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Abstract
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adjusted house price index for arbitrary spatial units from repeated cross-
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underlying micro data are abundant, and reliable extrapolations where data
are sparse. To illustrate the functionality, we generate a panel of German
property prices and rents that is unprecedented in its spatial coverage and
detail. This novel data set uncovers a battery of stylized facts that motivate
further research, e.g. on the positive correlation between density and price-to-
rent ratios in levels and trends, both within and between cities. Our method
lends itself to the creation of comparable neighborhood-level rent indices (Mi-
etspiegel) across Germany.
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1 Introduction

Reliable indices that capture the market value of real estate at micro-geographic

scales such as neighborhoods are important inputs into housing policy. The ability

of a regulator to enforce rents that are deemed fair critically depends on the capacity

to observe the market value of real estate. The German “Mietspiegel”, for exam-

ple, represents a core instrument to settle disputes between landlords and tenants

over rent levels. Micro-geographic property price indices are also an increasingly

important input into economics research. For instance, quantitative spatial models

require spatially disaggregated data with full geographic coverage for the inversion of

the structural fundamentals before they can be used for quantitative analysis (Allen

and Arkolakis, 2014; Ahlfeldt et al., 2015).1 However, the gold standard in house

price index construction—repeat sales indices such as the prominent Case-Shiller

Home Price Index—are not suitable for micro-geographic areas because property

transactions are rare events at this scale, let alone repeated transactions.

Our contribution is to develop an algorithmic approach to construct a panel of

micro-geographic house price and housing rent indices that draws on spatial meth-

ods to overcome the limitations of sparse property transaction data. Because our

approach is entirely point-pattern based, it is applicable to arbitrary spatial units

and does not depend on administrative boundaries. The input is a conventional data

set containing pooled cross sections of real estate transactions with information on

prices or rents, geographic coordinates, transaction dates, and property character-

istics. The output is a balanced panel of mix-adjusted purchase or rental prices

for arbitrary spatial units. The algorithm automatically adjusts to spatially vary-

ing densities of observations using a combination of parametric and non-parametric

estimation techniques. Conveniently, it allows users to manage the bias-variance

trade-off in the program syntax. A spatial sub-market variable further allows users

to specify where they would expect spatial discontinuities in an otherwise smooth

surface. The result is a reliable and transparent tool that generates spatial house

price and rent indices in an environment that is typically dominated by commer-

cial data providers to whom their algorithms are the “secret sauce.” In contrast,

we publish our source code along with novel price and rent indices covering all of

Germany at the level of local labor markets, counties, municipalities, and postcodes

for a period of fifteen years.

The house price and rent index we propose combines several techniques that

1See Redding and Rossi-Hansberg (2017) for a survey and Monte et al. (2018); Tsivanidis
(2019); Heblich et al. (2020); Almagro and Domı́nguez-Iino (2021) for recent examples.
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are established in urban economics and data science. We start with the popular

hedonic regression approach developed by Rosen (1974) to adjust for observable

property characteristics and combine it with recent extensions of early work by

Clark (1951) on price indices that treat spatial units as the nucleus of a spatial

price gradient (Combes et al., 2019; Ahlfeldt et al., 2020). Similar to Clapp (2004)

and Sunding and Swoboda (2010), we nest this approach into a locally weighted

regression framework (LWR) that was originally suggested by Cleveland and Devlin

(1988) and first adopted to studies of property price data by Meese and Wallace

(1991) and McMillen (1996). More recently, the method has become a widespread

tool in geographic data science under the label Geographically Weighted Regression.

The following three features distinguish our approach from existing work. First, we

apply LWRs to create real estate price indices in a panel setting; second, we use local

samples when performing LWRs and supplement them with local spatial covariates;

and third, we accommodate the existence of sub-markets. As a result, our approach

generates rich and even spatially discontinuous variation in predicted prices, both

in levels and trends.

Intuitively, we treat the computation of the indices for any spatial unit as a sep-

arate problem that we address in a separate iteration of the algorithmic approach.

In each iteration, the algorithm considers the density of observations in the vicinity

of the targeted location and flexibly defines the size of a spatial window that pro-

vides a sufficient amount of observations. Inside this spatial window, observed prices

are adjusted for structural and location characteristics using conventional regression

techniques. Moreover, observations are allowed to be on separate trends depending

on whether or not they fall within the same user-specified sub-market as the target

unit for which a price index is being predicted. To predict the price and rent indices

right at the target location, we control for a first-order polynomial of distance from

the center. We also allow for a spatial fixed effect which depends on the density of

observations. Combining parametric and non-parametric specifications avoids the

problem that higher-order polynomials tend to chase after outliers in the tails of a

distribution. The strength of the algorithmic approach is that it loads the predic-

tive power on non-parametric components where many observations are available

(e.g. in high-density urban neighborhoods), whereas the predictive model becomes

more parametric if observations are sparse (e.g. in rural regions). Importantly, the

user retains control over the bias-variance trade-off via a set of parameters to be

determined in the programming syntax. Our advice is to proceed with conservative

parameter values that minimize the risk of generating implausible outliers. How-

ever, users may choose different values—resulting, for example, in smaller spatial
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windows— that best suit their aversion to outliers. If users were willing to formalize

their objective function that trades off bias against variance, they could also delegate

the identification of the critical parameter values to another algorithm. In this case,

our approach would become a variant of supervised machine learning.

For transparency and to facilitate use, we publish a ready-to-use version of our

algorithm in the appendix to this paper and we employ the algorithm in a practical

application to Germany where we describe its functionality. Our application makes

use of geocoded data from the online platform Immoscout24 for the period 2007–

2021. This time window is largely representative of the rising pool of information

on prices and rents that is accessible to researchers and data scientists around the

world. Beside address information, the data also hold information on basic property

characteristics which we exploit following the conventions in the hedonic pricing

literature. We start with an application where we aggregate the price information

into official spatial units, i.e. labor market areas, counties, municipalities and postal

codes. This allows us to visually assess the accuracy of our data but it also reveals

that German postal codes are more coarse than they are in e.g. the UK or the U.S.

To illustrate how we can capture even smaller, arbitrary spatial units, we introduce

another application where we aggregate the house price information in hexagons

with a 500m diameter. To evaluate whether our procedure accurately predicts a

house price index in sparsely populated areas, we exclude information from about

three quarters of all hexagons and recalculate the index for all locations in an out-

of-sample prediction. A comparison between the within-sample and out-of-sample

predictions shows a tight fit that underlines the validity of our procedure. Using a

spatial boundary discontinuity design and the former Berlin Wall as an example, we

also demonstrate how our algorithm generates spatial discontinuities in price levels

and trends along the boundaries of user-defined sub-markets.

The application to the case of Germany fills a gap in the literature since house

price and rent indices that cover all of Germany are not available below the county

level. This implies that a lot of spatial heterogeneity within counties remains un-

observed and a location’s attractiveness may be confounded by commuting costs

(Combes et al., 2019). By contrast, our index reports year-specific conditional means

of either rents or house prices adjusted for property characteristics and location.

Applying our LWR-approach with endogenously adjusting spatial windows to micro

property data provides a spatial resolution that is well below the county level. This

allows us to zoom into local housing markets and complement the labor market

data provided by the Research Data Centre of the Federal Employment Agency in

Germany at all spatial aggregation levels with a cost-of-living measure (see Ahlfeldt
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et al., 2020, for an application).

Another benefit of our data is that they include both house price and rent in-

formation. Especially in German cities where ownership rates are still below 60

percent, any picture of the national real estate market remains incomplete unless

the rental market is taken into consideration. We directly relate to an emerging

literature that analyzes the determinants of price-to-rent ratios, albeit at a much

finer spatial resolution. Our micro-geographic rent and purchase price indices reveal

new stylized facts that call for further analyses: price-rent ratios strongly diverged

in more densely populated areas since 2010, both in levels and trends. Price-to-rent

ratios tend to be higher in large cities and within cities, they tend to be higher in

more central parts. The data set we share will allow researchers to further investigate

the origins of this relationship that may relate to e.g. supply conditions (Glaeser et

al., 2008; Hilber and Mense, 2021; Büchler et al., 2021), credit constraints (Himmel-

berg et al., 2005), foreign direct investment (Badarinza and Ramadorai, 2018), rent

regulation (Diamond et al., 2019; Mense et al., 2019; Breidenbach et al., 2022), or

gentrification (Couture and Handbury, 2020).

More generally, our work connects to various important research strands that

are concerned with either the generation or use of spatial price data. The literature

on house price indices is too large to be comprehensively summarized here. Instead,

we refer to European Commission (2013) for an overview.2 Recent notable devel-

opments in this literature are the use of matching approaches (Lopez and Hewings,

2018) to broaden samples beyond repeat sales (Bailey et al., 1963), adaptive weights

smoothing to produce land value surfaces (Kolbe et al., 2015; Hill and Scholz, 2018),

or machine learning approaches that capture otherwise unobservable housing char-

acteristics (Shen and Ross, 2021). This strand of research is a manifestation of a

broader trend to fit flexible functional forms to data that support out-of-sample pre-

dictions. For a discussion of prediction algorithms with a specific focus on housing,

we refer the interested reader to Mullainathan and Spiess (2017) and to Athey and

Imbens (2019) for a more general discussion of the use of machine learning in eco-

nomics. Our contribution to this literature is to combine various recent techniques

with the aim of laying out a transparent and theory-consistent methodology for the

generation of micro-geographic price and rent indices in a panel setting.

