LTCC Course: Graph Theory — 2024/25

Solutions to Exercises 2

Exercise 1.
We claim that, for a graph G with ¢ components, v vertices and e edges, any embedding of G in
the plane has f faces, where v —e+ f =1+c.

We proceed by induction on ¢, noting first that the result is true for the graph with ¢ = 0 (since
then also v =0, e =0, but f =1).

Given a graph G with at least one component H, consider any embedding of G in the plane.
Then the whole of H lies in one face F of the embedding of G — H. The embedding of G — H has
1+¢(G—H)—v(G—H)+e(G— H) faces, by the induction hypothesis. The embedding of H inside
the face F has (not counting the exterior face) 1 —v(H)+ e(H) faces. The total number of faces of
the embedding is thus 24+¢(G—H)—v(G—H)—v(H)+e(G—H)+e(H) = 14+¢(G) —v(G) +e(G),
as claimed.

The result now follows by induction.

Exercise 2.

The key thing here is to see that the identification of boundary segments of the 4k-gon identifies
all the corners as a single vertex. (You should check that, within each section of four segments, all
five corners are identified.) So the number of vertices is 1, as is the number of faces. The number
of edges is 2k, as the boundary segments are identified in pairs. Thus v — e + f = 2 — 2k, in line
with the Euler-Poincaré formula.

Exercise 3.
(a) We claim that G has K3 as a minor if and only if it contains a cycle.

If G does contain a cycle, then we can show that K3 is a minor of G by removing all edges and
vertices not on the cycle, and then (if necessary) repeatedly contracting edges to reduce the length
of the cycle until we are left with. K3 = Cs.

If G has a K3 minor, then there are three disjoint connected sets of vertices Vi, Vo, V3 with
an edge e;; between each pair (V;,V;). Now we can find (possibly trivial) paths inside each V;
connecting the endpoints of the two edges e;; in that set. Joining these paths with the e;; gives a
cycle.

So the graphs with no K3 minor are exactly the forests.

(b) Similarly to part (a), a graph with no Cj, minor, where C}, is cycle on k vertices, is exactly one
with no cycle of length k£ or greater.

In particular, if G has no Cy minor, then all cycles of G are triangles. Another way to say this
is that every block (maximal 2-connected subgraph) of G is either an edge or a triangle.



Exercise 4.
(a) — The Petersen graph P has 10 vertices, and its shortest cycle is of length 5. (Convince
yourself about this.) Using this last fact, we see that, in a putative embedding in the plane with f;
i-sided faces, we have 2e = >, if; > 5f. Thus Euler’s formula gives 10 = 50 — 5e + 5f < 5v — 3e,
so e < 1(5v — 10) = 40/3. Therefore e < 13. But the Petersen graph has 15 edges.

— The Petersen graph is often drawn like this:

Figure 1: The Petersen graph

It’s fairly easy to find K33 as a topological minor. We can take c,e,¢ to be the vertices of one
partition class, and a, d, j to be the vertices of the other, for example. Most of the paths we use
are the obvious single-edge paths; the non-obvious ones are jhc and jgi, and abc and afi.

— Again from the above drawing, it’s obvious that contracting af, bg, ch, di and ej gives a
Ks-minor.
(b) Our proof in the first part of (a) above shows that we have to delete at least 2 edges to make P
planar. It’s not obvious from the above drawing that we can manage with as few as two edges
removed. But in fact we can: removing fi and ch works, for example. To see this, observe that
once ch is removed, we can move the vertex h up and left till its remaining edges no longer create
crossings. The only crossing left is the one between f¢ and g7, so removing f7 next indeed gives a
planar graph.

Exercise 5.

Let H be C}, the cycle on 3 vertices, and let G be Cy, the cycle on 4 vertices. Then by suppressing
one vertex of degree two in G we get H, so H <p G. But G is bipartite, whereas H is clearly not
bipartite.

Exercise 6.

Let G be the class of all graphs for which the number of edges in every connected component is
at most the number of vertices. Note that for a connected component C = (V(C), E(C)) of a
graph G we must have |E(C)| > |[V(C)| — 1. Moreover, for a connected component C' we have
|[E(C)| = |V(C)| — 1 if and only if C' is a tree. From this it is easy to see that |E(C)| < [V(O)]
if and only if C' is a tree (and then |E(C)| = |[V(C)| — 1) or C has exactly one cycle (and then
E(C) = [V(O))).

So for every graph in G we have that every component is a tree or a connected graph with
exactly one cycle. And if we remove a vertex, or remove or contract an edge, then we only need to
consider what happens with the component containing that vertex or edge.

If C'is a component that is a tree, then removing a vertex of degree one leaves a smaller tree,
while removing a vertex of degree more than one gives a number of smaller trees. Similarly, if C' is



a component with one cycle, then removing a vertex not on the cycle leaves one component with
one cycle, and possibly some smaller trees. And removing a vertex on the cycle leaves one or more
parts that are all trees.

If C is a component that is a tree, then removing an edge gives two smaller trees. Similarly,
if C is a component with one cycle, then removing an edge from the cycle will transform C' to a
tree; while removing any other edge will leave one part with a cycle and one part that is a smaller
tree.

If C' is a component that is a tree, then contracting an edge gives a smaller tree. Similarly,
if C is a component with one cycle, then contracting an edge from the cycle will leave a smaller
component with one shorter cycle (if the original cycle had length at least 4) or transforms C' to a
tree (if the original cycle had length 3); while contracting any other edge will leave one component
with the same unique cycle.

So we’ll see that for every graph in G we have that removing a vertex or an edge, or contracting
an edge, will result in a graph that is still in G. This shows that G is closed under taking minors.

Any forbidden minor for G must be a graph that is not in G, hence it must have components with
at least two cycles. Moreover, a minimal minor has just one component. A bit of trial and error
seems to indicate that there are two different smallest graph with two cycles:
— G4 with 4 vertices and 5 edges (there is only one such graph);
— G2 with 5 vertices and 6 edges, formed by joining two triangles.

I’ll leave it to you to prove that these are in fact exactly the minimal forbidden minors of G.
For this you must prove that every graph not in G has at least on of G; or G5 as a minor.

Exercise 7.

For a natural number k£ > 3, define the graph Hy as follows: Start with the cycle Cy on k vertices,
say with vertices z1,...,z; and edges x;x;+1 (where we set k 4+ 1 = 1). Now add new vertices
Y1, ...,y and add the edges z;y; and y;zi1, for i = 1,... k (again, setting k+ 1 =1).

We will show that the sequence Hs, Hy,... has the property that Hy <1 Hy for all k < £.
To do this, observe that for any two vertices x;,z; in some Hj we have that there are four edge
disjoint paths between x; and x; in Hj. But if we remove one vertex or one edge from Hy, then
this property is no longer satisfied. And once this property is no longer satisfied, then no vertex
removal, edge removal, or suppression of a vertex of degree two can bring it back.

So the only operation that we can use in order to transform H; to Hj for some ¢ > k is
suppressing a vertex of degree two. But also doing this as the first operation will destroy one of
the edge disjoint paths between x; and x;.

So no topological minor of Hy can be equal to H for k < £, completing the proof.



