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Abstract

For n sufficiently large, we determine the density threshold for an n-vertex graph
to contain k vertex-disjoint triangles, where 0 ≤ k ≤ n

3 . This extends results by
Erdős and by Moon, and can be viewed as a density version of the Corrádi-Hajnal
theorem.
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1 Introduction

A classic result of Mantel [9] asserts that each n-vertex graph G with more
than ⌊n

2
⌋⌈n

2
⌉ edges contains a triangle 5 . What happens when the threshold

⌊n
2
⌋⌈n

2
⌉ is exceeded? Can we quantify the presence of triangles in G?

One natural approach to this broad question is to determine how many
triangles is G guaranteed to have, as a parameter of the edge density of G.
Solving a long-standing open problem, Razborov [11] determined a tight bound
f(α) such that each n-vertex graph with αn2 edges contains at least (f(α) +
on→∞(1))n3 triangles. Note that f(α) = 0 for α ∈ [0, 1

4
], while by Mantel’s

theorem and the Supersaturation Theorem [4], f(α) > 0 for α ∈ (1
4
, 1
2
). It is

striking that the function f(α) exhibits very complicated behaviour.

In this abstract, we deal with a different measure of the presence of tri-
angles. We ask what edge density in an n-vertex graph guarantees k vertex-

disjoint triangles. Such a collection of triangles is often called a tiling. Prior to
our work this question was considered by Erdős [2] and by Moon [10]; the for-
mer proved the exact result when n ≥ 400k2, and the latter when n ≥ 9k/2+4.
Interestingly, although Moon states that his result ‘almost certainly remains
valid for somewhat smaller values of n also’, in fact he almost reaches a natural
barrier: the graph which Moon proved to be extremal (the first in Figure 1
below) is only extremal when n ≥ 9k/2 + 3. We give a precise answer to the
question for all values of k when n is greater than an absolute constant n0 in
Theorem 2.1 below.

Tiling questions, which can of course be formulated for other graphs than
triangles, have received a great deal of attention for a long time already. They
typically fall into the following class of problems.

Problem 1.1 Suppose that a density condition C is satisfied for a graph G.

How many vertex-disjoint copies of a graph H are then guaranteed in G?
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The density condition C is usually parametrised by the average degree of G
(as is the case in our Theorem 2.1) or by the minimum degree of G.

Erdős and Gallai [3] gave a tight bound on the size of a maximum matching
(i.e., a tiling with edges) as a function of the average degree. This was recently
extended by Grosu and Hladký [5] who determined the asymptotic size of a
tiling with a fixed bipartite graph H guaranteed in a graph of given density.

Theorems of Corrádi and Hajnal [1], Hajnal and Szemerédi [6], Komlós [7]
and Kühn and Osthus [8] answer Problem 1.1 when the condition C concerns
the minimum degree. For example, the Corrádi-Hajnal theorem in its original
form asserts that an n-vertex graph with minimum degree at least 2n

3
contains a

triangle tiling which covers all but at most two vertices. It is straightforward
to deduce the following generalisation. Every n-vertex graph G with n

2
<

δ(G) < 2n
3

contains a triangle tiling with at least 2δ(G) − n triangles. This
bound is tight, as is shown by unbalanced complete tripartite graphs. Our
main result, Theorem 2.1 below, is therefore a density version of the Corrádi-
Hajnal theorem.

2 Result

Given an integer ℓ and a graph H , we write ℓ × H for the disjoint union of
ℓ copies of H . A graph is ℓ × H-free if it does not contain ℓ vertex disjoint
copies of H . In Theorem 2.1 we determine the maximal number of edges in
a (k + 1)×K3-free graph on n vertices for every 1 ≤ k ≤ n

3
. To this end we

identify the extremal structures for this problem, i.e., the graphs which attain
this maximal number of edges. These are as follows (see also Figure 1).

E1(n, k) E2(n, k) E3(n, k) E4(n, k)
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Fig. 1. The extremal graphs.

E1(n, k): Let X∪̇Y1∪̇Y2 with |X| = k, |Y1| = ⌈n−k
2
⌉, and |Y2| = ⌊n−k

2
⌋

be the vertices of E1(n, k). Insert all edges intersecting X , and between Y1

and Y2.

E2(n, k): Let X∪̇Y1∪̇Y2 with |X| = 2k + 1, |Y1| = ⌊n
2
⌋, and |Y2| = ⌈n

2
⌉ −



2k−1 (or |Y1| = ⌈n
2
⌉, and |Y2| = ⌊n

2
⌋−2k−1) be the vertices of E2(n, k). Insert

all edges within X , and between Y1 and X ∪ Y2. If n is odd, this construction
captures two graphs, if n is even just one.

E3(n, k): Let X∪̇Y1 with |X| = 2k+1 and |Y1| = n−2k−1 be the vertices
of E3(n, k). Insert all edges intersecting X .

E4(n, k): The fourth class of extremal graphs is defined only for k ≥ n
6
−2.

The vertex set is formed by five disjoint sets X , Y1, Y2, Y3, and Y4, with
|Y1| = |Y3|, |Y2| = |Y4|, |Y1|+ |Y2| = n− 3k − 2, and |X| = 6k − n+ 4. Insert
exactly all edges in X , between X and Y1∪Y2, and between Y1∪Y4 and Y2∪Y3.
Thus the choice of |Y1| determines a particular graph in the class E4(n, k). All
graphs in E4(n, k) have the same number of edges.

