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1. Introduction

1.1. Overview

In [3], the notion of sample width for binary classifiers mapping from the real
line was introduced, and in [4, 5], related ideas were developed to explore
the performance of hybrid classifiers based on unions of boxes and a nearest-
neighbor paradigm. In this paper, we consider how a similar approach might
be taken to the situation in which classifiers map from some finite metric
space (which would not generally have the linear structure of the real line).
Precise details are given below, but the idea is to define sample width to be
at least γ if the classifier achieves the correct classifications on the sample
and if, in addition, for each sample point, the minimum distance to a point
of the domain having opposite classification is at least γ. We then relate the
learning problem in this context to that of learning with a large margin. In
order to obtain bounds on classifier accuracy, we consider the domination
numbers of graphs associated with the underlying metric space and, using
some previous combinatorial results bounding domination number in terms
of graph parameters, including number of edges and mimimum degree, we
obtain generalization error bounds that depend on measures of density of
the underlying metric space. We also discuss how to employ the well-known
greedy set-covering heuristic to bound generalization error.

1.2. The underlying metric space and the width of a classifier

Let X = [N ] := {1, 2, . . . , N} be a finite set on which is defined a metric
d : X × X → R. So, d(x, y) ≥ 0 and d(x, y) = 0 if and only if y = x; and
d(x, y) = d(y, x). Furthermore, d satisfies the triangle inequality:

d(a, c) ≤ d(a, b) + d(b, c). (1)

Let D = [d(i, j)] be the corresponding ‘distance matrix’. D is symmetric
with (i, j)th element d(i, j) ≥ 0, and with d(i, j) = 0 if and only if i = j.

For a subset S of X , define the distance from x ∈ X to S as follows:

dist (x, S) := min
y∈S

d(x, y).
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We define the diameter of X as follows:

diamD(X ) := max
x,y∈X

d(x, y) = ‖D‖∞

where ‖D‖∞ is the max-norm for matrix D.

By a binary function on X , we mean a mapping h : X → Y where Y =
{−1,+1}. We will denote by H the class of all binary functions h on X .

The paper [3] introduced the notion of the width of a binary function at
a point in the domain, in the case where the domain was the real line R.
Consider a set of points {x1, x2, . . . , xm} from R, which, together with their
true classifications yi ∈ {−1, 1}, yield a training sample

ξ = ((xj, yj))
m
j=1 = ((x1, y1), (x2, y2), . . . , (xm, ym)) .

We say that h : R→ {−1, 1} achieves sample margin at least γ on ξ if h(xi) =
yi for each i (so that h correctly classifies the sample) and, furthermore, h
is constant on each of the intervals (xi − γ, xi + γ). It is then possible to
quantify (in a probabilistic model of learning) the accuracy of learning in
terms of the sample width. (More precisely, generalization error bounds are
derived that involve the sample margin, within a version of the PAC model
of learning. More detail about probabilistic modelling of learning is given in
Section 2.)

In this paper we use an analogous notion of width to analyse classifiers defined
on a finite metric space. We now define the notion of width that naturally
suits this space.

Let us denote by Sh− and Sh+ the sets corresponding to the function h : X →
{−1, 1} which are defined as follows:

Sh− := {x ∈ X : h(x) = −1} , Sh+ := {x ∈ X : h(x) = +1} . (2)

We will often omit the superscript h. In [4, 5, 6] we analysed learning that
was based on a class of real valued functions defined as the difference between
the distances of a point x from two non-overlapping subsets S+, S− of X :
of particular interest was the case in which S+ and S+ are each unions of
boxes (labeled 1 and −1, respectively), where the union of S+

⋃
S− need
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not cover the domain. Here, we define the width in a slightly different way
by starting with a given binary function h (rather than with two arbitrary
non-overlapping sets). Given such a binary function h we define the width
wh(x) of h at a point x ∈ X to be the following distance (where h̄(x) is the
sign opposite to that of h(x), meaning − if h(x) = 1 and + if h(x) = −1):

wh(x) := dist
(
x, Sh(x)

)
.

In other words, it is the distance from x to the set of points that are labeled
the opposite of h(x). The term ‘width’ is appropriate since the functional
value is just the geometric distance between x and the set Sh(x).

Let us define the signed width function, or margin function, fh, as follows:

fh(x) := h(x)wh(x).

