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Abstract

We prove that planar graphs with bounded maximum degree have sublinear band-
width. As a consequence for each γ > 0 every n-vertex graph with minimum degree
(3
4

+ γ)n contains a copy of every bounded-degree planar graph on n vertices. The
proof relies on the fact that planar graphs have small separators. Indeed, we show
more generally that for any class of bounded-degree graphs the concepts of sublinear
bandwidth, sublinear treewidth, the absence of big expanders as subgraphs, and the
existence of small separators are equivalent.
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1 Bandwidth and universality for planar graphs

Let G = (V, E) be a graph on n = |V | vertices. The bandwidth of G is
denoted by bw(G) and defined to be the minimum b ∈ N, such that there
exists a labelling of the vertices in V by numbers 1, . . . , n so that the labels
of adjacent vertices differ by at most b. In [2] Chung proved that any tree T
with n vertices and maximum degree ∆ has bandwidth at most 5n/ log∆(n),
and it is easy to see that this bound is sharp up to the multiplicative constant.
Our first theorem extends Chung’s result to planar graphs.

Theorem 1.1 Let G be a planar graph on n vertices with maximum degree ∆.
Then the bandwidth of G is bounded from above by

bw(G) ≤ 15n

log∆(n)
.

Our main motivation for studying the bandwidth is that it turns out to be
helpful when embedding a bounded-degree graphs G into a graph H with suf-
ficiently high minimum degree, even when G and H have the same number of
vertices. Dirac’s theorem [4] concerning the existence of Hamiltonian cycles in
graphs of minimum degree n/2 is a classical example for theorems of this type.
It was followed by results of Corrádi and Hajnal [3], Hajnal and Szemerédi [5]
about embedding Kr-factors, and more recently by a series of theorems due
to Komlós, Sarközy, and Szemerédi and others (see e.g. [7,8,9]) which deal
with powers of Hamiltonian cycles, trees, and H-factors. Along the lines of
these results the following unifying theorem was conjectured by Bollobás and
Komlós [6] and recently proven by Böttcher, Schacht, and Taraz [1].

Theorem 1.2 For all r, ∆ ∈ N and γ > 0, there exist constants β > 0 and
n0 ∈ N such that for every n ≥ n0 the following holds. If G is an r-chromatic
graph on n vertices with ∆(G) ≤ ∆ and bandwidth at most βn and if H is a
graph on n vertices with minimum degree δ(H) ≥ ( r−1

r
+ γ)n, then G can be

embedded into H.

Combining Theorems 1.1 and 1.2 immediately yields the following result
which states that all sufficiently large graphs with minimum degree (3

4
+ γ)n

are universal for the class of bounded-degree planar graphs.

Corollary 1.3 For all ∆ ∈ N and γ > 0, there exists n0 ∈ N such that for
every n ≥ n0 the following holds:
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(a ) Every 3-chromatic planar graph on n vertices with maximum degree at
most ∆ can be embedded into every graph on n vertices with minimum
degree at least (2

3
+ γ)n.

(b ) Every planar graph on n vertices with maximum degree at most ∆ can
be embedded into every graph on n vertices with minimum degree at least
(3

4
+ γ)n.

This extends a result by Kühn, Osthus, and Taraz [10], who proved that for
every graph H with minimum degree at least (2

3
+γ)n there exists a particular

spanning triangulation G that can be embedded into H .

2 Expansion, separators, and treewidth

In the first section we observed the connection between results about the
bandwidth of a class of graphs and embedding problems due to Theorem 1.2.
This raises the question which rôle the bandwidth plays in this theorem. It is
not difficult to see that the condition on the bandwidth of G in Theorem 1.2 is
necessary already for the case r = 2: Let G be a random bipartite graph with
bounded maximum degree and let H be the graph formed by two cliques of size
(1/2 + γ)n each, which share exactly 2γn vertices. Then H cannot contain
a copy of G, since in G every vertex set of size (1/2 − γ)n has more than
2γn neighbours. The reason for this obstacle is that H has good expansion
properties. In light of Theorem 1.2 the same example shows that graphs
with sublinear bandwidth (as in Theorem 1.1) cannot exhibit good expansion
properties (definitions and exact statements are provided below). One may
ask whether the converse is also true, i.e. whether bad expansion properties
in bounded-degree graphs lead to small bandwidth. We will show that this
is indeed the case via the existence of certain separators. A similar approach
can be used to prove Theorem 1.1. In fact, we will show a more general
theorem (Theorem 2.4) which proves that the concepts of sublinear bandwidth,
sublinear treewidth, bad expansion properties, and sublinear separators are
equivalent for graphs of bounded maximum degree. Since planar graphs have
sublinear separators [11] Theorem 1.1 is a direct consequence of this theorem.
For the precise statement of Theorem 2.4, we need the following definitions.

We start with the notions of tree decompositions and treewidth. Roughly
speaking, a tree decomposition tries to arrange the vertices of a graph in a
tree-like manner and the treewidth measures how well this can be done.

