AN IMPROVED ERROR TERM FOR MINIMUM
H-DECOMPOSITIONS OF GRAPHS

PETER ALLEN*, JULIA BOTTCHER*, AND YURY PERSON{

ABSTRACT. We consider partitions of the edge set of a graph G
into copies of a fixed graph H and single edges. Let ¢ (n) denote
the minimum number p such that any n-vertex G admits such a
partition with at most p parts. We show that ¢y (n) = ex(n, K,.) +
O(biex(n, H)) for x(H) > 3, where biex(n, H) is the extremal
number of the decomposition family of H. Since biex(n,H) =
O(n?77) for some v > 0 this improves on the bound ¢ (n) =
ex(n, H) + o(n?) by Pikhurko and Sousa [J. Combin. Theory Ser.
B 97 (2007), 1041-1055]. In addition it extends a result of Ozkahya
and Person [J. Combin. Theory Ser. B, to appear].

1. INTRODUCTION

We study edge decompositions of a graph G into disjoint copies of
another graph H and single edges. More formally, an H -decomposition
of G is a decomposition E(G) = (J;y E(Gi) of its edge set, such that for
alli € [t] either | E(G;)| = 1 or G; is isomorphic to H. Let ¢z (G) denote
the minimum ¢ such there is a decomposition E(G) = [J,cy £(G:) of
this form, and let ¢ (n) = max,q)=n ¢ou(G).

The function ¢ (n) was first studied in the seventies by Erdés, Good-
man and Pésa [3], who showed that the minimal number k(n) such that
every n-vertex graph admits an edge decomposition into k(n) cliques
equals ¢k, (n). They also proved that ¢g,(n) = ex(n, K3), where
ex(n, H) is the maximum number of edges in an H-free graph on n
vertices. A decade later this result was extended to K, for arbitrary r
by Bollobés [1] who showed that ¢k, (n) = ex(n, K,.) for all n > r > 3.
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General graphs H were considered only recently by Pikhurko and
Sousa [6], who proved the following upper bound for ¢y (n).

Theorem 1 (Theorem 1.1 from [6]). If x(H) =r > 3 then
¢ (n) = ex(n, K,) + o(n?).

Pikhurko and Sousa also conjectured that if x(H) > 3 and if n is
sufficiently large, then the correct value is the extremal number of H.

Conjecture 2. For any graph H with chromatic number at least 3,
there is an ng = ng(H) such that ¢p(n) = ex(n, H) for all n > ny.

We remark that the function ex(n, H) is known precisely only for
some graphs H, which renders Conjecture 2 difficult. However, ex(n, H)
is known for the family of edge-critical graphs H, that is, graphs with
X(H) > x(H — e) for some edge e. And in fact, after Sousa [9, 7, §|
proved Conjecture 2 for a few special edge-critical graphs, Ozkahya and
Person [5] verified it for all of them.

Our contribution is an extension of the result of Ozkahya and Per-
son to arbitrary graphs H, which also improves on Theorem 1. We
need the following definition. Given a graph H with y(H) = r, the
decomposition family Fg of H is the set of bipartite graphs which are
obtained from H by deleting » — 2 colour classes in some r-colouring
of H. Observe that Fy may contain graphs which are disconnected, or
even have isolated vertices. Let F;; be a minimal subfamily of Fp such
that for any F' € Fp, there exists [/ € F,; with F' C F. We define

biex(n, H) := ex(n, Fy) = ex(n, Fy) .
Our main result states that the o(n?) error term in Theorem 1 can be
replaced by O(biex(n, H)), which is O(n?*77) for some v > 0 by the
result of Kévari, Turdn and S6s [4]. Furthermore, we show that our
error term is of the correct order of magnitude.

Theorem 3. For every integer r > 3 and every graph H with x(H) = r
there are constants ¢ = ¢(H) > 0 and C = C(H) and an integer ng
such that for all n > ny we have

ex(n, K,) + ¢ biex(n, H) < ¢y (n) < ex(n, K,) + C - biex(n, H) .

Since for every edge-critical H and every n we have biex(n, H) = 0,
this is indeed an extension of the result of Ozkahya and Person.

