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Abstract

Very large nonlinear unconstrained binary optimization problems
arise in a broad array of applications. Several exact or heuristic tech-
niques have proved quite successful for solving many of these prob-
lems when the objective function is a quadratic polynomial. How-
ever, no similarly efficient methods are available for the higher degree
case. Since high degree objectives are becoming increasingly impor-
tant in certain application areas, such as computer vision, various
techniques have been recently developed to reduce the general case to
the quadratic one, at the cost of increasing the number of variables by
introducing additional auxiliary variables. In this paper we initiate a
systematic study of these quadratization approaches. We provide tight
lower and upper bounds on the number of auxiliary variables needed
in the worst-case for general objective functions, for bounded-degree
functions, and for a restricted class of quadratizations. Our upper
bounds are constructive, thus yielding new quadratization procedures.
Finally, we completely characterize all “minimal” quadratizations of
negative monomials.
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1 Introduction

A pseudo-Boolean function is a real-valued function f(x) = f(x1, x2, . . . , xn)
of n binary variables, that is, a mapping from {0, 1}n to R. It is well-known
that every pseudo-Boolean function can be uniquely represented as a multi-
linear polynomial in its variables. Nonlinear binary optimization problems,
or pseudo-Boolean optimization (PBO) problems, of the form

min{f(x) : x ∈ {0, 1}n}, (1)

where f(x) is a pseudo-Boolean function represented by its multilinear ex-
pression, have attracted the attention of numerous researchers for more than
50 years. These problems are notoriously difficult, as they naturally encom-
pass a broad variety of models such as maximum satisfiability, max cut, graph
coloring, simple plant location, problems in computer vision, and so on.

In recent years, several authors have revisited an approach to the solution of
PBO initially proposed by Rosenberg [42]. This approach reduces PBO to
its quadratic case (QPBO) by relying on the following concept.

Definition 1 For a pseudo-Boolean function f(x) on {0, 1}n, we say that
g(x, y) is a quadratization of f if g(x, y) is a quadratic polynomial depending
on x and on m auxiliary binary variables y1, y2, . . . , ym, such that

f(x) = min{g(x, y) : y ∈ {0, 1}m} for all x ∈ {0, 1}n. (2)

It is quite obvious that, if g(x, y) is a quadratization of f , then

min{f(x) : x ∈ {0, 1}n} = min{g(x, y) : x ∈ {0, 1}n, y ∈ {0, 1}m},

so that the minimization of f is reduced through this transformation to the
QPBO problem of minimizing g(x, y). Rosenberg [42] has observed that every
pseudo-Boolean function f(x) has a quadratization, and that a quadratiza-
tion can be efficiently computed from the multilinear polynomial expression
of f . Of course, quadratic PBO problems remain NP-hard, but this special
class of problems has been thoroughly scrutinized for the past 30 years or
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so, and much progress has been made in solving large instances of QPBO,
either exactly or heuristically. These advances in solving QPBO problems
are certainly the major driving force behind the recent surge of papers on
quadratization techniques. In particular, quadratization has emerged as one
of the most successful approaches to the solution of very large-scale PBO
models arising in computer vision applications.

The objective of the present paper is to initiate a systematic study of quadra-
tizations of pseudo-Boolean functions. Indeed, most previous papers on this
topic have concentrated on proposing specific quadratization procedures, on
experimentally testing the quadratic optimization models produced by var-
ious procedures, or on investigating quadratizations of submodular pseudo-
Boolean functions. But our understanding of quadratizations and of their
structural properties remains extremely limited at this time. Therefore, we
propose in this paper to adopt a more global perspective, and to investigate
some of the properties of the class of all quadratizations of a given function.

The paper addresses two main types of questions. First, we want to deter-
mine the minimum number of auxiliary y-variables required in the worst case
in a quadratization of an arbitrary function f , as a function of the number
of variables of f . This question is rather natural since the complexity of
minimizing the quadratic function g(x, y) heavily depends (among other fac-
tors) on the number of binary variables (x, y). In Section 3, we establish a
lower bound on the number of auxiliary variables required in any quadratiza-
tion of some pseudo-Boolean functions. In Section 4, we establish an upper
bound on the required number of variables, of the same order of magnitude
as the lower bound. We further investigate similar lower and upper bounds
for pseudo-Boolean functions of bounded degree, and for a restricted class of
quadratizations. A companion paper (Anthony et al. [1]) determines more
precisely the number of auxiliary variables required by quadratizations of
symmetric functions.

In Section 5, we provide a complete description of the simplest quadrati-
zations of a single monomial, namely, quadratizations involving only one
auxiliary y-variable. Although this question may appear to be rather nar-
row, it turns out to be more complex than one may expect at first sight. We
conclude the paper with a short list of open questions.
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2 Main concepts and literature review

Let n be a finite number, [n] = {1, 2, . . . , n}, and 2[n] = {S : S ⊆ [n]}.
We denote by Fn the set of pseudo-Boolean functions on {0, 1}n, and by
BFn ⊂ Fn the set of Boolean functions on {0, 1}n, meaning pseudo-Boolean
functions with values in {0, 1}. Note that a pseudo-Boolean function can
equivalently be viewed as a set function defined on 2[n].

As mentioned earlier, every pseudo-Boolean function can be uniquely repre-
sented as a multilinear polynomial in its variables (see, e.g., [13, 27]): for ev-
ery function f on {0, 1}n, there exists a unique mapping a : 2[n] → R : S 7→ aS
such that

f(x1, x2, . . . , xn) =
∑
S∈2[n]

aS
∏
i∈S

xi. (3)

In the remainder of this paper, we assume that the input of a PBO problem
is a pseudo-Boolean function given by its polynomial expression (3), where
only the nonzero coefficients aS are explicitly listed. We define the degree
of a function as the degree of this unique polynomial. Sometimes, we also
consider expressions involving the (Boolean) complement x = 1−x of certain
variables x. (Note that many applications of PBO naturally arise in this form;
when this is not the case, transforming an arbitrary expression of f into its
polynomial expression may be computationally expensive.)

Pseudo-Boolean optimization finds its roots in early papers by Fortet [19, 20]
and Maghout [38, 39], among others, and was popularized by the monograph
Hammer and Rudeanu [27]. Overviews can be found in Boros and Ham-
mer [4], Crama and Hammer [12, 13]. In the 60’s and 70’s, several authors
proposed to handle the PBO problem (1) by reformulating it as an integer
linear programming problem, as follows:

1. in the objective function (3), replace each nonlinear monomial
∏

i∈S xi
by a new variable yS, and

2. set up linear constraints forcing yS =
∏

i∈S xi in all optimal solutions
of the resulting 0–1 LP.
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Such linearization techniques have given rise to an enormous amount of lit-
erature; for a (partial) overview see, e.g., the above references, or Burer and
Letchford [10], Hansen, Jaumard and Mathon [28], Sherali and Adams [45],
etc.

As mentioned in the Introduction, Rosenberg [42] showed that the general
PBO problem (1) can also be efficiently reduced to the quadratic case. More
precisely, Rosenberg’s procedure works as follows:

1. select two variables, say xi, xj such that the product xixj appears in a
monomial of degree at least 3 in the objective function f ;

2. let hij be the function obtained upon replacing each occurence of the
product xixj by a new variable yij in f ;

3. let gij = hij + M(xixj − 2xiyij − 2xjyij + 3yij), where M is a large
enough positive number.

It is easy to verify that for each value of x, the minimum of gij over the
auxiliary variable yij is exactly equal to f(x): indeed, the minimizer is y∗ij =
xixj, and the penalty term vanishes for this value. The same step can be
repeated until the degree of the resulting polynomial is equal to 2, that is,
until a quadratization of f is obtained.

Rosenberg’s result establishes that every pseudo-Boolean function has a quadra-
tization that can be computed in polynomial time. Perhaps for lack of effi-
cient quadratic optimization algorithms, his approach, however, did not lead
to practical applications for about 30 years. Meanwhile, much progress has
been done on solving QPBO: depending on the structure of the objective
function (e.g., on its density), instances of QPBO involving about 100-200
variables are now frequently solved to optimality, whereas heuristic algo-
rithms provide solutions of excellent quality for instances with up to a few
thousand variables. Among recent contributions on QPBO, we can mention
for example the experimental work with exact algorithms by Billionnet and
Elloumi [2], Boros, Hammer, Sun and Tavares [5], Hansen and Meyer [29],
Helmberg and Rendl [30], and with heuristic algorithms by Boros, Hammer
and Tavares [6], Glover, Alidaee, Rego and Kochenberger [24], Glover and
Hao [25], Merz and Freisleben [40].
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Interestingly, much algorithmic progresss on QPBO has been due to the
computer vision research community, where quadratic pseudo-Boolean func-
tions (often dubbed “energy functions” in this framework) have proved suc-
cessful in modelling specific applications such as image restoration or scene
reconstruction; see, e.g., Boykov, Veksler and Zabih [7], Kolmogorov and
Rother [36], Kolmogorov and Zabih [37], Rother, Kolmogorov, Lempitsky
and Szummer [44]. Fast QPBO heuristics building on the roof-duality frame-
work initially introduced by Hammer, Hansen and Simeone [26] have been
developed by these researchers (see also Boros et al. [5]) and can efficiently
handle the very large-scale, specially structured, sparse instances arising in
computer vision applications.

