c∗

perpendicular to c∗ − c. Let H+ denote the closed halfspace bounded by H and not

∗School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853.
e-mail: dse8@cornell.edu. This author was supported in part by NSF through grant DMS-0513337
and ONR through grant N00014-08-1-0036.

†Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey. e-mail:
yildirim@bilkent.edu.tr. This author was supported in part by TÜBİTAK (Turkish Scientific and
Technological Research Council) Grant 107M411.

1



2 S. D. Ahipaşaoğlu AND E. A. Yıldırım

containing c. Then, by [2, Lemma 2.2], there exists a point aj ∈ H+ ∩ A such that
‖aj − c∗‖ = ρ∗. Therefore, ‖c − aj‖2 ≥ ‖c − c∗‖2 + ‖c∗ − aj‖2, which implies that

‖c − c∗‖2 ≤ ‖c − aj‖2 − ‖c∗ − aj‖2,

≤ (1 + ǫ)2ρ2 − (ρ∗)2,

≤ (1 + ǫ)2ρ2 − ρ2,

= (2ǫ + ǫ2)ρ2,

where we used (1.1) to derive the second and third inequalities. This establishes (2.1).
Let ai be any point on the boundary of MEB(A). Then, ‖ai − c∗‖ ≤ ‖ai − c‖ +

‖c − c∗‖, which implies that

‖ai − c‖ ≥ ρ∗ − ‖c − c∗‖,

≥ ρ − (2ǫ + ǫ2)1/2ρ,

= (1 − (2ǫ + ǫ2)1/2)ρ,

where we used (1.1) and (2.1) to derive the second inequality. This completes the
proof.

3. Computational Results. Recently, Yıldırım [2] proposed two first-order
algorithms that can compute a (1+ǫ)-approximate solution to the minimum enclosing
ball of a finite input set A of points for any given ǫ > 0. Each algorithm generates a
sequence of approximate minimum enclosing balls Bck,ρk which converge to MEB(A)
in the limit. Each such ball is a (1+ǫk)-approximate solution to MEB(A) for a certain
ǫk > 0 and the algorithm terminates when ǫk ≤ ǫ. Both of these algorithms extract a
small core set X ⊆ A and can be extended to much more general input sets without
sacrificing the small core set result.

Lemma 2.1 can be easily incorporated into both of the algorithms in [2] in an
attempt to eliminate interior points in A (with respect to MEB(A)) thereby reducing
the size of the input set. This elimination procedure does not affect the minimum
enclosing ball and may decrease the computational cost of each iteration due to the
reduction in the input size.

In order to assess the implications of Lemma 2.1 in practice, we have performed
computational tests in which the simple elimination procedure proposed in this note
was incorporated into each of the two algorithms in [2]. In our experiments, we checked
the boundary condition (2.2) at an approximate minimum enclosing ball generated
throughout either algorithm only if the right-hand side of (2.2) is sufficiently bounded
away from zero. This strategy eliminates the computational cost of checking the
boundary condition at an iterate where it would be unlikely to remove a large subset
of input points. At iterate k, (2.2) is checked in our computational experiments only
if 1− (2ǫk + (ǫk)2)1/2 > 0.55, where 0.55 is a threshold value that was found to work
well empirically.

The computational experiments were carried out on a 3.40 GHz Pentium IV
processor with 1.0 GB RAM using MATLAB version R2006b on four different data
sets. The first two data sets were randomly generated using different procedures
outlined below. The last two sets consist of spherical or almost spherical input sets.

3.1. Random Input Sets. The first data set was randomly generated as in [2]
with sizes (n,m) varying from (10, 500) to (100, 100000), while the second one was
generated using the standard normal distribution with the same sizes (n,m). We used



Identification and Elimination of Interior Points for the Minimum Enclosing Ball Problem 3