This is commonly also referred to as the functional margin of h at x. Note
that the absolute value of fh(x) is, intuitively, a measure of how ‘definitive’
or ‘confident’ is the classification of x by h: the higher the value of fh(x) the
greater the confidence in the classification of x.

We define the class F of margin functions as

F := {fh(x) : h ∈ H} . (3)

Note that fh is a mapping from X to the interval [−diamD(X ), diamD(X )].
Henceforth, we will use γ > 0 to denote a learning margin parameter whose
value is in the range (0, diamD(X )].

2. Measuring the accuracy of learning

2.1. Probabilistic modelling of learning

We work in the framework of the popular ‘PAC’ model of computational
learning theory (see [24, 10]). This model assumes that the labeled examples
(xi, yi) in the training sample ξ have been generated randomly according to
some fixed (but unknown) probability distribution P on Z = X × Y . (This
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includes, as a special case, the situation in which each xi is drawn according
to a fixed distribution on X and is then labeled deterministically by yi = t(xi)
where t is some fixed function.) Thus, a sample ξ of length m can be regarded
as being drawn randomly according to the product probability distribution
Pm. In general, suppose that H is a set of functions from X to {−1, 1}. An
appropriate measure of how well h ∈ H would perform on further randomly
drawn points is its error, erP (h), the probability that h(X) 6= Y for random
(X, Y ). This can also be expressed in terms of the margin function fh:

erP (h) = P (h(X) 6= Y ) = P (Y h(X) < 0) = P (Y fh(X) < 0) . (4)

Given any function h ∈ H, we can measure how well h matches the training
sample through its sample error

erξ(h) =
1

m
|{i : h(xi) 6= yi}|

(the proportion of points in the sample incorrectly classified by h). Much
classical work in learning theory (see [10, 24], for instance) related the er-
ror of a classifier h to its sample error. A typical result would state that,
for all δ ∈ (0, 1), with probability at least 1 − δ, for all h ∈ H we have
erP (h) < erξ(h) + ε(m, δ), where ε(m, δ) (known as a generalization error
bound) is decreasing in m and δ. Such results can be derived using uniform
convergence theorems from probability theory [25, 20, 13], in which case
ε(m, δ) would typically involve a quantity known as the growth function of
the set of classifiers [25, 10, 24, 2]. More recently, emphasis has been placed
on ‘learning with a large margin’. (See, for instance [23, 2, 1, 22].) The ra-
tionale behind margin-based generalization error bounds is that if a classifier
has managed to achieve a ‘wide’ separation between the points of different
classification, then this indicates that it is a good classifier, and it is possi-
ble that a better generalization error bound can be obtained. Margin-based
results apply when the classifiers are derived from real-valued function by
‘thresholding’ (taking their sign). Although the classifiers we consider here
are not of this type, we can deploy margin-based learning theory by working
with the margin functions corresponding to the classifiers.

For a positive margin parameter γ > 0 and a training sample ξ, the empirical
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(sample) γ-margin error is defined as

P̂m(Y fh(X) < γ) =
1

m

m∑
j=1

I (yjfh(xj) < γ) .

(Here, I(A) is the indicator function of the set, or event, A.)

Our aim is to show that the generalization misclassification error P (Y fh(X) <
0) is not much greater than P̂m (Y fh(X) < γ). Explicitly, we aim for bounds
of the form: for all δ ∈ (0, 1), with probability at least 1 − δ, for all h ∈ H
and for all γ ∈ (0, diamD(X )]. we have

erP (h) = P (h(X) 6= Y ) < P̂m(Y fh(X) < γ) + ε(m, δ).

This will imply that if the learner finds a hypothesis which, for a large value
of γ, has a small γ-margin error, then that hypothesis has a minimal true
misclassification.

2.2. Covering numbers

To use techniques from margin-based learning, we consider covering numbers.
We will discuss different types of covering numbers, so we introduce the idea
in some generality to start with.

Suppose (A, d) is a (pseudo-)metric space and that α > 0. Then an α-cover
of A (with respect to d) is a finite subset C of A such that, for every a ∈ A,
there is some c ∈ C such that d(a, c) ≤ α. If such a cover exists, then the
mimimum cardinality of such a cover is the covering number N (A,α, d).

