
London Taught Course Centre

2019 examination

Graph Theory

Answers

1 There was a small (not deliberate) error in the exam paper; the condition in ‘labelled

topological minor’ should have been φ(v) ≺ v, not the other way round; if taken literally

this would make the question wrong. But most people read what ‘should’ be there and

gave a more or less correct proof of what i intended.

This is a standard theorem (Google will lead you to it directly); it’s more or less what

Kruskal actually proved (the version in the lecture notes, week 2, of unlabelled trees, is

equivalent to the |S| = 1 case).

The proof is an easy modification of the lecture notes proof; one strengthens the statement

to ordered labelled topological minor on rooted labelled trees (as in the lecture notes) and

follows the proof there, adding ‘labelled’ wherever it is necessary. The only point where

one needs to do more is that it does not suffice to find one (i, j) such that the rooted forest

Ti − ri is an ordered labelled topological minor of Tj − rj, since we cannot simply map

ri to rj; the label of ri need not precede the label of rj. But by Propositions 6 and 8 of

the lecture notes, at this point in the proof it follows that there is actually some infinite

chain i1 < i2 < . . . such that Tia − ria is an ordered labelled topological minor of Tib − rib
whenever a < b. Since the labels are well-quasi-ordered, the sequence of labels of ri1 , ri2 , . . .

cannot be an infinite strictly descending sequence or infinite antichain; so there exist a < b

such that ria has label preceding that of rib , and we thus have the desired fact that Tia is

an ordered labelled topological minor of Tib .

2 This is also quite standard, though one has to guess a little what to type to Google.

Warning: you can easily miss research which is very relevant but uses terminology which

you don’t expect or which is different to what you use in your field. ‘Tangled’ is usually

called ‘intrinsically knotted’.

(a) Suppose G is not tangled; then there is a PL-embedding φ which witnesses this. Now

when we delete edges or vertices from G to form a new graph H, trivially the restriction

of φ to H has the property that all cycles in H are unknotted: a cycle in H is also

a cycle in G and φ witnesses that G is not tangled. If we contract an edge to obtain

H, it is also fairly trivial to modify φ to witness that H is not tangled; we extend the

edges going to u to follow φuv to v, without either creating new intersections (which

would stop the result being an embedding) or a knotted cycle. I’d be happy with this

assertion, but it’s actually not completely trivial to give a construction which works.

If you simply ‘follow φuv to v’ linearly, you may cause two edges to intersect which

should not (if φ is not a generic embedding witnessing untangledness) but if you make a

too arbitrary choice you risk creating a new knot. One possibility which almost surely

works is to start by perturbing u (add a uniform random vector from the ε-ball about

the origin, where ε > 0 is sufficiently small) and appropriately alter the final linear

segments of edges going to u), then terminate these edges on the ball B of radius ε

about u, and follow the termination points as B is moved along φuv and scaled linearly

to zero radius. Justifying this is easy but tedious.

What this shows is that the class of graphs which are not tangled is closed under

taking minors; by the Robertson-Seymour Theorem from notes, there is thus a finite

collection of forbidden minors F1, . . . , Ft. And it is obviously possible to check if a

given G contains a given Fi as a minor or not in finite time by brute force (in fact,

there is even a polynomial time algorithm, so the decision question is actually not just

decidable but also in P).

(b) There is no such Turing Machine. There exist graphs which are tangled (such as K7);

a Google search will find this. And there exist graphs which are not tangled (such as

the empty graph). Since a Turing Machine can only look at the first 2019 entries of

the adjacency matrix of any graph, it’s enough to take G to be the union of K7 and

enough isolated vertices that the first 2019 entries of its adjacency matrix are all zero;

then G cannot be distinguished from the empty graph on v(G) vertices in time 2019,

but one is tangled and the other is not.

3

(a) Summing over v, we have
∑

v∈V (H)

∑
T∈K3(H)

v∈T
w(T) ≤ v(H); since eachK3-copy appears

exactly three times in the sum on the left, we have 3
∑

T∈K3(H)w(T) ≤ v(H) and the

desired inequality follows.

(b) Let R(G) be as in the question. Given a fractional triangle factor w of R(G) with

weight at least 0.333, we begin the following algorithm. Start with y the everywhere

zero fractional triangle factor of R(G) and S the empty set. Choose T ∈ K3

(
R(G)

)
such that y(T) ≤ 0.9999w(T), and pick a triangle in G with one vertex in each part

indexed by T which is vertex-disjoint from the triangles in S. Add this triangle to S,

and increase y(T) by 1
|V1| . Repeat until y(T) ≥ 0.9999w(T) for every T ∈ K3

(
R(G)

)
.

This algorithm can only fail if at some point it is not possible to pick a triangle in G

as stated. But by definition of a triangle factor, and since n is large enough, at every

step the number of vertices in each part of G which are not used in S is at least 10−6 n
k
,

and by definition of a regular pair, for any T ∈ K3

(
R(G)

)
, the three sets

(
Vi \

⋃
S
)
i∈T

form 107ε-regular pairs of density at least d/2. By a theorem from the course they

therefore contain a triangle provided ε is small enough.

Thus the algorithm completes, and by definition of a fractional triangle factor and

construction we see S is a set of at least 0.33n pairwise vertex-disjoint copies of K3 in

G.