Definition 2.1 (treewidth) A tree decomposition of a graph G = (V, E) is a
pair ({Xi : i ∈ I}, T = (I, F )) where {Xi : i ∈ I} is a family of subsets Xi ⊆ V



with
⋃

i∈I Xi = V , and where T = (I, F ) is a tree such that for every edge
{v, w} ∈ E there exists i ∈ I with {v, w} ⊆ Xi and for every i, j, k ∈ I such
that j lies on the path from i to k in T we have Xi ∩Xk ⊆ Xj. The width of
({Xi : i ∈ I}, T = (I, F )) is defined as maxi∈I |Xi| − 1. The treewidth tw(G)
of G is the minimum width of a tree decomposition of G.

A vertex set is said to be expanding, if it has many external neighbours.
We call a graph bounded, if every sufficiently large subgraph contains a subset
which is not expanding.

Definition 2.2 (bounded) Let 0 < ε < 1 be a real number, b ∈ N and
G = (V, E) be a graph. G is called (b, ε)-bounded, if for every subgraph
G′ ⊆ G with |V (G′)| ≥ b vertices there exists a subset U ⊆ V (G′) such that
|U | ≤ |V (G′)|/2 and |N(U)| ≤ ε|U |. (Here N(U) is the set of neighbours of
vertices in U that lie outside of U .)

Finally, a separator in a graph is a small cut-set that splits the graph into
components of limited size.

Definition 2.3 (separator) Let 0 < α < 1 be a real number, b ∈ N and G =
(V, E) a graph. A subset S ⊆ V is said to be a (b, α)-separator of G, if there
exist subsets A, B ⊆ V such that V = A∪̇B∪̇S, |S| ≤ b, |A|, |B| ≤ α|V (G)|,
and E(A, B) = ∅, where E(A, B) denotes the set of edges with one end in A
and one in B.

With these definitions at hand, we are ready to state our main theorem.

Theorem 2.4 Let ∆ be an arbitrary but fixed positive integer and consider a
class of graphs C such that all graphs in C have maximum degree at most ∆.
Denote by Cn the set of those graphs in C with n vertices. Then the following
four properties are equivalent:

(1 ) For every β1 > 0 there exists n0 such that for all n ≥ n0 every graph in
Cn has treewidth at most β1n.

(2 ) For every β2 > 0 there exists n0 such that for all n ≥ n0 every graph in
Cn has bandwidth at most β2n.

(3 ) For every β3 > 0 and every ε > 0 there exists n0 such that for all n ≥ n0

every graph in Cn is (β3n, ε)-bounded.

(4 ) For every β4 > 0 there exists n0 such that for all n ≥ n0 every graph in
Cn has a (β4n, 2/3)-separator.

If the class C meets one (and thus all) of the above conditions, then the fol-
lowing is also true.



(5 ) For every γ > 0 and r ∈ N there exists n0 such that for all n ≥ n0 and for
every graph G ∈ Cn with chromatic number r and for every graph H on n
vertices with minimum degree at least ( r−1

r
+ γ)n, the graph H contains a

copy of G.

3 Proofs

We conclude by briefly sketching the main ideas for the proof of Theorem 2.4.

(1 )⇒(4 ) This follows immediately from a result by Robertson and Seymour
[12], which says that a graph with treewidth less than k has a (k +1, 1/2)-
separator.

(4 )⇒(2 ) The rough idea is to repeatedly extract separators from G until the
remaining components R1, . . . , Rt are of size ρn at most where ρ is such
that ρ + c · log(2/ρ)β4 = β2/2 and the constant c will be determined later.
Denote the union of the vertices in these separators by S and observe that
vertices in Ri are not adjacent to vertices in Rj for j 6= i. It is not difficult
to see that |S| ≤ log(2/ρ)β4n. We now partition the graph into classes
V1, . . . , Vt+1 as follows. First add all vertices from S to V1. For v ∈ Ri

let j = min{i, dist(v, S)} and add v to Vj+1. Observe that there are at
most c|S| such vertices with j 6= i where c is a constant depending on ∆
only. It follows that we obtain a partition V1, . . . , Vt with classes of size
|Vi| ≤ ρn + c · log(2/ρ)β4n = β2n/2 and edges that only run within the Vi

and between Vi and Vi+1. Thus the labelling constructed by first labelling
the vertices in V1, then in V2, and so on shows that G has bandwidth at
most β2n.

(2 )⇒(1 ) This is obvious, because the treewidth of a graph is bounded from
above by its bandwidth.

(2 )⇒(3 ) This follows rather trivially directly from the definitions: for β3 suf-
ficiently small a labelling of G that respects the bandwidth bound requires
that the neighbours of any set U ⊆ V (G) of size at most β3n/2 are not
too far away from U , and hence there cannot be too many of them.

(3 )⇒(4 ) For G with property (3) we can explicitly construct the required
separator as follows. We apply (3) in order to determine a set S ⊆ V (G)
with N(S) ≤ ε|V (G)|. Then we consider V (G) \ S, apply (3) to find
S ′ ⊆ V (G) \ S with N(S ′) ≤ ε|V (G) \ S|, and add the vertices in S ′ to
S. We repeat this process until the remaining graph has less than 2n/3
vertices. It is not difficult to see that N(S) is a (β4n, 2/3)-separator for



appropriate β4 depending on β3 only.

(2 )⇒(5 ) This is exactly the assertion of Theorem 1.2.

A closer look at the proof of the implication (4) ⇒ (2) together with the
fact that planar graphs have (O(

√
n), 2/3)-separators [11], yields Theorem 1.1.
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