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1. (a) The derivative of f : [−1,∞)→ R is given by

f ′ = (2x− 9)ex + (x2 − 9x+ 19)ex = (x2 − 7x+ 10)ex = (x− 2)(x− 5)ex,

so the stationary points of f are

x = 2 and x = 5.

The derivative satisfies

f ′(x) > 0 x ∈ [−1, 2)
f ′(x) < 0 x ∈ (2, 5)
f ′(x) > 0 x ∈ (5,∞)

so, clearly, a global minimum exists and there are only two candidates for it: the
left endpoint x = −1 and the stationary point x = 5. We have

f(−1) = 29e−1 and f(5) = −e5,

so the global minimum is m = 5 and f(m) = −e5.

[9 marks]

(b) The derivative of g is given in terms of the partial derivatives of H and the derivative
of f by

g′(x) = Hx(x, y) +Hy(x, y)f ′(x),

where y should be replaced by f(x). The formula for the Taylor polynomial P1 about
0 is

P1(x) = g(0) + g′(0)x.

Using the given information, we find

g(0) = H(0, f(0)) = H(0, 19) = 2,
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g′(0) =
∂H

∂x
(0, f(0)) +

∂H

∂y
(0, f(0))f ′(0) =

∂H

∂x
(0, 19) +

∂H

∂y
(0, 19)10 = 15,

and hence obtain the stated result

P1(x) = 2 + 15x.

[8 marks] [not seen in this form]

(c) Using the definition of h we find that the left limit is

lim
ε→0+

h(1)− h(1− ε)
ε

= lim
ε→0+

4− (1− ε)2 − 3(1− ε)
ε

= lim
ε→0+

5ε− ε2

ε
= lim

ε→0+
(5−ε) = 5,

and the right limit is

lim
ε→0+

h(1 + ε)− h(1)

ε
= lim

ε→0+

2(1 + ε) + 2− 4

ε
= lim

ε→0+

2ε

ε
= lim

ε→0+
(2) = 2.

Hence h is not differentiable at x = 1 since the left and right limits are not equal.

[8 marks]

2. (a) A set S = {v1, . . . ,vk} of vectors in Rn is a linearly independent set if the only
solution of the homogeneous equation

α1v1 + α2v2 + . . . αkvk = 0

is the trivial solution α1 = α2 = · · · = αk = 0. The inequality k > n guarantees that
the set S is not a linearly independent set of vectors in Rn.

[4 marks]
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(b) The linear span Lin(S) of S = {v1, . . . ,vk} is the set of all linear combinations of
the vectors in S. The inequality k < n guarantees that the set S does not span Rn.

[4 marks]

(c) (i) We place the vectors in X as columns in a matrix A and row reduce (full
reduction is not necessary but is useful later):

A = (v1v2v3) =


1 2 7
0 1 2
1 3 9
0 4 8

 −→


1 2 7
0 1 2
0 1 2
0 4 8

 −→


1 0 3
0 1 2
0 0 0
0 0 0

 .

Since A does not have full column rank, the set X is not a linearly independent
set.

[4 marks]

(ii) The (reduced) row echelon form of A reveals that the first two columns of A
are linearly independent vectors and hence form a basis B for Lin(X):

B = {v1,v2} =




1
0
1
0

 ,


2
1
3
4


 .

The reduced row echelon form of A also reveals that the vector

−3
−2
1

 belongs to

the null space of A. Hence the corresponding linear combination of the columns
of A is equal to the zero vector, i.e.,

−3v1 − 2v2 + v3 = 0.

It follows that the coordinates of the vectors in X with respect to the B basis
are
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(v1)B =

(
1
0

)
, (v2)B =

(
0
1

)
, (v3)B =

(
3
2

)
.

The dimension of Lin(X) is 2 since a basis for Lin(X) consists of two vectors.