CPU Time Reduced Input Size
n m A1 A1E Speed-up A2 A2E Speed-up A1E A2E
10 500 0.0594 0.0541 1.10 0.0219 0.0156 1.40 124.2 99.8
10 1000 0.0694 0.0469 1.48 0.0297 0.0203 1.46 202.4 200.7
20 5000 2.2016 0.5078 4.34 0.3594 0.2172 1.65 420.4 330.3
20 10000 3.9844 0.5484 7.27 0.5641 0.1484 3.80 147.8 158.2
30 30000 14.1031 0.8516 16.56 2.8281 0.5562 5.08 121.1 107.3
50 50000 48.9359 5.3875 9.08 12.0109 4.1469 2.90 695.8 400.9
100 100000 141.6518 35.0223 4.04 62.692 30.5357 2.05 1626.2 1650.1

Table 3.1

Computational Results for the First Data Set (ǫ = 10−3)

ǫ = 10−3 for both data sets. For each fixed (n,m), ten different problem instances
were generated for each data set. The computational results are reported in terms of
averages over these instances in Table 3.1 and Table 3.2, each of which is divided into
three sets of columns. The first set of columns reports the size (n,m). The second
set of columns presents the results regarding the CPU time and is further divided
into two parts, the first of which is devoted to the computational results related to [2,
Algorithm 3.1] (adaptation of the Frank-Wolfe algorithm to the minimum enclosing
ball problem) while the second one displays those results using [2, Algorithm 4.1]
(adaptation of the Frank-Wolfe algorithm with away steps to the minimum enclosing
ball problem). In the first part, A1 and A1E denote the CPU times in seconds
using [2, Algorithm 3.1] without and with the elimination procedure, respectively, and
speed-up denotes the resulting speed-up factor in running time due to the elimination
procedure measured in terms of the ratio of A1 to A1E. Similarly, A2 and A2E denote
the CPU times in seconds using [2, Algorithm 4.1] without and with the elimination
procedure, respectively, and speed-up denotes the resulting speed-up factor in running
time measured in terms of the ratio of A2 to A2E. The last set of columns reports
the number of remaining input points upon termination using each algorithm with
the elimination procedure.

CPU Time Reduced Input Size
n m A1 A1E Speed-up A2 A2E Speed-up A1E A2E
10 500 0.2016 0.1953 1.03 0.0250 0.0094 2.66 12.7 12.2
10 1000 0.2018 0.1469 1.37 0.0484 0.025 1.94 15.4 15
20 5000 3.0062 0.3281 9.16 0.475 0.1109 4.28 38.4 37
20 10000 5.0328 0.3312 15.20 0.9188 0.1812 5.07 42 40.9
30 30000 24.5359 1.2594 19.48 3.9656 0.9094 4.36 85.5 79.7
50 50000 52.8751 4.1865 12.63 13.0204 3.8463 3.39 202.2 213.4
100 100000 267.05 27.9984 9.54 56.1344 20.7188 2.71 430.9 423.8

Table 3.2

Computational Results for the Second Data Set (ǫ = 10−3)

As illustrated by Table 3.1 and Table 3.2, the incorporation of the elimination
procedure into each of the two algorithms results in significant savings in running times
especially for large instances where m ≫ n. The procedure described in Lemma 2.1
identifies and eliminates 75% to 99% of the data points in our experiments and the
running times may improve by more than a factor of 19 on some instances. It is also
worth noticing that the speed-up factors obtained from Algorithm 3.1 are generally
considerably larger than those obtained with Algorithm 4.1. This may be due to the
reason that the asymptotical linear convergence property of Algorithm 4.1 [2] already



4 S. D. Ahipaşaoğlu AND E. A. Yıldırım

Fig. 3.1. Experimental Results for Almost Spherical Input Sets

results in significantly better performance compared to that of Algorithm 3.1, which
may not leave much room for further improvement. Finally, we remark that the
elimination procedure does not seem to have a noticeable effect on the core set sizes
and on the number of iterations for either of the two algorithms.