In recent years, the same community has shifted its attention to more com-
plex models, where the “energy function” to be minimized is a higher-degree
pseudo-Boolean function. These models are very large, with as many as 106

variables and 107 terms in their polynomial representation. Traditional ap-
proaches based on integer linear formulations would require a similarly high
number of variables and constraints, making them computationally unattrac-
tive. In this context, several researchers have met considerable success with
approaches based on generating a quadratization g(x, y) of the objective
function f(x), and on minimizing g instead of f ; see, e.g., Boros and Gru-
ber [3], Fix, Gruber, Boros and Zabih [17, 18], Freedman and Drineas [21],
Ishikawa [32], Kappes et al. [34], Ramalingam, Russell, Ladický and Torr [41],
Rother, Kohli, Feng and Jia [43], etc.

In particular, various termwise quadratization procedures based on the fol-
lowing scheme have been proposed. For a real number c, let sign(c) = +1
(resp., −1) if c ≥ 0 (resp., c < 0). Then, given f(x) as in Equation (3),

1. for each S ∈ 2[n], let gS(x, yS) be a quadratization of the monomial
sign(aS)

∏
i∈S xi, where (yS, S ∈ 2[n]) are disjoint vectors of auxiliary

variables (one vector for each S);

2. let g(x, y) =
∑

S∈2[n] |aS| gS(x, yS).

Then, g(x, y) is a quadratization of f(x). Various choices of the subfunctions
gS(x, yS) can be found in the literature. When aS is negative, Freedman
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and Drineas [21] suggest to use the standard quadratization gS(x, y) = (|S|−
1)y−

∑
i∈S xiy, where y is a single auxiliary variable (see Section 5 hereunder).

More generally, one can observe that for all S, T ∈ 2[n] with S ∩ T = ∅,

−

(∏
i∈S

xi

)(∏
j∈T

xj

)
= min

y∈{0,1}

{(∑
i∈S

xi +
∑
j∈T

xj − 1

)
y

}
. (4)

When aS is positive, the choice of an appropriate function gS is less obvious.
One possibility is to note that if j ∈ S, then

∏
i∈S xi = −xj

∏
i∈S\j xi +∏

i∈S\j xi. The first term of this decomposition can be quadratized as in

Equation (4), and the second term can be handled recursively. This results
in a quadratization gS(x, y) using |S|−2 auxiliary variables for each positive
monomial. (Rosenberg’s procedure would produce the same number of aux-
iliary variables.) Ishikawa [32] showed that positive monomials can actually

be quadratized using
⌊
|S|−1

2

⌋
auxiliary variables, and this is currently the

best available bound for positive monomials; see also [1, 17, 32]. It may be
worth stressing that all these procedures can be implemented in polynomial
time, and that the number of auxiliary variables they introduce is at most n
times the size of the function f .

In our paper we consider all possible quadratizations of a function, not only
the ones obtainable via one of the above mentioned specific procedures. To
formalize this, let us associate with a function f(x) the quantity

ξ(f) = min{m | there is a quadratization g(x, y) of f with y ∈ {0, 1}m},

that is the minimum number of auxiliary variables one needs to be able to
quadratize f . We also define

ξ(n, d) = max{ξ(f) | f : {0, 1}n → R is of degree at most d},

that is the number of auxiliary variables one may need in the worst case to
quadratize a function of n variables that has degree at most d. Finally we
define ξ(n) = ξ(n, n), that is the minimum number of auxiliary variables one
needs to quadratize any function in n variables. In what follows, we provide
tight lower and upper bounds for both ξ(n) and ξ(n, d).

Note that many termwise procedures proposed in the literature (in partic-
ular, the procedures of Freedman–Drineas and Ishikawa) yield special types
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of quadratizations, namely, quadratizations without products of auxiliary
variables.

Definition 2 A quadratic pseudo-Boolean function g(x, y) on {0, 1}n+m is
called y-linear if its polynomial representation does not contain monomials
of the form yiyj for i, j ∈ [m], i 6= j.

When g(x, y) is y-linear, it can be written as g(x, y) = q(x) +
∑m

i=1 `i(x)yi,
where q(x) is quadratic in x and each `i is a linear function of x. Then, when
minimizing g over y, each product `i(x)yi simply takes the value min{0, `i(x)},
that is,

f(x) = min
y∈{0,1}m

g(x, y) = q(x) +
m∑
i=1

min{0, `i(x)}. (5)

Hence, a y-linear quadratization of f(x) produces an alternative representa-
tion of f in the x-variables only.

To study this type of quadratizations, we introduce

ζ(f) = min{m | there is a y-linear quadratization g(x, y) of f with y ∈ {0, 1}m},

that is the minimum number of auxiliary variables one needs in a y-linear
quadratization of f , and we define

ζ(n) = max{ζ(f) | f : {0, 1}n → R},

that is the minimum number of auxiliary variables one needs in a y-linear
quadratization of a function in n variables, in the worst case. In the sequel
we develop lower and upper bounds for ζ(n), as well.

Buchheim and Rinaldi [8, 9] have developed a very different type of reduction
of nonlinear binary optimization problems to the quadratic case. Their ap-
proach is polyhedral: essentially, they show that the separation problem for
the polyhedron defined by the classical linearization of PBO can be reduced
to a separation problem for the quadratic case. The authors also mention
in [8] some connections between their approach and Rosenberg’s technique,
but the relation to the more general quadratization framework discussed in
this paper remains to be explored.
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Quadratizations have been independently investigated in the constraint sat-
isfaction literature; see, e.g., Živný, Cohen and Jeavons [47]. These authors
proved, among other results, that submodular pseudo-Boolean functions of
degree 4 or more do not necessarily have submodular quadratizations. Re-
lated questions are also investigated in [33, 35, 48].

Finally, although there is some superficial resemblance between the use of
auxiliary variables in quadratization procedures and in so-called “extended
formulations” of combinatorial optimization problems (see, e.g., Conforti,
Cornuéjols and Zambelli [11]), the connection between these two fields of
research does not appear to run deeper.

3 Lower bounds on the number of auxiliary

variables

Ishikawa [32] observed that, by relying on his procedure for positive mono-
mials and on Freedman and Drineas’ procedure for negative monomials (see
Section 2), any pseudo-Boolean function can be quadratized using at most
t
⌊
d−1
2

⌋
auxiliary variables, where d is the degree of the polynomial (3) and t is

the number of terms with nonzero coefficients. Since t can be as large as
(
n
d

)
,

this yields a (tight) upper bound O(nd) on the number of auxiliary variables
introduced by Ishikawa’s procedure for a polynomial of fixed degree d, and
O(n 2n) variables for an arbitrary function. The same asymptotic bounds can
be derived for the procedures proposed by Rosenberg or by Freedman and
Drineas (see Section 2). Note that the bounds are attained for “complete”
functions containing all possible positive monomials of degree d and smaller,
for each d ≤ n.

These observations raise the question of determining how many auxiliary
variables are required in a quadratization, independently of the procedure
used to produce the quadratization. The following result provides a partial
answer to this question.

Theorem 1 There are pseudo-Boolean functions of n variables for which
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every quadratization must involve at least Ω(2n/2) auxiliary variables. In
particular, we have ξ(n) ≥ 2n/2 − n− 1.

Proof. Suppose f is a function of x1, x2, . . . , xn. If f can be quadratized
using m auxiliary variables y1, y2, . . . , ym, then there is a quadratic pseudo-
Boolean function g(x, y) : {0, 1}n+m → R of the form

g(x, y) = a+
n∑

i,j=1

bijxixj +
n∑
i=1

m∑
j=1

cijxiyj +
m∑

i,j=1

dijyiyj

(where xixi = xi and yiyi = yi) such that

f(x) = min{g(x, y) : y ∈ {0, 1}m} for all x ∈ {0, 1}n.

Equivalently, we can write f(x) = g(x, y∗(x)), where

y∗(x) = argmin{g(x, y) : y ∈ {0, 1}m}. (6)

Equation (6) enables us to view each y∗i as a Boolean function of x: y∗i (x) =
hi(x), say. Then,

f(x) = a+
n∑

i,j=1

bijxixj +
n∑
i=1

m∑
j=1

cijxihj(x) +
m∑

i,j=1

cijhi(x)hj(x).

This shows that f is a linear combination of the following set of pseudo-
Boolean functions defined on {0, 1}n, where h denotes (h1, . . . , hm):

Lh = {1, xixj, xihr, hrhs : 1 ≤ i, j ≤ n, 1 ≤ r, s ≤ m}.

Note that

|Lh| = `(n,m) = 1 + n+

(
n

2

)
+mn+m+

(
m

2

)
.