On the applied side, fine-grained house price data are routinely used to evaluate

housing policies such as rent control (Diamond et al., 2019; Autor et al., 2014;

2House price indices are often reported with a higher frequency (e.g. quarters), which comes
at the expense of less spatial granularity (see for example Francke, 2010; van Dijk et al., 2022).
By contrast, we put more emphasis on spatial granularity at the expense of a lower frequency, i.e.
annual time periods.
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Sims, 2011), quantify spatial models (see Redding and Rossi-Hansberg, 2017, for a

review), measure the costs of agglomeration (see Ahlfeldt and Pietrostefani, 2019,

for a review), infer quality of life (Roback, 1982; Ahlfeldt et al., 2020), evaluate

economic cycles (Mian and Sufi, 2014; Hoffmann and Lemieux, 2015; Charles et al.,

2018), or value local public goods such as clean air (Chay and Greenstone, 2005),

safety (Linden and Rockoff, 2008) or the quality of public schools (Cellini et al.,

2010), just to name a few. Our contribution to this vast literature is to provide

researchers with a convenient, transparent, and flexible tool for the preparation of

an essential input into their research.

The rest of the paper is organized as follows. Section 2 introduces our algorithm.

Section 3 provides an application to Germany. Section 4 provides new stylized facts

based on the novel indices we generate. The final Section 5 concludes.

2 Procedure

This section introduces our algorithm. We lay out the locally weighted regression

(LWR) approach formally (Section 2.1) and then discuss various use cases along

with our preferred parameter values (Section 2.2).

2.1 Algorithm

The empirical approach outlined in this section generates a mix-adjusted property

price index for an arbitrary set of target spatial units indexed by j ∈ J . For each

j, we run a locally weighted regression of the following type:

lnPi,t = αj
t + S̄ib

j + djtD
j
i + ejI(Dj

i > T j)i

+ f j(Xi −Xj) + gj(Yi − Y j) + hj
tI(Mi ̸= M j) + ϵji,t,

where Pi,t is the purchase or rental price of a property i ∈ I transacted in year

t ∈ T . αj
t captures j-specific time-fixed effects, S̄i is a vector of covariates stripped

off the national average (we subtract the national mean from the observed value of

Si), and bj are the LWR-j-specific hedonic implicit prices. Dj
i is the distance from a

transacted property i to the target unit j with djt being the LWR j-specific gradient

parameter in year t. I(.) is an indicator function that returns a value of one if a

condition is true and zero otherwise and T j is a threshold distance. Hence, ejI(Dj
i >

T j)i is a fixed effect for all transacted properties i that are outside the vicinity of

the catchment area. Xi and Yi are the coordinates of transacted properties, Xj

and Y j are the coordinates of the target unit, and f j and gj are parameters to be
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estimated. Mi and M j describe spatial sub-markets that can be defined arbitrarily

by the user. Hence, the term hj
tI(Mi ̸= M j) allows for transactions i to be on a

different time-trend if they fall into a different spatial sub-market than target unit

j. ϵji,t is the residual term.

The threshold T j is chosen using the following rule:

T j =



T 1, if N (Dj
i≤T 1) ≥ NT

T 2, if N (Dj
i≤T 1) < NT ≤ N (Dj

i≤T 2)

T 3, if N (Dj
i≤T 2) < NT ≤ N (Dj

i≤T 3)

T 4, if N (Dj
i≤T 3) < NT ,

where N (Dj
i≤T s∈{1,2,3,4}) gives the number of transacted units from a target unit within

distance threshold T s∈{1,2,3,4} and NT is a minimum-number-of-transactions thresh-

old, all to be chosen by the user in the program implementation of this algorithm.

In each LWR j, all transacted properties i are weighted using the following kernel

weight:

W j
i =

wj
i∑

i w
j
i

wj
i =



I(Dj
i ≤ A1), if N (Dj

i≤A1) ≥ NA

I(Dj
i ≤ A2), if N (Dj

i≤A1) < NA ≤ N (Dj
i≤A2)

I(Dj
i ≤ A3), if N (Dj

i≤A2) < NA ≤ N (Dj
i≤A3)

I(Dj
i ≤ A4), if N (Dj

i≤A3) < NA,

where {A1, A2, A3, A4} are distance thresholds and NA is a minimum-number-of-

transactions threshold, all to be defined by the user in the program implementation

of this algorithm.

The LWR-j-specific estimates of time-fixed effects correspond to the conditional

expectation

α̂j
t = E

(
lnP j

t |S = S̄, Dj = 0, X = Xj, Y = Y j,M = M j
)
,

which is the expected log price at location j at time t for a property with the average

national characteristics. We convert this conditional expectation into a price index

measured in the same units as Pi,t (here, e/m2) as follows:

P̂j
t = exp(α̂j

t )× Cj = E
(
P j
t |S = S̄, Dj = 0, X = Xj, Y = Y j,M = M j

)
,
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where Cj = exp
(
1
2
(σ̂2

ϵ )
j
)
is an adjustment factor that depends on the variance of

the error (σ2
ϵ )

j of LWR j.3 This adjustment is necessary to correct for the bias that

would otherwise arise when reversing the log transformation (Duan, 1983). This

way, we ensure that our index can be interpreted as the expected price of a property

with average characteristics. To facilitate the computation of confidence bands, we

also report standard errors

σ̂Pj
t
= P̂j

t × σ̂αj
t
,

where σ̂αj
t
are estimated allowing for clustering within the areas inside and outside

the spatial fixed effect (I(Dj
i > T j)i).

4

Intuitively, the price index for a target unit is a year-specific local conditional

mean that is adjusted for property characteristics (deviations from the national

average), location (time-varying distance from j effects, and time-invariant spatial

trends in X and Y coordinates), and a spatial fixed effect. Since {wj
i , T

j} are

endogenously chosen by the algorithm, the precision of the index automatically

increases as the density of observations increases.

The parameters {A1, A2, A3, A4, NA, T 1, T 2, T 3, T 4, NT} allow the user to flexibly

control the bias-variance trade-off. Smaller values in all parameters will generally

lead to greater spatial variation which comes at the cost of an increasing sensitivity to

outliers in the underlying micro-data. In choosing NA, it is worth recalling that NA

describes the number of observations that occur over multiple years, but estimates

of conditional means and distance gradients are year-specific. Thus, as a rule of

thumb, NA should increase proportionately to the number of years over which an

index is predicted.

2.2 Implementation

The algorithm introduced in Section 2.1 is a flexible tool that assists the user with

a mix-adjusted aggregation and interpolation of spatial point-pattern transactions

data. The algorithm is flexible enough to serve a range of popular use cases in urban

economics research, but the parameter values must be chosen to fit the intended

purpose. In the below, we provide a discussion that should guide the user in the

choice of parameter values and the application of the algorithm more generally. In

particular, we introduce what we view as canonical parameter values for spatial

units that are popular in spatial economics research. Based on our experience with

transactions data, these parameter values should be applicable to most international

3We use the square of the Root Mean Square Error (RMSE) as an estimate of the error variance.
4Notice that our standard errors are derived from a first-order approximation of the second

moment of the function P̂j
t (α

j
t ) = exp(α̂j

t )×Cj assuming a constant variance of the error term ϵji,t.
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contexts.

2.2.1 Pre-processing

Independently of the purpose of the application, some careful pre-processing of raw

transactions data is strongly recommended. There is a large literature summarized

by Silver (2018) discussing why observations that are not well predicted by a hedo-

nic model—outliers—carry a greater weight in a constant-quality house price index

than they deserve. This problem is naturally aggravated in a LWR approach that

returns a micro-geographic property price index because the potentially large set of

transactions is partitioned into smaller subsets in any LWR j ∈ J . As a consequence,

any outlier will carry an even greater weight. It is, thus, especially important to

carefully inspect the raw data and eliminate outliers before applying our algorithm.

There are many ways of detecting outliers and we refer the interested reader to Silver

(2018) for a general discussion and to Section 3.1 for our choices in an illustrative

example.

2.2.2 Indices based on the monocentric city model

Once the raw transactions data set is in good shape, the most pressing question is

the potential use of the index to be generated. One typical application concerns

the measurement of housing costs in local labour markets (LLMs). LLMs are rea-

sonably self-contained areas where people live and work, roughly corresponding to

metropolitan areas. Since LLMs are relatively large spatial units, there are typically

enough transactions to estimate a conventional hedonic house price index. However,

from a theoretical perspective, a problem arises with the interpretation of the stan-

dard non-spatial index. In the standard urban model, differences in mix-adjusted

property prices reflect the fundamental value of locations, net of commuting costs

(Alonso, 1964; Mills, 1967; Muth, 1969). Therefore, a naive price index does not only

capture the fundamental value property occupiers derive from a location, but also

a discount that arises from commuting costs. This is a problem because commutes

are mechanically longer in larger cities and, hence, the fundamental attractiveness

is mechanically undervalued in conventional regional price indices. Albouy and Lue

(2015) demonstrate that failure to account for differences in commuting cost leads

to mismeasurement of quality-of-life differences across cities.

Combes et al. (2019) popularized the idea of measuring the cost of agglomeration

at the city center, where prices are not confounded by commuting in the standard

urban model. To this end, they introduce distance from the city center as a vari-

able into a hedonic regression model, along with a city-specific implicit price. Our
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Table 1: Parameter choices by spatial layer

Monocentric city model Best local fit

LLMs Counties Municipalities Neighborhoods Micro-Grids

A1 25 25 10 10 5
A2 50 50 25 25 10
A3 75 75 50 50 25
A4 100 100 100 100 50
NA 10,000a 10,000a 10,000a 10,000a 10,000a

T 1 100 100 10 2.5 1
T 2 100 100 15 5 2
T 3 100 100 20 10 5
T 4 100 100 50 20 10
NT 0 0 1,000a 1,000a 1,000a

Notes: LLM refers to local labor markets. Parameters As and T s represent threshold distances measured in
kilometers. a Recommended parameter for indices spanning 10 periods.

algorithm offers a convenient way of estimating such a price index that is not only

mix-adjusted for property characteristics, but also for commuting cost to the city

center. All that is needed, besides the transactions raw data, is a set of target co-

ordinates that approximate city centers, and a suitable choice of parameter values.