2. OUTLINE OF THE PROOF AND AUXILIARY LEMMAS

The lower bound of Theorem 3 is obtained as follows. We let F' be
an n-vertex Fp-free graph with biex(n, H) edges, and let ¢ = (r—1)~2.
There is an n/(r — 1)-vertex subgraph F’ of F' with at least ¢ - e(F)
edges. We let G be obtained from the complete balanced (r —1)-partite
graph on n vertices by inserting F” into the largest part. Clearly, we
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have e(G) > ex(n, K,) + ¢ - biex(n, H), and by definition of F;, the
graph G is H-free, and therefore satisfies ¢ (G) = e(G) > ex(n, K,) +
¢ - biex(n, H).

The upper bound of Theorem 3 is an immediate consequence of the
following result.

Theorem 4. For every integer r > 3 and every graph H with x(H) = r
there is a constant C' = C(H) and an integer ng such that the following
holds. Every graph G on n > ng vertices and with

e(G) > ex(n, K,) + C - biex(n, H)
satisfies op(G) < ex(n, K,).

The proof of this theorem (see Section 3) uses the auxiliary lemmas
collected in this section and roughly proceeds as follows. We start with
a graph G = (V, E) on n vertices with e(G) > ex(n, K,)+C -biex(n, H).
For contradiction we assume that ¢y (G) > ex(n, K,). This allows
us to use a stability-type result (Lemma 5), which supplies us with a
partition V' = Vi, ... V,_; with parts of roughly the same size and with
few edges inside each part. Since e(G) > ex(n, K,) + C - biex(n, H) we
also know that between two parts only few edges are missing. Next, in
each part V; we identify the (small) set X; of those vertices with many
edges to V; and set V/:=V;\ X; and X :=JX,.

Then we consider the graph G[V'\ X|, and identify a copy of some F
in the decomposition family of H in any G|[V/], which we then complete
to a copy of H using the classes V; with j # i (see Lemma 6). We
delete this copy of H from G and repeat this process. We shall show
that this is possible until the number of edges in all V;\ X; drops below
biex(n, H), and thus this gives many edge-disjoint copies of H in G.

Finally, we find edge-disjoint copies of H each of which has one of
its colour classes in X and the other (r — 1) colour classes in V{, ...,
V! | (see Lemma 7). It is possible to find many copies of H in this
way, because every vertex in X has many neighbours in every V;.

In total these steps will allow us to find enough H-copies to obtain
a contradiction.

2.1. Notation. Let G be a graph and V(G) = V;U- - - UV a partition
of its vertex set. We write e(V;) for the number of edges of G with both
ends in V; and e(V;, V;) for the number of edges of G with one end in V;
and one end in V;. Moreover, for v € V' we let degg (v, Vi) = deg(v, V;)
denote the number of neighbours of v in V;. An edge of G is called
crossing (for Vi U --- U Vy) if its ends lie in different classes of this
partition. A subgraph H is called crossing if all of its edges are crossing,
and non-crossing if none of its edges is crossing. The chromatic excess
o(H) of H denotes the smallest size of a colour class in a proper y(H)-
colouring of H.
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2.2. Auxiliary lemmas. The proof of Theorem 4 relies on the fol-
lowing three lemmas. Firstly, we use a stability-type result which was
observed in [5].

Lemma 5 (stability lemma [5]). For every v > 0, every integer r > 3,
and every graph H # K, with x(H) = r there is an integer ny such
that the following holds. If G = (V, E) has n > ng vertices and satisfies
ou(G) > ex(n, K,.), then there is a partition V.=V; U--- UV, such
that

(a) deg(v,V;) < deg(v,V;) for allv e V; and all i,j € [r — 1],

(b) >, e(Vi) <n?, and

(c) 5 =2/ n < |Vi| < 25 + 21 /0. O

We remark that this lemma is stated in [5] only with assertion (b).
However, we can certainly assume that the partition obtained is a max-
imal (r — 1)-cut, which implies (@), and for (¢) see Claim 8 in [5].

The following lemma allows us to find many H-copies in a graph G
with a partition such that each vertex has few neighbours inside its
own partition class.

Lemma 6. For every integer r > 3, every graph H with x(H) = r and

every positive B < 1/(100e(H)*) there is an integer ng such that the

following holds. Let G = (V, E) be a graph on n > nq vertices, with a

partition V.=V, U---UV,_ such that for all i,j € [r — 1] with i # j
(i) deg(v,V;) > (15 — B) n for every v € V,

r—1
(i6) Y4 e(Vi) < B2 fe(H) and A(V) < 26n.
Then we can consecutively delete edge-disjoint copies of H from G,
until e(V;) < biex(n, H) for all i € [r — 1|. Moreover, these H-copies
can be chosen such that each of them contains a non-crossing F' € Fp
and all edges in E(H) \ E(F) are crossing.

