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1 (a) Given a tree T , we obtain an order V (T ) = {v1, . . . , vn} by removing a leaf (degree

one vertex) vn from T and repeating this in the resulting tree Tn−1 := T \ {vn}, and

so on until T1 is a single vertex v1.

Observe that the vertices of T 2 adjacent to vi which come before vi in this order are

the unique vj such that vivj ∈ E(T ) and j < i, and the set N(vj) ∩ {v1, . . . , vi−1}.
In total at most ∆(T ) neighbours in T 2 of vi precede vi in the ordering; so the greedy

colouring algorithm, run on T 2 in this order, uses at most ∆(T ) + 1 colours. In the

other direction, letting v be a vertex of T with d(v) = ∆(T ), the set {v} ∪ N(v) is a

set of ∆(T ) + 1 vertices which form a clique in T 2, hence χ(T 2) ≥ ∆(T ) + 1.

(b) This is obtained by modifying the tree argument from (a): namely, given a planar

graph G, order V (G) such that each vertex has at most five predecessors in the order

(it was proved in lectures that this is possible). Colouring greedily in this order, when

we come to colour vi, each of its at most five predecessors has at most ∆(G) − 1

neighbours other than vi, which could all be before vi in the order; in addition the

at most ∆(G)− 5 neighbours of vi which come after it in the order have at most five

predecessors each in the order, one of which is vi but the rest of which could all come

before vi. No other vertex at distance one or two in G from vi can precede vi, so we

conclude that in G2 at most 5∆(G) + 4(∆(G) − 5) neighbours of vi precede vi in the

order. The greedy algorithm thus uses at most 9∆(G)− 19 colours, as desired.

(c) This is an open problem. More accurately, there are planar graphs G with ∆(G) ≤ 3

such that χ(G2) = 7, for 4 ≤ k ≤ 7 there are planar graphs G with ∆(G) ≤ k such that

χ(G2) = k+ 5, and for k ≥ 8 that there are planar graphs G with ∆(G) ≤ k such that

χ(G2) =
⌊3∆(G)

2

⌋
+ 1, and it is conjectured (by Wegner) that for each value of k there

are no planar graphs G with ∆(G) ≤ k such that G2 has larger chromatic number.

A proof for the k = 3 case was announced in April 2016 by Hartke, Jahanbekam and

Thomas (a previous 2006 announcement by Thomassen of the same seems to have

suffered from a flaw in the proof); all other cases remain open at the time of writing.

However it is known that the conjecture is at least close to true: Havet, van den Heuvel,

McDiarmid and Reed showed in 2008 that for each γ > 0, if k is large enough then

all planar graphs G with ∆(G) ≤ k are such that G2 can be properly vertex-coloured

with
(

3
2

+ γ
)
k colours.

Note that the cases ∆(G) = 1, 2 are fairly easy to settle; the square of a matching

(∆(G) = 1) is a matching and has chromatic number 2; the square of a path or cycle

(∆(G) = 2) is always 4-colourable except for the square of C5, which is K5 and needs

five colours. In these cases the restriction to planar graphs is superfluous.

For the specific (non-optimal but still an open problem) bound I asked for, you can

also do ∆(G) = 3 fairly quickly (thanks to the student who pointed this out—I didn’t

spot it). If G is planar and has maximum degree 3, we want to show χ(G2) ≤ 3
2
· 3 + 5,

in other words χ(G2) ≤ 9. We can assume G is connected (otherwise we can colour

components of G2 independently). Now G2 has maximum degree at most 9, because

any given v ∈ G has at most three neighbours each of which has at most two neighbours

other than v. So by Brooks’ Theorem, we are done unless G2 is K10. But the only way

we can get G2 = K10 is if each vertex of G2 has degree 9; in other words, for each vertex

v ∈ G, we have d(v) = 3, the neighbours of v form an independent set, and there are six



second neighbours of v (the neighbours of the neighbours of v which aren’t v), which

means that G is a 3-regular graph on 10 vertices which doesn’t contain a triangle or a

C4. There is only one such graph. To see this, fix a vertex v, its neighbours x, y, z and

their respective neighbours x′, x′′, y′, y′′, z′, z′′. The only edges we don’t already know

in G are those between x′, x′′, y′, y′′, z′, z′′ which have to form a 2-regular graph. There

are only two 2-regular graphs on six vertices, namely C6 and two disjoint K3. But G

doesn’t contain a triangle, so we have to have C6. And because G doesn’t contain a

triangle or C4, the pair x′, x′′ have to be opposite on the C6, and the same for y′, y′′

and z′, z′′. This fixes the graph up to isomorphism: it is the Petersen graph, which

contains K5 as a minor (check it!) and therefore is not planar.



2 (a) This is a classic NP-completeness result, mentioned as such in the lectures. If you

figured it out on your own, well done—but you should have realised that this must be

easy to find online, and indeed there are several different routes that show up on the

first page of a Google search.

(b) Given γ > 0, choose d = γ/10 and ε = d/10. Now given G, take an ε-regular partition

V0, . . . , Vt of V (G) with t+ 1 parts, where ε−1 ≤ t ≤ K(ε) parts, which we are told is

possible in polynomial time. Draw a graph H on [t] by putting an edge ij whenever

(Vi, Vj) is a pair in G of density at least d. We can construct this graph in time O(n2),

as we simply have to count edges. We examine all 3-colourings of [t]. We answer ‘Yes’

if there is a 3-colouring of [t] such that at most εt2 edges are not properly coloured,

and otherwise ‘No’. This last step takes a constant (independent of n) time and hence

the algorithm in total runs in polynomial time in n.