Suppose now that F is a set of functions from a domain X to some bounded
subset Y of R. For a finite subset S of X, the l∞(S)-norm is defined by
‖f‖l∞(S) = maxx∈S |f(x)|. For γ > 0, a γ-cover of F with respect to l∞(S)

is a subset F̂ of F with the property that for each f ∈ F there exists f̂ ∈ F̂
with the property that for all x ∈ S, |f(x) − f̂(x)| ≤ γ. The covering
number N (F, γ, l∞(S)) is the smallest cardinality of a covering for F with
respect to l∞(S). In other words, and to place this in the context of the
general definition just given, N (F, γ, l∞(S)) equals N (F, γ, d∞(S)) where
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d∞(S) is the (pseudo-)metric induced by the norm l∞(S). The uniform
covering number N∞(F, γ,m) is the maximum of N (F, γ, l∞(S)), over all S
with S ⊆ X and |S| = m.

2.3. A generalization result

We will make use of the following result. (Most standard bounds, such as
those in [8, 2], do not have a factor of 3 in front of the empirical margin
error, but involve ε2 rather than ε in the negative exponential. This type of
bound is therefore potentially more useful when the empirical margin error
is small.)

Theorem 2.1. Suppose that F is a set of real-valued functions defined on
a domain X and that P is any probability measure on Z = X × {−1, 1}.
Let δ ∈ (0, 1) and B > 0, and let m be a positive integer. Then, with Pm

probability at least 1− δ, a training sample of length m will be such that: for
all f ∈ F , and for all γ ∈ (0, B],

P (Y f(X) < 0) ≤ 3 P̂m(Y f(X) < γ) +
4

m

(
lnN∞(F, γ/4, 2m) + ln

(
4B

γδ

))
.

Proof: Fix γ and denote P (Y f(X) < 0) by er(f). A theorem from [8] states
that, for any η, with probability at least 1− 4N∞(F, γ/2, 2m)e−η

2m/4, for all
f ∈ F ,

er(f)− P̂m(Y fh(X) < γ)√
er(f)

≤ η.

So, with probability at least 1− δ, for all f ∈ F ,

er(f) < P̂m(Y fh(X) < γ) + α
√

er(f),

where

α =

√
4

m

(
lnN∞(F, γ/2, 2m)) + ln

(
4

δ

))
.
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Fix f and let β = P̂m(Y fh(X) < γ) and z =
√

er(f). Then, er(f) <

P̂m(Y fh(X) < γ) + α
√

er(f) would imply z2 − αz − β < 0, and hence(
z − α

2

)2

= z2 − αz +
α2

4
= (z2 − αz − β) +

(
α2

4
+ β

)
<
α2

4
+ β.

It would then follow that

er(f) = z2 =
((
z − α

2

)
+
α

2

)2

≤
(
z − α

2

)2

+
α2

4
+ α

(
z − α

2

)
<

α2

4
+ β +

α2

4
+ α

√
α2

4
+ β

≤ α2

2
+ β + 2

√
α2

4
+ β

√
α2

4
+ β

= α2 + 3β

=
4

m

(
ln 4N∞(F, γ/2, 2m) + ln

(
4

δ

))
+ 3 P̂m(Y fh(X) < γ).

So, with probability at least 1− δ, for all f ∈ F ,

er(h) < 3 P̂m(Y fh(X) < γ) +
4

m

(
ln 4N∞(F, γ/2, 2m) + ln

(
4

δ

))
.

This is for a fixed (prescribed) value of γ. To obtain a result in which γ need
not be fixed, we employ a ‘sieve’ method (see [8, 2, 14]). Letting E(γ1, γ2, δ)
be the set of samples ξ of length m such that there is some f ∈ F with

er(h) ≥ 3 P̂m(Y fh(X) < γ) +
4

m

(
ln 4N∞(F, γ/2, 2m) + ln

(
4

δ

))
,

the result just established states that Pm(E(γ, γ, δ)) < δ. Observing that for
0 < γ1 ≤ γ ≤ γ2 ≤ B and 0 < δ1 ≤ δ ≤ 1, we have E(γ1, γ2, δ1) ⊆ E(γ, γ, δ)
and by using the argument in [8] (modified slightly), it follows that

Pm

 ⋃
γ∈(0,B]

E

(
γ

2
, γ,

γδ

2B

) < δ.
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In other words, with probability at least 1− δ, a sample of length m will be
such that, for all γ ∈ (0, B], for all f ∈ F , we have

er(f) ≤ 3 P̂m(Y f(X) < γ) +
4

m

(
lnN∞(F, γ/4, 2m) + ln

(
4B

γδ

))
.

