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Question 1

(a)

(b)

(c)

We are dealing with three statements p, g, r, each of which can be true (“T") or false
("F"). Using the simple truth tables for a\v b and a = b, we get the following truth table,
showing both (p=r)V (g=-r) and (pV q) = r:
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We see that there are two lines in which the truth values for (p = r) V (g = r) and
(pV q) = r differ, which means that the two statements are not logically equivalent.
[4 + 2 pts, Standard question]

Since S; =1 and S, = 2, the statement is true for n=1 and n = 2.

Now suppose that the statement is true for all n < k, for some k > 2, and consider the
number Sk 1. Since k + 1 > 3, we know that Sk 1 =25, + Sx_1 — 2.

Now if k+1 is even, then k is odd and k—1 is even, and hence by the induction hypothesis
we have that Sy is odd and S_; is even. This means that 25, + Sx_1 — 2 is even ( “two
times odd plus even minus even” is even).

And if k+ 1 is odd, then k is even and k — 1 is odd, and hence by the induction hypothesis
we have that Sy is even and Sx_; is odd. This means that 25, + Sx_1 — 2 is odd ( “two
times even plus odd minus even” is odd).

We have shown that the statement is true for n = k + 1.

By the Principle of Induction, we can can conclude that P(n) is true for all n € N.
[8 pts, Similar to many questions, although more involved than most seen]

(i) If z= Re®, then z2 = R?e?% and 27 = 2Re™"®. So to have z? = 2Z we must have
R? =2R and €% = 719,
Since R? = 2R is equivalent to R(R —2) =0, we have R=0or R = 2.
And to have e?® = e7® we must have that 26 and —6 differ by a multiple of 2. So
we have 20 = —0 + 2km for some integer k, while we also want that 0 < 6 < 2.
This gives 30 = 2km. If k =0, then we get § = 0; if k =1, then we get 6 = 27; and
if k=2, then we get 6 = %‘ﬂ. For all other values of k, we don’t find 0 < 6 < 2.

Combining it all, if R = 0, then we have the one solution z = 0. And if R = 2, then
we have z = 2% = 2, z = 2€*™/3 and z = 2e*™/3,
[8 pts, Unseen]
(i) We can write 0 =0+ 0/ and 2 = 2+ 0/. For the other two solutions we find
2e*™/3 = 2(cos(2m) + isin(2m)) = 2(—3 +i3V/3) = -1+ V3,
2e*™/3 = 2(cos(4m) + isin(im)) =2(-% — i3vV3) = -1 - V3.
[3 pts, Standard]
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Question 2

(a) (i) We have that d is a divisor of m if there exists an integer k such that m =k - d.

The greatest common divisor gcd(m, n) of two integers m, n, not both zero, is the
largest integer d such that d is a divisor of both m and n.
[1+ 1 pts, Bookwork]

(ii) Every integer is a divisor of 0, since we have 0 = 0- d for every integer d. That means
that if we would ask for common divisors of 0 and 0, then we would have the set of
all integers. Hence there would be no largest common divisor.

[3 pts, Discussed in lectures|

(iii) We first note that gcd(—51, 141) = gcd(141,51), and then start taking the steps in
Euclid’s algorithm as follows.

141 = 2 x 51 + 39;
51 = 1 x39+12;
39 = 3x 12+ 3;
12 =4x 34+ 0.

As the final line ends in 0, we have found the greatest common divisor: gcd(—51, 141) =
gcd(141,51) = 3.
[4 pts, Standard]

(b) (i) If we have x = 0.0119, then 1000x = 11.9119. This means that 999x = 1000x — x =

o - 119 119 119
11.9119 - 0.0119=11.9 = 10 And hence we have x = 10999 ~ 9.990°

[3 pts, Bookwork]

) | L _ _ . 1191
(i) We can write x = 0.01191191. This shows immediately that r = 0.01191 = 100 000

satisfies 0.0119 < r < 0.0110.
[3 pts, Standard]

(iii) From a result in the course we know that v/2 is irrational. We also know that 1 <

V2 p)

500,000 < 500, 000" Since v/2 is irrational, also

V2 < 2. This means that 0 <

119 1 S . 119
z = 10, 0001192001 OOOf is irrational. Note that z satisfies z > m = 0.0119
and z < + = 0.0119 + 0.00001 = 0.01191 < 0.0119. So z has

_ 10,000 ~ 200, 000
indeed the desired properties.

