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Abstract. We consider partitions of the edge set of a graph G

into copies of a fixed graph H and single edges. Let φH(n) denote
the minimum number p such that any n-vertex G admits such a
partition with at most p parts. We show that φH(n) = ex(n,Kr)+
Θ
(

biex(n,H)
)

for χ(H) ≥ 3, where biex(n,H) is the extremal
number of the decomposition family of H. Since biex(n,H) =
O(n2−γ) for some γ > 0 this improves on the bound φH(n) =
ex(n,H) + o(n2) by Pikhurko and Sousa [J. Combin. Theory Ser.

B 97 (2007), 1041–1055]. In addition it extends a result of Özkahya
and Person [J. Combin. Theory Ser. B, to appear].

1. Introduction

We study edge decompositions of a graph G into disjoint copies of
another graph H and single edges. More formally, an H-decomposition

ofG is a decomposition E(G) = ·⋃i∈[t]E(Gi) of its edge set, such that for

all i ∈ [t] either |E(Gi)| = 1 orGi is isomorphic toH. Let φH(G) denote
the minimum t such there is a decomposition E(G) = ·

⋃

i∈[t]E(Gi) of

this form, and let φH(n) := maxv(G)=n φH(G).
The function φH(n) was first studied in the seventies by Erdős, Good-

man and Pósa [3], who showed that the minimal number k(n) such that
every n-vertex graph admits an edge decomposition into k(n) cliques
equals φK3

(n). They also proved that φK3
(n) = ex(n,K3), where

ex(n,H) is the maximum number of edges in an H-free graph on n
vertices. A decade later this result was extended to Kr for arbitrary r
by Bollobás [1] who showed that φKr

(n) = ex(n,Kr) for all n ≥ r ≥ 3.
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General graphs H were considered only recently by Pikhurko and
Sousa [6], who proved the following upper bound for φH(n).

Theorem 1 (Theorem 1.1 from [6]). If χ(H) = r ≥ 3 then

φH(n) = ex(n,Kr) + o(n2).

Pikhurko and Sousa also conjectured that if χ(H) ≥ 3 and if n is
sufficiently large, then the correct value is the extremal number of H.

Conjecture 2. For any graph H with chromatic number at least 3,
there is an n0 = n0(H) such that φH(n) = ex(n,H) for all n ≥ n0.

We remark that the function ex(n,H) is known precisely only for
some graphsH, which renders Conjecture 2 difficult. However, ex(n,H)
is known for the family of edge-critical graphs H, that is, graphs with
χ(H) > χ(H − e) for some edge e. And in fact, after Sousa [9, 7, 8]
proved Conjecture 2 for a few special edge-critical graphs, Özkahya and
Person [5] verified it for all of them.
Our contribution is an extension of the result of Özkahya and Per-

son to arbitrary graphs H, which also improves on Theorem 1. We
need the following definition. Given a graph H with χ(H) = r, the
decomposition family FH of H is the set of bipartite graphs which are
obtained from H by deleting r − 2 colour classes in some r-colouring
of H. Observe that FH may contain graphs which are disconnected, or
even have isolated vertices. Let F ∗

H be a minimal subfamily of FH such
that for any F ∈ FH , there exists F ′ ∈ F ∗

H with F ′ ⊆ F . We define

biex(n,H) := ex(n,FH) = ex(n,F ∗

H) .

Our main result states that the o(n2) error term in Theorem 1 can be
replaced by O

(

biex(n,H)
)

, which is O(n2−γ) for some γ > 0 by the
result of Kövari, Turán and Sós [4]. Furthermore, we show that our
error term is of the correct order of magnitude.

Theorem 3. For every integer r ≥ 3 and every graph H with χ(H) = r
there are constants c = c(H) > 0 and C = C(H) and an integer n0

such that for all n ≥ n0 we have

ex(n,Kr) + c · biex(n,H) ≤ φH(n) ≤ ex(n,Kr) + C · biex(n,H) .

Since for every edge-critical H and every n we have biex(n,H) = 0,
this is indeed an extension of the result of Özkahya and Person.

