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Question 1

(a) We are dealing with three statements p, q, r , each of which can be true (“T”) or false

(“F”). Using the simple truth tables for a∨b and a⇒ b, we get the following truth table,
showing both (p ⇒ r) ∨ (q ⇒ r) and (p ∨ q)⇒ r :

p q r p ⇒ r q ⇒ r (p ⇒ r) ∨ (q ⇒ r) p ∨ q (p ∨ q)⇒ r
T T T T T T T T

T T F F F F T F

T F T T T T T T

T F F F T T T F

F T T T T T T T

F T F T F T T F

F F T T T T F T

F F F T T T F T

We see that there are two lines in which the truth values for (p ⇒ r) ∨ (q ⇒ r) and
(p ∨ q)⇒ r differ, which means that the two statements are not logically equivalent.
[4 + 2 pts, Standard question]

(b) Since S1 = 1 and S2 = 2, the statement is true for n = 1 and n = 2.

Now suppose that the statement is true for all n ≤ k , for some k ≥ 2, and consider the
number Sk+1. Since k + 1 ≥ 3, we know that Sk+1 = 2Sk + Sk−1 − 2.
Now if k+1 is even, then k is odd and k−1 is even, and hence by the induction hypothesis
we have that Sk is odd and Sk−1 is even. This means that 2Sk + Sk−1 − 2 is even (“two
times odd plus even minus even” is even).

And if k +1 is odd, then k is even and k −1 is odd, and hence by the induction hypothesis
we have that Sk is even and Sk−1 is odd. This means that 2Sk + Sk−1 − 2 is odd (“two
times even plus odd minus even” is odd).

We have shown that the statement is true for n = k + 1.

By the Principle of Induction, we can can conclude that P (n) is true for all n ∈ N.
[8 pts, Similar to many questions, although more involved than most seen]

(c) (i) If z = Re iθ, then z2 = R2e2iθ and 2z = 2Re−iθ. So to have z2 = 2z we must have

R2 = 2R and e2iθ = e−iθ.

Since R2 = 2R is equivalent to R(R − 2) = 0, we have R = 0 or R = 2.
And to have e2iθ = e−iθ, we must have that 2θ and −θ differ by a multiple of 2π. So
we have 2θ = −θ + 2kπ for some integer k , while we also want that 0 ≤ θ < 2π.
This gives 3θ = 2kπ. If k = 0, then we get θ = 0; if k = 1, then we get θ = 2

3
π; and

if k = 2, then we get θ = 4

3
π. For all other values of k , we don’t find 0 ≤ θ < 2π.

Combining it all, if R = 0, then we have the one solution z = 0. And if R = 2, then

we have z = 2e0i = 2, z = 2e2iπ/3 and z = 2e4iπ/3.

[8 pts, Unseen]

(ii) We can write 0 = 0 + 0i and 2 = 2 + 0i . For the other two solutions we find

2e2iπ/3 = 2
(

cos(2
3
π) + i sin(2

3
π)

)

= 2
(

−1
2
+ i 1

2

√
3
)

= −1 + i
√
3,

2e4iπ/3 = 2
(

cos(4
3
π) + i sin(4

3
π)

)

= 2
(

−1
2
− i 1

2

√
3
)

= −1− i
√
3.

[3 pts, Standard]

c© LSE ST 2016/MA103 Solutions Page 2 of 9



Question 2

(a) (i) We have that d is a divisor of m if there exists an integer k such that m = k · d .
The greatest common divisor gcd(m, n) of two integers m, n, not both zero, is the

largest integer d such that d is a divisor of both m and n.

[1 + 1 pts, Bookwork]

(ii) Every integer is a divisor of 0, since we have 0 = 0 ·d for every integer d . That means
that if we would ask for common divisors of 0 and 0, then we would have the set of

all integers. Hence there would be no largest common divisor.

[3 pts, Discussed in lectures]

(iii) We first note that gcd(−51, 141) = gcd(141, 51), and then start taking the steps in
Euclid’s algorithm as follows.

141 = 2× 51 + 39;
51 = 1× 39 + 12;
39 = 3× 12 + 3;

12 = 4× 3 + 0.

As the final line ends in 0, we have found the greatest common divisor: gcd(−51, 141) =
gcd(141, 51) = 3.

[4 pts, Standard]

(b) (i) If we have x = 0.0119, then 1000x = 11.9119. This means that 999x = 1000x−x =
11.9119− 0.0119 = 11.9 = 119

10
. And hence we have x =

119

10 · 999 =
119

9, 990
.

