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Abstract. The central problem in case based reasoning (CBR) is to infer a solution
for a new problem-instance by using a collection of existing problem-solution cases.
The basic heuristic guiding CBR is the hypothesis that similar problems have similar
solutions. CBR has been often criticized for lacking a sound theoretical basis, and
there has only recently been some attempts at formalizing CBR in a theoretical
framework, including work by Hullermeier who made the link between CBR and
the probably approximately correct (PAC) theoretical model of learning in his ‘case-
based inference’ (CBI) formulation. In this paper we present a new framework of
CBI which models it as a multi-category classification problem. We use a recently-
developed notion of geometric margin of classification to obtain generalization error
bounds.
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1 Introduction

The basic problem in case based reasoning (CBR) is to infer a solution for a new problem-
instance by using a collection of existing problem-solution cases [15]. The basic heuristic
that guides CBR is the hypothesis that similar problems have similar solutions [12]. The
area of CBR research has had practical success and has been shown to be widely applicable
[9]. The well known methodological framework of case-based reasoning divides CBR into
four main steps (referred to as the R4 framework): retrieve, reuse, refine and retain [12].
These steps are useful for devising a practical CBR system, but can at best represent CBR
as an informal or non-rigorous model of AI. CBR has been often criticized for lacking a
sound theoretical basis and there has only recently been some attempts at formalizing CBR
in a theoretical framework. A main step in this direction was made by Hullermeier [13]
who made the link between CBR and the probably approximately correct (PAC) theoretical
model of learning [1]. Hullermeier defines case-based reasoning as a prediction process which
allows him to make the connection between CBR and the learning based on a sample. He
calls this framework case-based inference (CBI) which aims to solve the ’retrieve’ and ’reuse’
steps of the R4 framework. Given a new problem to be solved, CBI aims just to produce a
’promising’ set of solutions for use by the remaining two steps of the R4 framework. These
last two stages of the R4 framework use not just the set of promising (or, credible) solutions
but also domain-knowledge, user input and further problem-solving strategies [12]. As noted
in [16] section 5.4, these steps adapt the set of promising solutions into a solution that fits
the existing problem.

In this paper we present a new framework of CBI which extends that of [12] and enables
us to represent the problem of case-based learning in a rigorous mathematical framework.
In this representation, learning CBI is simply a multi-category classification problem. We
use a recently-developed notion of geometric margin of classification, called width, to obtain
generalization error bounds. This notion has recently been used in [4] to exploit regularity in
training samples for the problem of learning classification in finite metric spaces. The main
results in the current paper are bounds on the error of case-based learning which involve the
sample width.
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2 Case-based inference (CBI)

In the framework of case-based inference, we have a problem space, denoted by X , and
a solution space, denoted by Y . We define Z := X ⇥ Y . We assume each space has
a metric dX and dY associated with it (which, therefore, in particular, satisfy the trian-
gle inequality). We also assume that each of the two metric spaces has a finite diameter
diam(X ) := max

x,x

02X dX (x, x
0
) < 1, diam(Y) = max

y,y

02Y(y, y
0
) < 1.

In the Introduction, we mentioned that CBI infers as an output a set of ‘promising’, or
credible solutions rather than solving the full CBR problem by predicting a single specific
solution. This is at the basis of what Hullermeier [13] calls approximate reasoning. We
describe a slight modification of his framework. It uses a function h from [0, diam(X )] to
[0, diam(Y)]. Suppose we are given a sample {z

i

}m
i=1 = {(x

i

, y
i

)}m
i=1 (also referred to as a

case-base), consisting of problem-solution pairs. Given a problem x 2 X for which we wish
to infer a set of good solutions, the function h produces a subset of Y . In this way, it defines
a mapping from X to the power set 2Y of Y (which consists of all subsets of Y), the output
of which is the set of solutions inferred for x. This set is C

h

(x), where

C
h

(x) :=
m\

i=1

�

h

(z
i

, x) ✓ Y (1)

where �

h

(z
i

, x) is a ball centered at y
i

with a radius given by the value h(dX (x, xi

)). That
is, in the CBI framework of [13], each possible h specifies the radius of every sphere centered
at a sample solution y

i

, based on the distance between the corresponding problem x
i

to the
given problem x. Note that, in general, not all of the balls play an important role in shaping
the credible solution set C

h

(x) but rather only those spheres whose radii are relatively small.
Thus, depending on the sample, the effective number of spheres (cases) which participate in
shaping the credible set may be much smaller than the sample size m. The definition of the
set C

h

is based solely on the function h and the sample, and Hullermeier [?] discusses how
to update the function h.

From (1), a credible set must take the form of an intersection of spheres in the solution space.
While this is sensible from a practical viewpoint, it sets an inductive bias [17] which can result
in worse generalization error bounds [1]. In this paper we extend this CBI framework such
that no a priori inductive bias is placed through a choice of a particular class of mappings
from X to sets of credible solutions.

Our idea is based on learning ‘hypotheses’ (multi-category classifiers) on each of the metric
spaces X and Y individually, and by taking account of the sample-width, an idea we in-
troduced in [2, 4] and applied in [3, 5]. This leads to favoring more regular (or ’smooth’)
hypotheses, as much as the complexity of the sample permits. The fact that the learning ap-
proach favors such simpler hypotheses is entirely compatible with the underlying assumption
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of CBR that similarity in problem space implies similarity in solution space.

We now describe the new CBI framework.

3 A new CBI framework

In this section we extend the CBI model of [13] described in section 2. The underlying
assumption that similar problems must have similar solutions is represented in this new
framework through a preference for smooth hypotheses that map similar problems to similar
solutions. (discussed in section 4). The advantage of our new framework compared to that
of [13] is that we derive rigorous error-bounds that are sample-dependent, which allows
hypotheses to be any functions.