2. Outline of the proof and auxiliary lemmas

The lower bound of Theorem 3 is obtained as follows. We let F be
an n-vertex F ∗

H-free graph with biex(n,H) edges, and let c = (r−1)−2.
There is an n/(r − 1)-vertex subgraph F ′ of F with at least c · e(F )
edges. We let G be obtained from the complete balanced (r−1)-partite
graph on n vertices by inserting F ′ into the largest part. Clearly, we
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have e(G) ≥ ex(n,Kr) + c · biex(n,H), and by definition of F ∗

H , the
graph G is H-free, and therefore satisfies φH(G) = e(G) ≥ ex(n,Kr) +
c · biex(n,H).
The upper bound of Theorem 3 is an immediate consequence of the

following result.

Theorem 4. For every integer r ≥ 3 and every graph H with χ(H) = r
there is a constant C = C(H) and an integer n0 such that the following

holds. Every graph G on n ≥ n0 vertices and with

e(G) ≥ ex(n,Kr) + C · biex(n,H)

satisfies φH(G) ≤ ex(n,Kr).

The proof of this theorem (see Section 3) uses the auxiliary lemmas
collected in this section and roughly proceeds as follows. We start with
a graph G = (V,E) on n vertices with e(G) ≥ ex(n,Kr)+C ·biex(n,H).
For contradiction we assume that φH(G) > ex(n,Kr). This allows
us to use a stability-type result (Lemma 5), which supplies us with a
partition V = V1, . . . , Vr−1 with parts of roughly the same size and with
few edges inside each part. Since e(G) ≥ ex(n,Kr) +C · biex(n,H) we
also know that between two parts only few edges are missing. Next, in
each part Vi we identify the (small) set Xi of those vertices with many
edges to Vi and set V ′

i := Vi \Xi and X :=
⋃

Xi.
Then we consider the graph G[V \X], and identify a copy of some F

in the decomposition family of H in any G[V ′
i ], which we then complete

to a copy of H using the classes V ′
j with j 6= i (see Lemma 6). We

delete this copy of H from G and repeat this process. We shall show
that this is possible until the number of edges in all Vi \Xi drops below
biex(n,H), and thus this gives many edge-disjoint copies of H in G.
Finally, we find edge-disjoint copies of H each of which has one of

its colour classes in X and the other (r − 1) colour classes in V ′
1 , . . . ,

V ′
r−1 (see Lemma 7). It is possible to find many copies of H in this

way, because every vertex in X has many neighbours in every Vi.
In total these steps will allow us to find enough H-copies to obtain

a contradiction.

2.1. Notation. Let G be a graph and V (G) = V1 ∪̇ · · · ∪̇Vs a partition
of its vertex set. We write e(Vi) for the number of edges of G with both
ends in Vi and e(Vi, Vj) for the number of edges of G with one end in Vi

and one end in Vj. Moreover, for v ∈ V we let degG(v, Vi) = deg(v, Vi)
denote the number of neighbours of v in Vi. An edge of G is called
crossing (for V1 ∪̇ · · · ∪̇ Vs) if its ends lie in different classes of this
partition. A subgraphH is called crossing if all of its edges are crossing,
and non-crossing if none of its edges is crossing. The chromatic excess

σ(H) of H denotes the smallest size of a colour class in a proper χ(H)-
colouring of H.
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2.2. Auxiliary lemmas. The proof of Theorem 4 relies on the fol-
lowing three lemmas. Firstly, we use a stability-type result which was
observed in [5].

Lemma 5 (stability lemma [5]). For every γ > 0, every integer r ≥ 3,
and every graph H 6= Kr with χ(H) = r there is an integer n0 such

that the following holds. If G = (V,E) has n ≥ n0 vertices and satisfies

φH(G) ≥ ex(n,Kr), then there is a partition V = V1 ∪̇ · · · ∪̇ Vr−1 such

that

(a ) deg(v, Vi) ≤ deg(v, Vj) for all v ∈ Vi and all i, j ∈ [r − 1],
(b )

∑

i e(Vi) < γn2, and

(c ) n
r−1

− 2
√
γn ≤ |Vi| ≤ n

r−1
+ 2r

√
γn. �

We remark that this lemma is stated in [5] only with assertion (b ).
However, we can certainly assume that the partition obtained is a max-
imal (r − 1)-cut, which implies (a ), and for (c ) see Claim 8 in [5].
The following lemma allows us to find many H-copies in a graph G

with a partition such that each vertex has few neighbours inside its
own partition class.