Our recommended parameter values for this approach are summarized in the first

two columns of Table 1.

We set NA = 10, 000, which implies that the algorithm will seek to ensure that

there are at least 10,000 transactions used in each LWR j. This is a sufficiently large

number to minimize the leverage of outliers. Notice that the choice of NA should

not be independent from the number of periods for which an index is predicted.

With 10 periods, there will be about a thousand transactions per fixed effect ajt to

be estimated. Even if the number of transactions varies over time, there will be

a sufficiently large number of transactions even in years with thin markets. The

same argument does not necessarily apply if the number of periods is much greater.

Therefore, we recommend to scale NA proportionately by the number of periods the

index is predicted for.

We set critical distance threshold parameters {A1, A2, A3, A4} in the area weights

W j
i to {25, 50, 75, 100}, all measured in km. The implication is that the algorithm

selects transactions within 25 km of a target location j for the respective LWR unless

there are less than 10,000 observations within this area. The algorithm will expand

to 50, 75, or 100 km if necessary, but in practice this is unlikely to happen as the

density of transactions around city centers tends to be reasonably high. We choose
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25 km as the minimum distance threshold because this appears like a reasonable

approximation of an area from which the great majority of commuters will commute

to the center of a LLM.

For the spatial fixed effect ejI(Dj
i > T j), we set the distance threshold parameter

values to T s∈{1,2,3,4} = T̄ = 100. Since T̄ ≥ As∀s ∈ {1, 2, 3, 4}, the spatial fixed

effect drops out in all LWR. This is, of course, intentional, since we seek to measure

the average fundamental value within a LLM defined by Dj
i ≤ A1 and not the

fundamental value of the target location (a dimensionless point) itself. Since the

fixed effect drops out anyways, the choice of NT does not matter, which is why we

set it to zero for convenience.

We believe that the approximation of LLMs works best with spatial units that

are delineated based on the actual spatial distribution of economic activity, be it

based on commuting data (e.g. Kosfeld and Werner, 2012), population densities

(e.g. OECD, 2012), built-up areas (e.g. de Bellefon et al., 2021), or night lights (e.g.

Dingel et al., 2021). However, there are instances where researchers must proceed

with administratively defined areas due to compatibility with other administrative

data sets. A popular spatial unit in this context is the county (e.g. the European

NUTS3). As long as a county contains a sizable fraction of a LLM–and there is

typically no more than one dominating employment center within a county–the

procedure outlined in this section can also be applied to counties.

2.2.3 Local best fit indices

As we move from larger spatial units describing LLMs to smaller spatial units such

as neighborhoods, there is no longer a need for a theory-consistent adjustment by

commuting cost. Typically, micro-geographic property price indices will be inter-

preted through the lens of an urban model and may feed into a quantitative spatial

model that accounts for commuting costs (Ahlfeldt et al., 2015). Therefore, the

user will be interested in the best possible prediction of the fundamental value of

a target location, a point that represents an area that is sufficiently small to be

considered homogeneous. The perhaps most obvious example is a neighborhood, a

subdivision of a city or town that is just about walkable. Ideally, neighborhoods

will be delineated such that they encompass addresses that are reasonably similar in

terms of density, building structure, and socioeconomic characteristics. Naturally,

when compared to the theory-based LLM index, a different parametrization will be

suitable when solving the purely empirical problem of obtaining the best local fit for

a neighborhood.

As we are now looking into cities and ignoring commuting costs, we can allow the

10



LWR to become more local. Therefore, we set the critical distance threshold param-

eters {A1, A2, A3, A4} in the area weights W j
i to {10, 25, 50, 100}, as reported in the

fourth column of Table 1. Hence, our algorithm will fit a hedonic model to an area

within 10 km of a target location j if our minimum requirement of NA = 10, 000

observations is satisfied. If necessary, the algorithm will search over greater dis-

tances until the minimum-requirement NA = 10, 000 is satisfied. In principle, one

could consider smaller thresholds, in particular for A1. However, considering a whole

country, there will be many sparsely populated areas where the observation thresh-

old would never be reached. Importantly, the target-location-j-specific distance

control ensures that the index prediction is made for the target location. In other

words, we estimate the conditional mean at a zero distance E
(
lnPi,t|Dj

i = 0
)
and

not the naive average price adjusted for property characteristics within the 10-km

zone. Moreover, we use much smaller values for the distance thresholds in the fixed

effect {T 1, T 2, T 3, T 4}, which we set to {2.5, 5, 10, 20}. This fixed effect accounts for

time-invariant effects and further increases the local fit. Of course, the observation

threshold for the fixed effect NT = 1, 000 must be lower than NA since only a subset

of observations can fall into a circle with a radius T s < As. It can be lower, because

we only identify one parameter from the spatial fixed effect, whereas we estimate

T fixed effects αj
t from all transactions drawn in a LWR j. A lower value could be

chosen at the cost of increasing the sensitivity to the outlier leverage problem. As we

show in our application in Section 3.3, the chosen parameter values result in a local

fit that captures large differences in fundamental values over short distances within

cities. At the same time, it also accommodates regions in which transactions are

sparser. This is important when creating a spatial price index for an entire country,

which will also encompass many rural areas.

For many applications, researchers may be interested in a particular urban area

where the density of transactions is generally high. In this case, even smaller val-

ues can be chosen for the distance threshold parameters. With this in mind, we

set {A1, A2, A3, A4} to {5, 10, 25, 50} and {T 1, T 2, T 3, T 4} to {1, 2, 5, 10} in the last

column of Table 1. Now, the algorithm will seek to run a LWR which uses only

observations within 5 km and account for arbitrary local fundamentals within 1 km

via the spatial fixed effect if the observation thresholds {NA, NT} are satisfied. With

this approach, it is possible to generate a spatial index at the sub-neighborhood level,

such as for the 500×500 m cells in Figure 5. If the underlying transactions data are

exactly geocoded (as opposed to geocoding at a higher level such as a postcode or

grid cell) and the density of observation is sufficiently high, even smaller parameter

values may be feasible.
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Another popular, administratively defined spatial unit are municipalities. They

are generally smaller than counties. Typically, there will be multiple municipali-

ties within a local labor market, which is why they are no obvious candidates for a

theory-consistent index based on the monocentric city model. Therefore, we recom-

mend the same parameter values As∈{1,2,3,4} as for neighborhoods in Table 1. For

T s∈{1,2,3,4}, we use larger values because municipalities are normally not as as small

as neighborhoods within cities.

2.2.4 Standard regional house price indices

In Table 1, and the discussions above, we have outlined two use cases for our al-

gorithm: a theory-consistent index based on the monocentric city model that is

suitable for larger spatial units and a local best fit index for smaller units. We have

ruled out the need for theory-consistent local indices. A fourth possible case are

local best fit indices for larger spatial units with no theory-consistent adjustment.

Such standard regional hedonic house price indices return constant-quality average

property prices by region. If spatial units are sufficiently large, such indices can con-

veniently be recovered from region-by-period fixed effects added to a conventional

hedonic regression. This is why we do not see this application as the primary use

case for our algorithm.

Still, our algorithm can help in instances where the spatial distribution of trans-

actions departs from the spatial distribution of the economic activity. Consider a

property transactions data set which contains owner-occupied single-family houses in

suburbs and renter-occupied multi-family houses downtown. The former will trans-

act a lot more frequently, but the latter host a lot more people. In a conventional

hedonic regression, all observations would carry the same weight and the result-

ing index would consequently be driven by single-family homes even if more people

lived in multi-family houses. A convenient alternative would be to use our algo-

rithm to generate a local price index for neighborhoods and use population weights

to aggregate it to a higher level, such as LLMs.

2.2.5 Rolling indices

Researchers will often be interested in using our algorithm to create a spatial house

price index as an input in a closed-ended analysis. For example, they may use

our index to invert a quantitative spatial model for various periods or estimate

a VAR model, both of which will require a balanced panel. Beyond such specific

applications, a spatial price index is interesting in its own right as a means to monitor
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the evolution of property prices over time. To this end, the estimation of the index

will have to be repeated over time.

Extending the index calculations as data for additional years become available is

challenging because it will not only result in new index values for the added periods,

but also change the index values for all previously computed periods. This is a

standard problem in the computation of rolling house price indices which is discussed

extensively in various guides to practice (e.g. European Commission, 2013). The

standard approach is to estimate a hedonic model for a rolling window of periods,

for example 11 years. Over time, the size of the window remains constant, but the

base year period shifts each time the hedonic model is re-estimated. For example, one

could estimate the hedonic model at the beginning of 2011, including all observed

transactions that occurred from 2000 to 2010. In 2012, the procedure could be

repeated, this time including all transactions from 2001 to 2011. To obtain the 2011

index value, the 2010 to 2011 growth rate from the later hedonic index is applied to

the last period of the earlier hedonic index.

We see no reason why this established approach should not be extended to spatial

panel indices generated using our algorithm. Since our algorithm is designed to

return predicted prices for a property with representative characteristics in the same

units (e.g. rent in e/ m2) as the underlying micro data, one may as well just add the

last new index values from the latest run to an already existing panel. In this context,

we wish to highlight that we provide an alternative version of the algorithm that

takes spatial weights W j and the fixed effects distance thresholds T j as exogenously

given. This allows the user to feed threshold parameters identified in the initial

application into later applications to ensure that these parameters remain constant

in any update.