3.1 The probabilistic framework

In this framework, examples of problem-solutions pairs (all being positive examples, meaning
that each pair consists of a problem and a credible solution) are drawn according to an
unknown probability distribution Q(Z) := Q(X, Y ). We assume Q is multi-modal; that is,
it takes the form of a weighted sum with a finite number of terms as follows:

Q(Z) =

X

k2[K]

Q
Z|M(Z |k )Q

M

(k) (2)

=

X

k2[K]

Q
Y |M(Y |k )Q

X|Y,M(X|Y, k)Q
M

(k),

where M is a random variable representing the mode whose possible values are in a set
[K] := {1, 2, . . . , K}. The mode-conditional distribution Q

Z|M(Z|k) is defined on Z, and
Q

Y |M(Y |k) :=

P
x2X Q

Z|M((x, Y )|k) is a mode-conditional distribution defined on Y with
Q

X|Y,M a conditional distribution on X . We henceforth refer to the support of the mode-
conditional distribution Q

Y |M in Y as a mode-region.

For any probability distribution P on Y denote by supp(P ) ✓ Y the probability-1 support
of P . We further assume that there exists a ⌧ > 0 such that Q belongs to a family Q

⌧

of
probability distributions that satisfy the following properties on Y :

1. For k 6= k0, we have supp

�
Q

Y |M (Y |k)
�T

supp

�
Q

Y |M (Y |k0
)

�
= ;

2. For any y, y0 2 Y such that dY(y, y
0
)  ⌧ , there exists k 2 [K] such that y, y0 2

supp

�
Q

Y |M(Y |k)
�
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3. For any ↵ 2 (0, 1), there is mQ

0 (↵) such that if a sequence of m � mQ

0 elements of Z,
⇠(m)

= {(x
i

, y
i

)}m
i=1, is drawn according to the product probability measure Qm, then,

with probability at least 1�↵, for each k 2 [K], the following holds: for any y
i1 , yi2 in

the sample which belong to the same mode-region, there is a sequence y
j1 , yj2,, . . . , yjN

in the sample and in that same mode-region such that dY(yi1 , yj1)  ⌧ , dY(yjl , yjl+1
)  ⌧

and dY(yjN , yi2)  ⌧ , 1  l  N � 1.

Condition (A) says that the mode regions are disjoint (non-overlapping). Condition (B)
implies that mode regions must be at least ⌧ distance apart. Thus both conditions imply
that cases drawn fall into non-overlapping ’clusters’ that are at least ⌧ distance apart in the
solution space. Condition (C) implies that the mode conditional distribution of points is
’smooth’, to the extent that for any pair of random points, no matter how far apart they
are in a mode region, there is a high enough probability density to ensure that with high
probability there will be points drawn in between them that are not too far apart.

This is a natural constraint on a mode-conditional distribution since, without it, a mode-
region could further be split into multiple (smaller) modes in which case the true number of
modes would necessitate a higher value of K and hence a different form for Q.

The above conditions imply that, for a given x, if its true (unknown) solution y is in a mode
region k, then it is acceptable to predict the whole region k as its credible solution set. For,
if this support region is small, then any solution contained in it is not too distant from y
and is therefore a good candidate for a credible solution for x; and if the region is not small,
then from condition (C) it still must contain ‘typical’ points of this mode rather than just
‘outliers’ that deviate from the expected value of the mode. With these typical points in
the credible set, the third and fourth stages of the R4 model may induce a good candidate
solution for x based on the credible set.

Thus, in the new CBI framework, we choose a whole mode region k as the inferred credible-
solution set for any problem x whose true (unknown) solution y is predicted to fall in mode
region k.

Learning CBI amounts to learning to map an x to a mode that, with high confidence, contains
the true solution y, and then predict the corresponding mode region as a credible-solution
set for x. We assume that ⌧ is known to the learner but that the number K of modes of Q
is unknown.

Relating to Condition (C), it is intuitively plausible that for m larger than some finite
threshold value, the condition will hold. Related ideas have been studied in the context of
percolation theory (see [8], for instance). In particular, the following related problem has
been studied. Given a parameter ⌧ , and a random sample from a given distribution, if the
graph G

⌧

has as vertices the points of the sample and two vertices are connected if their
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distance is at most ⌧ , is there a high probability that G
⌧

is connected? This has been studied
in particular when the distribution is uniform on the d-dimensional unit cube.

Before continuing to describe the framework, let us define two probability functions that we
refer to in subsequent sections,

PX (X = x,M = k) : =

X

y2Y

Q
Z|M((x, y)|k)Q

M

(k)

PY(Y = y,M = k) :=

X

x2X

Q
Z|M((x, y)|k)Q

M

(k). (3)

3.2 Inference by hypothesis

Given a randomly drawn problem X 2 X the inference task is to produce a set of credible
solutions for X. This inference can be represented by a mapping from X to 2

Y in terms of
a pair of functions h1 : X ! [K] and h2 : Y ! [K] which map the problem and solution
spaces into a finite set [K] := {1, 2, . . . , K} of natural numbers. We henceforth write

h(z) : = [h1(x), h2(y)] (4)

and refer to the vector value function h : Z ! [K]

2 as a hypothesis for case-based inference.
Note that [K] is the same set in (2) that defines the modes of Q. We later show that
h is learned based on a sample whose labels are equal to the mode-values (up to some
permutation). Thus while Q, and hence [K], are unknown, the above conditions on Q
ensure that information about the set [K] is available in the random sample, from which it
is possible to learn h as a mapping into [K]

2.

Given a hypothesis h and a problem x, the credible solution set C(x) predicted by h is
defined as

C(x) := C
h

(x) = {y 2 Y : h2(y) = h1(x)}

or, equivalently,
C

h

(x) = h�1
2 (h1(x)).