[3 pts, Bookwork]

(ii) We can write x = 0.01191191. This shows immediately that r = 0.01191 =
1191

100, 000
satisfies 0.0119 < r < 0.0119.

[3 pts, Standard]

(iii) From a result in the course we know that
√
2 is irrational. We also know that 1 <

√
2 < 2. This means that 0 <

√
2

200, 000
<

2

200, 000
. Since

√
2 is irrational, also

z =
119

10, 000
+

1

200, 000

√
2 is irrational. Note that z satisfies z >

119

10, 000
= 0.0119

and z <
119

10, 000
+

2

200, 000
= 0.0119 + 0.00001 = 0.01191 < 0.0119. So z has

indeed the desired properties.

[5 pts, Unseen]

(c) Let x ∈ (A∪B)\C. That means that x ∈ A∪B and x /∈ C. And from x ∈ A∪B we know
that x ∈ A or x ∈ B. If x ∈ A, then together with x /∈ C we have x ∈ A \ C, and hence
x ∈ (A\C)∪ (B \C). While if x ∈ B, then together with x /∈ C we have x ∈ B \C, giving
x ∈ (A \ C) ∪ (B \ C) again. So we can conclude that (A ∪ B) \ C ⊆ (A \ C) ∪ (B \ C).
[5 pts, Unseen]
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Question 3

(a) (i) The contrapositive of the statement is “if p/q can not be expressed as an Egyptian

fraction with k + 1 terms, then p/q can not be expressed as an Egyptian fraction

with k terms”.

The converse of the statement is “if p/q can be expressed as an Egyptian fraction

with k + 1 terms, then p/q can be expressed as an Egyptian fraction with k terms”.

[2 + 1 pts, Standard]

(ii) We need to show that we can write 1/a = 1/b+1/c , for some natural numbers b, c ,

b 6= c . We greedily take 1/b < 1/a as large as possible, hence we take b = a+1. We
find that

1

a
− 1

a + 1
=

1

a(a + 1)
. Hence we have

1

a
=

1

a + 1
+

1

a(a + 1)
. And since

a ≥ 2, we have a(a + 1) 6= a + 1, as required.
[4 pts, Unseen]

(iii) Let p/q, 0 < p/q < 1, be a rational number and suppose that we can express

p/q as an Egyptian fraction with k ≥ 2 terms. In other words we can write p
q
=

1

a1
+
1

a2
+ · · · + 1

ak
, where a1, a2, . . . , ak are different natural numbers. So we can

assume that a1 < a2 < . . . < ak . Now in part (ii) we have seen that we can write
1

ak
=

1

ak + 1
+

1

ak(ak + 1)
, with ak < ak+1 < ak(ak+1) (since ak > a1 ≥ 1). Putting

it together gives
p

q
=
1

a1
+
1

a2
+ · · · + 1

ak−1
+

1

ak + 1
+

1

ak(ak + 1)
, which gives an

expression of p/q as an Egyptian fraction with k + 1 terms.

[6 pts, Unseen]

(iv) The contrapositive of a statement is logically equivalent to the statement itself. Since

we proved in (iii) that P is always true, that means that the contrapositive of P is

also always true.

[2 pts, Bookwork]

(b) (i) If c = 1, the system becomes

{

5x + 3y = 2,

x + 2y = 1.
Multiplying the second equation by 5

gives 5x + 10y = 5. Since 10 = 3 in Z7, that equation is equivalent to 5x + 3y = 5.

But as the first equation is 5x + 3y = 2, we get 5 = 2, which is not valid in Z7.

[3 pts, Standard]

(ii) Multiplying the first equation by 2 gives 10x+6y = 4, which is equivalent to 3x+6y =

4 in Z7. Multiplying the second equation by 3 gives 3cx + 6y = 3. Subtracting the

new first equation from the new second one gives (3c − 3)x = −1 = 6 in Z7. Since 7
is a prime number, every element a ∈ Z7, a 6= 0, has an inverse a−1 ∈ Z7. Since
3c − 3 6= 0 if c 6= 1, there is an inverse (3c − 3)−1. That means that (3c − 3)x = 6
has the solution x = 6(3c − 3)−1.
Substituting this value for x in the first equation leads to 5 · 6(3c − 3)−1 + 3y = 2,
which gives 3y = 2− 30(3c − 3)−1 = 2 + 5(3c − 3)−1 (since −30 = −2 = 5 in Z7).
The inverse of 3 in Z7 is 5 (since 3 · 5 = 15 = 1 in Z7). So for y we find the solution
y = 5 ·

(

2 + 5(3c − 3)−1
)

= 10 + 25(3c − 3)−1 = 3 + 4(3c − 3)−1 in Z7.
So the solution for the case c 6= 1 is x = 6(3c − 3)−1 and y = 3 + 4(3c − 3)−1.
[7 pts, Unseen in this form]
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Question 4

(a) (i) A function is surjective if for all y ∈ Y there exists an x ∈ X such that f (x) = y .
A function is injective if for all x1, x2 ∈ X with x1 6= x2 we have that f (x1) 6= f (x2).
A function is bijective if it is both surjective and injective.