[5 pts, Unseen]

(c) Letx e (AUB)\C. That meansthat x € AUB and x ¢ C. And from x € AU B we know
that x € Aor x € B. If x € A, then together with x ¢ C we have x € A\ C, and hence
x € (A\C)U(B\C). While if x € B, then together with x ¢ C we have x € B\ C, giving
x € (A\C)U(B\ C) again. So we can conclude that (AUB)\ C C (A\C)U(B\ C).
[5 pts, Unseen]
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Question 3

(a) (i) The contrapositive of the statement is “if p/q can not be expressed as an Egyptian
fraction with k + 1 terms, then p/q can not be expressed as an Egyptian fraction
with k terms”.

The converse of the statement is “if p/q can be expressed as an Egyptian fraction
with k + 1 terms, then p/q can be expressed as an Egyptian fraction with k terms”.
[2 + 1 pts, Standard]

(i) We need to show that we can write 1/a = 1/b+ 1/c, for some natural numbers b, c,
b # c. We greedily take 1/b < 1/a as large as possible, hence we take b =a+1. We
1

1 1 1
find that Pl

P Py ence we have — = ——— + 2ot 1) nd since
a>2, wehave a(a+ 1) # a+ 1, as required.

[4 pts, Unseen]

(iii) Let p/q, 0 < p/g < 1, be a rational number and suppose that we can express
p/q as an Egyptian fraction with kK > 2 terms. In other words we can write g =

1 1 1 .
= + P 4+ o+ - where aj, ao, ..., a, are different natural numbers. So we can
1 2 k

assume that a; < a, < ... < ax. Now in part (ii) we have seen that we can write

1 1 1

— = + ,with a < ar+1 < ak(ar+1) (since a, > a; > 1). Puttin

2 et 1 aar+ 1) k k k(ak ) ( K 1 ) g

it together gives 2 = L4 Lyt 1 hich gi

it together gives — = — + — + -+ , which gives an
? ey T e T, a1 ak+1 a(ak+1) J

expression of p/q as an Egyptian fraction with k + 1 terms.
[6 pts, Unseen]

(iv) The contrapositive of a statement is logically equivalent to the statement itself. Since
we proved in (iii) that P is always true, that means that the contrapositive of P is
also always true.

[2 pts, Bookwork]

5x 4+ 3y =2,
X+ 2y =1.

gives 5x 4+ 10y = 5. Since 10 = 3 in Z7, that equation is equivalent to 5x + 3y = 5.

But as the first equation is 5x 4+ 3y = 2, we get 5 = 2, which is not valid in Z-.

[3 pts, Standard]

(i) Multiplying the first equation by 2 gives 10x+6y = 4, which is equivalent to 3x+6y =
4 in Z7. Multiplying the second equation by 3 gives 3cx 4+ 6y = 3. Subtracting the
new first equation from the new second one gives (3¢ —3)x = —1 =6 in Z;. Since 7
is a prime number, every element a € Z7, a # 0, has an inverse a—* € Z;. Since
3c —3#0if ¢ # 1, there is an inverse (3¢ — 3)~!. That means that (3¢ —3)x =6
has the solution x = 6(3¢ — 3)7!.

Substituting this value for x in the first equation leads to 5-6(3¢c — 3)~! + 3y = 2,
which gives 3y =2 —30(3¢ —3)"! =2+ 5(3c —3)7! (since —30 = —2 =5 in Z).
The inverse of 3in Z; is 5 (since 3-5=15=1 in Z;). So for y we find the solution
y=5-(2+5Bc—3)"") =10+25(3c—3)"t =3+4(3c—3)""in Z;.