This is as required. �

Note that, in Theorem 2.1, γ is not specified in advance, so γ can be chosen,
in practice, after learning, and could, for instance, be taken to be as large as
possible subject to having the empirical γ-margin error equal to 0.

3. Covering the class F

Our approach to bounding the covering number of F with respect to the
l∞(S)-norm is to construct and bound the size of a covering with respect to
the sup-norm on X . (This is the norm given by ‖f‖∞ = supx∈X |f(x)|.) This
clearly also serves as a covering with respect to l∞(S), for any S, since if
‖f − f̂‖∞ ≤ γ then, by definition of the sup-norm, supx∈X |f(x)− f̂(x)| ≤ γ
and, hence, for all x ∈ X (and, therefore, for all x ∈ S where S is some
subset of X ), |f(x)− f̂(x)| ≤ γ.

We first show that the margin (or signed width) functions are ‘smooth’.

3.1. F is smooth

We prove that the class F satisfies a Lipschitz condition, as follows:

Theorem 3.1. For every fh ∈ F ,

|fh(x)− fh(x′)| ≤ 2d(x, x′) (5)

uniformly for any x, x′ ∈ X .
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Proof: Consider two points x, x′ ∈ X . We consider bounding the difference
|fh(x)− fh(x′)| from above. There are two cases to consider: h(x) and h(x′)
equal, or different.

Case I, in which h(x) 6= h(x′). Without loss of generality, assume that
h(x) = +1, h(x′) = −1. Then Sh(x) = S− and Sh(x′) = S+. We have

dist (x, S−) = min
z∈S−

d(x, z) ≤ d(x, x′),

since x′ ∈ S− . Similarly,

dist (x′, S+) = min
z∈S+

d(x′, z) ≤ d(x′, x),

since x ∈ S+. Hence,

|fh(x)− fh(x′)| = |h(x)dist(x, S−)− h(x′)dist(x′, S+)|
= |dist(x, S−) + dist(x′, S+)|
≤ d(x, x′) + d(x′, x)

= 2d(x, x′),

since d(x, x′) = d(x′, x) by symmetry of the metric.

Case II, in which h(x) = h(x′). Without loss of generality, assume that
h(x) = h(x′) = +1. Then Sh(x) = Sh(x′) = S−. We have,

|fh(x)− fh(x′)| = |h(x)dist(x, S−)− h(x′)dist(x′, S−)|
= |dist(x, S−)− dist(x′, S−)|

=

∣∣∣∣min
z∈S−

d(x, z)− min
z∈S−

d(x′, z)

∣∣∣∣ . (6)

Denote by s, s′ the closest points in S− to x, x′, respectively. Then∣∣∣∣min
z∈S−

d(x, z)− min
z∈S−

d(x′, z)

∣∣∣∣ = |d(x, s)− d(x′, s′)| . (7)

Assume that

d(x, s) ≥ d(x′, s′) (8)
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so that (7) equals d(x, s)− d(x′, s′). We have

d(x, s) ≤ d(x, s′) ≤ d(x, x′) + d(x′, s′) (9)

where the last inequality follows from the fact that D satisfies the triangle
inequality (1).

So combining (6), (7), (8) and (9) gives the following upper bound,

|fh(x)− fh(x′)| ≤ d(x, x′) + d(x′, s′)− d(x′, s′)

= d(x, x′).

In the other case where the inequality (8) is reversed we also obtain this
bound. �

Next we use this ‘smoothness’ to obtain a cover for F .

3.2. Covering F

Let the subset Cγ ⊆ X be a minimal size γ-cover for X with respect to the
metric d. So, for every x ∈ X there is some x̂ ∈ Cγ such that d(x, x̂) ≤ γ.
Denote by Nγ the cardinality of Cγ.