[1 + 1 + 1 pts, Bookwork]

(ii) Form 1: For all natural numbers m, n ∈ N, if there is an injection from Nm to Nn
(where Nm = {1, 2, 3, . . . , m}), then m ≤ n.
Form 2: Let A,B be two finite sets, and let f be a function from A to B. If |A| > |B|,
then there exist a1, a2 ∈ A, a1 6= a2, such that f (a1) = f (a2).
[2 pts, Bookwork]

(iii) Suppose f : X → X is injective, but not surjective. Let X ′ be the set of elements
in X that appear as an image f (x) for x ∈ X. Since f is not surjective, we have
that X ′ 6= X. But since we also have X ′ ⊆ X, this means that |X ′| < |X|. Since
we can consider f as a function from X to X ′, by the Pigeonhole Principle there are

x1, x2 ∈ X, x1 6= x2, such that f (x1) = f (x2). But that contradicts that f is injective.
Hence f must be surjective.

[6 pts, Unseen, and quite hard]

(iv) Define the function f : N→ N by f (x) = x +1. Then f is injective, but not surjective
(since there is no element x ∈ N such that f (x) = 1).
[3 pts, Unseen]

(b) (i) R is reflexive on N. For this, we use that gcd(a, a) = a (if a ∈ N). And if x ∈ N, then
x + 1 ≥ 2, hence gcd(x + 1, x + 1) = x + 1 ≥ 2. So we have that xRx for all x ∈ N.
[2 pts, Unseen, though similar to many exercises]

(ii) R is symmetric on N. For all a, b ∈ N we have gcd(a, b) = gcd(b, a). This means
that gcd(x + 1, y + 1) ≥ 2 if and only if gcd(y + 1, x + 1) ≥ 2. So we have that
xRy ⇒ yRx for all x, y ∈ N.
[3 pts, Unseen, though similar to many exercises]

(iii) R is not transitive on N. Take x = 1, y = 5 and z = 2. Then we have that

gcd(x + 1, y + 1) = gcd(2, 6) = 2 ≥ 2 and gcd(y + 1, z + 1) = gcd(6, 3) = 3 ≥ 2,
hence xRy and yRz hold. But gcd(x + 1, z + 1) = gcd(2, 3) = 1 6≥ 2, hence xRz
does not hold. So it is not the case that (xRy ∧ yRz)⇒ xRz for all x, y , z ∈ N, and
hence R is not transitive.

[4 pts, Unseen]

(iv) Since R is not transitive, it cannot be an equivalence relation.

[2 pts, Bookwork]
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Question 5

(a) (i) s is an upper bound for A if s ≥ a for all a ∈ A. s is the supremum of A if s is the
least upper bound of A, i.e., s is an upper bound for A, and s ≤ t whenever t is an
upper bound for A.

[3pts, Bookwork]

(ii) To show that sup(A ∪ B) ≥ sup(A), it suffices to show that t = sup(A ∪ B) is an
upper bound for A, since it then follows that sup(A) ≤ t. But this is immediate, since,
for every a ∈ A, a ∈ A ∪ B, and so a ≤ t.
[2pts, Similar to exercise]

(iii) Suppose that A dominates B, let s = sup(A), and take any c ∈ A ∪ B. Either
(i) c ∈ A, in which case c ≤ s since s is an upper bound for A, or (ii) c ∈ B, in which
case there is some a ∈ A with c ≤ a ≤ s, since A dominates B and s is an upper
bound for A. Thus s is an upper bound for A ∪ B.
This implies that sup(A∪B) ≤ s = sup(A), and combining this with the previous part
gives sup(A ∪ B) = supA.
[5pts, Unseen]

(iv) This is false. Consider A = (0, 1), B = (0, 1]. Then sup(A∪B) = sup(A) = 1, but A
does not dominate B since 1 ∈ B but there is no element a ∈ A with a ≥ 1.
[2pts, Unseen]

(v) This is true. Take any b ∈ B. As s is an upper bound for B, but s /∈ B, we have
b < s. Now, as s is the supremum of A, b is not an upper bound for A, and so there

is some a ∈ A with a > b. Hence A dominates B.
[4pts, Unseen]

(b) To show that there is at least one such value, we use the Intermediate Value Theorem: if

g : [a, b]→ R is a continuous function, and g(a) ≤ c ≤ g(b), then there is some x ∈ [a, b]
with g(x) = c .