Lemma 6. For every integer r ≥ 3, every graph H with χ(H) = r and

every positive β ≤ 1/
(

100e(H)4
)

there is an integer n0 such that the

following holds. Let G = (V,E) be a graph on n ≥ n0 vertices, with a

partition V = V1 ∪̇ · · · ∪̇ Vr−1 such that for all i, j ∈ [r − 1] with i 6= j

(i ) deg(v, Vj) ≥
(

1
r−1

− β
)

n for every v ∈ Vi,

(ii )
∑r−1

i′=1 e(Vi′) ≤ β2n2/e(H) and ∆(Vi) ≤ 2βn.

Then we can consecutively delete edge-disjoint copies of H from G,

until e(Vi) ≤ biex(n,H) for all i ∈ [r − 1]. Moreover, these H-copies

can be chosen such that each of them contains a non-crossing F ∈ F ∗

H

and all edges in E(H) \ E(F ) are crossing.

Proof. Let G = (V,E) be a graph and V = V1 ∪̇· · ·∪̇Vr−1 be a partition
satisfying the conditions of the lemma. We proceed by selecting copies
of H in G and deleting them, one at a time, in the following way. First
we find a copy of some F ∈ F ∗

H in G[Vi] for some partition class Vi.
Then we extend this F to a copy of H, using only vertices v of G for
H \ F which have at least

(

1
r−1

− 2β
)

n neighbours in every partition
class other than their own. We say that such vertices v are β-active.
We need to show that this deletion process can be performed until

e(Vi) ≤ biex(n,H) for all i ∈ [r − 1]. Clearly, while e(Vi) > biex(n,H)
for some i, we find some F ∈ F ∗

H in G[Vi]. Let such a copy of F
be fixed in the following and assume without loss of generality that
V (F ) ⊆ Vr−1. It remains to show that F can be extended to a copy
of H.
By condition (i ), at the beginning of the deletion process every ver-

tex is β-active, and every vertex which gets inactive has lost at least
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βn neighbours in some partition class other than its own. Further,
by condition (ii ) we can find at most β2n2/e(H) copies of H in this
way. Hence we conclude that even after the very last deletion step, the
number of vertices which are not β-active is at most

β2n2

e(H)
e(H) · 1

βn
= βn .

In addition, by condition (ii ) we have ∆(Vr−1) ≤ 2βn at the beginning
of the deletion process. Recall moreover that, in this process, we use
inactive vertices only in copies of some graph in F ∗

H (and not to com-
plete such a copy to an H-copy). Hence, throughout the process, we
have for all j ∈ [r − 1] and all v ∈ V \ Vj that

(1) deg(v, Vj) ≥
(

1
r−1

− 2β
)

n− e(H)− e(H) · 2βn ≥ n
r−1

− 5e(H)βn .

By condition (i ) each partition class Vj has size at least ( 1
r−1

− 2β)n,
and thus size at most n

r−1
+2rβn. Moreover, by (1) each vertex v ∈ Vj

has at most

n
r−1

+ 2rβn−
(

n
r−1

− 6e(H)βn
)

≤ 8e(H)βn

non-neighbours in each Vj′ with j 6= j′. Hence, any set S ⊆ V \Vj with
|S| ≤ r · v(H) has at least |Vj| − 8r · v(H)e(H)βn common neighbours
in Vj. In particular, S has at least

( 1
r−1

− 2β)n− βn− 8r · v(H)e(H)βn ≥ n
r−1

− 11e(H)3βn > βn ≥ v(H)

common neighbours in Vj which are β-active, where we used the con-
dition β ≤ 1/(100e(H)4) in the second inequality, and in the last in-
equality that n is sufficiently large.
When F gets selected in the deletion process, we use the above obser-

vation to construct within the β-active common neighbours of F a copy
of the complete (r − 2)-partite graph with v(H) vertices in each part,
as follows. We inductively find sets Si ⊆ Vi of size v(H) which form
the parts of this complete (r− 2)-partite graph. For each 1 ≤ i ≤ r− 2
in turn, we note that v(F ) + (i− 1)v(H) ≤ r · v(H), and therefore the
set v(F ) ∪ S1 ∪ · · · ∪ Si−1 has at least βn ≥ v(H) common neighbours
in Vi which are β-active. We let Si be any set of v(H) of these β-active
common neighbours. Thus we can extend F to a copy of H in G. �

With the help of the next lemma we will find H-copies using those
vertices which have many neighbours in their own partition class.