[5 marks]

(iii) For a Cartesian description, we can either eliminate the free parameters s, t from
the vector parametric equation

x1
x2
x3
x4

 = s


1
0
1
0

+ t


2
1
3
4


for Lin(X) or, alternatively, use the fact that the column space of A is orthogonal
to the null space of AT . Row reducing AT we find that

AT =

1 0 1 0
2 1 3 4
7 2 9 8

 −→
1 0 1 0

0 1 1 4
0 2 2 8

 −→
1 0 1 0

0 1 1 4
0 0 0 0

 ,

so

N(AT ) = Lin



−1
−1
1
0

 ,


0
−4
0
1


 .

Hence, a Cartesian description for Lin(X) is given by the set of equations

(
−1 −1 1 0
0 −4 0 1

)
x1
x2
x3
x4

 =

(
0
0

)
.

In order for w =


a
b
6
8

 to belong to Lin(X) we need
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{
−a− b+ 6 = 0
−4b+ 8 = 0

which implies that b = 2 and a = 4.

[8 marks][contains harder parts]

3. (a) The column space of A, CS(A), is the linear span of the columns of A. The null
space of A, N(A), is the set of solutions of the homogeneous system Ax = 0. To
show that N(A) is a subspace of Rn, we use the Subspace Criterion. First, N(A)
is non-empty because the zero vector 0 ∈ Rn satisfies A0 = 0. Moreover, N(A) is
closed under vector addition and scalar multiplication. Indeed, given any u ∈ N(A)
and w ∈ N(A), we have Au = 0 and Aw = 0. Hence the sum u + w satisfies
A(u + w) = Au+Aw = 0+0 = 0, which implies that u+w is in N(A). Similarly,
for any λ ∈ R, the vector λu satisfies A(λu) = λAu = λ0 = 0, which implies that
λu is in N(A).

[8 marks]

(b) We have
R(T ) = CS(A) and ker(T ) = N(A).

To obtain a basis B1 for CS(A) and a basis B2 for N(A) we find the reduced row
echelon form of A:

A =


1 2 1
2 3 4
7 11 13
4 7 6

 −→


1 2 1
0 −1 2
0 −3 6
0 −1 2

 −→


1 0 5
0 1 −2
0 0 0
0 0 0

 .

We therefore learn that the first two columns of A are linearly independent and span
CS(A), so

B1 =




1
2
7
4

 ,


2
3
11
7


 .
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Moreover, N(A) = Lin


−5

2
1

, so

B2 =


−5

2
1

 .

[6 marks]

(c) (i) The Cartesian equation y − z = 0 imposed on R3 implies two free parameters.
We let x = t and y = s, then z = s. So the general element x ∈ ker(S) is
written in the form

x =

xy
z

 =

ts
s

 = t

1
0
0

+ s

0
1
1

 ,

which implies that

B3 =


1

0
0

 ,

0
1
1

 .

[4 marks]

(ii) Every vector in N(B) = ker(S) gives a linear combination of the columns of
B = (c1c2c3) that is equal to the zero vector. Hence, considering the vectors in
B3, we see that

(c1c2c3)

1
0
0

 = 0 and (c1c2c3)

0
1
1

 = 0,

which means that c1 = 0 and c2 + c3 = 0.

The additional information that B

5
0
2

 =


6
0
2
4

 implies that
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5c1 + 2c3 =


6
0
2
4

 .

We have three independent linear equations for the three columns of B. In par-

ticular, with c1 = 0, we see that c3 =


3
0
1
2

 and hence c2 =


−3
0
−1
−2

. Therefore,

B =


0 −3 3
0 0 0
0 −1 1
0 −2 2

 .

[7 marks] [not seen in this form]

4. (a) The partial derivatives of f are

fx = 8x+ 6y2 and fy = 12xy.

At the point (1, 2), these become fx(1, 2) = 32 and fy(1, 2) = 24. Hence, the tangent
plane ΠT is described by the Cartesian equation

z − 35 = 32(x− 1) + 24(y − 2).