So the solution for the case ¢ # 1is x =6(3c —3) ! and y =3 +4(3¢c —3)" L.

[7 pts, Unseen in this form]

(b) (i) If ¢ =1, the system becomes { Multiplying the second equation by 5
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Question 4

(a)

(b)

(i) A function is surjective if for all y € Y there exists an x € X such that f(x) = y.
A function is injective if for all x;, xo € X with x; # x» we have that f(x;) # f(x).

A function is bijective if it is both surjective and injective.
[14 1+ 1 pts, Bookwork]

(i) Form 1: For all natural numbers m,n € N, if there is an injection from N,, to N,
(where N, ={1,2,3,..., m}), then m < n.
Form 2: Let A, B be two finite sets, and let f be a function from A to B. If |A] > |B|,
then there exist a;, a» € A, a; # ao, such that f(a;) = f(as).
[2 pts, Bookwork]

(iii) Suppose f : X — X is injective, but not surjective. Let X’ be the set of elements
in X that appear as an image f(x) for x € X. Since f is not surjective, we have
that X’ # X. But since we also have X’ C X, this means that |X’| < |X]. Since
we can consider f as a function from X to X’, by the Pigeonhole Principle there are
X1, X € X, X1 # Xo, such that f(x;) = f(x»). But that contradicts that f is injective.
Hence f must be surjective.

[6 pts, Unseen, and quite hard]

(iv) Define the function f : N — N by f(x) = x+ 1. Then f is injective, but not surjective
(since there is no element x € N such that f(x) = 1).
[3 pts, Unseen]

(i) R is reflexive on N. For this, we use that gcd(a, a) = a (if a € N). And if x € N, then
x+12>2 hencegcd(x+1,x+1)=x+12>2. So we have that xRx for all x € N.
[2 pts, Unseen, though similar to many exercises]

(i) R is symmetric on N. For all a,b € N we have gcd(a, b) = gcd(b, a). This means
that gcd(x + 1,y + 1) > 2 if and only if gcd(y + 1,x + 1) > 2. So we have that
xRy = yRx for all x,y € N.

[3 pts, Unseen, though similar to many exercises]

(iii) R is not transitive on N. Take x = 1, y = 5 and z = 2. Then we have that
ged(x+1,y+1) =9gcd(2,6) =2 >2and gcd(y +1,z+ 1) = gcd(6,3) =3 > 2,
hence xRy and yRz hold. But gcd(x +1,z+ 1) = gcd(2,3) = 1 # 2, hence xRz
does not hold. So it is not the case that (xRy A yRz) = xRz for all x,y,z € N, and
hence R is not transitive.

[4 pts, Unseen]

(iv) Since R is not transitive, it cannot be an equivalence relation.
[2 pts, Bookwork]
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Question 5

(a) (i) s is an upper bound for A if s > a for all a € A. s is the supremum of A if s is the
least upper bound of A, i.e., s is an upper bound for A, and s < t whenever t is an
upper bound for A.
[3pts, Bookwork]

(i) To show that sup(AU B) > sup(A), it suffices to show that t = sup(AU B) is an
upper bound for A, since it then follows that sup(A) < t. But this is immediate, since,
foreveryac€ A, a€ AUB, andso a < t.

[2pts, Similar to exercise]

(i) Suppose that A dominates B, let s = sup(A), and take any ¢ € AU B. Either
(i) c € A, in which case ¢ < s since s is an upper bound for A, or (i) ¢ € B, in which
case there is some a € A with ¢ < a < s, since A dominates B and s is an upper
bound for A. Thus s is an upper bound for AU B.