The set of pseudo-Boolean functions of n variables, Fn, forms a vector space
of dimension 2n isomorphic to R2n . The set of monomials {

∏
i∈S xi : S ∈

2[n]} forms a basis of this vector space, as expressed by the unicity of the
representation (3).
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Let Vm be the set of pseudo-Boolean functions of n variables which can be
quadratized using at most m auxiliary variables, and regard Vm as a subset
of R2n . The discussion above shows that for any f ∈ Vm, there exists some
choice of Boolean functions h1, h2, . . . , hm, such that f is contained in the
subspace sp(Lh) of R2n spanned by the functions in Lh. It follows that Vm
is contained in the union

⋃
h sp(Lh), where the union is over all possible

choices of m Boolean functions (h1, h2, . . . , hm) of n variables. But there is
only a finite number, 22n , of possibilities for each of the Boolean functions hi.
So Vm is contained in a finite union of subspaces, each of dimension at most
`(n,m). If all pseudo-Boolean functions can be quadratized using m auxiliary
variables, then Vm — and hence this union — must be the whole space
Fn ∼= R2n . That cannot be the case if `(n,m) < 2n. In other words, if m
auxiliary variables suffice to quadratize any pseudo-Boolean function of n
variables, then `(n,m) ≥ 2n. This implies that m ≥ 2n/2− n− 1 from which
m = Ω(2n/2) follows for n ≥ 6. �

Let us formulate a few comments about Theorem 1. First, its proof reveals
that for almost all pseudo-Boolean functions, any quadratization must use
at least Ω(2n/2) auxiliary variables (in the sense that the set of those func-
tions which can be quadratized with fewer variables, regarded as a subset of
R2n , has Lebesgue measure zero). In order to avoid misconceptions, we stress
that this conclusion should not be interpreted as a “negative result” showing
somehow that quadratization inevitably leads to an exponential blowout of
the size of the PBO problem and is, therefore, computationally intractable.
In fact, as mentioned at the beginning of this section, many quadratization
procedures actually have polynomial complexity, as a function of the size of
the polynomial representation of f . The exponential lower bound on ξ(n)
in Theorem 1 is rather due to the fact that almost all pseudo-Boolean func-
tions have 2n terms, since Fn has dimension 2n. (Similar observations would
actually apply to classical linearization methods.) In this sense, deriving an
exponential lower bound on the required number of auxiliary variables is not,
in itself, a very surprising result. Our interest, however, is in the exact value
of this bound, and more specifically, in the fact that it grows like 2n/2. We
return to these comments in Section 4.2.

The proof of Theorem 1 also shows that if we want to write a pseudo-Boolean
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function in the form f =
∑m

i,j=1 aijhihj, where h1, . . . , hm are arbitrary

Boolean functions, then m must be Ω(2n/2) for some functions. This ap-
pears to be a stronger result than Theorem 1, since it does not explicitly
refer to quadratizations.

Let us now turn to some extensions of Theorem 1, where we further specify
either the class of pseudo-Boolean functions, or the class of quadratizations
that we consider. We first analyze the case of pseudo-Boolean functions of
bounded degree d, that is, functions expressed by polynomials of degree d.

Theorem 2 For each fixed d, there are pseudo-Boolean functions of n vari-
ables and of degree d for which every quadratization must involve at least
Ω(nd/2) auxiliary variables. In particular, we have ξ(n, d) ≥ n

d
d/2, if n is

large enough.

Proof. The set of pseudo-Boolean functions of n variables and of degree (at
most) d, say Fn,d, is a linear subspace of the space Fn = Fn,n. The dimension

of Fn,d is dim(Fn,d) =
∑d

k=0

(
n
k

)
.

So, if all functions of Fn,d can be quadratized using m auxiliary variables,
then each of the subspaces sp(Lh) introduced in the proof of Theorem 1 must
be of dimension at least dim(Fn,d), that is, `(n,m) ≥

(
n
d

)
. This implies that

m = Ω(nd/2). �

We show next that y-linear quadratizations (Definition 2) must necessarily
contain many auxiliary variables. (Recall that Ishikawa’s procedure yields
y-linear quadratizations involving O(n 2n) auxiliary variables.)

Theorem 3 There are pseudo-Boolean functions of n variables for which ev-
ery y-linear quadratization must involve at least Ω(2n/n) auxiliary variables.
In particular, we have ζ(n) ≥ 2n

n+1
− n+1

2
.

Proof. Let Wm be the set of pseudo-Boolean functions for which there is
a y-linear quadratization involving at most m auxiliary variables. We can
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repeat the argument given in the proof of Theorem 1, omitting the products
hihj from Lh when i 6= j, to obtain a set L′h, of size `′(n,m) = 1 + n+

(
n
2

)
+

mn+m. We conclude as before that for all pseudo-Boolean functions to be
quadratizable in this way, we would need Wm = R2n , and so `′(n,m) ≥ 2n,
from which the claim follows. �

4 Upper bounds on the number of auxiliary

variables

The remarks formulated after the proof of Theorem 1 seem to suggest that
the lower bound stated in this theorem may not be very strong. Therefore,
we would like to derive now some upper bounds on the number of auxiliary
variables required in a (best possible) quadratization.

4.1 Minterm quadratization

We start with a simple observation.

Proposition 1 Let f(x) ∈ Fn be a pseudo-Boolean function on {0, 1}n and
let M be an arbitrary upper bound on f (e.g., the sum of the positive coeffi-
cients in the multilinear expression of f). Then

g(x, y) = M +
∑

u∈{0,1}n
(M − f(u))

∑
ui=1

xi +
∑
uj=0

xj − 1

 yu

is a y-linear quadratization of f involving 2n auxiliary variables.

Proof. It is easy to check directly the validity of the statement. We present
here a slightly roundabout argument, which highlights the connections with
earlier arguments.
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Write f = M + (f −M), and consider the so-called “minterm normal form”
(see [13])

f(x) = M +
∑

u∈{0,1}n
(f(u)−M)

(∏
ui=1

xi

)∏
uj=0

xj

 .

All coefficients f(u) −M in this expression are negative or null. Therefore,
all monomials can be quadratized as in Equation (4), and this yields the
expression g(x, y) in the statement. �

In spite of its simplicity, the upper bound on the number of auxiliary variables
given in Proposition 1 is already stronger than the O(n2n) bound derived,
e.g., from Rosenberg’s or Ishikawa’s work. An easy generalization goes as
follows.

Proposition 2 Assume that the sets Bk = {x ∈ {0, 1}n : xi = 1 for i ∈
Pk, xj = 0 for j ∈ Nk}, k = 1, . . . ,m, define a partition of {0, 1}n into m
subcubes such that f takes constant value fk on each Bk. Then,

g(x, y) = M +
m∑
k=1

(M − fk)

(∑
i∈Pk

xi +
∑
j∈Nk

xj − 1

)
yk

is a y-linear quadratization of f involving m auxiliary variables.

4.2 Universal sets

In order to improve the upper bound on the number of auxiliary variables
required in a quadratization, we need to introduce a few definitions.

Definition 3 Let P ⊆ Fn be a subset of pseudo-Boolean functions and let
U ⊆ BFn be a subset of Boolean functions. We say that U is a universal
set for P if, for every function f ∈ P, there is a quadratization g(x, y)
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of f requiring m ≤ |U| auxiliary variables y1, . . . , ym and there is a subset
{y∗1, . . . , y∗m} ⊆ U such that y∗(x) = (y∗1(x), . . . , y∗m(x)) is a minimizer of
g(x, y) for all x ∈ {0, 1}n (as in Equation (6)).

The main clause in Definition 3 is that, when U is a universal set, then
all minimizers (y∗1(x), . . . , y∗m(x)) can be chosen in U , for all functions in P .
Clearly, BFn itself is a universal set for every set of functions P , and it is not
obvious that there should be smaller ones when P = Fn. We are now going
to show, however, that rather small universal sets for Fn can be constructed
by relying on the concept of pairwise covers.

Definition 4 When F ,H ⊆ 2[n] are two hypergraphs, we say that H is a
pairwise cover of F if, for every set S ∈ F with |S| ≥ 3, there are two sets
A(S), B(S) ∈ H such that |A(S)| < |S|, |B(S)| < |S|, and A(S)∪B(S) = S.

We can now state:

Theorem 4 If F ,H ⊆ 2[n] are two hypergraphs such that H ⊆ F and H is

a pairwise cover of F , then U(H) =
{∏

j∈H xj : H ∈ H
}

is a universal set

for the set of pseudo-Boolean functions of the form f(x) =
∑

S∈F aS
∏

j∈S xj,
and hence every function of this form has a quadratization using at most |H|
auxiliary variables.

We will use several special cases of this result, e.g., when F = 2[n] and f
is an arbitrary function, or when F contains all subsets of size at most d
and f is a fixed degree-d polynomial. For now, we start with a proof of the
proposition.