A vector parametric equation for the vertical plane ΠV isxy
z

 =

 1
2
35

+ s

3
4
0

+ t

0
0
1

 ,

since ΠV passes through (1, 2, 35) and has

3
4
0

 and

0
0
1

 as direction vectors.
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A Cartesian description for ΠV can be obtained by finding a normal vector,

n =

3
4
0

×
0

0
1

 =

 4
−3
0



and using the position vector

 1
2
35

 in the formula

〈xy
z

 ,

 4
−3
0

〉 =

〈 1
2
35

 ,

 4
−3
0

〉 .
The resulting Cartesian equation is

4x− 3y = −2.

[11 marks]

(b) A Cartesian description in R3 for the line ` is given by the simultaneous system of
equations {

z − 35 = 32(x− 1) + 24(y − 2)
4x− 3y = −2.

There is a free parameter in this system. Letting y = t ∈ R, we find that x = −1

2
+

3

4
t

and hence z = 35+32(−3

2
+

3

4
t)+24(t−2) = −61+48t. Hence, a vector parametric

equation for ` is xy
z

 =

−1/2
0
−61

+ t

3/4
1
48

 .

Rescaling the direction vector for ` in two stages,
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3/4
1
48

 −→
 3

4
192

 −→ 1

5

 3
4

192

 = d

we obtain a direction vector d whose first two components d1 and d2 satisfy d21+d
2
2 = 1

and d1 > 0, as instructed in the question.

The third component d3 is the directional derivative of f at the point (1, 2, 35)

in the direction u =

(
3
4

)
. This is equal to the ratio of the infinitesimal ‘ver-

tical’ change f(1 + 3ε, 2 + 4ε) − f(1, 2) to the corresponding ‘horizontal’ change∣∣∣∣∣∣∣∣(1 + 3ε
2 + 4ε

)
−
(

1
2

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣(3ε
4ε

)∣∣∣∣∣∣∣∣ = 5ε; i.e.

d3 = fu(1, 2) = lim
ε→0+

f(1 + 3ε, 2 + 4ε)− f(1, 2)

5ε
.

Hence, to first order in ε, we have that

f(1 + 3ε, 2 + 4ε) = f(1, 2) + 5d3ε = 35 + 5d3ε.

[14 marks][contains harder parts]

5. (a) The characteristic polynomial equation for A is∣∣∣∣∣∣
2− λ −2 0

0 −λ 0
0 0 2− λ

∣∣∣∣∣∣ = −(2− λ)2λ = 0,

which implies that λ1 = 2 (of algebraic multiplicity 2) and λ2 = 0 (of algebraic
multiplicity 1) are the eigenvalues of A. The corresponding eigenspaces are, by
inspection,

N(A− 2I) = N(

0 −2 0
0 −2 0
0 0 0

) = Lin


1

0
0

 ,

0
0
1


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and

N(A− 0I) = N(

2 −2 0
0 0 0
0 0 2

) = Lin


1

1
0

 .

Hence, setting P =

1 0 1
0 0 1
0 1 0

 and D =

2 0 0
0 2 0
0 0 0

, we express A in the form

A = PDP−1.

[10 marks]

(b) We are told that C is a symmetric 3× 3 matrix, so we know that C is orthogonally
diagonalisable. Since the eigenvalue α is repeated and the other eigenvalue β is not
equal to α, we deduce that

dim
(
N(C− αI)

)
= 2 and dim

(
N(C− βI)

)
= 1.

We are also given that

1
2
3

 is an eigenvector of the eigenvalue β, from which it

follows that

N(C− βI) = Lin


1

2
3

 .

Now, since C is orthogonally diagonalisable, eigenspaces corresponding to distinct

eigenvalues are orthogonal. Hence

1
2
3

 is a normal vector for the 2-dimensional

eigenspace N(A− αI). This means that a Cartesian equation for N(C− αI) is

x+ 2y + 3z = 0.