It is straightforward to check that these graphs are edge-maximal subject
to not containing (k + 1) ×K3. Our theorem now states that for each value
of k one of these constructions is extremal.

Theorem 2.1 There exists n0 such that the following holds for all n ≥ n0

and k ≤ n
3
. Let G be a (k + 1)×K3-free graph on n vertices. Then

e(G) ≤ maxj∈[4] e
(

Ej(n, k)
)

. (1)

Comparing the numbers of edges of the extremal graphs reveals that, as k
grows from 1 to n

3
, the extremal graphs dominate in the following order (for n

sufficiently large). In the beginning E1(n, k) has the most edges, but at k ≈ 2n
9

it is surpassed by E2(n, k). At k ≈ n
4
the structure E2(n, k) ceases to exist and

is replaced by E3(n, k), and finally at k ≈ (5+
√
3)n/22 the structure E4(n, k)

takes over. The exact transition values are given in the following table.

E1(n, k) → E2(n, k) E2(n, k) → E3(n, k) E3(n, k) → E4(n, k)

2n−6
9

n−1
4

5n−12+
√
3n2−10n+12
22

3 Sketch of the proof of Theorem 2.1

We call a pair (T ′,M′) a tiling pair if T ′ is a collection of vertex-disjoint
triangles in G, if M′ is a matching in G, and if T ′ and M′ do not share
vertices. Among all the tiling pairs choose a pair (T ,M) which (i) maximises
|T |, and among all such pairs, (ii) one which maximises |M|. Clearly, the set
of vertices I not covered by T ∪M is independent. By assumption |T | ≤ k.

The proof idea is simple. To obtain a bound on e(G), we work with
the quantities e(G[T ]), e(G[M]), and further e(G[T ,M]), e(G[T , I]), and



e(G[M, I]). To get the bound (1) we aim to establish inequalities involving
combinations of the edge counts above.

In fact, we will need to split the set T further as follows. We say that an
edge e of M sees a triangle T of T when a vertex of T forms a triangle with e,
and similarly that a vertex v of I sees T when v together with two vertices of
T forms a triangle. Then we set T1 to be the triangles of T which are seen by
at least two M-edges and T2 the triangles of T \ T1 which are seen by either
at least two I-vertices, or one I-vertex and one M-edge.

Let us illustrate our methods for the proof of Theorem 2.1 by establishing
the bound e(G[T1]) ≤ 7

(|T1|
2

)

+ 3|T1| (where |T1| counts the triangles in T1),
which is one of the easier bounds we use. For this bound it suffices to show that
between any pair of triangles of T1 there are at most seven edges. Suppose,
then, that there are two triangles uvw and u′v′w′ of T1 with at least eight edges
between them. By definition of T1, there are distinct (and hence disjoint) edges
xy and x′y′ of M which see respectively uvw and u′v′w′; let us assume that
they form triangles with u and u′ respectively. Now v, w, v′ and w′ induce
a subgraph of G with at least five edges and thus containing a triangle, say
vwv′. Finally vwv′, xyu, x′y′u′ and T \ {uvw, u′v′w′} form a triangle tiling
with more triangles than T , contradicting the definition of (T ,M).

We are able to obtain all bounds involving T1 and T2 by similarly short ar-
guments. However, just as the extremal structure E4(n, k) is the most compli-
cated of our four structures, so we need significantly more complex arguments
to handle the triangles T \ (T1 ∪ T2) to which it corresponds. We partition
these remaining triangles of T into a ‘sparse part’ T3 and a ‘dense part’ T4

by applying the following algorithm. We start with D equal to the set of all
triangles in T \ (T1∪T2), and S = ∅. If there is a triangle in D which sends at
most 8(|D| − 1) edges to the other triangles in D, we move it to S. We repeat
until D contains no more such triangles. We then set T3 = S and T4 = D.

The motivation behind this last partition is the following. The construction
of T3 already guarantees that e(G[T3]) + e(G[T3, T4]) is small enough for our
purposes. On the other hand, within the set T4 we have not only a high
density of edges but even a ‘minimum degree’ condition between triangles:
every triangle in T4 sends more than 8(|T4|−1) edges to the other triangles in
T4. It is much easier to work with this latter condition than simply an edge
density condition. This enables us to find complex structures in T4 (using
up to 27 triangles) whose existence together with the maximality of T and
a substantial amount of additional technical work yields the required upper
bound on e(G[T4 ∪M∪ I]).



Last, let us remark that we were able to prove (1) only for large graphs.
This is caused by the usage of the Stability Method of Simonovits [12] in our
proof. It is plausible that the bound holds for all graphs and the assumption
is only an artefact of our proof.
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[3] P. Erdős and T. Gallai. On maximal paths and circuits of graphs. Acta Math.
Acad. Sci. Hungar, 10:337–356 (unbound insert), 1959.

[4] P. Erdős and M. Simonovits. Supersaturated graphs and hypergraphs.
Combinatorica, 3(2):181–192, 1983.

[5] C. Grosu and J. Hladký. The extremal function for partial bipartite tilings. To
appear in European J. Combin. (arXiv:0910.1064).
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