Intuitively, in this proof, the pairwise cover H will tell us how to parti-
tion each monomial of the form

∏
j∈S xj into a product of two monomials(∏

j∈A(S) xj

) (∏
j∈B(S) xj

)
, which will be subsequently replaced by a prod-

uct of two auxiliary variables yA(S) yB(S).
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Proof. Let |H| = m and consider a function f(x) =
∑

S∈F aS
∏

j∈S xj.
Note that for every choice of nonnegative coefficients bS, S ∈ F , we have

f(x) = min
y∈{0,1}m

∑
S∈F

aS
∏
j∈S

xj +
∑
H∈H

bH

(
yH

(
|H| − 1

2
−
∑
j∈H

xj

)
+

1

2

∏
j∈H

xj

)
(7)

for all x ∈ {0, 1}n. This is because y∗H =
∏

j∈H xj minimizes the right-hand
side of (7) for all x, and for this value the second summation in the right-hand

side is identically zero. (This reflects the fact that yH

(
|H| − 1

2
−
∑

j∈H xj

)
is nothing but a variant of the quadratization in Equation (4) for the negative
monomial −1

2

∏
j∈H xj.)

We now specify the coefficients bH as follows: For H ∈ F , H 6∈ H, we let
bH = 0. For H ∈ H, we let

1

2
bH =

∑
S∈F:

H∈{A(S),B(S)}

(
|aS|+

1

2
bS

)
. (8)

Note that for each H ∈ H, the right-hand side of Equation (8) only involves
subsets S with |S| > |H|. Thus the system of equations (8), for H ∈ H, is
triangular and has a nonnegative feasible solution bS ≥ 0 for all S ∈ F .

Let us substitute this solution in Equation (7), and let us finally replace
every occurence of a term

∏
j∈T xj in Equation (7) by yA(T )yB(T ). Note that

this construction is well defined since H ⊆ F . It yields a quadratic function
g(x, y). We claim that g(x, y) is a quadratization of f(x).

More precisely, consider a point x ∈ {0, 1}n. We are going to show that, here
again, y∗H =

∏
j∈H xj, for all H ∈ H, minimizes g(x, y), which entails that

f(x) = miny∈{0,1}m g(x, y) and that U(H) is a universal set.

To see this, consider an arbitrary set H ∈ H and write g(x, y) = c(x, y)yH +
d(x, y), where c(x, y) and d(x, y) do not depend on yH and are uniquely
defined by this condition. More precisely, when H ∈ {A(S), B(S)}, define
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R(S) to be such that {H,R(S)} = {A(S), B(S)}. Then,

c(x, y) =
∑
S∈F:

H∈{A(S),B(S)}

aS yR(S) + bH

(
|H| − 1

2
−
∑
j∈H

xj

)
+

1

2

∑
S∈H:

H∈{A(S),B(S)}

bS yR(S)

=
∑
S∈F:

H∈{A(S),B(S)}

(aS +
1

2
bS) yR(S) + bH

(
|H| − 1

2
−
∑
j∈H

xj

)
. (9)

If
∏

j∈H xj = 1, then we get

c(x, y) =
∑
S∈F:

H∈{A(S),B(S)}

(aS +
1

2
bS) yR(S) −

1

2
bH (10)

≤
∑
S∈F:

H∈{A(S),B(S)}

(
|aS|+

1

2
bS

)
− 1

2
bH (11)

= 0

where the last equality is implied by Equation (8). Thus, c(x, y) ≤ 0 and
hence y∗H = 1 minimizes g(x, y).

If
∏

j∈H xj = 0, then
∑

j∈H xj ≤ |H| − 1, and thus we get by (9)

c(x, y) ≥
∑
S∈F:

H∈{A(S),B(S)}

(aS +
1

2
bS) yR(S) +

1

2
bH (12)

≥ 1

2
bH −

∑
S∈F:

H∈{A(S),B(S)}

(
|aS|+

1

2
bS

)
(13)

= 0.

Here the first inequality is implied by bH ≥ 0, the second follows from the
inequalities (aS + 1

2
bS) yR(S) ≥

(
−|aS| − 1

2
bS
)
, while the last equality follows

by (8). Thus, c(x, y) ≥ 0 implies that y∗H = 0 minimizes g(x, y). �

It may be interesting to stress that the procedure described in the proof of
Theorem 4 is entirely constructive and can be performed efficiently. Indeed,
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observe first that, for any function f of the form given in the theorem, one
can easily extend the set of terms of f to a larger set F∗ such that F∗ is a
pairwise cover of itself and |F∗| ≤ n|F|: for each set S ∈ F , say for example
S = {1, 2, . . . , s} with s even, it suffices to include in F∗ all (s− 1) subsets

S, {1, 2}, {3, . . . , s}, {3, 4}, {5, . . . , s}, {5, 6}, {7, . . . , s}, . . . , {s− 1, s}.

The resulting hypergraph F∗ is a pairwise cover since in this list, every subset
of cardinality at least three is the union of the next two subsets. Moreover,
the function f can be rewritten as f(x) =

∑
S∈F∗ aS

∏
j∈S xj, with aS = 0

when S 6∈ F . It follows that the construction described in the proof of
Theorem 4 can be used (with F = H = F∗) to quadratize in polynomial time
any pseudo-Boolean function while only using O(n|F|) auxiliary variables.

Remark 1 From a practical point of view, there may be more effective ways of
producing a “small” hypergraph F∗ which extends F and which is a pairwise
cover of itself. For instance, in their reduction of PBO to the quadratic
case, Buchheim and Rinaldi [8] also use a transformation which replaces
each monomial of f by a product of two lower-degree monomials. They
say that F is reducible when (in our terminology) F is a pairwise cover of
itself, and they describe a heuristic algorithm to obtain a small reducible
extension of F . They observe that finding the smallest reducible extension
of F is equivalent to finding the sequence of substitutions which introduces
the smallest possible number of auxiliary variables in Rosenberg’s procedure.
Boros and Hammer [4] discuss the latter problem and show that it is NP-
hard. �

Of course, the O(n|F|) upper bound that we have derived from Theorem 4
is not very original, since the same bound is also achieved by any of the
termwise procedures already described in previous sections. However, the
use of pairwise covers allows us to reach beyond the grasp of termwise pro-
cedures. (Fix et al. [18] provide experimental evidence for the merits of
non-termwise quadratization procedures.) In particular, we are now ready
to establish a tight upper bound on the number of auxiliary variables required
in a quadratization of an arbitrary pseudo-Boolean function.
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Theorem 5 Every pseudo-Boolean function of n variables has a quadratiza-
tion involving at most ξ(n) ≤ 2dn/2e+2bn/2c−2 = O(2n/2) auxiliary variables.

Proof. Let Hoe contain all nonempty subsets of [n] consisting either only
of odd integers, or only of even integers. Then, Hoe is a pairwise cover of
F = 2[n] with size |Hoe| = 2dn/2e+ 2bn/2c− 2. Hence, Theorem 4 implies that
every pseudo-Boolean function on {0, 1}n has a quadratization using at most
|Hoe| auxiliary variables. �

The order of magnitude of the upper bound in Theorem 5 nicely matches the
lower bound in Theorem 1 which turns out, therefore, to be stronger than
expected. Note that, as already observed after the proof of Theorem 1, the
multilinear representation of almost all pseudo-Boolean functions involves 2n

terms. Thus, Theorem 5 is a rather positive result: it shows that the number
of auxiliary variables needed in an “optimal” quadratization is usually much
smaller than the number of terms of the function. This implies, in particular,
that termwise quadratization procedures are wasteful in their use of auxiliary
variables, since they would typically require Θ(n2n) auxiliary variables for
almost all functions, instead of O(2n/2) auxiliary variables as in Theorem 5.

Remark 2 Pairwise covers are closely related to hypergraphs called 2-bases by
Füredi and Katona [23], Frein, Lévêque and Sebő [22], Ellis and Sudakov [15],
the only difference being that the subsets A(S), B(S) are not required to be
strict subsets of S in a 2-base. In particular, Hoe is a 2-base of 2[n]. The role
of odd and even integers in its construction could be replaced by any partition
of [n] into two sets V1, V2 of nearly-equal sizes

⌈
n
2

⌉
and bn

2
c. According to

Füredi and Katona [23], Erdős has conjectured that this generic construction
yields the smallest possible 2-bases of 2[n]. �

We now establish an upper bound which coincides with the lower bound
obtained in Theorem 2 for the bounded-degree case.

Theorem 6 For each fixed d, every pseudo-Boolean function of n variables
and of degree d has a quadratization involving at most ξ(n, d) = O(nd/2)
auxiliary variables.
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Proof. For any fixed value of d, let F = [n]d = {S ⊆ [n] : |S| ≤ d}.
In order to establish the theorem, we just need to produce a small pairwise
cover of [n]d. For simplicity of the presentation, assume that d is a power of
2, and let Hd contain all subsets of [n] of sizes d/2, d/4, d/8, . . . , 2. Then, it
is easy to see that Hd is a pairwise cover of [n]d with size O(nd/2). �

Here again, it is interesting to remark that almost all degree-d functions have
Ω(nd) terms, and that the number of auxiliary variables introduced by the
construction of Theorem 6 is only the square root of this number of terms.