This implies that sup(AUB) <'s = sup(A), and combining this with the previous part
gives sup(AU B) = sup A.
[5pts, Unseen]

(iv) This is false. Consider A= (0,1), B =(0,1]. Then sup(AUB) =sup(A) =1, but A
does not dominate B since 1 € B but there is no element a € A with a > 1.
[2pts, Unseen]

(v) This is true. Take any b € B. As s is an upper bound for B, but s ¢ B, we have
b < 's. Now, as s is the supremum of A, b is not an upper bound for A, and so there
is some a € A with a > b. Hence A dominates B.
[4pts, Unseen]

(b) To show that there is at least one such value, we use the Intermediate Value Theorem: if
g : [a, b] = R is a continuous function, and g(a) < ¢ < g(b), then there is some x € [a, b]
with g(x) = c.

[2pts]

We apply the Intermediate Value Theorem with g(x) = /x — f(x), and [a, b] = [0, 1].
We know that g is continuous as it is the sum of the continuous functions v/x and —f(x).
Also g(0) = —f(0) = —1, and g(1) =1 —f(1) > 1 —f(0) = 0, since f is decreasing.
Hence g(0) < 0 < g(1), and so there is some x € [0, 1] with g(x) =0, i.e., f(x) = v/x.
[5pts, Unseen but routine]

To see that there is at most one such x, note that g(x) is strictly increasing. Explicitly,
suppose there are two solutions x; and x, with x; < xo. Then f(x1) = /X1 < /X2 = f(x2),
contradicting the assumption that f is decreasing.

[2pts, Unseen]
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Question 6

(a) (i) To say that (a,)sen is convergent, with limit 1, means that, for every € > 0, there is
some N € N such that, for n > N, |a, — 1| < €.
[3pts, Bookwork]

(ii) Suppose that a, — 1. We show that a2 — 1.
Fix e > 0. As a, — 1, there is some N € N such that, for n > N, |a, — 1| <
min(1, e/3). Now we have, for n > N, a, < 2, and therefore

€

]aﬁ—llzla,,—lHan—Fl]<3\an—1!<33

=c.
Hence indeed a2 — 1.
[6pts, essentially Bookwork]

(iii) We now show that b, = max(a,, a2) — 1.
Fix e > 0. Take N; € N such that, for n > Ny, |a, — 1| < €. Take also N, € N
such that, for n > N,, |a2 — 1] < €. Now take N = max(Ny, No). For n > N, we
have a, < 1+ ¢ and aﬁ <1l+e¢€ s0ob,<1+e¢€. Also we have b, > a, >1—¢€. So
|b, — 1| < €. Hence indeed b, — 1.
[4pts, Unseen, but related to a recent past exam question]

(b) (i) We note that

(WVn+1—vn—1)(/n+1++/n—-1)

1-vVn—1=
Vit v vn+1l++vn—1
_(n+1)—(n—-1) 2
S Vn¥14+vn—1 Vn+i1+vn-1
2 2
and hence a, = vn = .
Vn+1+vn—1 \/1+%+,/1_%

[5pts, Similar examples have been seen]
By the Algebra of Limits, we have

. 2
m a, =

e iMpoo /14 2+ 1liMpsae /1 — 2
2

2
\/1+Iimn_>oo%+\/l—lim,,_>00% V1+0+v1-0

1.

[3pts]

(i) We proved in the course that 2*/" — 1 as n — co. Hence there is some N € N such
that 2*/" > 1 for n > N. We see that b, > % for even n > N, and b, < —3 for odd
n > N. This implies that (b,),en does not converge. (One could write more, but |
think this should suffice.)
[4pts, Unseen]
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Question 7

(a) (i) Afunction¢: G — G’isa homomorphism if, for every a, b € G, ¢p(axb) = p(a)*' ¢(b).
[2pts, Bookwork]

(i) The kernel of ¢ is ker(¢) = {a € G | p(a) = €'}, where € is the identity element of
(G, «).
[2pts, Bookwork]
(iii) To see that ker(¢) is a subgroup of (G, %), we have three things to check:
1) If a,b € ker(¢), ¢p(a) = ¢p(b) = €, so p(ax*x b) = ¢p(a) x p(b) = €' ¥ € = €, so
axb € ker(¢p).
2) We are given that ¢(e) = €/, so that e € ker(¢).
3) If a € ker(¢), then ¢p(a ) = (¢p(a)) = ()t =€, s0al e ker(¢).
Hence indeed ker(¢) is a subgroup.
[5pts, Bookwork]