If G is 3-colourable, fix a proper 3-colouring c of V (G). We derive a colouring c′ of [t]

by colouring i with a majority colour used on Vi (breaking ties arbitrarily). Observe

that if ij is an edge of H such that c′(i) = c′(j), then (Vi, Vj) is not ε-regular in

G, because otherwise by ε-regularity there would be an edge from the vertices in Vi
of colour c′(i) to the vertices in Vj of the same colour. Since an ε-regular partition

contains at most εt2 pairs which are not ε-regular, there are at most εt2 edges of H

which are not properly coloured by c′; so our algorithm indeed returns ‘Yes’.

If our algorithm returns ‘Yes’, fix a colouring c′ of [t] such that at most εt2 edges are

not properly coloured. We construct a set S of edges of G as follows: we put into S

each edge intersecting V0, each edge in a part Vi, and each edge between a pair (Vi, Vj)

such that c′(i) = c′(j). Now let c on V (G) be defined by c(v) = 1 if v ∈ V0, and

c(v) = c′(i) if v ∈ Vi. By definition of S this is a proper 3-colouring of G − S; on

the other hand, since |V0| ≤ εn there are at most εn2 edges intersecting V0, for each

i since |Vi| ≤ n/t there are at most n2/t2 edges in Vi, and hence at most n2/t ≤ εn2

edges within parts. Since there are at most εt2 pairs ij which are edges of H but not

properly coloured, at most εt2(n/t)2 = εn2 edges are in pairs (Vi, Vj) such that ij is an

edge of H not properly coloured, and by definition less than d(n/t)2
(
t
2

)
≤ dn2 edges

are in pairs (Vi, Vj) such that ij is not an edge of H. This covers all the edges which

can be in S, so |S| ≤ (3ε + d)n2 < γn2. In particular, if our algorithm returns ‘Yes’

then there is a set S of at most γn2 edges of G such that G− S is 3-colourable.



3 (a) Let first I1 and I2 be disjoint independent sets in V (H) of size greater than 2m/5.

Such sets exist since we can pick an edge xy and then N(x) and N(y) are examples

of such sets. Either I1 and I2 form a bipartition of H and we are done, or there is

some z in neither I1 nor I2. If z has a neighbour w in I1, then z has at most m/5

neighbours outside I1, otherwise w is adjacent neither to the vertices of I1 nor to the

verticesN(z)\I1, and this leaves less than 2m/5 possible neighbours, a contradiction. It

follows that we can add z to one of I1 and I2 to get a larger pair of disjoint independent

sets in V (H); repeating this we obtain the desired bipartition of H.

(b) Observe that by (a), the graph G
[
N(v)

]
is bipartite for each v ∈ V (G). Let I1, I2, I3 be

pairwise disjoint independent sets inG, each of size greater than n/4, with |I1| > 5m/16

and with |I2 ∪ I3| > 5n/8. Such sets exist since we can pick v ∈ V (G) and find a set

I1 in N(v), then I2 and I3 are obtained as the bipartition of N(u) for some u ∈ I1.

Let xy be any edge of G. If
∣∣N(x)∩N(y)

∣∣ ≥ 3n/8, then since δ(G) > 5n/8 there is an

edge in N(x) ∩N(y); in other words G contains K4. Now if x is any vertex not in Ii
(for some i ∈ {1, 2, 3}) which has at least one, but not more than |Ii|−n/8, neighbours

in Ii then x and a neighbour y ∈ Ii necessarily have
∣∣N(x) ∩N(y)

∣∣ ≥ 3n/8.

If I1, I2 and I3 do not give the desired three-colouring of V (G), then there is some

z not in any Ii. If for some i, z has no neighbours in Ii then we can add z to Ii to

obtain a larger triple of sets. But if z has at least one neighbour in each Ii, then it

has at most n/8 non-neighbours in each Ii by the last paragraph. Choose a neighbour

x of z in I1 and a common neighbour y of x and z in I2; this is possible since y has

|I1| non-neighbours in I1, and so less than 3n/8 − |I1| non-neighbours in I2. Since

3n/8−|I1|+n/8 ≤ |I2|, the desired common neighbours exist. Now there is a common

neighbour of x, y and z in I3 by similar logic: z has at most n/8 non-neighbours in

I3, x has at most 3n/8 − |I1| such non-neighbours, and y has at most 3n/8 − |I2|
non-neighbours. In total there are at most 7n/8 − |I1| − |I2| vertices in I3 which are

not common neighbours of x, y and z; since |I1| + |I2| + |I3| > 15n/16, the desired

common neighbour exists. This gives a copy of K4 in G, a contradiction.

It follows that we can sequentially add vertices I1, I2 and I3 to obtain the desired

tripartition of V (G).

(c) There are several ways to do this. Probably the easiest is to take a vertex-minimal

graph F which does not contain K3 and which cannot be coloured with C colours; we

proved such graphs exist in the course. Now for each sufficiently large n we construct an

n-vertex graphG by ‘blowing up’ F ; that is, by replacing vertices of F with independent

sets and edges with complete bipartite graphs. We choose the sizes of these independent

sets to be bn/tc and dn/te in order to obtain n vertices in total. Now G does not

contain a copy of K3, and since each vertex of F is in an edge (otherwise F would not

be minimal) each vertex of G has degree at least n/(2t). Provided that log n > 2t,

which is true for sufficiently large n, the graph G is an example as desired.

A point of interest: if you try hard enough, you can find graphs G on n vertices which

are triangle-free and have minimum degree
(

1
3
−o(1)

)
n; this is a construction of Hajnal

(in a paper of Erdős and Simonovits). This is the best you can do, as we proved in

the course. This construction is quite hard, especially if you want to understand why

Kneser graphs have large chromatic number—that turns out to be a topological fact.