Example 1 An arbitrary (say, random) function of degree 8 has Θ(n8)
terms, and all termwise quadratization methods (that is, almost all known
methods) would introduce Ω(n8) auxiliary variables. By contrast, using sets
of sizes 4 and 2, as in Theorem 6, we can obtain a quadratization with only
O(n4) new variables and in view of Theorem 2, this is in fact typically best
possible. �

Finally, for the case of y-linear quadratizations, we have the following result,
which matches the lower bound of Theorem 3 up to a log n factor.

Theorem 7 Every pseudo-Boolean function of n variables has a y-linear
quadratization involving at most ζ(n) = O(2

n

n
log n) auxiliary variables.

Our proof of this theorem is quite long and is very different from the previous
ones. For the sake of readability, we handle it in a separate subsection.

4.3 Proof of Theorem 7

We start by introducing some useful notation. For integers m and n, we let
[m..n] = {m,m + 1, . . . , n− 1, n}. So, [m..n] = ∅ if m > n, and [n] = [1..n].
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The unit vector with i-th entry equal to 1 and all other entries equal to 0 is
denoted by ei. The all-zero vector is denoted by 0 (boldface zero).

For a ∈ {0, 1}n, the Hamming weight (or 1-norm) of a is given by |a| :=∑n
i=1 ai. The k-th layer of {0, 1}n, with k ∈ [0..n], is Qk := {a ∈ {0, 1}n :

|a| = k}. It has |Qk| =
(
n
k

)
elements. For a ∈ Qk and k ∈ [0..n − 1], the

upper neighborhood of a is the set N(a) := {b ∈ Qk+1 : |b − a| = 1}. Each
element in N(a) is an upper neighbor of a.

Definition 5 Let An := {A0, A1, . . . , An−1} be a family of sets such that
∅ 6= Ak ⊆ Qk for all k ∈ [0..n − 1], and let D = {∆(a) : a ∈

⋃n−1
k=0 Ak} be

a family of sets such that ∅ 6= ∆(a) ⊆ N(a) for all a. We say that D is an
attractive partition of {0, 1}n induced by An if⋃

a∈Ak

∆(a) = Qk+1 and ∆(a) ∩∆(a′) = ∅,

for all k ∈ [0..n− 1] and for all a, a′ ∈ Ak with a 6= a′. We say that An is an
inductor of the partition. Its size is defined as |An| :=

∑
k∈[0..n−1] |Ak|.

Note that A0 = {0} by definition. Strictly speaking, D∪{0} is a partition of
{0, 1}n, rather than D itself. Also, even though An does not uniquely define
D, we frequently find it convenient to identify the partition with its inductor
when this does not create confusion.

For each element a ∈
⋃n−1
k=0 Ak of an inductor, let us define the set

δ(a) := {i ∈ [1..n] : ai = 0 and a+ ei ∈ ∆(a)}.

Let also ã denote the binary vector

ãi :=

{
ai if i 6∈ δ(a),

1 otherwise,

and define the subcube of {0, 1}n induced by a and ∆(a) as

[a, ã] = {b ∈ {0, 1}n : a ≤ b ≤ ã}
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(this is the smallest subcube that contains a and all vectors in ∆(a)).

Given a pseudo-Boolean function f : {0, 1}n → R, we can use an attrac-
tive partition to construct a y-linear quadratization of f . More specifically,
we will construct a sequence of y-linear quadratic pseudo-Boolean func-
tions g0, g1, . . . , gn : {0, 1}n+m → R (m to be estimated) such that gk+1

results from a local “adjustment” of gk on layer Qk. Each function gk,
when minimized on the auxiliary variables y ∈ {0, 1}m, produces a function
σk(x) = miny∈{0,1}m gk(x, y) that bounds f in the following way: σk(x) = f(x)
for all x ∈ {0, 1}n such that |x| ≤ k, and σk(x) ≥ f(x) whenever |x| > k. In
particular, gn is a y-linear quadratization of f .

To provide further intuition, let us first recall that the auxiliary variables in a
y-linear quadratization appear in terms like `i(x)yi where `i is a linear func-
tions of the original variables. When minimizing over yi, this term contributes
the nonpositive quantity min{0, `i(x)} to the value of f ; see Equation (5).
Our plan is to use a series of y-linear adjustments such that, starting from
a majorant σ0 of f , we can reduce it to f , layer after layer. Unfortunately,
when we introduce the new variables to adjust σk to the values of f in layer
Qk, we may decrease the values of our new approximation for vectors in
Qk+1, . . . , Qn by much more than intended. To make sure that the sequence
remains above f , therefore, we will start with a symmetric majorant of f ,
which is increasingly larger than f on higher layers, to preventively compen-
sate for later “accidental” decreases.

Accordingly, our first ingredients in the construction of a y-linear quadra-
tization are symmetric pseudo-Boolean functions sk : {0, 1}n → R, for
k = 0, ..., n+ 1, in the same variables as f :

sk(x) :=

{
0 if |x| < k

Dk if |x| ≥ k,
(14)

where Dk ≥ 0 are constants to be specified later.

According to a result by Anthony et al. [1] about the k-out-of-n function,
sk has a y-linear quadratization, say ŝk(x, y), requiring only

⌈
n
2

⌉
auxiliary

variables. (Fix [16] established an upper bound of n − 1 which would be
sufficient for our purpose.) We denote by ykj , j = 1, . . . , n

2
, the auxiliary

22



variables appearing in ŝk, k = 0, 1, . . . , n. We emphasize that for k 6= ` the
functions ŝk and ŝ` depend on disjoint sets of auxiliary variables, and hence

min
y

(ŝk(x, y) + ŝ`(x, y)) = sk(x) + s`(x) (15)

for all x ∈ {0, 1}n.

We next define the following sequence of quadratic pseudo-Boolean functions:
for k = 0, . . . , n− 1,

g0(x, y) := ŝ0(x, y) + ŝ1(x, y), (16)

gk+1(x, y) := ŝk+2(x, y) + gk(x, y) +
∑
a∈Ak

yaha(x), (17)

where ya ∈ {0, 1} is an auxiliary variable for each a ∈ Ak,

ha(x) := αa
∑
i 6∈δ(a)

(
ai xi + ai xi

)
−
∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi, (18)

with αa = 1 +
∑

i∈δ(a) |σk(a+ ei)− f(a+ ei)|. Finally, for all k = 0, . . . , n,

σk(x) := min
y∈{0,1}m

gk(x, y). (19)

At this point, we are ready to specify the constants Dk involved in definition
(14) of the functions sk(x). We set

D0 := f(0), D1 := max
x∈{0,1}n

f(x)− f(0), (20)

and recursively, for k = 0, . . . , n− 1,

Dk+2 := (n− k) |Ak| max
x∈Qk+1

(σk(x)− f(x)). (21)

Note that σk only depends on D0, . . . , Dk+1 (through g0, . . . , gk), and hence
Dk+2 is well-defined.

We note some simple consequences of the previous definitions.
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Fact 1 For each a ∈
⋃n−1
k=0 Ak,

(i) ha(x) = −
∑

i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi when x ∈ [a, ã];

(ii) ha(a) = 0;
(iii) ha(x) > 0 when x 6∈ [a, ã];
(iv) minya yaha(x) = 0 for all x 6∈ [a, ã] and for x = a.

Proof. If x ∈ [a, ã], then by definition of δ, we have xi = ai for all i 6∈ δ(a).
Hence, the summation ∑

i 6∈δ(a)

(
ai xi + ai xi

)
(22)

vanishes in the definition of ha(x), and (i) follows.

If x = a, then all terms of ha(x) vanish since ai = 0 when i ∈ δ(a). This
implies (ii).

If x 6∈ [a, ã], then (22) is positive, and thus (iii) follows by the definition
of αa.

Finally, (iv) is a direct consequence of (ii) and (iii). �

Fact 2 For each k = 0, . . . , n, the function gk(x, y) is y-linear. It only de-
pends on the original variables x1, . . . , xn, on the (k+ 2)n

2
auxiliary variables

y`j, ` = 0, 1, . . . , k + 1, j = 1, . . . , n
2

occuring in ŝ0,. . . , ŝk+1, and on the
auxiliary variables ya for a ∈

⋃
j∈[0..k−1]Aj.

Proof. Immediately follows from Equations (16)–(19), by induction. �

In view of Fact 2, the three main terms in (17) depend on disjoint sets of
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auxiliary variables. Thus,

σk+1(x) = min
y
gk+1(x, y)

=

(
min
y
ŝk+2(x, y)

)
+

(
min
y
gk(x, y)

)
+

(
min
y

∑
a∈Ak

yaha(x)

)

= sk+2(x) + σk(x) +

(
min
y

∑
a∈Ak

yaha(x)

)
. (23)

We will repeatedly rely on equality (23) in the sequel.

We are now ready to establish the main properties of the above construction.

Proposition 3 If An induces an attractive partition, then for all x ∈ {0, 1}n
and all k ∈ [0..n],

f(x) = σk(x) if |x| ≤ k,

f(x) ≤ σk(x) if |x| > k.

In particular, f(x) = σn(x), and thus gn(x, y) is a y-linear quadratization of
f(x) involving m = O(n2) + |An| auxiliary variables.

