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1. Introduction

In this paper, we analyze the predictive performance of standard techniques
for the ‘logical analysis of data’ (LAD), within a probabilistic model of learn-
ing theory. The key aim in LAD is, on the basis of some observed data points,
each labeled 0 or 1, to find a way of classifying all possible data points that,
it is hoped, will be largely correct. The types of classifiers produced by LAD
are, at their simplest, Boolean DNF functions and, more generally, they are
polynomial threshold functions (which we often refer to as LAD-type classi-
fiers). We describe LAD and these types of classifiers in Section 2. In order to
be able to make precise statements about how well these classifiers perform,
we work in a standard probabilistic model of learning, which is described in
Section 3. Section 3 presents results (improving on earlier results from [1])
on the predictive performance of LAD-type classifiers that agree with all
the observed data points. Section 4 contains more general results that ap-
ply when some observed data might be incorrectly classified. In Section 5,
we provide generalization error bounds that involve the extent to which the
polynomial underlying the LAD-type classifier achieves a large separation (a
‘large margin’) between (most of) the positive and negative observations.

2. Logical analysis of data

We start by describing the key ingredients in the classifiers produced by LAD
methods. These are Boolean functions and polynomial threshold functions.

2.1. Boolean functions

A Boolean function is simply a function from {0, 1}n to {0, 1}, for some
n ∈ N. Any Boolean function can be expressed by a disjunctive normal
formula (or DNF), using literals u1, u2, . . . , un, ū1, . . . , ūn, where the ūi are
negated literals. A disjunctive normal formula is one of the form

T1 ∨ T2 ∨ · · · ∨ Tk,
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where each Tr is a term of the form

Tr =

(∧
i∈P

ui

)∧(∧
j∈N

ūj

)
,

for disjoint subsets P,N of {1, 2, . . . , n}. The Boolean function is said to
be an l-DNF if it has a disjunctive normal formula in which the number of
literals, |P ∪ N |, in each term is at most l; it is said to be a k-term-l-DNF
if there is such a formula in which, furthermore, the number of terms is at
most k. We say that the DNF is monotone if each term contains no negated
literals.

2.2. Polynomial threshold functions

It will be useful in our analysis to think of Boolean functions as being repre-
sented by the signs of polynomial expressions in the underlying variables. Let
[n](d) denote the set of all subsets of at most d objects from [n] = {1, 2, . . . , n}.
For any x = (x1, x2, . . . , xn) ∈ {0, 1}n, xS denotes the product of the xi for
i ∈ S. For example, x{1,2} = x1x2. We interpret x∅ as the constant 1. Then,
a Boolean function f of n variables is a polynomial threshold function of de-
gree at most d (see [10, 2] for instance) if there are real numbers wS, one for
each S ∈ [n](d), such that

f(x) = sgn

 ∑
S∈[n](d)

wSxS

 ,

where sgn(z) = 1 if z > 0 and sgn(z) = 0 if z ≤ 0. We will denote the
set of polynomial threshold functions on {0, 1}n of degree d by P(n, d). The
set P(n, 1) is simply known as the set of threshold functions on {0, 1}n. Any l-
DNF f on {0, 1}n is in P(n, l). For, given a term Tj = ui1ui2 . . . uir ūj1ūj2 . . . ūjs
of the DNF, we can set

Aj = xi1xi2 . . . xir(1− xj1)(1− xj2) . . . (1− xjs).

Then, expanding the expression A1 +A2 + · · ·+Ak according to the normal
rules of algebra, we obtain a linear combination of the form

∑
S∈[n](l) wSxS.
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Since f(x) = 1 if and only if A1 + A2 + · · ·+ Ak > 0, it follows that f(x) =

sgn
(∑

S∈[n](l) wSxS

)
, showing that f ∈ P(n, l).