Lemma 7. For every integer r ≥ 3, every graph H with χ(H) = r,
and every positive β ≤ 1/

(

2e(H)2
)

there are integers K and n0 such

that the following holds. Let G = (V,E) be a graph on n ≥ n0 vertices,

with a partition V = X ∪̇ V ′
1 ∪̇ · · · ∪̇ V ′

r−1 such that

(i ) e(V ′
i , V

′
j ) > |V ′

i ||V ′
j | − β6n2 for each i, j ∈ [r − 1] with i 6= j,

(ii ) |X| ≤ β6n.
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Then we can consecutively delete edge-disjoint copies of H from G, until

for all but at most K
(

σ(H)− 1
)

vertices x ∈ X there is an i ∈ [r − 1]
such that deg(x, V ′

i ) ≤ β2n. Moreover, these H-copies can be chosen

such that they are crossing for the partition X ∪̇ V ′
1 ∪̇ · · · ∪̇ V ′

r−1 and

each of them uses exactly exactly σ(H) vertices of X.

Proof. Without loss of generality we assume that there are only crossing
edges in G (otherwise delete the non-crossing edges). We proceed as
follows. In the beginning we set X ′ := X. Then we identify σ(H)
vertices in X ′ which are completely joined to a complete (r−1)-partite
graph Kr−1

(

v(H)
)

in V \ X, with v(H) vertices in each part. The
subgraph of G identified in this way clearly contains a copy of H with
the desired properties, whose edges we delete from G. Next we delete
those vertices x from X ′ with deg(x, V ′

i ) ≤ β2n for some i ∈ [r − 1].
Then we continue with the next copy of H.
We need to show that this process can be repeated until X ′ ≤

K
(

σ(H) − 1
)

. Indeed, assume that we still have X ′ > K
(

σ(H) − 1
)

.
Observe that since

∑

x∈X deg(x) < |X|n we can find less than |X|n ≤
β6n2 copies of H with the desired properties in total, where we used
condition (ii ). Hence, throughout the process at most e(H)β6n2 edges
are deleted from G. In addition, for each x ∈ X ′ we have by definition
deg(x, V ′

i ) > β2n for all i ∈ [r − 1]. Hence we can choose for each i
a set Si ⊆ NV ′

i
(x) of size β2n. By condition (i ) the graph G[∪̇Si] has

density at least
(

r−1
2

)(

(β2n)2 − β6n2 − e(H)β6n2
)

(

(r−1)β2n

2

) ≥ r − 2

r − 1

(

1−(e(H)+1)β2
)

>
r − 3

r − 2
,

where we used β ≤ 1/
(

2e(H)2
)

in the last inequality. Thus, since n is
sufficiently large, we can apply the supersaturation theorem of Erdős
and Simonovits [2], to conclude that the graph G[∪̇Si] contains at least
δn(r−1)v(H) copies of Kr−1

(

v(H)
)

, where δ > 0 depends only on β and
e(H). Choosing K := 1/δ, we can then use the pigeonhole principle
and the fact that |X ′| > K (σ(H)− 1)) to infer that there are σ(H)
vertices in X ′ which are all adjacent to the vertices of one specific copy
of Kr−1

(

v(H)
)

in G[∪̇Si] as desired. �

In addition we shall use the following easy fact about biex(n,H).

Fact 8. Let H be an r-chromatic graph, r ≥ 3. If biex(n,H) < n− 1
then σ(H) = 1.