Let

Λγ =

{
λi = iγ : i = −

⌈
diamD(X )

γ

⌉
, . . . ,−1, 0, 1, 2, . . . ,

⌈
diamD(X )

γ

⌉}
(10)

and define the class F̂ to be all functions f̂ : Cγ → Λγ. Clearly, a function

f̂ can be thought of simply as an Nγ-dimensional vector whose components

are restricted to the elements of the set Λγ. Hence F̂ is of a finite size equal

to |Λγ|Nγ . For any f̂ ∈ F̂ define the extension f̂ext : X → [−1, 1] of f̂ to the

whole domain X as follows: given f̂ (which is well defined on the points x̂i of
the cover) then for every point x in the ball Bγ(x̂i) = {x ∈ X : d(x, x̂i) ≤ γ},
we let f̂ext(x) = f̂(x̂i), for all x̂i ∈ Cγ (where, if, for a point x there is more
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than one point x̂i such that x ∈ Bγ(x̂i), we arbitrarily pick one of the points x̂i
in order to assign the value of f̂ext(x)). There is a one-to-one correspondence

between f̂ and f̂ext. Hence the set F̂ext =
{
f̂ext : f̂ ∈ F̂

}
is of cardinality

equal to |Λγ|Nγ .

We claim that for any f ∈ F there exists an f̂ext such that supx∈X |f(x) −
f̂ext(x)| ≤ 3γ. To see that, first for every point x̂i ∈ Cγ consider the value

f(x̂i) and find a corresponding value in Λγ, call it f̂(x̂i), such that |f(x̂i) −
f̂(x̂i)| ≤ γ. (That there exists such a value follows by design of Λγ). By
the above definition of extension, it follows that for all points x ∈ Bγ(x̂i) we

have f̂ext(x) = f̂(x̂i). Now, from (5) we have for all f ∈ F ,

sup
x∈Bγ(x̂i)

|f(x)− f(x̂i)| ≤ 2d(x, x̂i) ≤ 2γ. (11)

Hence for any f ∈ F there exists a function f̂ ∈ F̂ with a corresponding
f̂ext ∈ F̂ext such that given an x ∈ X there exists x̂i ∈ Cγ such that |f(x)−
f̂ext(x)| = |f(x)− f̂ext(x̂i)|. The right hand side can be expressed as

|f(x)− f̂ext(x̂i)| = |f(x)− f̂(x̂i)|
= |f(x)− f(x̂i) + f(x̂i)− f̂(x̂i)|
≤ |f(x)− f(x̂i)|+ |f(x̂i)− f̂(x̂i)|
≤ 2γ + γ (12)

= 3γ.

where (15) follows from (11) and by definition of the grid Λγ.

Hence the set F̂ext forms a 3γ-covering of the class F in the sup-norm over
X . Thus we have the following covering number bound (holding uniformly
for all m).

Theorem 3.2. With the above notation,

N∞(F , 3γ,m) ≤ |Λγ|Nγ =

(
2

⌈
diamD(X )

γ

⌉
+ 1

)Nγ
. (13)
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4. A generalization error bound involving covering numbers of X

Our central result, which follows from Theorem 2.1 and Theorem 3.2, is as
follows.

Theorem 4.1. Suppose that X is a finite metric space of diameter diamD(X ).
Suppose P is any probability measure on Z = X × {−1, 1}. Let δ ∈ (0, 1).
For a function h : X → {−1, 1}, let fh be the corresponding margin (or
signed width) function, given by

fh(x) = h(x)wh(x) = h(x)dist
(
x, Sh̄(x)

)
.

Then, for any positive integer m, the following holds with Pm-probability at
least 1− δ, for a training sample ξ ∈ Zm:

– for any function h : X → {−1, 1},

– for any γ ∈ (0, diamD(X )],

P (h(X) 6= Y ) ≤ 3 P̂m(Y fh(X) < γ)+
4

m

(
Nγ/12 ln

(
27diamD(X )

γ

)
+ ln

(
4 diamD(X )

γδ

))
.

Here, for any given α > 0, Nα = N (X , α, d) is the α-covering number of X
with respect to the metric d on X .

Proof: This follows directly from Theorem 2.1 and Theorem 3.2, together
with the observation that, for γ ∈ (0, diamD(X )],

N∞(F , γ/4, 2m) ≤
(

2

⌈
12 diamD(X )

γ

⌉
+ 1

)Nγ/12
≤

(
2

(
12 diamD(X )

γ
+ 1

)
+ 1

)Nγ/12
≤

(
27 diamD(X )

γ

)Nγ/12
.

�
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In order to use this result, we therefore would need to be able to bound Nγ,
and this is the focus of the remainder of the paper.