The subclass B(n, d) of P(n, d) of binary-weight polynomial threshold func-
tions consists of those for which the weights wS all belong to {−1, 0, 1} for
S 6= ∅, and for which w∅ ∈ N. For 1 ≤ j ≤

∑d
i=0

(
d
i

)
, define Pj(n, d) to

be the set of all functions in P(n, d) with at most j of the weights wS non-
zero for S 6= ∅. We say that the functions in Pj(n, d) involve at most j
product terms. In an analogous way we define Bj(n, d), the class of binary-
weight polynomial threshold functions involving at most j terms and having
w∅ ∈ {−j,−j + 1, . . . ,−1, 0, 1, . . . , j − 1, j}. We have remarked that any l-
DNF function lies in P(n, l). It is not generally true that a k-term-l-DNF lies
in Pk(n, l), though. However. as can be seen from the translation described
above between a DNF and a polynomial threshold function, if we have a
monotone k-term-l-DNF, then the resulting polynomial threshold function
will be in Bk(n, l). (For, it is simply the sum of monomials, one correspond-
ing to each of the monotone terms of the DNF.)

2.3. Standard LAD methods

In the basic LAD framework, we are given elements of {0, 1}n, some obser-
vations, classified according to some hidden function t: a given x ∈ {0, 1}n
in the data set is classified as positive if t(x) = 1 and negative if t(x) = 0.
The observations, together with the positive/negative classifications will be
denoted D. The aim is to find a function h of a particular type (called a
hypothesis) which fits the observations well. In a sense, such a hypotheses
‘explains’ the given data well and it is to be hoped that it generalizes well to
other data points, so far unseen. That is, we want it to be the case that for
most y ∈ {0, 1}n, h classifies y correctly, meaning h(y) = t(y).

The observed error of a hypothesis on a data set D is the proportion of
observations in D incorrectly classified by the hypothesis:

erD(h) =
1

|D|
|{x ∈ D : h(x) 6= t(x)}| .

An extension of D (or a hypothesis consistent with D) is a hypothesis with
zero observed error.
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In the standard LAD method described in [7], a DNF is produced. First,
a support set of variables is found. This is a set S = {i1, i2, . . . , is} such
that no positive data point agrees with a negative data point in all the
coordinates in S. If S is a support set then there is some extension of D
which depends only on the literals ui, ūi for i ∈ S (and conversely). In the
technique described in [7], a small support set is found by solving a set-
covering problem derived from the data set D. This is framed in [7] as an
integer linear programming problem. (This can be solved exactly or, given
the well-known greedy heuristic for set-covering, a relatively small support
set can be found efficiently.) Once a support set has been found, positive
patterns are then found. A (pure) positive pattern is a conjunction of literals
which is satisfied by at least one positive example in D but by no negative
example. We then take as hypothesis h the disjunction of a set of positive
patterns. If these patterns together cover all positive examples, then h is an
extension of D. If the chosen support set has cardinality s, and each positive
pattern is a conjunction of at most d ≤ s literals, and the number of patterns
is P , then the resulting function is a P -term-d-DNF formula. There are a
number of different pattern-generation algorithms, and one could look for
patterns satisfying particular additional properties; see [12, 13], for instance.

There are some variants on this method. In particular, we can also make
use of negative patterns, to make use of any commonalities among the obser-
vations that have been classified with label 0. A (pure) negative pattern is
a conjunction of literals which is satisfied by at least one negative example
and by no positive example. Negative patterns can be detected or gener-
ated in analogous ways to positive patterns. Suppose that T1, T2, . . . , Tq are
patterns covering all positive examples in D and that T ′1, T

′
2, . . . , T

′
r are neg-

ative patterns covering all negative examples in D. Then we can form the
hypothesis

h = sgn

(
q∑
i=1

Ti −
r∑
j=1

T ′j

)
,

which will be an extension of D if each Ti is a pure positive pattern and each
T ′j is a pure negative pattern. If each pattern is a conjunction of at most d
literals, then the resulting extension lies in P(n, d). If, furthermore, all the
positive and negative patterns involved are monotone (meaning they contain
no negated literals), then the extension lies in BP (n, d), where P = q + r is
the number of patterns. More generally, we might consider ‘impure’ patterns.
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For instance, a particular conjunction of literals may cover many positive
observations (that is, they satisfy the conjunction) but may also cover a
small number of negative observations. We might well want to make use of
such a pattern.