Proof. If σ(H) ≥ 2, then each F from F ∗

H contains a matching of size 2.
Thus biex(n,H) ≥ n − 1 since the star K1,n−1 does not contain two
disjoint edges. �

3. Proof of Theorem 4

In this section we show how Lemmas 5, 6 and 7 imply Theorem 4.
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Proof of Theorem 4. Let r and H with χ(H) = r ≥ 3 be given. If H =
Kr, then the result of Bollobás [1] applies, hence we can assume that
H 6= Kr. We choose

(2) β :=
1

100e(H)4
and γ :=

β12

1000e(H)4
.

Let K be the constant from Lemma 7 and choose

(3) C := K · v(H)β−1 .

Finally let n0 be sufficiently large for Lemmas 5, 6 and 7.
Now let G be a graph with n ≥ n0 vertices and

(4) e(G) ≥ ex(n,Kr) + C · biex(n,H) ,

and assume for contradiction that

(5) φH(G) ≥ ex(n,Kr) .

Observe first that we may assume without loss of generality that

(6) δ(G) ≥ δ
(

Tr−1(n)
)

.

Indeed, if this is not the case, we can consecutively delete vertices of
minimum degree until we arrive at a graph Gn∗ on n∗ vertices with
δ(Gn∗) ≥ δ

(

Tr−1(n
∗)
)

. Denote the sequence of graphs obtained in this
way by Gn := G, Gn−1, . . . , Gn∗ . We have

ex(n,Kr) ≤ φH(G) ≤ φH(Gn−1) + δ
(

Tr−1(n)
)

− 1

and thus φH(Gn−1) ≥ ex(n− 1, Kr) + 1. Similarly φH(Gn−i) ≥ ex(n−
i,Kr)+i. Since n is sufficiently large there is an i∗ such that n−i∗ ≥ n0

and i∗ ≥
(

n−i∗

2

)

+1. Hence n∗ > n−i∗ ≥ n0, since otherwise φH(Gn∗) ≥
ex(n∗, Kr) +

(

n∗

2

)

+ 1, a contradiction. Thus we may assume (6).
Next, by (5), we can apply Lemma 5, which provides us with a

partition V1 ∪̇ . . . ∪̇ Vr−1 of V (G) such that assertions (a ), (b ) and (c )
in Lemma 5 are satisfied. Let m :=

∑r−1
i=1 e(Vi). Equation (4) and

Lemma 5(b ) imply

(7) C · biex(n,H) ≤ m ≤ γn2
(2)

≤ β2n2/e(H) .

Further, by the definition of m we clearly have e(G) ≤ ex(n,Kr) +m.
Hence it will suffice to find m

e(H)−1
+ 1 edge-disjoint copies of H in G,

since this would imply

φH(G) ≤ ex(n,Kr) +m−
(

m

e(H)− 1
+ 1

)

(

e(H)− 1
)

< ex(n,Kr) ,

contradicting (5). So this will be our goal in the following, which we
shall achieve by first applying Lemma 6 and then Lemma 7.
We prepare these applications by identifying for every i ∈ [r− 1] the

set Xi of vertices in Vi with high degree to its own class, that is,

Xi :=
{

v ∈ Vi : deg(v, Vi) ≥ 1
2
βn

}

.
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Let X := ∪̇i∈[r−1]Xi. This implies

(8) |X| ≤ 2m
1
2
βn

(7)

≤ 2γn2

1
2
βn

(2)

≤ √
γn

(2)

≤ β6n .

In addition we set V ′
i := Vi \ Xi for all i ∈ [r − 1], n′ := |V \ X|,

m′ :=
∑r−1

i=1 e(Vi \Xi) and mX := m−m′ = e(X) +
∑r−1

i=1 e(Xi, V
′
i ).