5. Bounding the covering number in terms of the domination num-
ber of a related graph

Next, we relate the problem of bounding Nγ to a graph-theoretical question
about some related graphs.

Given a graph G = (V,E) with order (number of vertices) N , let A(G) be
its adjacency matrix. Denote by deg(x) the degree of vertex x ∈ V and by
∆min(G), ∆max(G) the minimum and maximum degrees over all vertices of
G.

We start from the given distance matrix D. Given a fixed margin parameter
value γ > 0 let us define the N ×N {0, 1}-matrix

Aγ := [a(i, j)] (14)

as follows:

a(i, j) :=

{
1 if d(i, j) ≤ γ
0 otherwise.

The jth column a(j) of Aγ represents an incidence (binary) vector of a set,
or a ball Bγ(j), which consists of all the points i ∈ X that are a distance at
most γ from the point j.

We can view Aγ as an adjacency matrix of a graph Gγ = (X , Eγ), where Eγ
is the set of edges corresponding to all adjacent pairs of vertices according
to Aγ: there is an edge between any two vertices i, j such that d(i, j) ≤ γ.
We note in passing that Gγ can be viewed as an extension (to general metric
space) of the notion of a unit disk-graph [12, 18] which is defined in the
Euclidean plane.

We now define a quantity we call density, which depends only on X and the
distance matrix D.
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Definition 5.1. Let x ∈ X . The γ-density induced by the distance matrix
D at x, denoted ργ(x), is the number of points y ∈ X such that d(x, y) ≤ γ.

The more points in the ballBγ(x), the higher the density value ργ(x). Clearly,
the degree of x in Gγ satisfies

deg(x) = ργ(x). (15)

A dominating set of vertices U ⊆ V (G) is a set such that for every vertex
v ∈ V (G) \ U there exists a vertex u ∈ U such that u and v are adjacent.
The domination number η(G) is the size of the smallest dominating set of
G. (It is usually denoted γ(G), but we are using γ to denote widths and
margins.) A useful and easy observation is that any dominating set of Gγ

is also a γ-cover of X with respect to the distance matrix D (or underlying
metric d). For, suppose U = {u1, . . . , uk} is a dominating set. Any u ∈ U
is evidently covered by U : there exists an element of U (namely, u itself)
whose distance from u is 0 and hence is no more than γ. Furthermore, for
v ∈ V (G) \ U , since U is a dominating set, there is some u ∈ U such that
u and v are adjacent in Gγ which, by definition of the graph, means that
d(v, u) ≤ γ. Hence U indeed serves as a γ-cover of X . This is, in particular,
true also for the minimal dominating set of size is η(Gγ). It follows that the
covering number Nγ of X is bounded from above by the domination number
of G = (X , Eγ). That is,

Nγ ≤ η(Gγ). (16)

There are a number of graph theory results which provide upper bounds for
the domination number of a graph in terms of various other graph-theoretic
parameters. For instance (though we will not use these here), the domina-
tion number can be related to the algebraic connectivity, the second-smallest
eigenvalue of the Laplacian of the graph [17], and it can also [21] be related to
the girth of the graph, the length of the shortest cycle. Other bounds, such as
those in [19, 15], involve the order, maximal or minimal degree, or diameter
of a graph. We now mention some results which will enable us to bound the
covering numbers in terms of a measures of density of the underlying metric
space X . First, we have the following result (see [9, 26]):

η(G) ≤ N + 1−
√

1 + 2 size(G)
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where size(G) is the number of edges of G, equal to half the sum of the
degrees

∑
i∈X deg(i). For Gγ we have 2 size(Gγ) =

∑
x∈X ργ(x). Let us make

the following definition in order to involve quantities explicitly dependent on
the metric on X .

Definition 5.2. The average density of X at scale γ (which depends only
on the matrix D of ditances) is

ργ(D) :=
1

N

∑
x∈X

ργ(x).

Applying this to Gγ, we therefore have

Nγ ≤ η(Gγ) ≤ N + 1−
√

1 +Nργ(D) (17)

Any bound on domination number in terms of the number of edges can, in
a similar way, be translated into a covering number bound that depends on
the average density. Equally, bounds involving the minimum or maximum
degrees yield covering number bounds involving minimum or maximum den-
sities. For instance, a bound from [19] is as follows:

η(G) ≤
⌊

1

N − 1
(N −∆max(G)− 1) (N −∆min(G)− 2)

⌋
+ 2.