Proof. Let x ∈ {0, 1}n be arbitrary. The proof is by induction on k. In
case k = 0, (14) and (20) easily imply that, for all x ∈ {0, 1}n,{

s0(x) = f(0), and

s0(x) + s1(x) ≥ f(x).
(24)

In view of (15), (16) and (19), it follows that

σ0(x) = f(0) if |x| = 0,

σ0(x) ≥ f(x) if |x| > 0.

Now suppose the statement is valid for k < n and let us show that it is also
valid for k + 1. We divide the analysis into three cases.
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Case 1: |x| ≤ k.
Either x ∈ Ak or, for all a ∈ Ak, x 6∈ [a, ã]. In either case, we have
miny

∑
a∈Ak

yaha(x) = 0 by Fact 1. Furthermore, sk+2(x) = 0 by defi-
nition, since |x| < k + 2. Thus, by (23) we get

σk+1(x) = σk(x) = f(x),

where the last equality follows by the induction hypothesis.

Case 2: |x| = k + 1.
Since An is an attractive partition, there are unique a′ ∈ Ak and i ∈
δ(a′) such that x = a′ + ei. Note that for all a ∈ Ak \ {a′}, we have
x 6∈ [a, ã], and hence minya yaha(x) = 0 by Fact 1.

Moreover, ya′ha′(x) = ya′(−σk(x)+f(x)) as xj = 0 for all j ∈ δ(a′) with
j 6= i. Let us use again relation (23). Since sk+2(x) = 0 by definition
and since σk(x) ≥ f(x) by our inductive hypothesis, we get

σk+1(x) = σk(x)+ min
ya′∈{0,1}

ya′(−σk(x)+f(x)) = σk(x)−σk(x)+f(x) = f(x).

Case 3: |x| > k + 1.
If, for some a ∈ Ak, x 6∈ [a, ã], then by Fact 1 again

min
y
yaha(x) = 0.

Thus, we get

min
y

∑
a∈Ak

yaha(x) = min
y

∑
a∈Ak
x∈[a,ã]

ya

− ∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi

 .

Note that the multiplier of each variable ya in the previous expression
is nonpositive by our induction hypothesis, and hence

min
y

∑
a∈Ak

yaha(x) = −
∑
a∈Ak
x∈[a,ã]

∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi.

26



Furthermore sk+2(x) = Dk+2, since |x| ≥ k+2. Consequently, (23) and
the induction hypothesis imply that

σk+1(x) = Dk+2 + σk(x)−
∑
a∈Ak
x∈[a,ã]

∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi

≥ Dk+2 + f(x)−
∑
a∈Ak
x∈[a,ã]

∑
i∈δ(a)

(
σk(a+ ei)− f(a+ ei)

)
xi.

Note that the double summation in this last expression contains at
most (n− k)|Ak| terms, each not larger than maxx∈Qk+1

(σk(x)− f(x)).
Hence

σk+1(x) ≥ Dk+2 + f(x)− (n− k) |Ak| max
x∈Qk+1

(σk(x)− f(x)) ,

and by (21), σk+1(x) ≥ f(x), concluding the inductive argument.

The last assertion of the proposition follows now immediately from Fact 2.
�

To complete the proof of Theorem 7, we only need to show that there exists a
small enough inductor An. We shall derive this from classical combinatorial
results related to Turán’s problem (see, e.g., Sidorenko [46]).

Definition 6 A family T = T (n, r, k) of k-element subsets of [n] is a Turán
(n, r, k)-system if every r-element subset of [n] contains at least one element
of T . The minimum size of such a family is the Turán number T (n, r, k).

Turán systems are interesting in our context because they can be used to
obtain attractive partitions of {0, 1}n by identifying each subset of [n] with
its characteristic vector. More specifically, for each k, consider a Turán (n, k+
1, k)-system Tk and let Ak be the corresponding subset of Qk. By Definition 6,
for each vector x ∈ Qk+1 (i.e., subset of [n] of size k + 1), there is a vector
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a(x) ∈ Ak such that a(x) ≤ x (if there are several possible choices for a(x),
just pick one arbitrarily). Then, for each a ∈ Ak, we can define

∆(a) = {x ∈ Qk+1 : a = a(x)}

and this yields an attractive partition induced by An = {A0, . . . , An−1}.

Sidorenko [46] presents procedures to construct Turán T (n, k+1, k)-systems,
together with the following bound:

T (n, k + 1, k) ≤ 1 + 2 ln k

k

(
n

k

)
for all k ∈ [n− 1].

Since |A0| = 1, we can estimate |An| as

|An| =
n−1∑
k=0

|Ak| ≤ 1 +
n−1∑
k=1

1 + 2 ln k

k

(
n

k

)

≤ 1 + 2
(1 + 2 lnn)

n+ 1

n−1∑
k=1

n+ 1

k + 1

(
n

k

)
≤ 1 +

(1 + 2 lnn)

n+ 1
2n+2.

We conclude that the number of auxiliary variables of gn in Proposition 3
can be upper bounded as

m = O

(
2n

n
log n

)
,

and this establishes Theorem 7.

Let us remark that the attractive partition constructed above depends only
on the dimension n, and not on the actual pseudo-Boolean function f . Hence,
a deeper analysis of the proof of Theorem 7 actually reveals the existence of
a universal set of Boolean functions of cardinality O(2

n

n
log n) such that any

pseudo-Boolean function in n variables has a y-linear quadratization using a
subset of this universal set as new variables, in the sense of Definition 3. (This
claim holds notwithstanding the fact that all functions sk, ha, gk, depend to
some extent on f : the claim is only that the optimal value assumed by the
y-variables is independent of f .)
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5 Negative monomials

We may see it as an ultimate goal to describe the family of all quadratizations
of any arbitrary function f . Although this goal is certainly overly ambitious
in general, a more limited objective may be attainable: for instance, we may
want to describe all minimal quadratizations of certain well-structured func-
tions. As we have mentioned in Section 2 that termwise quadratization pro-
cedures play an important role in practical implementations, we concentrate
in this section on quadratizations of a single negative monomial. (The paper
Anthony et al. [1] investigates the number of auxiliary variables required by
quadratizations of symmetric functions.)

Before we turn to this question, we should define more precisely what we
mean by describing “all minimal” quadratizations of a function. First, we
should note that some quadratizations may be seen as equivalent, for most
practical purposes, in the sense that they can be transformed into each other
by simply switching a subset of the auxiliary variables y1, . . . , ym, that is, by
substituting yi = 1 − yi for certain variables yi. We are only interested in
describing non-equivalent quadratizations.

Next, although we have focused so far on quadratizations involving the small-
est possible number of auxiliary variables (say, lean quadratizations), other
concepts of minimality may be relevant as well.

Definition 7 A quadratization g(x, y) of f(x) is prime if there is no other
quadratization of f , say h(x, y), such that h(x, y) ≤ g(x, y) for all (x, y) ∈
{0, 1}n+m, and such that h(x∗, y∗) < g(x∗, y∗) for at least one point (x∗, y∗).

If our objective is to minimize f , then lean or prime quadratizations seem
to be especially attractive, although it could be argued that other quadrati-
zations possessing certain structural properties may also be of interest (for
instance, if it is easy to compute their minimum).

Let us illustrate these concepts with a couple of examples.
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Example 2 Assume that g(x, y) is a quadratization of f(x) involving m aux-
iliary variables (y1, . . . , ym), and let ym+1 be a new variable. Then, trivially,
g(x, y)+ym+1 is another quadratization of f which is neither lean nor prime.
More generally, if h(x, y) = minyk g(x, y) is a quadratization of f for some
variable yk, then h(x, y) ≤ g(x, y) for all (x, y) ∈ {0, 1}n+m. Hence, here
again, g is neither lean nor prime (unless h(x, y) = g(x, y), in which case g
does not really depend on yk). �

Example 3 The functions

s3(x, y) = 2y − x1y − x2y − x3y

and
s+3 (x, y) = x1 + x2 − x1y − x2y + x3y − x1x3 − x2x3

are two non-equivalent quadratizations of the negative monomial M3 = −x1x2x3
(see Proposition 4 hereunder). The function

g(x, y) = 5y − 2x1y − 2x2y − 2x3y

is another quadratization of M3 which also involves a single auxiliary variable.
It can be checked that g(x, y) ≥ s3(x, y) and therefore, g is not prime. �

We are now going to extend the previous example and to characterize all
lean prime quadratizations of the negative monomials.

Definition 8 The standard quadratization of the negative monomial Mn =
−
∏n

i=1 xi is the quadratic function

sn(x, y) = (n− 1)y −
n∑
i=1

xiy. (25)

The extended standard quadratization of Mn is the function

s+n (x, y) = (n− 2)xny −
n−1∑
i=1

xi(y − xn). (26)
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Let us show that the functions sn and s+n deserve their names.

Proposition 4 For all n ≥ 1, the functions sn(x, y) and s+n (x, y) are quadra-
tizations of Mn = −

∏n
i=1 xi.