In other words, if x 2 X has h1(x) = k then C(x) is a set of solutions that are classified by
h2 as k. Thus inference in this new CBI framework amounts to classifying x into one of a
finite number of solution regions.
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In section 5 we discuss how to learn h by learning the two classifiers h1 and h2. We learn
each individually based on a labeled sample. Given a sample of cases, we prefer a simpler h
that has ’smoother’ component mappings h1 and h2. Being smooth means that the learning
process prefers hypotheses h whose h1 maps similar (dX -close) problems x, x0 to the same
k 2 [K]. For similar problems, h predicts the same credible set. Thus the CBR assumption
that similar problems map to similar credible solutions holds in our framework.

In section 5 we show that training samples for each of h1 and h2 can be constructed in such
a way that the labels are the values of the corresponding modes of Q. So learning h amounts
to learning the mode-regions and, thus, given a problem x the learnt hypothesis h predicts
the mode region (that contains the unknown solution y of x) to be the credible solution set
for x.

If h is sufficiently accurate then, with a large confidence, the predicted credible set contains
the true unknown solution y of x. More importantly, as explained above, the conditions on
Q ensure that the mode region (which is the predicted credible set) has other solutions that
are close to y or, at least, typical elements of the region that contains y.

Figure 1 shows an example of a distribution Q and hypothesis h. For illustrative purposes,
we have assumed that the metric spaces X and Y are one-dimensional. There are three
modes Q

Y |M(Y |k), k = 1, . . . , 3 with non-overlapping supports in Y (obeying condition (A)).
Associated with them are mode-conditional distributions Q

Z|M(Z|k), k = 1, 2, 3, where the
support of Q

Z|M(Z|2) splits into two regions in Z. In this example, when Q is projected
on X there is overlap between the modes (which is permitted by the above conditions).
This means that a problem may have multiple solutions, even in different mode regions.
The component hypotheses h1 and h2 partition X and Y , respectively, into regions that are
labeled with values in the set [K] = [3] = {1, 2, 3}. We denote these regions by S

(1)
k

and S
(2)
k

,
1  k  3. Given an x, if x 2 S

(1)
k

then h predicts a credible solution set C
h

(x) = S
(2)
k

. Note
that it is possible that dissimilar problems have similar solutions. For instance, consider two
different problems x in the left region of S(1)

2 and x0 in the right region of S(1)
2 . Both have

similar solutions y, y0 2 S
(2)
2 . In general, the mode regions of Q need not be circular, and

the decision regions of h need not be box-shaped as in this example.

In the learning framework that we introduce in section 5 the number of modes K is not
assumed to be known. The value of K is estimated based on a training sample of problem-
solution pairs and on knowing the value of ⌧ (which is given as domain knowledge). The
estimate of K may be as large as the sample size m (as shown in (12)).
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(a) Example of a distribution Q on X ⇥ Y. It has K
modes on Y, QY |M (Y |k), k = 1, . . . ,K = 3.

(b) a hypothesis h : Z ! [K]2, with classification re-

gions S(1)
k , in X , and S(2)

k in Y, k = 1, . . . ,K, with ,

K = 3.

Figure 1: (a) Circular regions are mode regions of Q. Regions of different mode value may
overlap with respect to X but not on Y . (b) Rectangular regions are sets of problems and
their credible solutions that are inferred by h. There are three such sets: the kth set is labeled
(k) and is defined as S

(1)
k

⇥ S
(2)
k

= {(x, y) : h1(x) = h2(y) = k}, k = 1, . . . , K, with K = 3.

3.3 Error of h

We define the error of a hypothesis h as the probability that for a randomly drawn problem-
solution pair Z = (X, Y ) 2 Z, h mispredicts Z, that is, h predicts a bad credible solution
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set C
h

(X) for X. This means that Y 62 C
h

(X). We therefore denote the error of h as

err (h) := P (Y 62 C
h

(X)) . (5)

Since the two components of h are classifiers, then the event that h mispredicts (X, Y )

implies that the two component classifiers disagree on the category of the credible-solution.
We can represent this as follows: denote by M the ’true’ unknown solution category of the
random solution Y where M 2 [K]. Then the probability of mispredicting is

Q ({(X, Y ) : Y 62 C
h

(X)}) = Q ({(X, Y ) : h1(X) 6= h2(Y )})
=

X

k2[K]

Q
Z|M ({(X, Y ) : h1(X) 6= h2(Y )} |k )Q

M

(k)


X

k2[K]

Q
Z|M ({(X, Y ) : h1(X) 6= korh2(Y ) 6= k} |k )Q

M

(k)

which is bounded from above by
X

k

Q
Z|M ({(X, Y ) : h1(X) 6= k} |k )Q

M

(k) +
X

k

Q
Z|M ({(X, Y ) : h2(Y ) 6= k} |k )Q

M

(k)

=

X

k

X

y2Y

Q
Z|M ({(X, y) : h1(X) 6= k} |k )Q

M

(k) (6)

+

X

k

X

x2X

Q
Z|M ({(x, Y ) : h2(Y ) 6= k} |k )Q

M

(k)

=

X

k

X

x:h1(x) 6=k

X

y2Y

Q
Z|M ((x, y) |k )Q

M

(k) +
X

k

X

y:h2(y) 6=k

X

x2X

Q
Z|M ((x, y) |k )Q

M

(k)

=

X

k

X

x:h1(x) 6=k

PX (X = x,M = k) +
X

k

X

y:h2(y) 6=k

PY (Y = y,M = k)

= PX (h1(X) 6= M) + PY (h2(Y ) 6= M) . (7)

The first and second term in (7) are the probability of misclassifying a labeled example
(X,M) 2 X ⇥ [K] and the probability of misclassifying a labeled example (Y,M) 2 Y ⇥ [K]

by the classifier h1 and h2, respectively. We denote these misclassification probabilities by
err(h1) and err(h2) and therefore we have

err(h)  err(h1) + err(h2). (8)

In splitting the error of h into a sum of two errors we assumed that the mode set [K] is
fixed and is known to the learner. The errors (8) are implicitly dependent on the set [K].
In section 5, we loosen this assumption and treat K as an unknown so that when a case Z
is drawn randomly according to Q(Z) the mode value k is not disclosed to the learner as
part of the information in the sample. It is therefore necessary to produce auxiliary labeled
samples that contain this mode information. We do that in section 5.1.