Proof. Let G = (V, E) be a graph and V = V;U- - -UV,_; be a partition
satisfying the conditions of the lemma. We proceed by selecting copies
of H in G and deleting them, one at a time, in the following way. First
we find a copy of some F € Fj; in G[V;] for some partition class V.
Then we extend this F' to a copy of H, using only vertices v of G for
H \ F which have at least (ﬁ — 25) n neighbours in every partition
class other than their own. We say that such vertices v are [3-active.

We need to show that this deletion process can be performed until
e(V;) < biex(n, H) for all i € [r — 1]. Clearly, while e(V;) > biex(n, H)
for some i, we find some F € Fj in G[Vi]. Let such a copy of F
be fixed in the following and assume without loss of generality that
V(F) C V,_y. It remains to show that F' can be extended to a copy
of H.

By condition (i), at the beginning of the deletion process every ver-
tex is [-active, and every vertex which gets inactive has lost at least
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[n neighbours in some partition class other than its own. Further,
by condition (ii) we can find at most 3°n?/e(H) copies of H in this
way. Hence we conclude that even after the very last deletion step, the
number of vertices which are not -active is at most

B3?n? 1
e(Hd) — =pn.
() (H)-5-=5
In addition, by condition (i) we have A(V,_1) < 2fn at the beginning
of the deletion process. Recall moreover that, in this process, we use
inactive vertices only in copies of some graph in F;; (and not to com-

plete such a copy to an H-copy). Hence, throughout the process, we
have for all j € [r — 1] and all v € V'\ V} that

(1) deg(v,V;) > (5 —2B8)n—e(H) —e(H)-26n > = —5e(H)fn.

By condition (7) each partition class V; has size at least (Ti—l — 20)n,
and thus size at most 5 +2rn. Moreover, by (1) each vertex v € V;
has at most

L+ 2rfn — (:"1 — 66(H)Bn) < 8e(H)pn

non-neighbours in each Vj» with j # j'. Hence, any set S C V'\ V; with
|S| <r-wv(H) has at least |V;| — 8r-v(H)e(H)pSn common neighbours
in V;. In particular, S has at least

(745 —28)n— fn —8r-v(H)e(H)n > 27 — 1le(H)*fn > fn > v(H)

common neighbours in V; which are f-active, where we used the con-
dition 3 < 1/(100e(H)?) in the second inequality, and in the last in-
equality that n is sufficiently large.

When F' gets selected in the deletion process, we use the above obser-
vation to construct within the S-active common neighbours of F' a copy
of the complete (r — 2)-partite graph with v(H) vertices in each part,
as follows. We inductively find sets S; C V; of size v(H) which form
the parts of this complete (r — 2)-partite graph. For each 1 < i <r—2
in turn, we note that v(F) + (i — 1)v(H) < r-v(H), and therefore the
set v(F)U S, U---US;_; has at least fn > v(H) common neighbours
in V; which are g-active. We let S; be any set of v(H) of these S-active
common neighbours. Thus we can extend F' to a copy of H in G. [

With the help of the next lemma we will find H-copies using those
vertices which have many neighbours in their own partition class.

Lemma 7. For every integer r > 3, every graph H with x(H) = r,
and every positive f < 1/(2e(H)?) there are integers K and no such
that the following holds. Let G = (V, E) be a graph on n > ng vertices,
with a partition V.= X UV] U---UV/ | such that

(3) (V2 V) > [V/IIVI| - 8% for each i, € [r — 1] with i #

(i) | X| < B%n.
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Then we can consecutively delete edge-disjoint copies of H from G, until
for all but at most K (o(H) — 1) vertices x € X there is an i € [r — 1]
such that deg(x,V!) < ?°n. Moreover, these H-copies can be chosen
such that they are crossing for the partition X UV} U---UV/ | and
each of them uses exactly exactly o(H) vertices of X.