3.2. Spherical and Almost Spherical Input Sets. In an attempt to assess
the extent of extra overhead due to the elimination procedure, we considered data sets
where all points lie on (or almost on) the unit sphere centered at the origin. An input
set A is said to lie on a κ-approximate unit sphere centered at the origin, denoted by
Sκ, if A ⊂ Sκ := {x ∈ R

n : 1 − κ ≤ ‖x‖ ≤ 1 + κ}. For an input set A ⊂ Sκ where
κ ≥ 0 is small, the elimination procedure will keep testing input points for removal
at each iteration but will be unable to remove a substantial subset of the input set.
In the extreme case where κ = 0, none of the input points can be removed since
there would be no interior point. This extra overhead will necessarily result in an
increase in the running time of an algorithm that uses the elimination procedure. We
generated random input sets A ⊂ Sκ, where κ ∈ {0, 0.001, 0.01, 0.1, 0.2}, with sizes
(n,m) varying from (10, 500) to (100, 100000) as in our experiments with the first
two data sets. For each choice of experimental parameters, the computational results
averaged over ten data sets are illustrated in Figure 3.1. The horizontal axis in each
graph corresponds to κ using the logarithmic scale while the vertical axis in the graph
on the left (on the right) corresponds to the “slow-down” factor measured in terms of
the ratio of the running time of Algorithm 3.1 (Algorithm 4.1) with the elimination
procedure to the running time of the same algorithm without the elimination. A close
examination of these two graphs reveals that the slow-down factors usually remain at
an acceptable level especially for the faster Algorithm 4.1. Note that the elimination
procedure leads to an extra overhead of at most 70% on all instances for Algorithm 4.1.
A comparison of the slow-down and speed-up factors stemming from our experiments
seems to justify the use of the elimination procedure especially since spherical input
sets would not likely be encountered in practical applications.

We also tested the two algorithms on data sets which consist of the vertices of the
unit simplex where n ∈ {1000, 2500, 5000}. Note that each point in such an input set
lies on the boundary of the minimum enclosing ball and it is known that each point
should be in the core set if ǫ ≤ 1/n [1]. We tested each of the two algorithms with



Identification and Elimination of Interior Points for the Minimum Enclosing Ball Problem 5

and without the elimination procedure using ǫ = 1/n. The computational results are
reported in Table 3.3, which is organized in a similar manner to that of Table 3.1.
Note that the increase in the running time of each algorithm due to the inclusion of
the elimination procedure is only around 35% for large spherical instances.

4. Concluding Remarks. In this paper, we have described a procedure that
identifies and eliminates data points that cannot lie on the boundary of the minimum
enclosing ball of a finite set of points. This procedure can be easily incorporated
into any iterative algorithm that generates a sequence of approximate minimum
enclosing balls converging to the minimum enclosing ball of a given input set. Our
computational results demonstrate the resulting significant improvements in the
practical performance of the two algorithms proposed in [2] especially for randomly
generated input sets. The extra overhead of the elimination procedure remains at an
acceptable level for spherical or almost spherical input sets.

Furthermore, the same elimination procedure can also be incorporated into
algorithms that can compute an approximate minimum enclosing ball of more general
input sets such as a set of balls or ellipsoids for which the algorithms in [2] can still
be applied. Such input sets can be viewed as an infinite set of points and condition
(2.2) essentially means that all input points that lie in the interior of a ball of a
certain radius centered at the current approximate center c can be safely removed
without affecting the optimal solution. In this case, an element of a more general
input set (such as a ball or ellipsoid) can be completely removed if the furthest point
on that element from the current approximate center c already lies in the interior of
the aforementioned ball centered at c, which readily implies that every point on that
element should necessarily violate (2.2). This may lead to considerable savings in
the computation of minimum enclosing balls of more general input sets arising from
practical applications.

Acknowledgments. We thank Mike Todd for encouraging us to prepare this
manuscript. We gratefully acknowledge the thoughtful comments of two anonymous
referees and the Associate Editor.

REFERENCES

[1] M. Bădoiu and K. L. Clarkson, Optimal core-sets for balls, Computational Geometry:
Theory and Applications, 40 (2008), pp. 14–22.

[2] E. A. Yıldırım, Two algorithms for the minimum enclosing ball problem, SIAM Journal on
Optimization, to appear (2008).



6 S. D. Ahipaşaoğlu AND E. A. Yıldırım

CPU Time
n m A1 A1E A1E/A1 A2 A2E A2E/A2

1000 1000 39.5312 53.625 1.357 40.078 54.219 1.352
2500 2500 251.75 336.7188 1.338 252.234 339.391 1.346
5000 5000 988.2812 1301.5312 1.317 983.25 1289.547 1.311

Table 3.3

Computational Results for the Vertices of the Unit Simplex (ǫ = 1/n)