There might be some advantage in ‘weighting’ the patterns, assigning positive
weights to the patterns and negative weights to the negative patterns; that
is, we take as hypothesis a function of the form

h = sgn

(
q∑
i=1

wiTi −
r∑
j=1

w′jT
′
j

)
,

where the wi, w
′
i are positive. For instance, we might take the weight associ-

ated to a pattern to be proportional to the number of observations it covers.
Such classifiers will lie in P(n, d) if all patterns are of degree at most d. With-
out any loss, we may suppose that the representation of such a classifier as
a polynomial threshold function is such that in the underlying polynomial,

f(x) = sgn
(∑

S∈[n](d) wSxS

)
, the vector w = (wS) is normalized, so that

‖w‖1 =
∑

S∈[n](d) |wS| = 1.

3. Generalization from random data

It is important to know how well a hypothesis will classify further data.
A standard framework for addressing this is the ‘PAC’ model of learning.
In this framework, we assume that the data points are generated randomly
according to a fixed probability distribution µ on {0, 1}n and that they are
classified by some ‘target’ function t. If there are m data points in D, then
we may regard the data points as a vector in ({0, 1}n)m, drawn randomly
according to the product probability distribution µm. Given any hypothesis
h, a measure of how well h performs in classification is its error

er(h) = µ ({x ∈ {0, 1}n : h(x) 6= t(x)}) .

This is simply the probability that h incorrectly classifies x ∈ {0, 1}n drawn
randomly according to µ. (Note that such a random x may be one of the
data points of D.) An important aspect of the PAC model of learning is to
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formalize the intuitive idea that if a simple hypothesis is an extension of (or,
at least, a good fit to) a large set of training data, then it is likely to have
small error. We have the following results for LAD-type classifiers.

Theorem 3.1. Let δ be a positive number less than one. Then the following
holds with probability at least 1 − δ. Suppose that D is a data set of m
points, each generated at random according to a fixed probability distribution
on {0, 1}n. Then, for any d, P ≥ 1, if h is any extension of D which is a
binary-weight polynomial threshold function in BP (n, d) (and, in particular,
if h is a monotone P -term-d-DNF), then the error of h is less than

1

m

(
dP ln

(en
d

)
+ P ln

(
2e

P

)
+ ln

(
12

δ

)
+ 2 ln d+ 3 lnP

)
,

for n ≥ 2.

Note that if P ≥ 6, then the second term in the bound is negative.

Theorem 3.2. Let δ be a positive number less than one. Then the following
holds with probability at least 1 − δ. Suppose that D is a data set of m
points, each generated at random according to a fixed probability distribution
on {0, 1}n. Then, for any d, P ≥ 1 with P ≤ 2m, if h is an extension of D
which is a polynomial threshold function in PP (n, d), the error of h is less
than

1

m

(
2dP log2

(en
d

)
+ 2P log2(2m) + 4P log2

( e
P

)
+ 2 log2

(
8

δ

)
+ 2 log2(dP )

)
.

Note that P and d are not specified in advance in these results, and may be
observed after learning. (Note also that since we certainly have P ≤ m for
the standard LAD methods, the restriction P ≤ 2m is benign.)