We now proceed to present new results on learning multi-category classification on metric
spaces which we subsequently use for the CBI learning framework in section 5.
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4 Multi-category classification on a metric space

In this section we consider classification learning on a metric space. Our aim here is to
provide a bound on the error of each of the individual component hypotheses of section 3,
that is, on each of the two terms on the right side of (8). At this point, we consider a general
metric space X . (We will then apply the results to the case in which that metric space is X
or Y in the CBI framework.)

For a given x 2 X , by a K-category classifier h we mean a function h : X ! [K] =

{1, . . . , K}: every element x 2 X has one definite classification according to h. (Note: here,
h is not the vector-valued hypothesis defined in section 3.)

We can associate with h the regions S
(h)
k

:= {x :2 X : h(x) = k}, k 2 [K], where we drop
the superscript and write S

k

when it is clear that h is the classifier. Note that these regions
are mutually exclusive, S

k

T
S
k

0
= ; for k 6= k0 and their union equals X . We define the

distance between a point x and a set S ✓ X based on the metric dX as follows,

dist (x, S) := min

x

02S
dX (x, x0

) .

As in [4] we define the notion of width of a classifier h at a point x as follows,

w
h

(x) := min

k 6=h(x)
dist (x, S

k

) .

The width w
h

(x) measures how ’definite’ the classification of x is according to h since the
further x is from the ’border’ (the set of closest points to x that are not in S

h(x)), the higher
the width and the more definite the classification. Note that the width w

h

(x) is always non-
negative. For a labeled point (x, l), l 2 [K], we define a real-valued discriminant function
[11] which we denote by f

h

: X ⇥ [K] ! R and which is defined as follows:

f
h

(x, l) := min

k 6=l

dist (x, S
k

)� dist (x, S
l

) .

Note that if x 2 S
l

then by definition x 62 S
k

for every k 6= l and so we have

f
h

(x, l) = w
h

(x).

If x 62 S
l

then it must be that x 2 S
k

for some k 6= l and hence

f
h

(x, l) = �dist (x, S
l

) .

For a fixed h and k 2 [K] define the real-valued function g
(h)
k

: X ! R as

g
(h)
k

(x) = f
h

(x, k)
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where we will drop the superscript for brevity and write g
k

whenever the dependence on h
can be left implicit. We denote by g(h) the vector-valued function g(h) : X ! RK given by

g(h)(x) := [g
(h)
1 (x), . . . , g

(h)
K

(x)].

We refer to g(h) as the margin function of the classifier h. Note that for a fixed h and x 2 X
there is only a single component g

(h)
k

of g(h) which is non-negative, and its value equals the
width w

h

(x) while the remaining components are all negative.

Thus we can express the decision of the classifier h in terms of g as follows:

h(x) = argmax

k2[K]gk(x).

The event of misclassification of a labeled point (x, l) by h means that there exists some
component g

k

with k 6= l such that g
l

(x) < g
k

(x). So the event that h misclassifies a labeled
point (x, l) can be expressed as the event that g

l

(x) < max

k 6=l

g
k

(x). Thus for a randomly
drawn pair (X,L) 2 X ⇥ [K], we have

P (h(X) 6= L) = P (g
L

(X) < max

k 6=L

g
k

(X))

where g = g(h) is the margin function corresponding to h. We henceforth denote this by the
error er

P

(h) of h,
er

P

(h) := P (h(X) 6= L) .

The empirical error of h is the average number of misclassifications that h makes on a labeled
sample �(m)

= {(x
i

, l
i

)}m
i=1. A more stringent measure is the average number of examples

which h does not classify to within some pre-specified minimal width level � > 0; that is,
the average number of examples (x

j

, l
j

) for which g
li(xi

)�max

k 6=li gk(xi

) < �. We call this
as the empirical margin error of h and denote it as

êrr

�

(h) := ˆP
m

✓
g
L

(X)�max

k 6=L

g
k

(X) < �

◆
=

1

m

mX

i=1

I
⇢
g
li(xi

)�max

k 6=li

(x
i

) < �

�
.

(Here, I denotes the indicator function of an event.)

In [6], the general problem of learning multi-category classifiers defined on metric spaces is
investigated, and a generalization error bound is presented. In order to describe this, we
first need to define what we mean by covering numbers of a metric space.

Suppose, as above, that (X , dX ) is any metric space and that ↵ > 0. Then an ↵-cover of X
(with respect to dX ) is a finite subset C of X such that, for every x 2 X , there is some c 2 C
such that dX (x, c)  ↵. If such a cover exists, then the minimum cardinality of such a cover
is the covering number N (X ,↵, dX ). If the context is clear, we will abbreviate this to N

↵

.
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We will see that the covering numbers (for both X and Y) play a role in our analysis. So,
in practice, it would be useful to know these or to be able to estimate them.

For the moment, let us focus on the case in which we have a finite metric space X , or
cardinality N Then, the problem of finding a minimum ↵-cover C

�

for X can be phrased
as a classical set-cover problem as follows: find a minimal cardinality collection of sets
C

�

:= {B
�

(j
l

) : j
l

2 X , 1  l  N
�

} whose union satisfies
S

l

B
�

(j
l

) = X . It is well known
that this problem is NP-complete. However, there is a simple efficient deterministic greedy
algorithm (see [10]) which yields a solution — that is, a set cover — of size which is no larger
than (1 + lnN) times the size of the minimal cover. Denote by ˆC

�

this almost-minimal
�-cover of X and denote by ˆN

�

its cardinality. Then ˆN
�

can be used to approximate N
�

up
to a (1 + lnN) accuracy factor:

N
�

 ˆN
�

 N
�

(1 + lnN).