Letting

ρmin,γ(D) = min
x∈X

ργ(x)

and

ρmax,γ(D) = max
x∈X

ργ(x)

then gives the following bound on Nγ:

Nγ ≤ η(Gγ) ≤
⌊

1

N − 1
(N − ρmax,γ(D)− 1) (N − ρmin,γ(D)− 2)

⌋
+2. (18)
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If Gγ has no isolated vertices (which means that each element of X is within
distance γ of some other element) then, by a result of [7] (mentioned in [15]),

Nγ ≤ η(Gγ) ≤ N

(
1 + ln (1 + ρmin,γ)

1 + ρmin,γ

)
. (19)

Note that from (19) that the bound on Nγ can be made, for instance, as low
as a constant 1

α
+ o(1) with respect to N if D satisfies ρmin,γ(D) = αN for

0 < α < 1.

In [15], it is shown that if Gγ has no cycles of length 4 and if ρmin,γ ≥ 2 then

Nγ ≤ η(Gγ) ≤
3

7

(
N − (3ρmin,γ + 1) (ρmin,γ − 2)

6

)
.

The paper [15] also mentions some bounds that involve the diameter of the
graph (Theorem 4.1-4.8).

We remark that, for a given γ, it is relatively straightforward to determine
the average, maximum, and minimum degrees of Gγ by working from its
incidence matrix Aγ, which itself is easily computable from the matrix D of
metric distances in X .

6. Using a greedy algorithm to estimate the covering number

We have seen that Nγ, the covering number of X at scale γ, plays a crucial
role in our analysis. In the previous section, we demonstrated how this can
be bounded in terms of average, maximum or minimum density of X . It is
also possible to obtain a bound on Nγ by using the familiar greedy heuristic
for set covering.

The problem of finding a minimum γ-cover Cγ for X can be phrased as a clas-
sical set-cover problem as follows: find a minimal cardinality collection of sets
Cγ := {Bγ(jl) : jl ∈ X , 1 ≤ l ≤ Nγ} whose union satisfies

⋃
lBγ(jl) = X . It

is well known [16, 11] that this can be formulated as a linear integer pro-
gramming problem, as follows: Let the vector v ∈ {0, 1}N have the following
interpretation: vi = 1 if the set Bγ(i) is in the cover Cγ and vi = 0 otherwise.
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Denote by 1 the N -dimensional vector of all 1’s. Then we wish to find a
solution v ∈ {0, 1}N that minimizes the norm

‖v‖1 =
N∑
j=1

vj

under the constraints
Aγv ≥ 1, v ∈ {0, 1}N .

The constraint Aγv ≥ 1, which is

N∑
j=1

a(i, j)vj ≥ 1, for every 1 ≤ i ≤ N,

simply expresses the fact that for every i ∈ X , there must be at least one set
Bγ(j) that contains it.

It is well known that this problem is NP-complete. However, there is a simple
efficient deterministic greedy algorithm (see [11]) which yields a solution —
that is, a set cover — of size which is no larger than (1 + lnN) times the size
of the minimal cover. Denote by Ĉγ this almost-minimal γ-cover of X and

denote by N̂γ its cardinality. Then N̂γ can be used to approximate Nγ up to
a (1 + lnN) accuracy factor:

Nγ ≤ N̂γ ≤ Nγ(1 + lnN).

7. Conclusions

In this paper, we have considered the generalization error in learning binary
functions defined on a finite metric space. Our approach has been to develop
bounds that depend on ‘sample width’, a notion analagous to sample margin
when real-valued functions are being used for classification. However, there is
no requirement that the classifiers analysed here are derived from real-valued
functions. Nor must they belong to some specified, limited, ‘hypothesis class’.
They can be any binary functions on the metric space. We have derived a
fairly general bound that depends on the covering numbers of the metric
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space and we have related this, in turn, through some graph-theroretical
considerations, to the ‘density’ of the metric space. We have also indicated
that the covering numbers of the metric space (and hence the generalization
error bounds) can be approximated by using a greedy heuristic. The results
suggest that if, in learning, a classifier is found that has a large ‘sample
width’ and if the covering numbers of the metric space are small, then good
generalization is obtained. An approach based on classical methods involving
VC-dimension would not be as useful, since the set of all possible binary
functions on a metric space of cardinality N would be N .
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