Proof of Theorem 3.1: We use a standard bound (which can be found
in [6], for example): given a class of hypotheses H, for a random sample
of m points, each generated according to µ, the probability that there is
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some extension h ∈ H which has error at least ε is less than |H| exp(−εm).
Recall that h ∈ BP (n, d) if for some j ≤ P there are non-empty subsets
S1, S2, . . . , Sj of {1, 2, . . . , n}, each of cardinality at most d, and constants
w1, w2, . . . , wj ∈ {−1, 1} and w0 ∈ {−P, . . . , P} such that

h(x) = sgn

(
w0 +

j∑
i=1

wixSi

)
.

The number of possible such xS is

N =

(
n

≤ d

)
=

d∑
i=0

(
n

i

)
.

We will make use of the following inequality (see [6], for instance):

d∑
i=0

(
n

i

)
≤
(en
d

)d
.

To count the number of functions in BP (n, d), we observe that, given the
(non-empty) product terms which such an h involves, there are two choices
for the weight assigned to each (either −1 or 1). Furthermore, there are
2P + 1 ≤ 3P choices for w0. Therefore

|BP (n, d)| ≤ 3P
P∑
j=0

(
N

j

)
2j

< 3P 2P
P∑
j=0

(
N

j

)

≤ 3P 2P
(
eN

P

)P
.

It follows that

ln |BP (n, d)| ≤ ln(3P )+P ln

(
2e

P

)
+P lnN ≤ ln(3P )+P ln

(
2e

P

)
+Pd ln

(en
d

)
.

So, fixing P, d, taking H to be BP (n, d), and using the bound mentioned at
the start of the proof, we have that, with probability at least 1− δ, if h ∈ H
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is an extension of a random data set D of size m, then

er(h) <
dP ln(en/d) + P ln(2e/P ) + ln (3P/δ)

m
.

It follows that only with probability at most 1 − δ/(4d2P 2), will there be
some h ∈ BP (n, d) which is an extension of D and which satisfies er(h) >
ε(d, P, n,m) where

ε(d, P, n,m) =
1

m

(
dP ln(en/d) + P ln(2e/P ) + ln

(
12d2P 3

δ

))
.

So, the probability that for some d, P ≥ 1, there will be some such h is no
more than

∞∑
d=1

∞∑
P=1

δ

4d2P 2
=
δ

4

∞∑
d=1

1

d2

∞∑
P=1

1

P 2
=
δ

4

(
π2

6

)2

< δ.

The result follows. ut

Proof of Theorem 3.2: We use a bound from [6], which follows [14]. With
the notation as above, the bound states that for any positive integer m ≥ 8/ε
and any ε ∈ (0, 1), the probability that there exists h ∈ H with er(h) ≥ ε and
such that h is consistent with a randomly generated data set of size m is less
than 2ΠH(2m)2−εm/2, where for a positive integer k, ΠH(k) is the maximum
possible cardinality of H domain-restricted to a k-subset of {0, 1}n. (The
function ΠH is known as the growth function.) We now bound the growth
function of H = PP (n, d).

As usual, let [n](d) be the set of all subsets of {1, 2, . . . , n} of cardinality
at most d and, for R ⊆ [n](d), let HR be the set of polynomial threshold
functions of the form

sgn

(∑
S∈R

wSxS

)
.

Then
H =

⋃
R⊆[n](d),|R|≤P

HR.
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For a subset C of {0, 1}n, let H|C denote H restricted to domain C. Then,
for C such that |C| = k,

|H|C | =

∣∣∣∣∣∣
⋃

R⊆[n](d),|R|≤P

HR|C

∣∣∣∣∣∣ ≤
∑

R⊆[n](d),|R|≤P

∣∣HR|C∣∣ ≤ ∑
R⊆[n](d),|R|≤P

ΠHR(k),

from which it follows that

ΠH(k) ≤
∑

R⊆[n](d),|R|≤P

ΠHR(k).