We now present two results from [6]. The first bounds the generalization error in terms of a
width parameter � for which the corresponding empirical margin error is zero.

Theorem 4.1 Suppose that X is a metric space of diameter diam(X ) and that K is a
positive integer. Suppose P is any probability measure on Z = X ⇥ [K] and let Pm denote
the product probability measure on Zm. Let � 2 (0, 1). Then, with Pm-probability at least
1 � �, the following holds for �(m) 2 Zm: for any function h : X ! [K], and for any
� 2 (0, diam(X )], if êrr

�

(h) = 0, then

er

P

(h)  2

m

✓
KN

�/12 log2

✓
36 diam(X )

�

◆
+ log2

✓
8 diam(X )

��

◆◆
,

where N
�/12 is the �/12-covering number of X .

Note here that � is not prescribed in advance, but can be chosen after learning and, in
particular, it can be set to be the largest value for which the corresponding empirical margin
error is zero.

The following result (which is more general than the one just presented, but which is looser
in the special case of zero empirical margin error) bounds the error in terms of the empirical
margin error (which may be nonzero).

Theorem 4.2 With the notation as above, with Pm-probability at least 1� �, the following
holds for �(m) 2 Zm: for any function h : X ! [K], and for any � 2 (0, diam(X)],

er

P

(h)  err

�

(h) +

s
2

m

✓
KN

�/6 ln

✓
18 diam(X )

�

◆
+ ln

✓
2 diam(X )

��

◆◆
+

1

m
,
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where N
�/6 is the �/12-covering number of X .

What we have in Theorem 4.2 is a high probability bound that takes the following form: for
all h and for all � 2 (0, diam(X)],

er

P

(h)  err

�

(h) + ✏(m, �, �),

where ✏ tends to 0 as m ! 1 and ✏ decreases as � increases. The rationale for seeking
such a bound is that there is likely to be a trade-off between empirical margin error on the
sample and the value of ✏: taking � small so that the error term err

�

(h) is zero might entail
a large value of ✏; and, conversely, choosing � large will make ✏ relatively small, but lead to a
large empirical error term. So, in principle, since the value � is free to be chosen, one could
optimize the choice of � on the right-hand side of the bound to minimize it.

5 A probabilistic framework for learning CBI

The learning model considered in [13] is based on the candidate-elimination algorithm, specif-
ically, algorithm Find-S of [17], and is applied to concept-learning. As mentioned in section
2, Hullermeier [13] uses functions h that map distance values in X to distance values in Y .
His class of possible h consists of piecewise-constant mappings from R+ to R+. He uses the
generalization heuristic of the Find-S algorithm in order to find a good h which is consistent
with the sample.

In this paper we introduce a new learning model for CBI which is based on learning multi-
category classification. We use the new framework of CBI (section 3) where hypotheses are
two-dimensional multi-category functions h = [h1, h2]. Each of the two components of h are
learned individually based on two auxiliary samples, one which consists of labeled problems
and the other consists of the corresponding labeled solutions. We now proceed to describe
how these samples are defined from the cases.

5.1 Two auxiliary samples

The learner is given a random sample, which is also referred to as a collection of problem-
solution cases (or case base),

⇠ : = ⇠(m)
= {(x

i

, y
i

)}m
i=1 . (9)

This sample is drawn i.i.d. according to some product probability measure Qm on Zm, where
Q 2 Q

⌧

for some ⌧ > 0.
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Denote by
X|⇠ := {x

i

2 X : 9i 2 {1, . . . ,m} , (x
i

, y
i

) 2 ⇠}
and

Y|⇠ := {y
i

2 Y : 9i 2 {1, . . . ,m} , (x
i

, y
i

) 2 ⇠}
the sample projection sets of problems and solutions, respectively. Note that the sample
⇠ may be ’noisy’; that is, a sample problem x 2 X|⇠ may appear multiple times in the
sample with different solutions y 2 Y|⇠ . In other words, the modes of Q may overlap in
problem space X , and hence cases drawn according to Q may have the same problems with
different solutions. Needless to say, a solution y 2 Y|⇠ may appear multiple times for different
problems x 2 X|⇠ .

In addition to the sample ⇠ we assume that expert advice (or domain-knowledge) is available
in the form of knowing the value of ⌧ , the parameter of the family Q

⌧

described in Section
3.

We now describe a procedure the learner can use to construct two auxiliary labeled samples
⇣X and ⇣Y from the given sample ⇠ and the value ⌧ .

Labeling Procedure: We use ⌧ to partition the sample points of ⇠ into a finite number of
categories as follows. Let D

⇠

be the m⇥m matrix with entries as follows:

D
⇠

[i, j] = dY(yi, yj)

for all pairs of solution examples y
i

, y
j

2 Y|⇠ . Based on D
⇠

, let us define the m ⇥m {0, 1}
matrix

A
⌧

: = [a(i, j)] (10)

as follows:
a(i, j) :=

⇢
1 if D

⇠

[i, j]  ⌧
0 otherwise.

The jth column a(j) of A
⌧

represents an incidence (binary) vector of a set, or a ball B
⌧

(j)
which consists of all the points i 2 Y|⇠ that are a distance at most ⌧ from the point j 2 Y|⇠ .

The matrix A
⌧

defined in (10) is an adjacency matrix of a graph G
⌧

= (Y|⇠ , E⌧

), where E
⌧

is the set of edges corresponding to all adjacent pairs of vertices according to A
⌧

, that is, we
place an edge between any two vertices i, j such that D

⇠

[i, j]  ⌧ .