2.2.6 Spatial discontinuities

Figure 1 illustrates how our algorithm restricts the sample of transactions in a j-

specific LWR to a circular area (highlighted by the red circle) that surrounds a target

coordinate (Xj, Y j, marked by the red dot). Intuitively, properties within a distance

Dj
i < As are relatively similar in terms of locational characteristics compared to the

rest of the sample (here, all of Germany). Still, location characteristics may differ

within this area which is why we allow for year-specific distance trends (along the red

dashed arrows). Since, as one moves away from the target, prices may fall or increase

more or less depending on the cardinal direction, we, in addition, control for trends

in geographic coordinates (along the black dotted arrows). Finally, we allow for a

smaller locational fixed effect (marked by the blue circle) to account for unobserved
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Figure 1: Spatial trends and sub-markets

Note: The red dot marks the centroid of an arbitrary target unit j for which a price index is being predicted. Black
dots are other target units. The red circle marks the area sampled in a LWR j defined by Dj

i ≤ As. The blue

circle marks the spatial fixed effect Dj
i ≤ T s. Dashed red arrows illustrate the spatial trend in Dj

i . Black dotted
arrows illustrate the spatial trends in Xi and Yi). The thick grey line is the former Berlin Wall that separates to
sub-markets in LWR j (cross-hatched and hatched areas). Intuitively, LWR j predicts a price trend for the red dot
allowing the hatched area to be on a different trend.

locational characteristics that are not fully captured by the distance trends. As

with any spatial interpolation approach, the rationale for distance-based weights and

covariates rests on the assumption that unobserved characteristics, which determine

property prices and rents, vary smoothly in space. This assumption is generally

plausible because residents can travel in space: Therefore, the effects of location

characteristics will vary smoothly in space even if the underlying characteristics do

not.

If accessibility is restricted, however, this logic will no longer apply and the value

of locations can change discontinuously in space. Restrictions to mobility may arise

because there are no direct connections due to physical barriers such as rivers or

mountains, but they may also arise due to political, historical, or cultural reasons

(e.g. language barriers, differences in the institutional framework, or perceptions of

space). Our algorithm offers a simple way to allow for such spatial discontinuities

via the spatial sub-market variable Mi. As a case in point, we use the perhaps most

prominent barrier to mobility in urban history: the Berlin Wall (indicated by the

thick grey line in Figure 1). While the Wall no longer exists during our sampling

period, it is entirely conceivable that property markets on either side were on dif-

14



ferent price trends during our study period due to massive place-based policies in

the aftermath of the German Reunification, idiosyncratic preferences that developed

during the division period and, not least, because the Wall often followed actual ge-

ographic barriers such as rivers and canals that still persist. Thus, we set Mi to

different values, depending on whether a transaction i falls into former West Berlin

or East Berlin (or the rest of Germany). When predicting the price index for the

exemplary target (the red dot), the algorithm will now take into account that trans-

actions on the other side of the wall may be on a different time trend than those on

the same side of the wall that belong to the sub-market of the target location (the

cross-hatched area in which the red dot is located). In the same way, the algorithm

will control for a sub-market-specific trend within the cross-hatched area when pre-

dicting the price index for any of the targets on the other side of the Wall (black

dots within the hatched area). This procedure implies that our spatial price index

can feature discontinuities at the Berlin Wall in levels and trends.

The user can easily adopt this procedure to their own definitions of sub-markets

Mi, for example by assigning different values to transactions that are separated by

rivers, mountains, or railroads.

3 Application

To illustrate the functionality of our prediction method that can be applied to spatial

contexts in any country, we use rich point-pattern-based housing market data for

Germany – described in Section 3.1 – to derive house price and rent indices for

local labor markets (Section 3.2) and postcode areas (Section 3.3). The latter proxy

neighborhoods in Table 1. We relegate further applications to other spatial units to

the appendix. Section 3.4 offers a validation check of our approach.

3.1 Data

We rely on highly detailed information on properties listed for rent and purchase.

The data are provided by Immoscout24 via the FDZ-Ruhr. We observe about 22.6

million objects listed for rent and about 21.2 million properties listed for purchase

over the period 2007–2021. Since we only observe asking prices, it is important to

understand their connection to what we are ultimately interested in, i.e. sales prices.

The main concern is that asking prices are nothing but a strategic instrument for

home sellers that set off an auction. In reply to this concern, Han and Strange

(2016) point out that a nontrivial share of sales still settled with a price equal to

15



the asking price and then introduce a search model to further rationalize why asking

prices are still a commitment. Put differently, their work suggests that asking prices

are a useful and relevant predictor of sales prices although we cannot rule out noise

or temporal lags in the adjustment of asking prices to changing market conditions.

Indeed, there is evidence suggesting that the degree to which asking prices are a good

proxy of transaction prices depends on the cycle and the socio-demographics of a

housing market (Miller and Sklarz, 1986; Knight et al., 1994; Genesove and Mayer,

2001; Hayunga and Pace, 2017). To further investigate this, Section 3.4.3 exploits

a sample of asking prices observed for Berlin. Reassuringly, we observe that asking

prices track transaction prices during our study period, which echoes evidence from

Ireland (Lyons, 2019) and Canada (Han and Strange, 2016).

Beside asking prices, the data set contains the usual property characteristics (e.g.

price, date, floor space, etc.) and a text description which we use to extract a range

of additional characteristics, e.g. information on the type of heating system. We use

the readily accessible scientific use files which are georeferenced at the level of 1km2

grid cells in projected units of the ETRS coordinate system.5 We refer to Schaffner

(2021) for a detailed data description and initial steps to clean the data from e.g.

duplicate spells. In our analysis, we discard properties with (i) a monthly rental

price below 1e/m2 or above 50e/m2; (ii) a purchase price below 250e/m2 or above

25,000e/m2; and (iii) floor space below 30m2 or above 500m2. We further drop all

listings where the per-m2 price is less than 20% or more than 500% of the county

median. In total, this removes about 5% of all the transactions.

To illustrate the house price index, we use shapefiles from the Federal Agency

for Cartography and Geodesy (Bundesamt für Kartographie und Geodäsie, BKG)

representing jurisdictional boundaries in 2019.

3.2 Application I: Local labor markets (LLMs)

3.2.1 Context

Quantitative research where commuting decisions are not or cannot be considered

explicitly usually rely on local labor markets (LLMs) that are constructed to mini-

mize inter-regional commuting flows (see Ahlfeldt et al., 2020; Henkel et al., 2021, for

recent applications in the German context). We follow the classification by Kosfeld

and Werner (2012) who define 141 German LLMs. LLMs can vary greatly in size

which results in sizable variation in average commuting costs. For the interpreta-

5Address-based geocodes are accessible on site at RWI: RWI and Immobilienscout24
(2021a,b,c,d).
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tion of naive averages of prices or rents within LLMs, this is a problem because it

is well established that households trade housing against commuting costs (Alonso,

1964). To disentangle housing from commuting costs, Combes et al. (2019) propose

to compute housing costs at the centre of the city, where —assuming a monocentric

city structure— commuting cost are zero.

3.2.2 Parameter choices

We follow Combes et al. (2019) and argue that a theory-consistent index that cap-

tures pure housing cost in a LLM should control for a parametric distance gradient

that captures commuting costs in the spirit of the monocentric city model (see

Alonso, 1964; Mills, 1967; Muth, 1969). For the spatial window, we use the fol-

lowing parameter values {A1 = 25, A2 = 50, A3 = 75, A4 = 100, NA = 10, 000},
i.e. we consider a commuting zone of 25 km from the centre and only revert to

larger distances if we do not meet the minimum number NT = 10, 000 observa-

tions. Since we wish to capture the price level in the entire commuting zone (albeit

adjusted for commuting cost), we employ the same distance thresholds for the spa-

tial fixed effect, knowing that in most iterations the fixed effect will be dropped:

{T 1 = 100, T 2 = 100, T 3 = 100, T 4 = 100, NT = 0}.

3.2.3 Results

We present our results for the years 2007 and 2021 in Figure 2. Panels (a) and

(b) depict prices for purchases while panels (c) and (d) are based on rental prices.

The indices clearly reveal an increase in both the levels and the spatial disper-

sion of prices. The LLM München was leading the list in terms of purchase prices

with 3,750e (2007) and 12,495e (2021) while Prignitz (710e, 2007) and Lüchow-

Dannenberg (1,287e, 2021) had the lowest prices per square meter. Berlin developed

most dynamically with an annual growth rate over the period of 9.2% while prices

rose by only 1.2% per year in Hagen. Describing regional disparities in house prices

based on the coefficient of variation, our index implies an increase in inequality by

53.4% between 2007-2021.

Turning to rental prices, München was the most expensive local labor market

in both 2007 (12.13e) and 2021 (21.68e). Emden (3.68e, 2007) and Lüchow-

Dannenberg (5.09e, 2021) were at the lower end of the ranking. Rents have grown

by an annual rate of 6.5% in Berlin while they declined by 0.3% in the LLM Meck-

lenburgische Seenplatte. Rental price dispersion has increased by 30.0% over this

period.
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Figure 2: Local labor markets

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) is 141 local labor markets as defined by Kosfeld and Werner (2012). We
report correlation coefficients between purchase and rent indices in Appendix C.
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3.3 Application II: Postcodes

3.3.1 Context

The smallest administrative units, municipalities, provide great spatial granular-

ity outside independent cities (kreisfreie Städte). However, they lack spatial detail

within cities as exemplified by the extreme case Berlin, which is one municipality.