(b) (i) We show first that g x ker(¢) C S;,. An element of g x ker(¢) is of the form g * a,
where a € ker(¢). Now ¢(g*a) = ¢p(g) ' ¢p(a) = hx' e’ = h, so gxa € Sy, as required.
[3pts, Unseen]

Now suppose that f € S, so that ¢(f) = h. We note that f = g* (g~ * f), and we
claim that g7t * f € ker(¢). Indeed, ¢p(g7t * ) = (¢(g9)) 1 ¥ ¢(f) = h™1 ¥ h=¢.
Hence f € g x ker(¢), as required.

[3pts, Unseen]

(ii) For the next part, we know that all left cosets of ker(¢) have size | ker(¢)|, and there
is one coset for each element of im(¢). As the cosets (or indeed the inverse images
of elements of im(¢)) partition the group, we have that |G| is equal to the number of
cosets times the size of each coset, as given.

[2pts, Unseen]

(c) The function 6 is a homomorphism iff we have 6(ax b) = 6(a) x6(b) for all a,b € G, i.e.,
axbxaxb = axaxbxbforall a,b € G. This certainly holds if bxa = axbforall a,b € G,
i.e., if G is Abelian. Conversely, if, for all a,b € G, we have ax bxaxb = axax*xbx b,
then we also have a '« axbxaxbxb'=alxaxaxbxbxb™! andsobxa=axb-—
hence G is Abelian.
[6pts, Unseen, though related to material in lectures/exercises]

(d) If G is Abelian, then the function 6 is a homomorphism. Its kernel is {g | g * g = e}, and
its image is {a | a = g * g for some g € G}. The result now follows from (b).
[2pts, Unseen]
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Question 8

(a) (i) A basis of a vector space V is a set B of vectors in B such that (i) B is linearly
independent, and (ii) B spans V.

The vector space V has dimension d if there is a basis of cardinality d.
[4pts, Bookwork]

(i) We follow the hint and take bases {ui,us} of U and {wy,w,} of W. Now con-
sider ug, up, wy, wo. As there are four vectors here (though not necessarily distinct)
and V has dimension 3, they are linearly dependent. Thus there are real numbers
ai, as, B1, Bo, not all zero, with

opuy + aoup + Biwy + Bow, = 0.
We can then rewrite this as
QU + ooy = —B1W; — Bows (= V.

The vector v is in U, since it is a linear combination of the basis elements of U, and
similarly it is in W. Suppose that v=0. As 0 = v = aju; + aou», then as ug, u, are
linearly independent, we have a; = a, = 0. Similarly, as 0 = v = —G;w; — Bows, we
have B3; = B> = 0. But this contradicts the assumption that not all of oy, a», 81, B3>
are zero. Therefore the vector v is a non-zero vector in UNW.

[11pts, Unseen]

(b)  We have three things to check:
(i) The set L is closed under addition. Suppose then that f and g are in L; there are
constants Kr and K, such that, for all x,y € R, |f(x) — f(y)| < K¢lx — y|, and |g(x) —
9(y)| < Kg|x — y|. So we have, for all x,y € R,

I(F+9)(x) = (F +g)W)| < [F(x) = F(W) + [g(x) — g(y)I
< Kelx =yl + Kglx — y| = (Kr 4+ Kg)Ix — y|.

So the function f + g is Lipschitz, with constant K¢ + K.
(ii) The zero function is in L: this is clear: we can take Ky = 0.

(iii) The set L is closed under scalar multiplication. Indeed, for f in L with Lipschitz
constant K¢, and a € R, we have

af(x) —af (y)| = laf [f(x) = F(¥)] < |e|Krlx = yl,

for all x,y € R, so the function af is Lipschitz, with constant |a|Kf.

Thus indeed L is a subspace of X.
[10pts, Unseen]

END OF PAPER

© LSE ST 2016/MA103 Solutions Page 9 of 9