The number of such R is
∑P

r=0

(
N
r

)
where N =

∑d
i=1

(
n
i

)
. Fix R ⊆ [n](d), of

cardinality r ≤ P . Given a set G of functions from a (not necessarily finite)
set X to {0, 1}, the VC-dimension, VCdim(G), of G (introduced in [15]) is
the largest integer ∆ such that for some set C of cardinality ∆, |G|C | = 2∆.
From Sauer’s inequality [11], if m ≥ ∆ ≥ 1,

ΠG(m) ≤
∆∑
i=0

(
m

i

)
≤
(em

∆

)∆

.

It can be shown (see [2], for example) that the VC-dimension of HR is |R| =
r ≤ P , so, for each R under consideration,

ΠHR(k) ≤
r∑
i=0

(
k

i

)
≤

P∑
i=0

(
k

i

)
≤
(
ek

P

)P
.

Hence,

ΠH(k) ≤
∑

R⊆[n](d),|R|≤P

(
ek

P

)P
≤

P∑
i=0

(
N

i

)(
ek

P

)P
≤
(
eN

P

)P (
ek

P

)P
,

so
ln ΠH(k) ≤ P ln k + Pd ln

(en
d

)
+ 2P ln

( e
P

)
,

where we have used the fact that N ≤ (en/d)d.

So, with probability at least 1− δ, if h ∈ H is an extension of a random data
set D of size m, then

er(h) <
2Pd log2(en/d) + 2P log2(2m) + 4P log2(e/P ) + 2 log2 (2/δ)

m
.
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So, the probability that for some d, P ≥ 1, there will be some h ∈ PP (n, d)
consistent with D and with error at least

1

m

(
2Pd log2(en/d) + 2P log2(2m) + 4P log2(e/P ) + 2 log2

(
8d2P 2/δ

))
is less than δ/(4d2P 2). The proof may now be completed as in the previous
proof. ut

4. Bounds involving observed error

We now develop some more general results. In particular, we bound the er-
ror for non-extensions in terms of the observed error. We also jettison the
assumption that there is a deterministic target concept giving correct classi-
fications: we do this by assuming that D is now a set of labeled data points
and that the labeled data are generated by a fixed probability distribution
µ on the set Z = X × {0, 1} (rather than just on X), where X = {0, 1}n.
Then, the error of a hypothesis h is simply er(h) = µ{(x, y) : h(x) 6= y} and
the observed error is

erD(h) =
1

|D|
|{(x, y) ∈ D : h(x) 6= y}| .

We present two types of results. The first type of (high-probability) bound
takes the form er(h) < erD(h) + ε1 and the second er(h) < 3 erD(h) + ε2
where, generally, ε2 < ε1.

Theorem 4.1. Let δ be a positive number less than one. Then the following
holds with probability at least 1−δ. Suppose that D is a data set of m labeled
points, each generated at random according to a fixed probability distribution
on Z = {0, 1}n×{0, 1}. Then, for any d, P ≥ 1, if h is a binary-weight poly-
nomial threshold function in BP (n, d) (and, in particular, if h is a monotone
P -term-d-DNF),

er(h) < erD(h)+

√
1

2m

(
dP ln

(en
d

)
+ P ln

(
2e

P

)
+ 2 ln(dP ) + ln

(
24P

δ

))
.
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Proof: We use the fact (which follows from a Hoeffding bound: see [4]
for instance) that, for a finite hypothesis class H, with probability at least
1 − 2|H|e−2mε2 , for all h ∈ H, we have |er(h) − erD(h)| < ε. Using the fact
that when H = BP (n, d),

ln |H| ≤ ln(3P ) + P ln

(
2e

P

)
+ Pd ln

(en
d

)
,

we see that, for any d, P , with probability only at most 1 − δ/(4d2P 2) will
there be some h ∈ BP (n, d) with er(h) ≥ erD(h) + ε, where

ε =

√
1

2m

(
dP ln

(en
d

)
+ P ln

(
2e

P

)
+ 2 ln(dP ) + ln

(
24P

δ

))
.