A suitable spatial unit for the analysis of variation between and within cities are

postcodes.6 There are 8,255 postcodes that are designed to accommodate similar

populations, but they may vary substantially in terms of geographic size. Within

urban areas they can be small and correspond to neighborhoods; in rural areas

they can be larger than municipalities. As more data become available at finer

grids, postcode-level precision will become an option to zoom into German cities

(restricted access labor market data from the Institute for Employment Research

are not yet available at this level). Of course, disaggregate property price and rent

data at the neighborhood level are useful in their own right since they can inform

hedonic regressions that are typically employed to value (dis)amenities.

3.3.2 Parameter choices

Wemainly face an empirical problem of predicting an index for a relatively small area

within which there will typically not be enough observations to estimate a credible

conditional mean. As before, we overcome this limitation by using observations

from neighboring municipalities. Specifically, we allow for the following choices

for thresholds: {A1 = 10, A2 = 25, A3 = 50, A4 = 100, T 1 = 2.5, T 2 = 5, T 3 =

10, T 4 = 20} (all in km) and we require a minimum of {NA = 10, 000, NT = 1, 000}
transactions. These choices allow for a tight local fit in areas where the density

of transactions is high while ensuring that the LWR are run on a sufficiently large

sample in areas that are more sparsely populated. Note that the small value of

T 1 reflects that within urban areas postcodes can be very small. The small scale

fixed effects ensure that we account for large differences in prices that are typically

observed within cities over relatively small distances.

6Note that this problem is less common in other countries where data are available for census
tracts. However, long-lasting protests against census collections mean that census data become very
patchy after 1971–the next waves are 1987 and then 2011–and census tracts are not consistently
assigned.

19



Figure 3: Postcodes

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Units of observation in panels (a)-(d) are 8,255 postcode areas in Germany. The jurisdictional definition refers
to 2019. Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie
und Geodäsie). We report correlation coefficients between purchase and rent indices in Appendix C.
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3.3.3 Results

Figure 3 provides an overview of 8,255 postcode areas in Germany following the

previous structure. Cities and locations with abundant recreational amenities appear

at the top of the ranking whereas remote and low-density places are characterized

by the low prices. Overall, purchase prices have changed between -1.1% to 11.0%

per year implying an increase in inequality (coefficient of variation) of 57.5%. On

the rental market, annual prices have changed between -2.6% and 7.6% translating

into an increase in inequality of 22.0%.

3.4 Validation

In this section, we provide three validation tests that concern the properties of the

algorithm and the data that we use.

3.4.1 Spatial discontinuities

The algorithm is designed to allow for spatial discontinuities in levels and trends

between sub-markets to be defined by the user. As we discuss in Section 2.2.6, we

illustrate this approach using the Berlin Wall and assign different values to the sub-

market variable Mi, depending on whether a transaction happened in the former

East or West of Berlin or outside of Berlin. In Figure 4, we use a conventional

spatial boundary discontinuity set-up to inspect if there is discontinuous variation

as one approaches the Berlin Wall coming from the west (negative distance values

correspond to a location in former West Berlin). Interestingly, we see a positive dis-

continuity associated with a location on the Eastern side of the former Berlin Wall

in 2007. This is consistent with an ambitious and successful urban renewal program

that targeted the eastern parts of the city from the 1990s and 2000s (Ahlfeldt et al.,

2017). Once the visible traces of the division period had been removed, place-based

policies have become less spatially biased and consequently, the discontinuity fades

away as time proceeds. The important takeaway from Figure 4 is that the defini-

tion of sub-markets allows users to prevent the algorithm from smoothing across

boundaries where discontinuities are to be expected.

3.4.2 Out-of-sample vs. within-sample prediction

In this section, we subject our micro-geographic indices to a fairly demanding out-

of-sample prediction exercise based on 500x500m hexagons for Berlin. The idea is to

use data from a fraction of these micro grids to predict our index for the remaining

ones.
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Figure 4: Spatial discontinuities at Berlin Wall

Note: We restrict the sample to transactions within 2.5 km of the former Berlin Wall wihtin the Berlin territory.
The running variable ”distance from former Wall” takes negative values for transactions in former West Berlin. We
residualize predicted log purchase prices in a regression of log price against fixed effects defined for combinations
of years and 1-km bin in the Y-coordinate. Point estimates (black solid lines) and 95% confidence intervals (grey
shaded areas) are from separate local polynomial regressions of residualized log property prices against the running
variable on both sides of the threshold. Local polynomial regressions are of degree 0 and use a Gaussian kernel with
bandwidth of 0.25. Blue dots are

This is an interesting exercise because our algorithm is designed to fit a con-

ditional mean non-parametrically in densely populated areas while it extrapolates

spatial trends to predict index values in sparsely populated areas. We claim that the

latter feature results in strong out-of-sample predictive power which is essentially

why we trust our algorithm to fill gaps on a map of index values that would other-

wise remain blank. Before we can recommend the algorithm for other applications,

it is useful to test its out-of-sample predictive power. To this end, we focus on the

500-meter grid for Berlin and drop about three quarters of the hexagons. Specifi-

cally, we design the sampling such that we leave at least one queens contiguity buffer

between any estimation hexagon and the nearest overidentification hexagon. Figure

5 illustrates the sampling design.

Next, we re-run the algorithm on property transactions keeping only this one

quarter of Berlin hexagons (estimation sample) and predict the index for the other

three quarters of hexagons (overidentification sample). Figure 5 visualizes the index

based on this drastically reduced estimation sample. Evidently, there is a close

resemblance to the index estimated on the full sample in Section A.3. We find a

convincingly tight fit along the 45-degree line between the within-sample predictions

and the out-of-sample predictions across all hexagons in the overidentifcation sample
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Figure 5: Hexagons Berlin: Validation

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: The estimation is based on the black hexagons (25% of 1,953 units). The index is predicted for all other
hexagons. The jurisdictional definition refers to 2019. Shapefiles are provided by the Federal Agency for Cartography
and Geodesy (Bundesamt für Kartographie und Geodäsie).

in Figure 6. It is reassuring to see that the algorithm does a good job predicting

values in areas with sparse data.

3.4.3 Asking vs. transaction prices

In this section, we present a validation test that concerns the reliability of the asking

price data we use. To this end, we use the universe of residential condominium trans-

actions in Berlin observed from 2007-2017 which we obtained from the committee

of valuation experts (Gutachterausschuss für Grundstückswerte). For a discussion

of these data, we refer to Ahlfeldt et al. (2017). Using these data, we generate a

transactions price index for the hexagonal grid cells displayed in Figure 6 using ex-
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Figure 6: Validation Exercise–Overidentification

(a) Purchases (b) Rents

Note: Unit of observation in panels (a)-(d) are 1,953 hexagons with a diameter of 500m in Berlin. The jurisdictional
definition refers to 2019. Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt
für Kartographie und Geodäsie). Hexagons are based on own calculations. The figures show the correlation between
out-of-sample predictions for purchase prices (a) or rents (b) and actual prices. The line is the 45-degree line.

actly the same methodology as we applied to asking prices. To evaluate how the

transactions price index compares to the asking price index in space and time, we

decompose both indices into a cross-sectional and a time component by regressing

the log of predicted per-square-meter prices on grid and year dummies. The left

panel of Figure 7 shows that both indices are positively correlated in space. The

right panel shows that both indices track each other closely over time. Given that

transaction prices are not universally accessible in Germany, the arguably most im-

portant insight from Figure 7 is that asking prices provide a decent approximation

of market trends, which echoes evidence from Ireland (Lyons, 2019) or Canada (Han

and Strange, 2016). While we view the methodology as our primary contribution,

this finding also lends validity to the asking price indices we create. Indirectly, the

fact that we generate similar indices from completely different data sources also

lends some validity to our proposed methodology.
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Figure 7: Asking price and transaction price indices for Berlin

(a) Cross-sectional correlation (b) Time trends

Note: We generate a transaction price index using actual transaction prices from Berlin observed from 2007 to 2016
for the hexagpons shown in Figure 6 using the appraoch and parameter values discussed in Sections 2.1 and 2.2
(the same as we apply to asking prices. To decompose the transactions price and the asking price index (using
years 2007-2016) into cross-sectional and time components, we run auxiliary regressions of the predicted log price
per square meter against year and hexagon fixed effects. The black solid line in the left panel is the 45-degree line.

4 Novel stylized facts

The application of the algorithm introduced in Section 2 to micro-geographic data

on rental and purchase prices in Section 3 has generated a real estate data set that

is unprecedented in terms of spatial detail and coverage of the German buyer and

renter markets. In this section, we provide a first exploration of this data set with

the aim to uncover stylized facts that may motivate further research.

4.1 Consistent spatial windows in rent and price indices

The algorithm we have introduced in Section 2.1 endogenously identifies a spa-

tial window Aj ∈ {A1, A2, A3, A4} and a fixed effect threshold parameter T j ∈
{T 1, T 2, T 3, T 4}. Depending on the local density of observations, {Aj, T j} may dif-

fer in a purchase price and a rental price index. Since we are interested in comparing

purchase price and rental price indices in this section, we use a version of the al-

gorithm that takes {Aj, T j} as given. We select these parameters according to the

following simple rule:

Āj = max
(
Aj

purch, A
j
rent

)
T̄ j = max

(
T j
purch, T

j
rent

)
,

where purch and rent index parameter values retrieved from the applications of the

original algorithm to the purchase and rental markets. Feeding {Āj, T̄ j} into the

algorithm that takes these parameters as given, but is otherwise identical, we then
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obtain purchase price and rental price indices that are suitable for the evaluation

of price-to-rent ratios since they are based on exactly the same spatial windows. In

practice, this precautionary measure turns out to be computationally heavy, but not

particularly impactful since the algorithm chooses similar values for {Aj, T j} in the

purchase and rental price sample (see Table A 1 in the appendix).