Proof. Without loss of generality we assume that there are only crossing
edges in G (otherwise delete the non-crossing edges). We proceed as
follows. In the beginning we set X’ := X. Then we identify o(H)
vertices in X’ which are completely joined to a complete (r — 1)-partite
graph K, 1 (v(H)) in V \ X, with v(H) vertices in each part. The
subgraph of G identified in this way clearly contains a copy of H with
the desired properties, whose edges we delete from G. Next we delete
those vertices x from X’ with deg(z,V)) < 3?n for some i € [r — 1].
Then we continue with the next copy of H.

We need to show that this process can be repeated until X' <
K(o(H) —1). Indeed, assume that we still have X’ > K (o(H) — 1).
Observe that since ) _ deg(x) < |X|n we can find less than |X|n <
B%n? copies of H with the desired properties in total, where we used
condition (4 ). Hence, throughout the process at most e(H)3n? edges
are deleted from G. In addition, for each x € X’ we have by definition
deg(z,V!) > 8°n for all i € [r — 1]. Hence we can choose for each i
a set S; € Nys(x) of size f*n. By condition (i) the graph G[US;] has
density at least

() (80" — ot = (D)) _ 7 >

0 Z il

where we used 8 < 1/(2e(H)?) in the last inequality. Thus, since n is
sufficiently large, we can apply the supersaturation theorem of Erdos
and Simonovits [2], to conclude that the graph G[US;] contains at least
onlm =D copies of K,_1(v(H)), where > 0 depends only on 3 and
e(H). Choosing K := 1/§, we can then use the pigeonhole principle
and the fact that |X’| > K (o0(H) — 1)) to infer that there are o(H)
vertices in X’ which are all adjacent to the vertices of one specific copy
of K,_1(v(H)) in G[US;] as desired. O

In addition we shall use the following easy fact about biex(n, H).

Fact 8. Let H be an r-chromatic graph, r > 3. If biex(n, H) <n —1
then o(H) = 1.

Proof. If o(H) > 2, then each F from JF; contains a matching of size 2.
Thus biex(n, H) > n — 1 since the star K;,-1 does not contain two
disjoint edges. U

L (e(H)+ 1)) > =

3. PROOF OF THEOREM 4

In this section we show how Lemmas 5, 6 and 7 imply Theorem 4.
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Proof of Theorem 4. Let r and H with x(H) =r > 3 be given. If H =
K,, then the result of Bollobas [1] applies, hence we can assume that

H # K,. We choose

1 /2
(2) B = 100 (H ) and v = T000¢(F)?
Let K be the constant from Lemma 7 and choose

(3) C:=K- -v(H)p".

Finally let ny be sufficiently large for Lemmas 5, 6 and 7.
Now let G be a graph with n > ng vertices and

(4) e(G) > ex(n, K,.) + C - biex(n, H) ,
and assume for contradiction that
(5) ou(G) > ex(n, K,.).
Observe first that we may assume without loss of generality that
(6) I(G) > (5(Tr,1(n)) :

Indeed, if this is not the case, we can consecutively delete vertices of
minimum degree until we arrive at a graph G- on n* vertices with
0(Gpe) > §(Tr,1(n*)). Denote the sequence of graphs obtained in this
way by G, =G, G,,_1, ..., G+. We have

ex(n, Kr) S ¢H(G) S ¢H(Gn—1) + (5(TT_1(TL)) —1

and thus ¢y (Gp_1) > ex(n — 1, K,.) + 1. Similarly ¢5(Gp_i) > ex(n —
i, K,)+i. Since n is sufficiently large there is an i* such that n—i* > ng
and ¢* > (”;Z*) +1. Hence n* > n—i* > nyg, since otherwise ¢y (G,) >
ex(n*, K,) + ("2*) + 1, a contradiction. Thus we may assume (6).
Next, by (5), we can apply Lemma 5, which provides us with a
partition V; U...UV,_; of V(G) such that assertions (a), (b) and (c)
in Lemma 5 are satisfied. Let m := 3./_| e(V;). Equation (4) and

Lemma 5(b) imply

)
(7) C -biex(n, H) <m < yn* < p%n*/e(H).
Further, by the definition of m we clearly have e(G) < ex(n, K,) + m.
Hence it will suffice to find # + 1 edge-disjoint copies of H in G,
since this would imply

on(G) < ex(n, K,) +m — (L—l + 1) (e(H) —1) < ex(n, K,),

e(H)
contradicting (5). So this will be our goal in the following, which we
shall achieve by first applying Lemma 6 and then Lemma 7.