The result follows since
∑∞

d,P=1 δ/(4d
2P 2) < δ. ut

Theorem 4.2. Let δ be a positive number less than one. Then the following
holds with probability at least 1−δ. Suppose that D is a data set of m labeled
points, each generated at random according to a fixed probability distribution
on Z = {0, 1}n × {0, 1}. Then, for any d, P ≥ 1 with P ≤ 2m, if h is a
polynomial threshold function in PP (n, d),

er(h) < erD(h)+

√
8

m

(
dP ln

(en
d

)
+ P ln(2m) + 2P ln

( e
P

)
+ 2 ln(dP ) + ln

(
16

δ

))
.

Proof: We use the following result of Vapnik and Chervonenkis [15, 4]: with
probability at least 1− 4ΠH(2m)e−ε

2m/8, for all h ∈ H, |er(h)− erD(h)| < ε.
Using the fact that when H = PP (n, d),

ln ΠH(k) ≤ P ln k + Pd ln
(en
d

)
+ 2P ln

( e
P

)
,

we see that, for any d, P , with probability only at most 1 − δ/(4d2P 2) will
there be some h ∈ PP (n, d) with er(h) ≥ erD(h) + ε′, where

ε′ =

√
8

m

(
dP ln

(en
d

)
+ P ln(2m) + 2P ln

( e
P

)
+ 2 ln(dP ) + ln

(
16

δ

))
.
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The result follows.

We now remove the square roots in the second (more general) bound, at the
expense of replacing erD(h) by 3 erD(h). If the observed error is small, the
resulting bound will be better. We use the following result.

Theorem 4.3. Let δ be any positive number less than one. Then the follow-
ing holds with probability at least 1− δ. Suppose H is some set of functions
from a domain X into {0, 1}. Suppose D is a data set of m labeled points
(x, b) of Z = X × {0, 1}, each generated at random according to a fixed
probability distribution on Z. Then, for all h ∈ H,

er(h) < 3 erD(h) +
4

m

(
ln(ΠH(2m)) + ln

(
4

δ

))
where ΠH is the growth function of H.

Proof: A theorem of Vapnik [14] shows that, for any ξ, with probability at
least 1− 4 ΠH(2m) e−mξ

2/4, for all h ∈ H,

er(h)− erD(h)√
er(h)

< ξ.

So, with probability at least 1− δ, for all h ∈ H,

er(h) < erD(h) + α
√

er(h),

where

α =

√
4

m

(
ln(ΠH(2m)) + ln

(
4

δ

))
.

Fix h and let β = erD(h) and z =
√

er(h). Then, if er(h) < erD(h)+α
√

er(h),
we have z2 − αz − β < 0, and(

z − α

2

)2

= z2 − αz +
α2

4
= (z2 − αz − β) +

(
α2

4
+ β

)
<
α2

4
+ β.
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It follows that

er(h) = z2 =
((
z − α

2

)
+
α

2

)2

≤
(
z − α

2

)2

+
α2

4
+ α

(
z − α

2

)
<

α2

4
+ β +

α2

4
+ α

√
α2

4
+ β

≤ α2

2
+ β + 2

√
α2

4
+ β

√
α2

4
+ β

= α2 + 3β

=
4

m

(
ln(ΠH(2m)) + ln

(
4

δ

))
+ 3 erD(h).

So, with probability at least 1− δ, for all h ∈ H,

er(h) < 3 erD(h) +
4

m

(
ln(ΠH(2m)) + ln

(
4

δ

))
,

as required. ut

We then have the following bounds.

Theorem 4.4. Let δ be a positive number less than one. Then the following
holds with probability at least 1−δ. Suppose that D is a data set of m labeled
points, each generated at random according to a fixed probability distribution
on Z = {0, 1}n×{0, 1}. Then, for any d, P ≥ 1, if h is a binary-weight poly-
nomial threshold function in BP (n, d) (and, in particular, if h is a monotone
P -term-d-DNF),

er(h) < 3 erD(h) +
4

m

(
dP ln

(en
d

)
+ P ln

(
2e

P

)
+ 2 ln(dP ) + ln

(
48P

δ

))
.