4.2 Cross-sectional correlations

A large body of literature has established that a broad range of locational features

such as accessibility, natural amenities, or neighborhood quality capitalize into prop-

erty values (see Cheshire and Sheppard, 1995; Ahlfeldt, 2011, for typical examples).

The intuition is straightforward. The standard urban model predicts that, assum-

ing perfect mobility, any locational advantage is offset by a correspondingly higher

cost of housing to maintain a constant utility within the city. The monocentric city

model focuses on commuting cost as approximated by distance from an exogenous

central business district (CBD) (Alonso, 1964; Mills, 1967; Muth, 1969), but the

logic extends to any other amenity (or disamenity).

With this in mind, we correlate our rent and price indices with several locational

characteristics in Figure 8. We provide bin scatter plots based on percentiles for

a clearer presentation, but the underlying data comprise 8,255 postcodes and the

entire country, which is a fairly broad coverage within a literature that mostly fo-

cuses on particular cities (see Hill, 2013, for a survey). We look at three different

dimensions which roughly represent a locations’ attractiveness due to its (i) prox-

imity to economic activities; (ii) consumption amenities and possibilities to interact

socially; and (iii) natural amenities. To measure proximity to economic activities,

we use the distance (in km) from the CBD of the local labor market area that nests

the postcode. To measure a location’s supply of consumption amenities, we use the

number of geo-tagged photos shared in social media in a postcode. Overall, we are

using 1.5 million pictures taken in the early 2010s. The measure captures visually

appealing content (e.g. landmarks or scenic views) but also locations like bars and

restaurants where people like to socialize. For further detail, we refer to Ahlfeldt

et al. (2020). Third, to approximate natural amenities, we calculate the Vegetation

Continuous Fields (VCF) product using Google Earth Engine (DiMiceli et al., 2017).

Based on satellite images over the period 2000–2014, the measure approximates the

percentage share of an area (here postcodes) covered by trees. We condition this

measure on a Normalized Difference Vegetation Index (NDVI) so we compare re-

gions with an equal degree of vegetation but different degrees of tree coverage. We

think of the measure of tree coverage as a proxy for access to natural amenities like

26



forests or leafy parks. Notice all panels show partial correlations of prices or rents

and amenity measures that are regression-adjusted. Specifically, we condition each

measure on all the other amenity measures and further absorb local LLM effects.

Although the cross-sectional multivariate regression is a workhorse tool in the

hedonic price literature, we caution against causal interpretations of the partial

correlations since there may be omitted variables correlated with the covariates we

consider. In fact, distance from the CBD, by its very nature, is supposed to capture

a multitude of factors that make traveling to city centers worthwhile, for professional

and recreational purposes. Likewise, we use photos as a “big data” proxy for many

factors that make places amenable to social interactions. We do not claim that

the mere fact that someone shares a picture on social media adds to the value of a

location, at least not in a quantitatively relevant way. Yet, the partial correlations

are interesting because most examples in the literature focus on purchase prices

within individual cities, whereas we compare hedonic implicit prices from purchase

prices and rental prices covering an entire country. Hence, we report the marginal

effects estimated from the underlying raw data (∂y/∂x) along with the standard

errors (in parentheses) and the partial R2.

In line with the predictions of the monocentric city model, prices (a) and rents (b)

decrease as we are moving away from the CBD suggesting that people value living

close to the center of economic activity. The respective slope coefficients suggest

that prices (rents) decrease by 8% (5%) for every 10 km further away from the CBD.

Panels (c) and (d) show a positive and also tight correlation between the number of

photos taken and prices or rents, respectively. A 10-percent increase in the number of

photos taken implies a 0.6% (0.3%) increase in price (rents), underlining the amenity

value of proximity to social interactions. Since we are holding distance from the CBD

constant, the significant effect of the photo variable reveals that the geography of

consumption amenities is—unsurprisingly—not perfectly approximated by a linear

distance gradient. Panels (e) and (f) show a positive though more noisy relationship

between the percentage of tree coverage (conditional on overall vegetation) and

prices or rents. At face value, the correlations suggest that a 10 percentage point

increase in tree coverage increases prices (rents) by 0.02% (0.017%) percent. We

attribute the high level of noise in part to the imprecisely measured tree coverage

from satellite images with a 250m spatial resolution and in part to tree coverage in

the postcode being an incomplete measure of access to natural amenities.
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Figure 8: Stylized facts I–Cross-sectional correlations

(a) Purchases–Distance (b) Rents–Distance

(c) Purchases–Photos (d) Rents–Photos

(e) Purchases–Tree Coverage (f) Rents–Tree Coverage

(g) Purchases–Income (h) Rents–Income

Note: Unit of observation in panels (a)-(h) are 8,255 postcodes. The figures shows the correlation between (i)

distance (in km) to the CBD as a proxy for access to economic activities; (ii) the log number of photographs taken

as a measure for consumption amenities (iii) tree coverage (in percent) as a measure for the presence of natural

leisure time amenities; and (iv) income, with prices (left panels) or rents (right panels).
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The perhaps most interesting stylized fact that jointly emerges from panels (a)-(f)

in Figure 8 is that the point estimates we obtain for the purchase price specifications

are of consistently greater magnitudes than those obtained for rents. This implies

a relatively larger capitalization of amenity values into purchase prices. To our

knowledge, this is a new stylized fact (at least for Germany) that we uncover with

the help of our new micro-geographic house price indices. Within the standard

framework of financial economics, we can rationalize this stylized fact via variation

in expected rental growth or risk. Landlords and home-buyers may expect the value

of amenities to rise and, thus, be willing to pay a premium in the expectation of

greater (imputed) rents in the future. They may also understand that future demand

shocks will trigger larger price adjustments in supply-inelastic markets (Büchler et

al., 2021). Alternatively, properties in better locations may be perceived as safer

assets because neighborhoods with high amenity values tend to be more stable over

time as documented by Lee and Lin (2018). Denser places also tend to be more

liquid, which can justify a lower yield. Finally, search frictions can generate non-

uniform spatial price-to-rent ratios (Chapelle et al., 2022).

Another interesting variable to correlate property prices with is neighborhood

income. Because of residential sorting, income is likely determined by the same

variables as purchase prices and rents, including those that we cannot observe. In

principle, the correlation can go both ways since preference-based sorting depends

on the relative willingness-to-pay of different income groups. Taking the classic

example—distance from the CBD, which we have documented to be negatively cor-

related with prices—the rich will live in the center if they value centrality more

than the poor. In the standard model, this will be true if the income elasticity of

commuting cost exceeds the income elasticity of housing demand. However, it could

also be the other way round, which would result in rich people living on large parcels

with plenty of interior and exterior space in leafy suburbs as often observed in North

American cities. Empirically, it does not seem as if one force universally dominates

the other (Wheaton, 1977). In some classic contributions, it has been assumed that

the rich are pulled to the center unless they face a (temporary) advantage in ac-

cessing faster transport modes (LeRoy and Sonstelie, 1983). In other classics, the

opposite is assumed unless the city center exhibits some amenity value such as an

attractive historic fabric (Brueckner et al., 1999). For German cities, our expecta-

tion is that central cities are generally relatively rich as most downtown areas are

fairly vibrant due to a walkable historic urban structure (and often a historic build-

ing stock) and public transit is generally well developed throughout metropolitan

areas. Assuming that other amenities such as access to natural amenities or urban
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consumption amenities are normal goods, we would expect demand to increase if

the income elasticity is larger than one. Hence, we have the rather unambiguous

expectation that income and real estate prices should be positively correlated in

Germany.

Using average disposable household income at the postcode level, which we ob-

tain from the GfK (Gesellschaft für Konsumforschung), we find this expectation to

be met by evidence in panels (g) and (h) of Figure 8. In these panels, we condition

on LLM fixed effects, but not on other amenities, because income is an endogenous

variable that itself depends on amenities. The estimated slope coefficients ∂y/∂x <1

are expected because richer households only spend part of the greater expenditure

on consuming housing services of greater quality (better location) whereas the other

part will go into quantity (bigger houses). Yet, the elasticity that relates the log

of purchase price to the log of neighborhood income is about twice as large as the

respective elasticity for the log of rent. Given that home buyers and renters do not

differ as dramatically in social strata in Germany as in many other countries, the

difference in the elasticities is difficult to reconcile with differences in consumption

preferences alone. A plausible alternative explanation is that home buyers spend

relatively more of their higher income on home quality (rather than quantity) be-

cause of the greater risk-adjusted return they expect in better neighborhoods. In any

case, it appears that a deeper exploration of the spatial determinants of price-to-rent

ratios in Germany is a promising area for research.

4.3 Temporal trends

Having explored cross-sectional differences in buyer prices and rental prices, we now

turn to the temporal dimension of the new indices. First, we show time series graphs

of price and rent data for the period 2007–2021 for four different types of cities,

large cities (Großstadt), small cities (Kleinstadt) and rural areas (Landgemeinden)

in panels (a) and (b) of Figure 9. We index the respective time series to 2010.

The first insight is that there is no equivalent to the U.S. subprime mortgage crisis

in Germany. To the contrary, low interest rates in the aftermath of the European

Sovereign Debt Crisis and the lack of global investment opportunities triggered a

steep increase in prices which was not matched by a corresponding increase in rents,

at least initially. Computing the ratio between the buyer price and rental price

indices (prior to normalization), panel (c) confirms that price-to-rent ratios were

generally on the rise since 2009. This, by itself, is not a particularly striking finding

since lower mortgage interest rates reduce the cost of capital, mapping to higher

initial investments at constant rents and yields. The diverging trend in denser areas
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is, however, an interesting stylized fact.