We prepare these applications by identifying for every i € [r — 1] the
set X; of vertices in V; with high degree to its own class, that is,

X, = {v e V;: deg(v,V;) > %ﬁn} .
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Let X := Uie[r_l]Xi. This implies

2m (1) 2 (2) 2)
®) X< g < 2 in L g,
20
In addition we set V! := V; \ X, for all i € [r — 1], n' := |V \ X]|,

m' = 3""le(V;\ X;) and mx :=m —m' = e(X) + ZZ . e(Xi7 V).
Step 1. We want to apply Lemma 6 to the graph G[V \ X| and the
partition V/U---UV/ ;. We first need to check that the conditions are
satisfied. By Lemma 5(¢) and (8) we have for each for each i, 7 € [r— 1]
with i # j that [V \ (V; UV])| < (2 4 6,/7)n. Moreover, by (8) w
clearly have n’ > n/2. Hence, by the definition of X, for each v € V’
we have

(6)
deg(v, V) > 6(Tra(n) = [V \ (V; U V)| = 56n

2
> (7~ TV —aB)n 2 (5 - /)
and thus condition (i) of Lemma 6 is satisfied. Condition (i) of
Lemma 6 holds by (7) and the definition of X. Therefore we can
apply Lemma 6.

This lemma asserts that we can consecutively delete copies of H from
G[V \ X], each containing a non-crossing F' € F;; and crossing edges
otherwise, until e(V;) < biex(n’, H). Denote the graph obtained after
these deletions by G.

We have maxpcze e(F) < e(H) — 2, since x(H) > 3. Hence cach
copy of H deleted in this way uses at most e(H ) — 2 non-crossing edges,
and so this gives at least

m’ — (r — 1) biex(n, H) - m’ — rbiex(n, H)
e(H)—2 - e(H)—2
edge-disjoint copies of H in G|V \ X].
By assertion (b) of Lemma 5 and the assumption e(G) > ex(n, K,.),
we have that eq(V;, V) > |Vi||V;|—n?, and thus eq(V, V]) > [V/||V]|—

iy Vg ir Vg
yn?. Again by assertion (b) of Lemma 5, in obtaining G as described

above we delete at most yn? copies of H, so we have

e, (V. V) = [V |IV]| = yn® = (e(H) — 1)yn’?

(9)

(10)

(11) / / 2(2) / / 6, 2
= [V/||V]| = e(H)yn® > [V/[|V]] = B°n".

Step 2. Next we want to apply Lemma 7 to G; and the partition
XUV U---UV/ . Note that condition (i) of Lemma 7 is satisfied
by (11) and condition (ii) by (8). Hence Lemma 7 allows us to delete
crossing copies of H from G until all vertices x of a subset Xqg C X
with | X|—|Xo| < K(o(H)—1) = K’ have deg(z, V}{,)) < *n for some

i(x) € [r — 1]. Denote the graph obtained after these deletions by Gbs.
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Now let z € X, for some j € [r — 1] be arbitrary. We set m, :=
degq(z, V; \ X). Since no edges adjacent to = were deleted in step 1, if
x € Xg then the number of edges adjacent to x deleted in step 2 is at
least degg (z, Vi) \ X) — 6%n > m, —26°n, where we used assertion (a)
of Lemma 5 and (8) in the inequality. Hence, since mx =), . m, +
e(X), in total at least

mx — K'n — | Xo|8*n — e(X) > mx — K'n — 23*n|X|

(®)

> mx — K'n—88m
edges adjacent to X were deleted in step 2. By Fact 8 we have K’ =
K(o(H)—1) =0 if biex(n, H) <n — 1. If biex > n —1 > n/2 on the
other hand, then m > Cn/2 by (7) and thus K'n < 2K'm/C. Observe
moreover that, because H # K3, each H-copy deleted in this step uses
at least 2 edges which are not adjacent to X. We conclude that at least

(12) mx — Wm— 88m (i) myx — 968m
e(H)—2 ~ e(H)-2

edge-disjoint copies of H were deleted from G in step 2.
Combining (10) and (12) reveals that G' contains

m' —rbiex(n, H) mx —96m O m— zm —98m

e(H)—2 e(H)—2 — e(H)—2
(i)m—lOBm(;) m_
~ e(H)—2 T e(H)-1

edge-disjoint copies of H, which gives the desired contradiction. O
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