[2pts]

We apply the Intermediate Value Theorem with g(x) =
√
x − f (x), and [a, b] = [0, 1].

We know that g is continuous as it is the sum of the continuous functions
√
x and −f (x).

Also g(0) = −f (0) = −1, and g(1) = 1 − f (1) ≥ 1 − f (0) = 0, since f is decreasing.
Hence g(0) ≤ 0 ≤ g(1), and so there is some x ∈ [0, 1] with g(x) = 0, i.e., f (x) = √x .
[5pts, Unseen but routine]

To see that there is at most one such x , note that g(x) is strictly increasing. Explicitly,

suppose there are two solutions x1 and x2 with x1 < x2. Then f (x1) =
√
x1 <

√
x2 = f (x2),

contradicting the assumption that f is decreasing.

[2pts, Unseen]
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Question 6

(a) (i) To say that (an)n∈N is convergent, with limit 1, means that, for every ε > 0, there is

some N ∈ N such that, for n > N, |an − 1| < ε.
[3pts, Bookwork]

(ii) Suppose that an → 1. We show that a2n → 1.
Fix ε > 0. As an → 1, there is some N ∈ N such that, for n > N, |an − 1| <
min(1, ε/3). Now we have, for n > N, an ≤ 2, and therefore

|a2n − 1| = |an − 1| |an + 1| < 3|an − 1| < 3
ε

3
= ε.

Hence indeed a2n → 1.
[6pts, essentially Bookwork]

(iii) We now show that bn = max(an, a
2
n)→ 1.

Fix ε > 0. Take N1 ∈ N such that, for n > N1, |an − 1| < ε. Take also N2 ∈ N
such that, for n > N2, |a2n − 1| < ε. Now take N = max(N1, N2). For n > N, we
have an < 1 + ε and a

2
n < 1 + ε, so bn < 1 + ε. Also we have bn ≥ an > 1 − ε. So

|bn − 1| < ε. Hence indeed bn → 1.
[4pts, Unseen, but related to a recent past exam question]

(b) (i) We note that

√
n + 1−

√
n − 1 = (

√
n + 1−

√
n − 1)(

√
n + 1 +

√
n − 1)√

n + 1 +
√
n − 1

=
(n + 1)− (n − 1)√
n + 1 +

√
n − 1 =

2√
n + 1 +

√
n − 1 ,

and hence an =
2
√
n√

n + 1 +
√
n − 1 =

2
√

1 + 1

n
+
√

1− 1

n

.

[5pts, Similar examples have been seen]

By the Algebra of Limits, we have

lim
n→∞
an =

2

limn→∞

√

1 + 1

n
+ limn→∞

√

1− 1

n

=
2

√

1 + limn→∞
1

n
+
√

1− limn→∞ 1

n

=
2√

1 + 0 +
√
1− 0 = 1.

[3pts]

(ii) We proved in the course that 21/n → 1 as n →∞. Hence there is some N ∈ N such
that 21/n > 1

2
for n > N. We see that bn >

1

2
for even n > N, and bn < −12 for odd

n > N. This implies that (bn)n∈N does not converge. (One could write more, but I

think this should suffice.)

[4pts, Unseen]
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Question 7

(a) (i) A function φ : G → G ′ is a homomorphism if, for every a, b ∈ G, φ(a∗b) = φ(a)∗′φ(b).
[2pts, Bookwork]

(ii) The kernel of φ is ker(φ) = {a ∈ G | φ(a) = e ′}, where e ′ is the identity element of
(G ′, ∗′).
[2pts, Bookwork]

(iii) To see that ker(φ) is a subgroup of (G, ∗), we have three things to check:
1) If a, b ∈ ker(φ), φ(a) = φ(b) = e ′, so φ(a ∗ b) = φ(a) ∗ φ(b) = e ′ ∗′ e ′ = e ′, so
a ∗ b ∈ ker(φ).
2) We are given that φ(e) = e ′, so that e ∈ ker(φ).
3) If a ∈ ker(φ), then φ(a−1) = (φ(a))−1 = (e ′)−1 = e ′, so a−1 ∈ ker(φ).
Hence indeed ker(φ) is a subgroup.