Price-to-rent ratios averaged at about 25 in 2010, a much higher level than in

the less agglomerated parts of the country. This is consistent with the stylized

evidence from within cities introduced in Section 4.2 which points to price-to-rent

ratios that are generally higher in more expensive areas, be it because buyers ex-

pect greater returns in the future, or lower risk.7 Figure 9 adds that the divergence

of price-to-rent ratios in denser areas has increased over time. One interpretation

is that rational forward-looking investors (Clayton, 1996), starting from 2010, ad-

justed their already positive expectations for rental growth upwards. This would

be consistent with growing demand for density in Germany (Ahlfeldt et al., 2020)

and elsewhere (Couture and Handbury, 2020). Indeed, panel b) reveals that rental

growth accelerated in large cities a couple of years later.

Given the large capital inflows into the German real estate market, which rep-

resented one of the few ”safe havens” past the U.S. subprime mortgage crisis and

the European Sovereign Debt crisis, it is also tempting to connect the surge in the

price-to-rent ratio in large cities to foreign investment (Badarinza and Ramadorai,

2018). If foreign investments are biased towards larger cities, be it because of these

markets are more liquid, less fragmented in terms of ownership, or simply because

they are “on the map”, an inflow of international capital will tend to reinforce spatial

differentials in the price-to-rent ratio.

Hilber and Mense (2021) argue that increases in the price-to-rent ratio can be

triggered by expectations that are formed based on stronger positive responses to

positive demand shocks in supply-inelastic markets. While large German cities are

plausibly more supply-inelastic than smaller cities, the divergence of trends in buyer

and rental prices did not start in a high-growth environment, suggesting a role for

alternative explanations in the German context. Indeed, a perhaps more obvious

explanation could be tightening rental price regulations in the largest German cities

in the second half of the 2010s (Mense et al., 2019; Breidenbach et al., 2022). The

sudden increase in rents towards the end of the 2010s could reflect a change in

composition as newly constructed units were exempt from the new regulations.

7Previous work reports similar patterns for e.g. London (Halket et al., 2020; Bracke, 2015),
Paris (Chapelle et al., 2022) or Shanghai (Chen et al., 2022) where the price-to-rent ratios are
higher in denser and thus typically more expensive locations. The important difference is that we
are looking at a temporal dimension and consider an entire country instead of selected cities.
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Figure 9: Purchase price and rent trends between cities

(a) Purchases

(b) Rents

(c) Price-to-rent ratio

Note: Settlement types are defined at the level of municipal associations. The figures shows the development of

prices (a) rents (b) and the price-to-rent ratio (c) over the years 2007–2018 for four different types of cities, large

cities (Grossstadt), medium sized cities (Mittelstadt), small cities (Kleinstadt) and rural areas (Landgemeinden).
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Bridging the gap between Figure 8, which considers variation in prices in a

cross-section within cities, and Figure 9, which considers variation in prices between

cities over time, we look into price-to-rent ratios over time within cities in Figure

10. To this end, we distinguish postcodes along two dimensions: Centrality and

income. The defining criteria are simply whether a postcode is above or below the

median distance from the CBD or the median disposable household income within

its host LLM. Figure 10 presents normalized buyer and rental price trends as well as

the average price-to-rent ratios for the two-by-two combinations of these attributes.

Otherwise, the presentation follows Figure 9. The main insight from panels (a) and

(b) is that centrality is the primary determinant of the trend in buyer prices and

rental prices within cities. As with the between-city comparison, denser areas within

cities appreciated faster. While for the level of the price-to-rent ratio, centrality is

important, income also matters. In fact, high-centrality low-income areas had the

same average price-to-rent ratio as low-centrality high-income areas up until 2010.

After that, centrality starts dominating income as a determinant of the relative

growth of purchase prices. Naturally, we can apply the same explanations for the

divergence of buyer price and rental price trends as in the between-city comparison.

Investors might have been willing to accept higher price-to-rent ratios because they

expected greater future returns in central parts of German cities. Indeed, the relative

pattern of rental growth in Figure 10, panel (b) (central vs. non-central) is strikingly

similar to the relative pattern of rental growth in Figure 9, panel (b) (large cities vs.

smaller cities). Similarly, spatially biased foreign investment could rationalize the

pattern given that central cities are generally more liquid markets, have favourable

building stock (more multi-storey buildings), and are likely better known to non-

local investors. Finally, rental price regulations in the largest cities are more binding

in the central, most expensive (as shown in Section 4.2), parts of the largest cities.

In any case, uncovering the determinants of the spatial bias in the price-to-rent ratio

in levels and trends appears to be a promising research area. Germany may be of

interest in international comparison given a home ownership rate that is low by the

standards of similarly developed countries. Our indices represent an asset to those

wishing to embark on this mission.
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Figure 10: Purchase price and rent trends within cities

(a) Purchases

(b) Rents

(c) Price-to-rent ratio

Note: Centrality and income measured at the postcode level. High (low)-centrality postcodes are postcodes with a

below (above) median distance from the CBD (normalized by the mean distance within LLMs). High (low)-income

postcodes are postcodes with an above (below) median income (normalized by the mean income within LLMs). All

trends are the averages across all postcodes within a centrality-income group. In panels (a) and (b), indices are

normalized to have a mean of one in 2010.

34



5 Conclusion

This paper introduces a new algorithm that transforms prices of geolocated property

transactions into a mix-adjusted balanced-panel house price index for arbitrary spa-

tial units. While the spatial units can be of arbitrary size, the aggregation method

itself is not arbitrary but well founded in urban economic theory and spatial methods.

The strength of the algorithm is that it combines parametric and non-parametric es-

timation techniques to provide a tight local fit where data are abundant, and reliable

extrapolations where data are sparse.

We will publish the underlying prediction algorithm along with suggestions for

the critical parameter choices together with this paper. This allows other researchers

who have access to individual property transaction data to employ our method and

create their own indices. Our exemplary application further generates spatial price

indices that are unique in their micro-geographic coverage of the German buyer and

renter market since 2007. We believe that the algorithm and indices published along

with this paper will facilitate applications of quantitative spatial models which have

been held back by suitable real estate data that combine micro-geographic variation

and comprehensive coverage. We also hope that the observed divergence of price-

to-rent ratios in more densely populated areas will spur research into the underlying

determinants, possibly using our data sets.

The use case for housing policy might be even stronger. Just to name a few

potential applications, our indices could inform policy makers about the success of

urban development, renewal, or heritage preservation measures, housing affordabil-

ity issues, or emerging bubbles. The latter is key to assessing future risks to financial

stability, which falls under the domain of the European Systemic Risk Board (ESRB)

since 2010. Taking Germany as a case in point, the perhaps most obvious application

would also have the highest impact. Government bill 19/26918, posted in February

2021, discusses a reform of regulations regarding local rent indices. The underlying

motivation for the reform is that existing rent indices are often not up-to-date and

lack a proper theoretical foundation. This has consequences for the assessment of

rent control policies and legal disputes over rent price increases as part of the com-

parative rent control system. The issue is of some urgency as stressed by politicians

from both sides of the political spectrum. As an example, Johannes Fechner of the

social democratic party (SPD) recently criticized that 80 of the 200 largest German

cities failed to publish the mandatory rent indices. Corroborating this criticism,

Jan-Marco Luczak of the conservative CDU called for an academically founded rent

index. Our point-pattern based algorithm that is based on insights from decades of
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economics research offers a readily and universally applicable solution to the problem

of creating a comprehensive micro-geographic rent index for Germany.
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A Additional applications

This appendix complements Section 3 in the main paper by adding additional spatial

layers to which we apply our prediction method: (i) counties, (ii) municipalities, and

(iii) micro grids.

A.1 Counties

A.1.1 Context

In the German context, counties (NUTS3 regions in official EU nomenclature) de-

fine the least granular spatial unit where a variety of data are publicly available.

Examples include the German Regionaldatenbank published by the Federal Statisti-

cal Office or commuting flows published by the Institute for Employment Research

(IAB). Quantitative research conducted at this spatial level depends on publicly

available house price indices that are often subject to the same criticism expressed

above, namely that they are unweighted averages (see Seidel and Wickerath, 2020;

Braun and Lee, 2021, in the German context). As with the LLM areas, our index

provides a theory-consistent measure of housing cost by predicting prices at the

economic center of a county (Combes et al., 2019). We use the jurisdictional classi-

fication in 2019 which comprises 401 counties. At this geographical level, additional

information can be easily matched.

A.1.2 Parameter choices

County-level data are often employed as an approximation for cities in the absence

of more suitable data. To account for this, we recommend the same parametrization

we employed for LLMs and employ it in our calculations. However, in some instances

researchers may be genuinely interested in county-level variables without a particular

urban model in mind. In these cases, we recommend estimating the municipality-

level index (sub-units of counties) using the parametrization introduced in the next

section and aggregating it to the county level, weighted by population.

A.1.3 Results

The general pattern of relative house prices resembles the pattern for local labor

markets - albeit at higher resolution (see Figure A1). The city of Munich was the

most expensive county with respect to purchase prices was München (city) both in

2007 (3,750e) and 2021 (12,495e). Sonneberg (Thuringia) was the least expensive
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Figure A1: Counties

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) is 401 counties based on the jurisdictional definition in 2019. Shapefiles
are provided by the Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie und Geodäsie).
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county in 2007, with square meter prices of 551e (2007). Vogtlandkreis (Saxony)

was the least in expensive in 2021 at 926e. In terms of changes, purchase prices

increased annually by only 0.06% in Neustadt an der Aisch (Bavaria) while they

increased by 9.2% in Berlin. Taking the coefficient of variation as a measure of price

dispersion, we find that overall inequality increased by 51.7%.