A basis for N(C−αI) can be obtained by solving the Cartesian equation x+2y+3z =
0. We let y = s, z = t, so x = −2s− 3t. The general vector x ∈ N(C− αI) is thus
given by
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x =

xy
z

 = s

−2
1
0

+ t

−3
0
1


so

N(C− αI) = Lin


−2

1
0

 ,

−3
0
1

 .

[7 marks] [not seen in this form]

(c) An orthonormal basisB = {u1,u2} forN(C−αI) can be found by the Gram-Schmidt
process. We let

u1 =
1√
5

−2
1
0


and

w2 =

−3
0
1

−〈
−3

0
1

 ,
1√
5

−2
1
0

〉 1√
5

−2
1
0

 =

−3
0
1

−6

5

−2
1
0

 =
1

5

−3
−6
5

 ,

which leads to

u2 =
1√
70

−3
−6
5

 .

Therefore, an orthonormal basis B = {u1,u2,u3} for R3 consisting of eigenvectors
of C is

B =

 1√
5

−2
1
0

 ,
1√
70

−3
−6
5

 ,
1√
14

1
2
3

 .

The matrix describing T with respect to the basis B is the diagonal matrix
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D =

α 0 0
0 α 0
0 0 β

 .

[8 marks]

6. (a) (i) Setting the partial derivatives of h to zero, we obtain the simultaneous system
hx = 8x = 0
hy = 12y + 3z = 0
hz = 3z2 + 3y = 0.

The first equation implies that x = 0. Solving the second equation for z in terms
of y and substituting the solution z = −4y into the second equation, we find

that 16y2 + y = 0, so y = 0 or y = − 1

16
. Using z = −4y and x = 0, we obtain

two stationary points, namely

(0, 0, 0) and
(
0,− 1

16
,
1

4

)
.

The second derivative of h is given by

h′′(x, y, z) =

8 0 0
0 12 3
0 3 6z

 ,

so

h′′(0, 0, 0) =

8 0 0
0 12 3
0 3 0

 and h′′
(
0,− 1

16
,
1

4

)
=

8 0 0
0 12 3
0 3 3/2

 .

The principal minors of h′′(0, 0, 0) are 8, 96,−72. Hence, h′′(0, 0, 0) is an indefi-

nite matrix and (0, 0, 0) is a saddle point. Regarding h′′
(
0,− 1

16
,
1

4

)
, its principal

minors are 8, 96, 72, so this is a positive definite matrix and the point
(
0,− 1

16
,
1

4

)
is a local minimum.
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[11 marks]

(ii) We observe that h(0, 0, z) = z3 tends to ±∞ as z tends to ±∞, so no global
extrema exist for h.

[2 marks]

(b) (i) The region D and some contours of f , i.e. curves of the form y = (x− 3)2 + c,
are depicted below.

[4 marks]

(ii) A suitable Lagrangian for the maximisation problem is

L(x, y, λ) = y − (x− 3)2 + λ(6− x− y)

since M is the point of tangency of one of the contours of f and the line x+y = 6.
Setting the partial derivatives of L equal to zero, we get the simultaneous system

Lx = −2(x− 3)− λ = 0
Ly = 1− λ = 0
Lλ = 6− x− y = 0.
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The second equation implies that λ = 1. Substituting this value of λ in the first
equation, we find that x = 2.5. Finally, the constraint implies that y = 3.5.
Hence

M = (2.5, 3.5) and f(M) = 3.25.

[5 marks]

(iii) The point m = (0, 1) is indicated on the graph above; it is not a point of
tangency. The value of f at m is f(0, 1) = −8.