Let {H
i

}K⌧

i=1 be the set of K
⌧

connected components H
i

✓ Y|⇠ of the graph G
⌧

, where by a
connected component we mean a subset of vertices such that there exist a path (sequence
of edges) between every pair of vertices in the component. This set of components can be
easily found, for instance, by a hierarchical clustering procedure [14].
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Note that K
⌧

:= K
⌧

(⇠) is dependent on the sample ⇠ through Y|⇠ and is no larger than m
since the number of connected components is no larger than the number of vertices of G

⌧

.
Let us partition the sample ⇠ into the subsets ⇠(k) ✓ ⇠ based on these components H

k

as
follows:

⇠(k) := {(x, y) 2 ⇠ : y 2 H
k

} , 1  k  K
⌧

.

Then, define two auxiliary sets of samples as follows:

⇣X := ⇣
(m)
X =

�
(x

i

, k) : x
i

2 X|⇠ , (xi

, ·) 2 ⇠(k), 1  i  m, 1  k  K
⌧

 

⇣Y := ⇣
(m)
Y =

�
(y

i

, k) : y
i

2 Y|⇠ , (·, yi) 2 ⇠(k), 1  i  m, 1  k  K
⌧

 
. (11)

We use these samples for the classification learning problems in section 5.2. Note that both
samples have K

⌧

possible categories for the labels of each of the sample points. Since K
⌧

enters the learning bounds it is important to understand how large it can be. From spectral
graph theory [18, 19] the number of connected components of a graph G is equal to the
multiplicity µ0(G) of the zero eigenvalue of the Laplacian matrix L := ⇤� A, where ⇤ is a
diagonal matrix of the degrees of each vertex and A is the adjacency matrix. It follows that

K
⌧

= min {m,µ0(G⌧

)} . (12)

We now state two lemmas that together imply that the labels l
i

of pairs of examples (x
i

, l
i

)

and (y
i

, l
i

) in ⇣X and ⇣Y equal the true unknown mode values of the unknown underlying
distribution Q(Z), up to a permutation. That is, under a permutation � of the set [K] a
label value j 2 [K] is in one-to-one correspondence with a mode value �(j) 2 [K].

Lemma 5.1 Let H be a connected component of G
⌧

.Then there exists a k 2 [K] such that
H ✓ supp

�
Q

Y |M(Y |k)
�
.

Proof: Denote by R
k

= supp(Q
Y |M(y|k)), k 2 [K] the mode regions. Suppose there does

not exist a j such that H ✓ R
j

. Then there is a connected pair y, y0 2 H such that y 2 R
k

and y0 2 R
k

0 for some k0 6= k. This means that on any path that connects y and y0 there
exists some edge e 2 E

⌧

that connects two vertices u, v 2 Y|⇠ (which may be y or y0) where
u 2 R

k

and v 2 R
k

0 . But by condition (B) of section 3 it follows that dY(u, v) > ⌧ hence
by definition of G

⌧

the pair u, v is not connected. Hence y, y0 are disconnected. This is a
contradiction hence the statement of the lemma holds. ⇤
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Lemma 5.2 Let ↵ 2 (0, 1) and suppose that the sample size m is at least mQ

0 (↵). Let
{H

j

}K⌧

j=1 be the connected components of the graph G
⌧

. Then, with probability at least 1�↵,
the sample is such that, for every k 2 [K], there exist at most one single component H

j

✓
supp

�
Q

Y |M(Y |k
�
.

Proof: Suppose there are two distinct connected components H, H 0 of the graph contained in
a mode-region R

k

= supp(Q
Y |M(y|k)) for some k 2 [K]. Then there exist two points y 2 H,

y0 2 H 0 such that every path p = {y, y1, . . . , yn, y0} from y to y0 must have at least one pair
of consecutive points y

i

, y
i+1 such that dY(yi, yi+1) > ⌧ . But, by condition (C) of section 3,

if m � mQ

0 (↵), with probability at least 1 � ↵, this cannot be. Hence the statement of the
lemma holds. ⇤

From these two lemmas, the following observation follows.

Proposition 5.3 For any ↵ 2 (0, 1), with probability at least 1 � ↵, provided m is large
enough (m � mQ

0 (↵)), a connected component H
k

of the graph G
⌧

is always contained in the
probability-1 support of a mode-conditional distribution Q

Y |M and there is never more than
a single such component in a mode-region.

This implies that if an example (x
i

, l
i

) 2 ⇣X corresponds to an example (x
i

, y
i

) 2 ⇠ with y
i

in
a connected component H

k

of the graph G
⌧

then l
i

equals k where k is the value of the true
(unknown) mode (up to a permutation). Similarly, if an example (y

i

, l
i

) 2 ⇣Y is such that y
i

falls in a connected component H
k

of the graph G
⌧

then l
i

equals k where k is the value of
the true mode (up to a permutation).

Thus the labels l
i

of the samples points of ⇣X and ⇣Y are representative of the modes and thus
the samples are proper labeled samples for learning the classifiers h1 and h2, respectively.

5.2 Two classification problems

Given the two auxiliary samples ⇣X and ⇣Y of (11) we learn two multi-category classification
problems, independently, by finding a component hypothesis h1 and h2 which classify ⇣X
and ⇣Y , with a large sample-width, respectively. Based on h1 and h2 we form a hypothesis
h = [h1, h2] as in (4), where by (8) its error is bounded by the sum of the errors of h1 and
h2.
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As mentioned above, the number of categories K
⌧

(⇠) is dependent on the sample ⇠, or more
specifically on the set Y|⇠. Thus we need to make the bounds of section 4 apply for any value
K and not just for a K which is fixed in advance. To do that we use a ‘sieve’ method in the
error-bound proof.

To be able to use the standard-learning theory bounds we need the auxiliary samples ⇣X
and ⇣Y to be drawn i.i.d.. The next lemmas state that they are effectively drawn in an i.i.d.
manner.