Proof: We first note that ΠH(2m) ≤ |H| and then observe that, by Theo-
rem 4.3, and using our earlier bound for the cardinality of H = BP (n, d), the
following holds: for each possible choice of d, P , with probability only at most
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δ/(4d2P 2) will there be some h ∈ H = BP (n, d) such that er(h) ≥ 3 erD(h)+ε
where

ε =
4

m

(
dP ln

(en
d

)
+ P ln

(
2e

P

)
+ ln

(
48P 3d2

δ

))
.

ut

Theorem 4.5. Let δ be a positive number less than one. Then the following
holds with probability at least 1−δ. Suppose that D is a data set of m labeled
points, each generated at random according to a fixed probability distribution
on Z = {0, 1}n × {0, 1}. Then, for any d, P ≥ 1 with P ≤ 2m, if h is a
polynomial threshold function in PP (n, d),

er(h) < 3 erD(h)+
4

m

(
dP ln

(en
d

)
+ P ln(2m) + 2P ln

( e
P

)
+ 2 ln(dP ) + ln

(
16

δ

))
.

Proof: We observe that, by Theorem 4.3, and using our earlier bound
on growth function, for each possible choice of d, P , with probability only at
most δ/(4d2P 2) will there be some h ∈ PP (n, d) such that er(h) ≥ 3 erD(h)+ε
where

ε =
4

m

(
dP ln

(en
d

)
+ P ln(2m) + 2P ln

( e
P

)
+ ln

(
16d2P 2

δ

))
.

ut

5. Margin-based results

We now turn attention to bounding the error when we take into account the
margin, which involves the value (and not just the sign) of the polynomial∑

S∈[n](d) wSxS that underlies the LAD-type classifier in P(n, d). (This, recall,

is the polynomial arising from the discriminant
∑q

i=1 Ti −
∑r

j=1 T
′
j or, more

generally, the weighted discriminant
∑q

i=1wiTi −
∑r

j=1w
′
jT
′
j .)

Suppose, then, that h = sgn(f) where f =
∑

S∈[n](d) wSxS. Without any loss
of generality, we may assume that the coefficients in f have been normalized,
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so that the 1-norm of the weight vector satisfies ‖w‖1 =
∑

S∈[n](d) |wS| = 1.
For γ > 0, we define the error of h on D at margin γ to be

erγD(h) =
1

|D|
|{(x, y) ∈ D : yf(x) < γ}| .

So, this is the proportion of data points in D for which either h(x) =
sgn(f(x)) 6= y, or for which h(x) = y but |f(x)| < γ. (So, for (x, y) to con-
tribute nothing to the margin error we need not only that the sign of f(x)
be correct, but that its value |f(x)| be at least γ.) Clearly, erγD(h) ≥ erD(h).

We can bound the generalization error of polynomial threshold classifiers in
terms of their margin error. However, it is possibly more useful to obtain a
different type of error bound which does not involve the ‘hard’ margin error
just described, but which instead takes more account of the distribution of
the margins among the sample points. (A bound involving standard margin
error then directly follows.)

For a fixed γ > 0, let φγ : R→ [0, 1] be given by

φγ(z) =


1 if z ≤ 0
1− z/γ if 0 < z < γ
0 if z ≥ γ,

For a data-set D of size m, consisting of labeled points (xi, yi) and for a
hypothesis h = sgn(f), let

φ̂γD(h) =
1

m

m∑
i=1

φγ(yif(xi)).