Step 1. We want to apply Lemma 6 to the graph G[V \ X] and the
partition V ′

1 ∪̇ · · · ∪̇V ′
r−1. We first need to check that the conditions are

satisfied. By Lemma 5(c ) and (8) we have for each for each i, j ∈ [r−1]
with i 6= j that |V \ (Vi ∪ V ′

j )| ≤ ( r−3
r−1

+ 6
√
γ)n. Moreover, by (8) we

clearly have n′ ≥ n/2. Hence, by the definition of X, for each v ∈ V ′
i

we have

deg(v, V ′

j )
(6)

≥ δ
(

Tr−1(n)
)

− |V \ (Vi ∪ V ′

j |)| − 1
2
βn

≥
(

1
r−1

− 7
√
γ − 1

2
β
)

n
(2)

≥
(

1
r−1

− β
)

n′

(9)

and thus condition (i ) of Lemma 6 is satisfied. Condition (ii ) of
Lemma 6 holds by (7) and the definition of X. Therefore we can
apply Lemma 6.
This lemma asserts that we can consecutively delete copies ofH from

G[V \ X], each containing a non-crossing F ∈ F ∗

H and crossing edges
otherwise, until e(V ′

i ) ≤ biex(n′, H). Denote the graph obtained after
these deletions by G1.
We have maxF∈F

∗

H

e(F ) ≤ e(H) − 2, since χ(H) ≥ 3. Hence each

copy of H deleted in this way uses at most e(H)−2 non-crossing edges,
and so this gives at least

(10)
m′ − (r − 1) biex(n,H)

e(H)− 2
≥ m′ − r biex(n,H)

e(H)− 2

edge-disjoint copies of H in G[V \X].
By assertion (b ) of Lemma 5 and the assumption e(G) ≥ ex(n,Kr),

we have that eG(Vi, Vj) ≥ |Vi||Vj|−γn2, and thus eG(V
′
i , V

′
j ) ≥ |V ′

i ||V ′
j |−

γn2. Again by assertion (b ) of Lemma 5, in obtaining G1 as described
above we delete at most γn2 copies of H, so we have

eG1
(V ′

i , V
′

j ) ≥ |V ′

i ||V ′

j | − γn2 − (e(H)− 1)γn2

= |V ′

i ||V ′

j | − e(H)γn2
(2)

≥ |V ′

i ||V ′

j | − β6n2 .
(11)

Step 2. Next we want to apply Lemma 7 to G1 and the partition
X ∪̇ V ′

1 ∪̇ · · · ∪̇ V ′
r−1. Note that condition (i ) of Lemma 7 is satisfied

by (11) and condition (ii ) by (8). Hence Lemma 7 allows us to delete
crossing copies of H from G until all vertices x of a subset X0 ⊆ X
with |X|−|X0| ≤ K(σ(H)−1) =: K ′ have deg(x, V ′

i(x)) ≤ β2n for some

i(x) ∈ [r − 1]. Denote the graph obtained after these deletions by G2.
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Now let x ∈ Xj for some j ∈ [r − 1] be arbitrary. We set mx :=
degG(x, Vj \X). Since no edges adjacent to x were deleted in step 1, if
x ∈ X0 then the number of edges adjacent to x deleted in step 2 is at
least degG(x, Vi(x)\X)−β2n ≥ mx−2β2n, where we used assertion (a )
of Lemma 5 and (8) in the inequality. Hence, since mX =

∑

x∈X mx +
e(X), in total at least

mX −K ′n− |X0|β2n− e(X) ≥ mX −K ′n− 2β2n|X|
(8)

≥ mX −K ′n− 8βm

edges adjacent to X were deleted in step 2. By Fact 8 we have K ′ =
K(σ(H)− 1) = 0 if biex(n,H) < n− 1. If biex ≥ n− 1 ≥ n/2 on the
other hand, then m ≥ Cn/2 by (7) and thus K ′n ≤ 2K ′m/C. Observe
moreover that, because H 6= K3, each H-copy deleted in this step uses
at least 2 edges which are not adjacent to X. We conclude that at least

(12)
mX − 2K(σ(H)−1)

C
m− 8βm

e(H)− 2

(3)

≥ mX − 9βm

e(H)− 2

edge-disjoint copies of H were deleted from G1 in step 2.

Combining (10) and (12) reveals that G contains

m′ − r biex(n,H)

e(H)− 2
+

mX − 9βm

e(H)− 2

(7)

≥ m− r
C
m− 9βm

e(H)− 2
(3)

≥ m− 10βm

e(H)− 2

(2)

≥ m

e(H)− 1
+ 1

edge-disjoint copies of H, which gives the desired contradiction. �
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