Proof. The standard quadratization sn was already introduced in Section 2
(Equation (4), Freedman and Drineas [21]). For s+n , the case n = 1 is trivial.
For n ≥ 2, fix x ∈ {0, 1}n and suppose first that xn = 0. Then, Mn(x) = 0
and miny s

+
n (x, y) = miny

∑n−1
i=1 (1 − y)xi = 0 is attained for y = 1. On the

other hand, if xn = 1, then s+n (x, y) = sn−1(x, y) for all y ∈ {0, 1}, and the
statement follows from the fact that sn−1(x, y) is a quadratization of Mn−1.
�

When n ≤ 2, Mn is quadratic and, clearly, it is its own unique prime quadra-
tization. When n ≥ 3, sn and s+n are lean quadratizations of Mn since they
use a single auxiliary variable (we say that they are 1-quadratizations, for
short). We claim that, in this case, sn and s+n are essentially the only prime
1-quadratizations of Mn. More precisely:

Theorem 8 For n ≥ 3, assume that g(x, y) is a prime 1-quadratization
of Mn. Then, up to an appropriate permutation of the x-variables and up to
a possible switch of the y-variable, either g(x, y) = sn or g(x, y) = s+n .

Proof. The proof involves a detailed analysis which turns out to be different
according to whether n = 3 or n ≥ 4. For the sake of brevity, we restrict
ourselves here to the generic case n ≥ 4 and we refer the reader to the
technical report [14] for the special case n = 3.

So, assume now that n ≥ 4 and that g(x, y) is a 1-quadratization of Mn.
Since Mn(x) = miny∈{0,1} g(x, y) for all binary vectors x, we can assume
g(0, 0) = 0 after substituting y for y if necessary. Thus, without any loss of
generality we can write

g(x, y) = ay +
n∑
i=1

bixiy +
n∑
i=1

cixi +
∑

1≤i<j≤n

pijxixj. (27)
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Let us introduce some useful notations. For any subset S ⊆ N = [n], we write
b(S) =

∑
i∈S bi, c(S) =

∑
i∈S ci and p(S) =

∑
i,j∈S, i<j pij. Furthermore,

since binary vectors can be viewed as characteristic vectors of subsets, we
simply write

g(S, y) = ay + b(S)y + c(S) + p(S)

instead of (27), when x is the characteristic vector of S.

Then, the fact that g is a quadratization of Mn can be expressed as

0 = min
y∈{0,1}

(a+ b(S))y + c(S) + p(S) for all S ⊂ N, (28)

−1 = min
y∈{0,1}

(a+ b(N))y + c(N) + p(N). (29)

Let us now note that by (28), we have g(0, 1) ≥ 0, and hence

a ≥ 0. (30)

Furthermore, we must have g({i}, 0) ≥ 0 for all i ∈ N since n > 1, implying

ci ≥ 0 for all i ∈ N. (31)

Let us partition the set of indices as N = N0 ∪N+, where

N0 = {u ∈ N | cu = 0}, (32)

N+ = {i ∈ N | ci > 0}. (33)

Since g({i}, 0) = ci, relation (28) implies

g({i}, 1) = a+ bi + ci = 0 for all i ∈ N+, and (34)

g({u}, 1) = a+ bu ≥ 0 for all u ∈ N0. (35)

Let us next write (28) for subsets of size two. Consider first a pair u, v ∈ N0,
u 6= v. Since cu = cv = 0, we get g({u, v}, y) = (a+ bu + bv)y+ puv, implying

min {puv, a+ bu + bv + puv} = 0. (36)
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Let us consider next i, j ∈ N+, i 6= j. Then, by (34) and by the definitions
we get g({i, j}, 1) = pij − a ≥ 0. This, together with (30) implies that
pij ≥ a ≥ 0. Thus, g({i, j}, 0) = ci+cj+pij > 0 implying that g({i, j}, 1) = 0,
that is,

pij = a ≥ 0 for all i, j ∈ N+. (37)

This allows us to establish a first property of N0.

Claim 1 N0 6= ∅.

Proof. If N0 = ∅, then we have g(N, y) = (a+ b(N+))y + c(N+) +
(|N+|

2

)
a

by (37). Since |N+|a + b(N+) + c(N+) = 0 by (34), we get g(N, 1) =(|N+|−1
2

)
a ≥ 0 by (30), and g(N, 0) = c(N+) +

(|N+|
2

)
a ≥ 0 by (30) and (31).

This contradicts (29) and proves the claim. �

In contrast with Claim 1, the set N+ may be empty or not.

Claim 2 If N+ = ∅ and N = N0, then puv = 0 for all u, v ∈ N . Further-
more,

a+ b(S) ≥ 0 for all subsets S 6= N, and

a+ b(N) = −1.

Proof. Assume that u, v ∈ N are such that puv > 0 (we know by (36)
that puv ≥ 0). Then for any subset S ⊆ N such that u, v ∈ S, we have
g(S, 0) = p(S) > 0 and hence it must be the case that g(S, 1) = 0 if S 6= N
and g(N, 1) = −1.

This means that the restriction of the function g(x, 1) to the subcube {x :
xu = xv = 1}, say d(x), is equal to the negative monomial Mn−2. But when
n ≥ 5, d(x) is quadratic whereas the degree of Mn−2 is at least three, a con-
tradiction. When n = 4, say N = {u, v, t, w}, the unicity of the polynomial
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representation of Mn−2 = M2 implies that d(x) = −xtxw, i.e., ptw = −1
which contradicts (36).

Thus, we have puv = 0 for all u, v ∈ N . Finally, the claimed inequalities and
equality follow from Equations (28)–(29). �

The previous relations allow us to establish a first case of Theorem 8.

Claim 3 The statement of Theorem 8 holds when N+ = ∅ and N = N0.

Proof. If N = N0, then c(S) = 0 for all S ⊆ N by definition and, by
Claim 2, p(S) = 0 for all S ⊆ N , and a = −1 − b(N). Therefore, we can
write

g(x, y) = (−1− b(N))y +
∑
u∈N

buxuy.

Since sn(x, y) = (n− 1)y −
∑

u∈N xuy, we obtain

g(x, y)−sn(x, y) = (−n−b(N))y+
∑
u∈N

(bu+1)xuy =
∑
u∈N

(−1−bu)yxu. (38)

The relations a+ b(N \ {u}) ≥ 0 and a+ b(N) = −1 imply that bu ≤ −1 for
all u ∈ N . Hence, the right-hand side of (38) is always nonnegative, and if g
is prime, then it must be the case that g = sn. �

From now on, let us assume that |N+| ≥ 1. Consider u ∈ N0 and i ∈ N+.
We get g({u, i}, 0) = ci + pui, and in light of (34), g({u, i}, 1) = bu + pui.
Thus, we can write N0 ×N+ = EB ∪ EC , where

EB = {(u, i) | u ∈ N0, i ∈ N+, pui = −bu}, and (39)

EC = {(u, i) | u ∈ N0, i ∈ N+, pui = −ci}. (40)

We show next some properties of EB, EC , which will be useful to complete
the proof of the main theorem.

34



We use several times the following identity: when u ∈ N0 and i, j ∈ N+,
since pij = a by (37), we have

g({u, i, j}, y) = (a+ bu + bi + bj)y + ci + cj + pui + puj + a. (41)

Claim 4 For all u ∈ N0, we have either {u}×N+ ⊆ EB, or {u}×N+ ⊆ EC.

Proof. Assume that this is not the case, so that there exist u ∈ N0 and
i, j ∈ N+ such that (u, i) ∈ EB and (u, j) ∈ EC . Then, since |N | > 3, we
have 0 ≤ g({u, i, j}, 1). By (34) we have a+ bi + ci = a+ bj + cj = 0, by (40)
cj + puj = 0, and by (39) bu + pui = 0. Thus, (41) yields 0 ≤ g({u, i, j}, 1) =
a+ bj = −cj. But this contradicts j ∈ N+. �

Consider the sets

B = {u ∈ N0 | {u} ×N+ ⊆ EB}, and (42)

C = {u ∈ N0 | {u} ×N+ ⊆ EC}. (43)

The proof of Claim 4 actually establishes the following statement.

Claim 5 B ∪ C = N0 and, if |N+| ≥ 2, then B ∩ C = ∅.

Thus, (B,C) forms a partition of N0 when |N+| ≥ 2. But this is not neces-
sarily true when |N+| = 1. Let us now establish some auxiliary properties of
the sets B and C.

Claim 6 If |N+| ≥ 1, then |C| ≤ 1, and either B ∩ C = ∅ or B = N0.

Proof. Assume that i ∈ N+ and u, v ∈ C, u 6= v. Then bu ≥ ci = −pui and
bv ≥ ci = −pvi. Hence, a+ bu+ bv +puv ≥ a+2ci+puv > puv and by (36), we
must have puv = 0. Then, from (28), 0 ≤ g({u, v, i}, 0) = ci+puv+pui+pvi =
−ci, which contradicts the definition of N+. This proves that |C| ≤ 1.