Lemma 5.4 Let ↵ 2 (0, 1) and m � mQ

0 (↵). Let ⇠ be a random sample consisting of
i.i.d. pairs of problem-solution cases. Let ⇣Y be a sample obtained by the labeling procedure
applied on ⇠. Then, with probability at least 1 � ↵, ⇣Y consists of m i.i.d. random pairs of
solution-mode values each drawn according to PY .

Proof: Let L(m)
= [L1, . . . , Lm

] denote the label vector random variable and Y (m)
= [Y1, . . . , Ym

]

the solution vector random variable, where {(Y
i

, L
i

)}m
i=1 = ⇣Y is a random sample produced

by the labeling procedure of Section 5.1. Denote by M (m)
= [M1, . . . ,Mm

] 2 [K]

m where
M

i

is the mode index corresponding to the solution Y
i

. For any given sample realization
⇣Y = {(y⇤

i

, l⇤
i

)}m
i=1 with y⇤(m)

= [y⇤1, . . . , y
⇤
m

] 2 Ym and l⇤(m)
= [l⇤1, . . . , l

⇤
m

] 2 [K]

m we have

P ({(Y
i

, L
i

)}m
i=1 = {(y⇤

i

, l⇤
i

)}m
i=1) = P

�
L(m)

= l⇤(m)
��Y (m)

= y⇤(m)
�
P
�
Y (m)

= y⇤(m)
�

=

X

l

(m)2[K]m

P
�
L(m)

= l⇤(m)
��M (m)

= l(m), Y (m)
= y⇤(m)

�

·P
�
M (m)

= l(m) | Y (m)
= y⇤(m)

�
P
�
Y (m)

= y⇤(m)
�
. (13)

Conditioned on Y (m)
= y⇤(m) being drawn from mode values M (m)

= l(m), from Proposi-
tion 5.3, if m � m0(↵), then with probability at least 1 � ↵, the labels equal the mode
values; that is, L(m)

= l(m). (In fact, as noted earlier, the labels are equal to the mode
values up to a permutation, by which we mean there is some fixed permutation � such that
L(m)

= �(l(m)
). However, without loss of any generality, we can assume that the labels are

the same as the mode values because what matters is that the labels on the two auxiliary
samples match.) Hence (13) equals

X

l

(m)2[K]m

I
�
l(m)

= l⇤(m)
 
P
�
M (m)

= l(m) | Y (m)
= y⇤(m)

�
P
�
Y (m)

= y⇤(m)
�

= P
�
M (m)

= l⇤(m)
��Y (m)

= y⇤(m)
�
P
�
Y (m)

= y⇤(m)
�

= P
�
Y (m)

= y⇤(m),M (m)
= l⇤(m)

�

=

X

x

(m)

P
�
X(m)

= x(m), Y (m)
= y⇤(m),M (m)

= l⇤(m)
�
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= P
�
M (m)

= l⇤(m)
�X

x

(m)

P
�
X(m)

= x(m), Y (m)
= y⇤(m)

��M (m)
= l⇤(m)

�

=

X

x

(m)

mY

i=1

Q
Z|M (X

i

= x
i

, Y
i

= y⇤
i

|M
i

= l⇤
i

)Q
M

(M
i

= l⇤
i

) (14)

=

mY

i=1

Q
M

(M
i

= l⇤
i

)

X

xi2X

Q
Z|M (X

i

= x
i

, Y
i

= y⇤
i

|M
i

= l⇤
i

)

=

mY

i=1

X

xi2X

Q
Z|M (X

i

= x
i

, Y
i

= y⇤
i

|M
i

= l⇤
i

)Q
M

(M
i

= l⇤
i

)

=

mY

i=1

PY (Y
i

= y⇤
i

,M
i

= l⇤
i

) (15)

where (14) follows from the fact that the sample ⇠ is drawn i.i.d. according to
Q

m

i=1 Q(Z
i

) =Q
m

i=1 QZ|M(Z
i

|M
i

)Q
M

(M
i

), and (15) follows from (3). Hence it follows that the random
sample ⇣Y consists of m i.i.d. trials according to the distribution PY(Y,M). ⇤

The next lemma shows that the sample ⇣X is also i.i.d..

Lemma 5.5 Let ↵ 2 (0, 1) and m � mQ

0 (↵). Let ⇠ be a random sample consisting of
i.i.d. pairs of problem-solution cases. Let ⇣X be a sample obtained by the labeling procedure
applied on ⇠. Then, with probability at least 1 � ↵, ⇣X consists of m i.i.d. random pairs of
problem-mode values each drawn according to PX .

Proof: Let L(m)
= [L1, . . . , Lm

] denote the label vector random variable and X(m)
=

[X1, . . . , Xm

] the problem vector random variable. Denote by M (m)
= [M1, . . . ,Mm

] 2 [K]

m

where M
i

is the mode index corresponding to the problem X
i

. For any sample ⇣X =

{(x⇤
i

, l⇤
i

)}m
i=1 with x⇤(m)

= [x⇤
1, . . . , x

⇤
m

] 2 Xm and l⇤(m)
= [l⇤1, . . . , l

⇤
m

] 2 [K]

m we have

P ({(X
i

, L
i

)}m
i=1 = {(x⇤

i

, l⇤
i

)}m
i=1) = P

�
X(m)

= x⇤(m), L(m)
= l⇤(m)

�

=

X

l

(m)2[K]m

P
�
X(m)

= x⇤(m), L = l⇤(m)
��M (m)

= l(m)
�
P
�
M (m)

= l(m)
�

=

X

l

(m)2[K]m

X

y

(m)

P
�
X(m)

= x⇤(m), L(m)
= l⇤(m), Y (m)

= y(m)
��M (m)

= l(m)
�
P
�
M (m)

= l(m)
�

=

X

l

(m)2[K]m

X

y

(m)

P
�
L(m)

= l⇤(m) | X(m)
= x⇤(m), Y (m)

= y(m),M (m)
= l(m)

�

·P
�
X(m)

= x⇤(m)
��Y (m)

= y(m),M (m)
= l(m)

�
P (Y (m)

= y(m)
��M (m)

= l(m)
)P

�
M (m)

= l(m)
�
.