If h misclassifies (xi, yi) (that is, h(xi) 6= yi), then φγ(yif(xi)) = 1. If h
classifies (xi, yi) correctly and with margin at least γ, so that yif(xi) ≥ γ,
then φγ(yif(xi)) = 0. If, however, h classifies (xi, yi) correctly but not with
margin at least γ, so that 0 < yif(xi) < γ, then φγ(yif(xi)) = 1−(yif(xi))/γ,
which is strictly between 0 and 1. We have φ̂γD(h) ≤ erγD(h). For, in the case
where 0 < yif(xi) < γ, we obtain a contribution of 1/m to erγD(h) but only

a contribution of (1/m)(1 − yif(xi)/γ) to φ̂γD(h). We now obtain (high-
probability) generalization error bounds of the form

er(h) < φ̂γD(h) + ε.
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Such bounds are potentially more useful when h achieves a large margin on
many (though not necessarily all) of the data points.

We have the following result, obtained using results from [8, 5, 9].

Theorem 5.1. Let δ be a positive number less than one. Then the follow-
ing holds with probability at least 1 − δ. Suppose that D is a data set of m
points, each generated at random according to a fixed probability distribution
on {0, 1}n. Then, for any d ≥ 1 and for any γ > 0, if h is a polyno-
mial threshold function in P(n, d) (normalized as indicated above, so that the
weight vector has 1-norm equal to 1), then

er(h) < φ̂γD(h) + ε′(m, d, P, n, γ),

where

ε′(m, d, P, n, γ) =
4

γ

√
2d

m
ln

(
2en

d

)
+

√
1

2m

(
ln

(
4

δ

)
+ 2 ln log2

(
4

γ

)
+ 2 ln d

)
.

Proof: Let H = P(n, d) be the set of polynomial threshold functions of
degree at most d on {0, 1}n. Let Fd denote the set of polynomials of the
form f =

∑
S∈[n](d) wSxS, where ‖w‖1 = 1. As noted in [8], a result from [5]

implies (on noting that φγ has a Lipschitz constant of 1/γ) that, for fixed γ
and d, and for any δ ∈ (0, 1), the following holds with probability at least
1− δ: for all h ∈ H,

er(h) < φ̂γD(h) +
2

γ
Rm(Fd) +

√
ln(2/δ)

2m
,

where Rm(Fd) is the Rademacher complexity of Fd. Consider, for x ∈ {0, 1}n,
the vector x(d) whose entries are (in some prescribed order) xS for all S of
cardinality at most d. The set of all such x(d) forms a subset of {0, 1}N
where N =

∑d
i=0

(
n
i

)
. We may consider the set Fd as a (domain-restriction

of) a subset of the set G of all linear functions y 7→ 〈α, y〉 on {0, 1}N defined
by weight vectors α with ‖α‖1 = 1 (this because of normalization). It will
then follow by the definition of Rademacher complexity and the fact that it
is non-decreasing with respect to containment of the function class [5] that
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Rm(Fd) ≤ Rm(G). To bound Rm(G) we use a result from [8]. This shows
that

Rm(G) ≤
√

2 ln(2N)

m
,

which, since N ≤ (en/d)d, gives

Rm(Fd) ≤

√
2d

m
ln

(
2en

d

)
.

To obtain a result that holds simultaneously for all γ, one can use the tech-
nique deployed in the proof of Theorem 2 in [8], or use Theorem 9 of [3].
Note that we may assume γ ≤ 1 since if γ > 1, then φ̂γD(h) = 1 (by the nor-
malization assumption) and the error bound is then trivially true. We obtain
the following, for fixed d: with probability at least 1− δ, for all γ ∈ (0, 1], if
h = sgn(f) where f ∈ Fd then

er(h) < φ̂γD(h) +
4

γ

√
2d

m
ln

(
2en

d

)
+

√
1

2m

(
ln

(
2

δ

)
+ 2 ln log2

(
4

γ

))
.

The theorem now follows by using the same sort of methods as before to
move to a bound in which d is not prescribed in advance: we simply replace
δ by δ/(2d2). ut
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