If B ∩ C 6= ∅, then C ⊆ B, and hence B = N0. �

35



Claim 7 If |N+| ≥ 1, u ∈ B, v ∈ C \B, and u 6= v, then puv = bu.

Proof. Let i ∈ N+. According to the definitions, g({u, v, i}, y) = (a+ bu +
bv + bi)y − bu + puv. By definition of C, bv − ci = bv + pvi and since v 6∈ B,
bv + pvi > 0.

By (34) we have a+ bi = −ci, and hence we get g({u, v, i}, 1) = bv− ci + puv.
Thus, g({u, v, i}, 1) > 0, since puv ≥ 0 by (36). Consequently, g({u, v, i}, 0) =
−bu + puv = 0. This proves the claim. �

Claim 8 If |N+| ≥ 2, then B = ∅ and C = N0.

Proof. Assume by contradiction that B 6= ∅. Let us consider an arbitrary
u ∈ B and i, j ∈ N+, i 6= j. Then, we have g({u, i, j}, 1) = −bu by (41),
(34), (37) and the definition of B. Thus we have −bu ≥ 0 from which
g({u, i, j}, 0) = ci + cj − 2bu + a > 0 follows, implying that we must have
g({u, i, j}, 1) = −bu = 0. Hence pui = 0 for all i ∈ N+, by definition of B.
Also, for all v ∈ C, Claim 5 implies that v 6∈ B, and by Claim 7, puv = bu = 0
.

Assume now that |B| = 1, B = {u}. Then, all terms of (27) containing xu
vanish, since bu = cu = pui = puv = 0 for all i ∈ N+, v ∈ C. Thus, xu does
not appear in g, a contradiction with the fact that Mn depends on all its
variables.

On the other hand, if |B| > 1 and v ∈ B, v 6= u, then g({u, v, i, j}, y) =
(a + bi + bj)y + ci + cj + a + puv. Here a and puv are nonnegative by (30)
and (36), and ci and cj are both positive by the definition of N+, therefore
g({u, v, i, j}, 0) > 0. Thus, g({u, v, i, j}, 1) = puv ≤ 0 follows by (28) and
(29). Since puv ≥ 0 by (36), puv = 0 follows. Consequently, bu = puv = 0
follows for all u ∈ N0 and v 6= u, implying again that xu does not play any
role in g, which is a contradiction and proves our claim. �

Claim 9 If |N+| ≥ 2, then |C| = 1, |N+| = n− 1, and a = bi + ci = pij = 0
for all i, j ∈ N+.
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Proof. When |N+| ≥ 2, Claim 6 and Claim 8 together imply that B = ∅,
C = N0, and |C| ≤ 1. Since N0 6= ∅ by Claim 1, it follows that |C| = 1 and
|N+| = n− 1.

We assumed |N | ≥ 4. So, let i, j, k ∈ N+ be three distinct indices. Then
g({i, j, k}, 0) = ci+ cj + ck +3a > 0 by (37), by definition of N+ and by (30).
Thus, we must have g({i, j, k}, 1) = 0 by (28). By (34), this implies a = 0,
and the claim follows by (37). �

Claim 10 If g(x, y) is a quadratization of Mn with |N+| ≥ 2, then h(x, y) =
g(x, y) is another quadratization of Mn with either |N+| = 1 and |B| = n−1,
or N+ = ∅ and N = N0.

Proof. This follows from the definitions and from Claim 9. �

In view of Claim 3 and Claim 9, up to switching the y-variable, we are left
with the case |N+| = 1.

Claim 11 If N+ = {i}, then puv = 0 for all u, v ∈ B.

Proof. Let us assume there exist u, v ∈ B such that puv > 0 (we know by
(36) that puv ≥ 0.) Then g({u, v, i}, 1) = (a+bu+bv+bi)+ci+puv−bu−bv =
puv > 0 by (34) and by the definition of B. Thus, g({u, v, i}, 0) = ci + puv −
bu−bv = 0 follows by (28). On the other hand, we have g({u, v}, 0) = puv > 0
and thus g({u, v}, 1) = a + bu + bv + puv = 0 follows again by (28). Adding
these two equalities, we get a+ ci + 2puv = 0 which is impossible since a ≥ 0,
ci > 0 and puv > 0. �

Claim 12 If N+ = {i}, then |B| = n− 1. Furthermore, we have

ci = b(B)− 1, and (44)

ci ≥ b(S) for all subsets S ⊆ B, S 6= B. (45)
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Proof. Assume first that |B| < n− 1. It follows from Claim 6 that |C| = 1
and B ∩ C = ∅. Let C = {w}. We obtain

g(N, y) = (a+ b(B) + bw + bi)y + ci + p(B) +
∑
u∈B

puw +
∑
u∈B

pui + pwi. (46)

Now, a + bi = −ci by (34), p(B) = 0 by Claim 11,
∑

u∈B puw =
∑

u∈B bu
by Claim 7,

∑
u∈B pui = −

∑
u∈B bu by definition of B, and pwi = −ci by

definition of C. Hence,

g(N, y) = (b(B) + bw − ci)y. (47)

In view of Claim 7 and of (36), bu = puw ≥ 0 for all u ∈ B. Moreover,
g({w, i}, 1) = bw + pwi = bw − ci by definition of C, and hence bw − ci ≥ 0.
This implies that g(N, y) ≥ 0 for all y, contradicting (29).

Thus, |B| = n−1. In this case we obtain g(N, 1) = 0 by definition of B, and
thus we must have g(N, 0) = ci − b(B) = −1. Furthermore, for any subset
S ⊆ B, S 6= B we have g(S, 0) = ci − b(S) ≥ 0. �

We are now ready to prove the remaining case of Theorem 8.

Claim 13 The statement of Theorem 8 holds when |N+| = 1.

Proof. In view of Claim 12, we can assume that N+ = {n} and that
B = {1, 2, ..., n − 1}. By (34), by the definition of B and by Claim 11, we
have bn = −a − cn, pnu = −bu for all u ∈ B, and puv = 0 for all u, v ∈ B.
Thus,

g(x, y) = ayxn + cnxny +
∑
u∈B

buxu(y − xn).

Since s+n (x, y) = (n− 2)xny +
∑

u∈B xu(y − xn), we get

g(x, y)− s+n (x, y) = ayxn + (cn − n+ 2)xny +
∑
u∈B

(bu − 1)xu(y − xn).
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By (44), we have
∑

u∈B(bu − 1) = cn − n+ 2. Hence, we can write

g(x, y)− s+n (x, y) = ayxn +
∑
u∈B

(bu − 1)[xu(y − xn) + xny]

= ayxn +
∑
u∈B

(bu − 1)[yxuxn + y xuxn].

The relations (44)–(45) imply that bu ≥ 1 for all u ∈ B. Hence, g(x, y) −
s+n (x, y) is always nonnegative, and this completes the proof of the theorem.
�

6 Conclusions

This paper initiates a systematic study of quadratizations of pseudo-Boolean
functions. Matching lower and upper bounds are established for the num-
ber of auxiliary variables required in smallest possible quadratizations of
arbitrary functions and of of degree-d polynomials. Similar bounds are also
derived for the restricted, but frequently-considered class of y-linear quadrati-
zations. Future research should provide a numerical assessment of the quality
of the constructive quadratization procedures leading to the upper bounds.

Theorem 8 provides a complete characterization of prime quadratizations of
negative monomials using only one auxiliary variable. Although this may
seem to be a rather modest result, its proof turns out to be quite intricate
(perhaps for lack of better ideas). The case of positive monomials appears
to be harder, since we do not even know the minimum number of auxiliary
variables required in a shortest quadratization of

∏n
i=1 xi (see Anthony et

al. [1] and Ishikawa [32] for the best known upper bounds).

Many other questions about quadratizations remain open. In particular, the
computational complexity of minimizing the number of auxiliary variables
for a given pseudo-Boolean function is unknown. The problem seems to be
very high in the polynomial hierarchy. We conjecture that it is Σp

3-complete.
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[14] Y. Crama and E. Rodŕıguez-Heck, Short prime quadratiza-
tions of cubic negative monomials. Research report, July 2014.
http://hdl.handle.net/2268/170649

[15] D. Ellis and B. Sudakov, Generating all subsets of a finite set with
disjoint unions, Journal of Combinatorial Theory, Series A 118 (2011)
2319–2345.

[16] A. Fix, Reductions for rewriting QPBFs with spanning trees. Unpub-
lished notes, 2011.

[17] A. Fix, A. Gruber, E. Boros and R. Zabih, A graph cut algorithm for
higher-order Markov random fields, Proceedings of the 2011 IEEE Inter-
national Conference on Computer Vision (ICCV), pages 1020–1027.

41



[18] A. Fix, A. Gruber, E. Boros and R. Zabih, A hypergraph-based reduc-
tion for higher-order Markov random fields, IEEE Transactions on Pattern
Analysis and Machine Intelligence 37 (2015) 1387–1395.
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[48] S. Živný and P. G. Jeavons, Classes of submodular constraints express-
ible by graph cuts, Constraints 15 (2010) 430–452.

44