(16)
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Conditioned on X(m)
= x⇤(m) being drawn from mode values M (m)

= l(m), from Proposi-
tion 5.3, if m � m0(↵), then with probability at least 1 � ↵, we can assume as before the
labels are equal to the modes, that is, L(m)

= l(m). Hence (16) equals

X

l

(m)2[K]m

X

y

(m)

I
�
l(m)

= l⇤(m)
 
P
�
X(m)

= x⇤(m)
��Y (m)

= y(m),M (m)
= l(m)

�

·P (Y (m)
= y(m) | M (m)

= l(m)
)P

�
M (m)

= l(m)
�

= P
�
M (m)

= l⇤(m)
�X

y

(m)

P
�
X(m)

= x⇤(m), Y (m)
= y(m)

��M (m)
= l⇤(m)

�

=

X

y

(m)

mY

i=1

Q
Z|M (X

i

= x⇤
i

, Y
i

= y
i

|M
i

= l⇤
i

)Q
M

(M
i

= l⇤
i

) (17)

=

mY

i=1

Q
M

(M
i

= l⇤
i

)

X

yi2Y

Q
Z|M (X

i

= x⇤
i

, Y
i

= y
i

|M
i

= l⇤
i

)

=

mY

i=1

X

yi2Y

Q
Z|M (X

i

= x⇤
i

, Y
i

= y
i

|M
i

= l⇤
i

)Q
M

(M
i

= l⇤
i

)

=

mY

i=1

PX (X
i

= x⇤
i

,M
i

= l⇤
i

) (18)

where (17) follows from the fact that the sample ⇠ is drawn i.i.d. according to
Q

m

i=1 Q(Z
i

) =Q
m

i=1 QZ|M(Z
i

|M
i

)Q
M

(M
i

), and (18) follows from (3). Hence it follows that the random
sample ⇣X is drawn as m i.i.d. trials according to the distribution PX (X,M). ⇤

6 Learning bounds

Recall that what we want to do is obtain a high-probability bound on the error err

P

(h) of
a hypothesis h, which is the probability that for a randomly drawn problem-solution pair
Z = (X, Y ) 2 Z, h mispredicts Z; that is, h predicts a bad credible solution set C

h

(X) for
X. Now, by (7), this error is bounded by the sum

PX (h1(X) 6= M) + PY (h2(Y ) 6= M) = err(h1) + err(h2).

We may use Theorem 4.1 and Theorem 4.2 to bound each of the two probabilities here. This
results in the following error bounds.
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Theorem 6.1 With the notation as above, with probability at least 1��, the following holds
for all integers m � mQ

0 (�/2). For all positive integers K for all �1 2 (0, diam(X )] and
�2 2 (0, diam(Y)], and for all h = [h1, h2]: if êrr

�1(h1) = 0 and êrr

�2(h2) = 0, then the error
of h is at most

2

m
(K(A+B + 2) + C + 10) ,

where
A = N (X , �/12, dX ) log2

✓
36 diam(X )

�1

◆
,

B = N (Y , �/12, dY) log2

✓
36 diam(Y)

�2

◆
,

C = log2

✓
diam(X )diam(Y)

�2�1�2

◆
.

Proof: Fix K. We apply Theorem 4.1 simultaneously to both auxiliary samples. It is the
case, since m � mQ

0 (�/2), that with probability at least 1��/2, each auxiliary sample will be
i.i.d., by Lemma 5.4 and Lemma 5.5. Call this event the ‘independence event’. Assuming the
independence event holds, Theorem 4.1 then shows that, with probability at least 1��/2K+1,
the sample will be such that we have both

err(h1) 
2

m
AK +

2

m
log2

✓
32 2

K

diam(X )

�1�

◆

and
err(h2) 

2

m
BK +

2

m
log2

✓
32 2

K

diam(Y)

�2�

◆
.

This is for fixed K. It follows that, if the independence event holds, then with probability
at least 1�

P1
K=1 �/2

K+1
= 1� �/2, the error of h is at most

2

m
AK +

2

m
log2

✓
32 2

K

diam(X )

�1�

◆
+

2

m
BK +

2

m
log2

✓
32 2

K

diam(Y)

�2�

◆
.

So, the probability that either the independence event does not hold, or it does but the
stated error bound fails, is at most �/2 + �/2. The result follows. ⇤

Theorem 6.2 With the notation as above, with probability at least 1��, the following holds
for all integers m � mQ

0 (�/2). For all positive integers K for all �1 2 (0, diam(X )] and
�2 2 (0, diam(Y)], and for all h = [h1, h2]:

err(h)  err

�1(h1) + err

�2(h2) +
2

m
+ (A+B)

r
2

m
,
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where

A =

s

KN (X , �1/6, dX ) ln

✓
18 diam(X )

�1

◆
+ ln

✓
8 diam(X )

�1�

◆
+K

and

B =

s

KN (Y , �2/6, dY) ln

✓
18 diam(Y)

�2

◆
+ ln

✓
8 diam(Y)

�2�

◆
+K

Proof: The result follows from Theorem 4.2 in a similar way as the previous theorem followed
from Theorem 4.1, making the observation that

ln

✓
4 2

K

diam(X )

��

◆
 K + ln

✓
4 diam(X )

��

◆
.

⇤

7 Conclusions

We have discussed a new way of modeling probabilistically the process of learning for case-
based inference. We have done so through framing it as two related multi-category clas-
sification problems, and using recently-developed bounds for generalization by any type of
classifier.
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