On the rental market, the city of München was leading the list in both years at

12.13e (2007) and 22.23e (2021). Wunsiedel (Bavaria) ranked at the lower end in

2007 with 3.34e per square meter. In 2021, Vogtlandkreis took that place with a

rental price of 4.18e. The latter county was also characterized by the lowest growth

rate in rents, namely an annual decline of 0.7%. Berlin was located at the top of

the ranking also for the country classification with an annual growth rate of 6.5%.

Rental price dispersion increased by 22.8%.

A.2 Municipalities

A.2.1 Context

There are about 11,000 municipalities (local administrative units, LAU, in EU

nomenclature) in Germany that differ quite remarkably in their size, both across

states and within states. At the extreme, the city state of Berlin, home to about 3.6

million inhabitants, and Gröde or Dierfeld, both home to 10 inhabitants each, are

considered one municipality. Therefore, some states with extremely small municipal-

ities such as Rhineland Palatinate grouped municipalities in municipal associations

(Verbandsgemeinden) that share a common local administration. Because of the

enhanced comparability across states, it is sensible to employ municipal associations

(where they have been formed) in quantitative research (Ahlfeldt et al., 2021). We

follow this convention and, using the official classification for 2019, construct our

house price index for 4,608 municipalities and municipal associations.

A.2.2 Parameter choices

Municipalities that do not coincide with independent cities (like the extreme case

Berlin) are significantly smaller than LLMs or counties. Consequently, the focus

moves away from a theory-consistent index that adjusts for commuting costs and

towards a purely empirical problem of predicting an index for a relatively small area

within which there will typically not be enough observations to estimate a credible

conditional mean. To increase the number ob observations, we consider distance

buffers around the municipality of interest and add additional observations within
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Figure A2: Joint municipalities (Verbandsgemeinden)

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) 4,608 joint municipalities. These entities are grouped according to joint

administration at the local level. The jurisdictional definition refers to 31 December 2019. Shapefiles are provided

by the Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie und Geodäsie).
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this buffer until we reach a minimum number of observations that guarantees a

reliable estimate. Specifically, we make the following choices for the distance and size

thresholds {A1 = 10, A2 = 25, A3 = 50, A4 = 100, T 1 = 10, T 2 = 15, T 3 = 20, T 4 =

50} (all in km) and minimum transaction numbers {NA = 10, 000, NT = 1, 000}.
These choices result in a tight local fit in areas where the density of transactions

is high while ensuring that the LWR are run on a sufficiently large sample in areas

that are more sparsely populated. The parametric distance control and the spatial

fixed effect then ensure that we estimate an index that is specific to the municipality

even if we have to use a relatively large window.

A.2.3 Results

Figure A2 illustrates nicely the evolution of house price changes, both for purchases

and rents, at a high resolution. Eyeballing suggests that the largest cities have

experienced the highest prices and growth rates. We find Grünwalder Forst near

Munich (4,615e, 2007) and Kreuth near the Alps (14,431e, 2021) at the top of

the purchase price index. Markneukirchen (Saxony) and Schwarzatal (Thuringia)

had the lowest purchase prices per square meter at 497e (2007) and 732e (2021),

respectively. Hamburg experienced annual growth rates of 9.9%—similar to Berlin

and Hamburg—while prices declined by 1.4% in Söhlde (Lower-Saxony). In terms

of the coefficient of variation, we find an increase in price dispersion of 31.0%.

Turning to the rental market, the least expensive municipalities were Ovelgönne

(Lower-Saxony) with a square meter price of 2.43e (2007) and Treptower Tol-

lensewinkel (Mecklenburg-Western Pomerania) with 3.23e (2021). München was

leading the list in both years with respective rents of 12.60e and 23.36e. Berlin

experienced the highest annual rent growth of 7.5% while rents declined by 3.2% in

Treptower Tollensewinkel. The coefficient of variation increased by 18.7%.

A.3 Micro grids

A.3.1 Context

While postcode-level precision helps us zoom into cities, postcodes in Germany still

tend to be larger than US census tracts or output areas in the UK. They are certainly

much larger than the housing blocks that have been used to analyze the strengths

and spatial scope of social and professional interactions (Ahlfeldt et al., 2015). To

achieve even higher precision, we introduce a last application where we show how

our algorithm can be applied to zoom into even finer grids of arbitrary shape. To

this end, we construct a grid of hexagons with a diameter of 500 meters that covers,
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Figure A3: Hexagons Berlin

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) 1,953 hexagons with diameter of 500m in Berlin. The jurisdictional
definition refers to 2019. Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt
für Kartographie und Geodäsie).

again, the entire Berlin city state. While we could generate an index at this level for

the entire country, the returns to enhancing the spatial resolution would be confined

to dense urban areas where spatial differences are particularly pronounced over short

distances and the density of observations is sufficiently high.

A.3.2 Parameter choices

Applying the algorithm only to a dense city like Berlin, we can make parameter

choices that aim at maximizing the flexibility of the index subject to the constraint

that there remain sufficient degrees of freedom. Hence, we use small distance thresh-

olds with the intention of only reverting to larger spatial windows and spatial fixed
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effects if observations are insufficient. We make the following choices for the thresh-

olds: {A1 = 5, A2 = 10, A3 = 25, A4 = 50, T 1 = 1, T 2 = 2, T 3 = 5, T 4 = 10} (all in

km) for distance and {NA = 10, 000, NT = 1, 000} for the number of transactions.

A.3.3 Results

Figure A3 reveals that central areas rapidly appreciated, even relative to the most

attractive wealthy suburbs in the south-west. This is a manifestation of the gentri-

fication trends observed in cities around the world. However, more features of the

spatial structure become apparent at the finer hexagon level. Purchase price maps

reveal the duo-centric structure of the city, with prices peaking near the prestigious

Boulevards Kurfürstendamm in former West Berlin and Unter den Linden in for-

mer East Berlin. Turning to rental price maps, we observe pockets of high rental

prices outside the central district Mitte such as in Kreuzberg and the bordering dis-

tricts Neukölln and Friedrichshain, a vibrant area that has become a hub of startup

entrepreneurship (Moeller, 2018).
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A.4 Postcodes within major cities

This subsection zooms into the five largest German cities at the postcode level.

Figure A4: Postcodes Berlin

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) 190 postcode areas in Berlin. The jurisdictional definition refers to 2019.
Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie und
Geodäsie).
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Figure A5: Postcodes Hamburg

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) 101 postcode areas in Hamburg. The jurisdictional definition refers to
2019. Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie
und Geodäsie).
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Figure A6: Postcodes Munich

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) 74 postcode areas in Munich. The jurisdictional definition refers to
2019. Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie
und Geodäsie).
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Figure A7: Postcodes Cologne

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) 45 postcode areas in Cologne. The jurisdictional definition refers to

2019. Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie

und Geodäsie).
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Figure A8: Postcodes Frankfurt

(a) Purchases, 2007 (b) Purchases, 2021

(c) Rents, 2007 (d) Rents, 2021

Note: Unit of observation in panels (a)-(d) 41 postcode areas in Frankfurt. The jurisdictional definition refers to
2019. Shapefiles are provided by the Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie
und Geodäsie).

B Spatial windows in rent and price indices

This section complements our analysis in Section 4.1 in the main paper by comparing

the radius parameters chosen by the algorithm in the creation of rent and price

indices. Table A 1 reveals that the algorithm chooses similar values for {Aj, T j} in

the purchase and rental price sample. This is intuitive since, unlike in many other
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Table A 1: Radius of area covered by LWR to predict price index, GVB

Purchases

Radius (km) 10 25 50 100 Total

R
en
ts

10 2,668 800 6 0 3,474

25 140 3,141 1,166 4 4,451

50 6 15 288 19 328

100 0 0 0 2 2

Total 2,814 3,956 1,460 25 8,255

Notes: This table shows the endogenous radii (threshold parameter As) of sub-samples that enter LWRs in the
application of our algorithm to rents and purchase prices.

countries, owning and renting is popular in all regions of the countries and, hence,

rental price and purchase price observations are relatively similarly distributed across

the country.

C Correlation between rent and price indices

In this appendix, we relate our rent and price indices for each spatial unit. Table A

2 reveals high correlation coefficients around 0.9 for all administrative spatial units

(local labour markets, municipalities, neighbourhoods, all covering all of Germany).

The correlation coefficients for the micro-grids (500m hexagons covering Berlin) are

somewhat lower, suggesting that there is more variation in the price to rent ratio

within cities than between.

except hexagons where coefficients are somewhat lower.
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Table A 2: Correlation coefficients rent vs purchase index

Year LLMs Counties Municipalities Neighborhoods Micro-Grids

2007 0.908 0.919 0.860 0.894 0.743

2008 0.908 0.928 0.873 0.905 0.788

2009 0.924 0.925 0.879 0.912 0.801

2010 0.917 0.916 0.880 0.914 0.796

2011 0.915 0.919 0.876 0.916 0.778

2012 0.919 0.916 0.882 0.917 0.824

2013 0.922 0.924 0.895 0.915 0.829

2014 0.934 0.914 0.893 0.932 0.794

2015 0.921 0.911 0.886 0.924 0.801

2016 0.921 0.922 0.897 0.923 0.779

2017 0.931 0.923 0.901 0.940 0.826

2018 0.933 0.924 0.905 0.942 0.797

2019 0.925 0.914 0.891 0.932 0.781

2020 0.932 0.923 0.901 0.939 0.691

2021 0.937 0.930 0.902 0.935 0.609

Notes: LLM refers to local labor markets. The number represent correlation coefficients between rent and purchase
indices at different spatial levels.
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