[5pts, Bookwork]

(b) (i) We show first that g ∗ ker(φ) ⊆ Sh. An element of g ∗ ker(φ) is of the form g ∗ a,
where a ∈ ker(φ). Now φ(g∗a) = φ(g)∗′φ(a) = h∗′ e ′ = h, so g∗a ∈ Sh, as required.
[3pts, Unseen]

Now suppose that f ∈ Sh, so that φ(f ) = h. We note that f = g ∗ (g−1 ∗ f ), and we
claim that g−1 ∗ f ∈ ker(φ). Indeed, φ(g−1 ∗ f ) = (φ(g))−1 ∗′ φ(f ) = h−1 ∗′ h = e ′.
Hence f ∈ g ∗ ker(φ), as required.
[3pts, Unseen]

(ii) For the next part, we know that all left cosets of ker(φ) have size | ker(φ)|, and there
is one coset for each element of im(φ). As the cosets (or indeed the inverse images

of elements of im(φ)) partition the group, we have that |G| is equal to the number of
cosets times the size of each coset, as given.

[2pts, Unseen]

(c) The function θ is a homomorphism iff we have θ(a ∗ b) = θ(a) ∗ θ(b) for all a, b ∈ G, i.e.,
a∗b∗a∗b = a∗a∗b∗b for all a, b ∈ G. This certainly holds if b∗a = a∗b for all a, b ∈ G,
i.e., if G is Abelian. Conversely, if, for all a, b ∈ G, we have a ∗ b ∗ a ∗ b = a ∗ a ∗ b ∗ b,
then we also have a−1 ∗ a ∗ b ∗ a ∗ b ∗ b−1 = a−1 ∗ a ∗ a ∗ b ∗ b ∗ b−1, and so b ∗ a = a ∗ b –
hence G is Abelian.

[6pts, Unseen, though related to material in lectures/exercises]

(d) If G is Abelian, then the function θ is a homomorphism. Its kernel is {g | g ∗ g = e}, and
its image is {a | a = g ∗ g for some g ∈ G}. The result now follows from (b).
[2pts, Unseen]
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Question 8

(a) (i) A basis of a vector space V is a set B of vectors in B such that (i) B is linearly

independent, and (ii) B spans V .

The vector space V has dimension d if there is a basis of cardinality d .

[4pts, Bookwork]

(ii) We follow the hint and take bases {u1,u2} of U and {w1,w2} of W . Now con-
sider u1,u2,w1,w2. As there are four vectors here (though not necessarily distinct)

and V has dimension 3, they are linearly dependent. Thus there are real numbers

α1, α2, β1, β2, not all zero, with

α1u1 + α2u2 + β1w1 + β2w2 = 0.

We can then rewrite this as

α1u1 + α2u2 = −β1w1 − β2w2 := v.

The vector v is in U, since it is a linear combination of the basis elements of U, and

similarly it is in W . Suppose that v = 0. As 0 = v = α1u1 + α2u2, then as u1,u2 are

linearly independent, we have α1 = α2 = 0. Similarly, as 0 = v = −β1w1 − β2w2, we
have β1 = β2 = 0. But this contradicts the assumption that not all of α1, α2, β1, β2
are zero. Therefore the vector v is a non-zero vector in U ∩W .
[11pts, Unseen]

(b) We have three things to check:

(i) The set L is closed under addition. Suppose then that f and g are in L; there are

constants Kf and Kg such that, for all x, y ∈ R, |f (x)− f (y)| ≤ Kf |x − y |, and |g(x)−
g(y)| ≤ Kg|x − y |. So we have, for all x, y ∈ R,

|(f + g)(x)− (f + g)(y)| ≤ |f (x)− f (y)|+ |g(x)− g(y)|
≤ Kf |x − y |+Kg|x − y | = (Kf +Kg)|x − y |.

So the function f + g is Lipschitz, with constant Kf +Kg.

(ii) The zero function is in L: this is clear: we can take K0 = 0.

(iii) The set L is closed under scalar multiplication. Indeed, for f in L with Lipschitz

constant Kf , and α ∈ R, we have

|αf (x)− αf (y)| = |α| |f (x)− f (y)| ≤ |α|Kf |x − y |,

for all x, y ∈ R, so the function αf is Lipschitz, with constant |α|Kf .
Thus indeed L is a subspace of X.

[10pts, Unseen]

END OF PAPER
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