[3 marks][harder part]

7. (a) The characteristic polynomial equation for the matrix A is

|A− λI| =
∣∣∣∣(5− λ −3
−3 5− λ

)∣∣∣∣ = λ2 − 10λ+ 16 = (λ− 8)(λ− 2) = 0,

so the eigenvalues of A are λ1 = 8 and λ2 = 2. The corresponding eigenspaces of A
are

N(A− λ1I) = N(A− 8I) = N(

(
−3 −3
−3 −3

)
) = Lin

{(
1
−1

)}
and

N(A− λ2I) = N(A− 2I) = N(

(
3 −3
−3 3

)
) = Lin

{(
1
1

)}
.

The eigenspaces of A are sketched below:
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[8 marks]

(b) The matrix A can be expessed in the form A = PDP−1, where

P =

(
1 1
−1 1

)
and D =

(
8 0
0 2

)
.

The general solution of the system of difference equation is given by

xt = Atx0.

Using A = PDP−1 and the initial condition x0 =

(
1
2

)
, we find the relevant partic-

ular solution

xt = PDtP−1x0 =

(
1 1
−1 1

)(
8t 0
0 2t

)
1

2

(
1 −1
1 1

)(
1
2

)

=
1

2

(
8t 2t

−8t 2t

)(
−1
3

)

=
1

2

(
−8t + 3(2t)
8t + 3(2t)

)
.
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[8 marks]

(c) An orthonormal basis B of eigenvectors of A is given by

B = {u1,u2} =

{
1√
2

(
1
−1

)
,

1√
2

(
1
1

)}
.

Hence, with P =


1√
2

1√
2

− 1√
2

1√
2

 and D =

(
8 0
0 2

)
, we have PT = P−1 and

A = PDPT . We now let x = Pz, where z =

(
X
Y

)
are the coordinates of x with

respect to the B basis. The equation for the conic section then becomes zTDz = 32,
which simplifies to

4X2 + Y 2 = 16.

The conic section is an ellipse, whose sketch is given below:

[9 marks] [contains harder parts]
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8. (a) We let M = 2x siny − y sinx and N = x2 cosy + cosx. We have

∂M

∂y
= 2x cosy − sinx and

∂N

∂x
= 2x cosy − sinx,

so the equation is exact. To obtain its general solution, we solve the simultaneous
partial differential equations

∂F

∂x
= 2x siny − y sinx

∂F

∂y
= x2 cosy + cosx

hence


F = x2 siny + y cosx+ f(y)

F = x2 siny + y cosx+ g(x)

We see that f(y) = g(y) = k for some constant k, so the general solution for y(x) is
given in implicit form by

x2 siny + y cosx = C,

where C is an arbitrary constant.

[6 marks]

(b) The complementary function is

y(x) = Ae3x + (B + Cx)e−x,

where A,B,C are arbitrary constants. A particular integral has the form y(x) = a
for some constant a to be determined. Substituting this expression in the differential
equation, we find that a = −4, so the general solution of the differential equation is

y(x) = −4 + Ae3x + (B + Cx)e−x.

Since limx→∞ y(x) = −4, we infer that A = 0. Using this value of A, we find that

y′(x) = (C −B − Cx)e−x,

so the conditions y(0) = 2 and y′(0) = 2 result in the simultaneous system of
equations
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{
−4 +B = 2
C −B = 2

which yields B = 6 and C = 8. Hence, the required particular solution is

y(x) = −4 + (6 + 8x)e−x.

[13 marks]

(c) In order for this equation to be exact, we require that the following equation is
satisfied identically in x and y:

∂

∂y

(
2xayb+3 + 8xa+2yb

)
=

∂

∂x

(
3xa+1yb+2

)
.

Performing the differentiations, we obtain

2(b+ 3)xayb+2 + 8bxa+2yb−1 = 3(a+ 1)xayb+2.

Comparing the coefficients of the various powers of x and y, we deduce that{
2(b+ 3) = 3(a+ 1)

8b = 0

which implies that a = 1 and b = 0.

[6 marks] [unseen]
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