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Abstract. We prove that for all ε > 0 there are α > 0 and n0 ∈ N such that for all n ≥ n0

the following holds. For any two-colouring of the edges of Kn,n,n one colour contains copies

of all trees T of order t ≤ (3 − ε)n/2 and with maximum degree ∆(T ) ≤ nα. This confirms a
conjecture of Schelp.

1. Introduction and results

In this paper we address a Ramsey-type question posed by Schelp. For any finite family of
graphs F we say that Km is Ramsey for F if in any edge-colouring of Km with green and red
there are either copies of all members of F in green or in red. In this case we also write Km → F .
Define the Ramsey number R(F) as the smallest integer m such that Km → F . The famous
theorem of Ramsey [14] states that R(F) always exists. Here we are interested in the case when F
is a family of trees. Let Tt denote the class of trees of order t and let T ∆

t be its restriction to
trees of maximum degree at most ∆. Ajtai, Komlós, Simonovits, and Szemerédi [1] announced
a solution of the Erdős-Sós conjecture [1] which implies that K2t−2 → Tt for large even t and
K2t−3 → Tt for large odd t. This bound is best possible. For the case of odd t this is also a
consequence of a theorem by Zhao [18] concerning a conjecture of Loebl [4].

The graph KR(F) is obviously a Ramsey graph for F with as few vertices as possible. However,
one may still ask, whether there exist graphs with fewer edges which are Ramsey for F . This
minimum number of edges is also called size Ramsey number and denoted by Rs(F). Trivially

Rs(F) ≤
(

R(F)
2

)

, but it turns out that this inequality is often far from tight. The investigation of
size Ramsey numbers recently received much attention. Trees are considered in [3, 9]. Progress
on determining the size Ramsey number for classes of bounded degree graphs was made in [12].

A question of similar flavour is what happens when we do not confine ourselves to finding
Ramsey graphs for F with fewer edges but require in addition that they are proper subgraphs
of Km with m very close to R(F). This question has two aspects: a quantitative one (i.e., how
many edges can be deleted from Km so that the remaining graph is still Ramsey) and a structural
one (i.e., what is the structure of the edges that may be deleted). One of the most natural instances
of the structural version of the problem is to consider multipartite Ramsey graphs, that is, to ask
whether the complete spanning balanced k-partite subgraph of KR(H) is still Ramsey for H.

Questions of this type recently received some interest and were explored by Gyárfás, Sárközy,
and Schelp [8] when F consists of an odd cycle and by Gyárfás, Ruszinkó, Sárközy, and Sze-
merédi [7] when F is a path. More specifically, the main result of [8] asserts that any colouring
of the edges of the complete five-partite graph on (2 + o(1))t vertices with colour classes of the
same order of magnitude contains a monochromatic copy of Ct. It is known (cf. [15], [5]) that
R(Ct) = 2t − 1 for every odd t ≥ 5. Hence the main result of [8] shows that that the com-
plete graph of order just a little bit larger than 2t remains Ramsey for Ct even when one deletes
edges so as to create five large holes in this graph. In a similar spirit, the main result of [7]
states that one can find a monochromatic copy of a path Pt in a two edge coloured graph Kn,n,n,
where 3n = ( 1

2 + o(1))3t. This again asymptotically matches the bound on the Ramsey number
R(Pt) = ⌊(3t− 2)/2⌋ determined in [6].
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An analogous result for a tree Tt on t vertices should assert that for some k the k-partite
complete graph on (1 + o(1))R(Tt) = (2 + o(1))t vertices is Ramsey for Tt. It is easy to see that
we need k > 2. The following conjecture of Schelp [16] claims that we can choose k = 3 for trees
with small maximum degree. Schelp conjectured that the tripartite graph Kn,n,n is Ramsey for
the class T ∆

t of trees on t ≤ 3n/2− o(n) vertices with maximum degree at most ∆ for constant ∆.
The conjecture thus asserts that we can delete three cliques of size m/3 from a graph Km with
m only slightly larger than R(T ∆

t ) while maintaining the Ramsey property. In addition Schelp
asked whether the same remains true when the constant maximum degree bound in the conjecture
above is replaced by ∆ ≤ 2

3 t (which is easily seen to be best possible). Our main result is situated
in-between these two cases, solving the problem for trees of maximum degree nα for some small α
and hence, in particular, answering the first conjecture above.

Theorem 1. For all µ > 0 there are α > 0 and n0 ∈ N such that for all n ≥ n0 we have

Kn,n,n → T ∆
t ,

with ∆ ≤ nα and t ≤ (3 − µ)n/2.

We use Szemerédi’s regularity lemma [17] to establish this result. Due to the nature of the
methods related to this lemma it follows that Theorem 1 remains true when Kn,n,n is replaced by
a much sparser graph: For any fixed µ ∈ (0, 1] a random subgraph of Kn,n,n with edge probability µ
allows for the same conclusion, as long as n is sufficiently large (cf. Section 8).

The proof of Theorem 1 splits into a combinatorial part and a regularity based embedding
part.  Luczak [13] first noted that a large joined1 matching in a cluster graph obtained from an
application of the regularity lemma is a suitable structure for embedding paths. In the present
paper, we extend  Luczak’s idea and use what we call “odd joined matchings” and “joined fork
systems” in the cluster graph (a somewhat similar amplification of  Luczak’s idea has appeared
in [10], where the clusters inducing the joined matching were of different sizes). Here we show
that in one colour we find either a large joined matching connected to an odd cycle, or both a
large joined matching and a large joined fork system. This is the first main idea of the proof.
We mention in addition that we shall distinguish two cases in order to obtain these odd joined
matchings and fork systems: Either the edge colouring of Kn,n,n under consideration possesses
some nice properties which will allow us to infer the existence of the desired structures. Or this
edge colouring is of a very special form, a so-called “extremal configuration”, which we shall treat
separately (see also Lemmas 9 and 10).

The second main idea concerns the embedding part, where we show that, given the above
mentioned matchings and fork systems, we can embed each tree of T ∆

t into the subgraph of Kn,n,n

formed by the edges of the corresponding colour. For this purpose we formulate an embedding
lemma (Lemma 13) that provides rather general conditions for the embedding of trees with growing
maximum degree.

Organisation. In Section 2 we define a number of concepts which are crucial to the proof of
Theorem 1 and we state the regularity lemma. For the subsequent presentation of the proof of
Theorem 1 we choose a top-down approach: we first formulate the main lemmas needed for this
proof, next show how these lemmas imply the theorem, and then we give the proofs of these
lemmas. More precisely, we provide the main structural lemma (Lemma 8) that we need for the
combinatorial part of the proof in Section 3. In Section 4 we formulate the above mentioned em-
bedding lemma (Lemma 13) together with an auxiliary lemma (the so-called “assignment lemma”
(Lemma 14), which prepares the application of the embedding lemma in the proof of Theorem 1.
An outline and the details of this proof are also presented in Section 4. In Section 5 we prove the
assignment lemma (Lemma 14) and in Section 6 the embedding lemma (Lemma 13). In Section 7
we prove the main structural lemma (Lemma 8). In Section 8 we close with some concluding
remarks.

1The original name from [13] is “connected matching”. In this paper we replace the word “connected” by the

less overloaded “joined”.
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2. Definitions and Tools

In this section we first provide some basic definitions. Then, in Section 2.1, we define regularity
and state the regularity lemma. Finally, in Section 2.2 we introduce a number of concepts that
will turn out essential when dealing with edge coloured graphs in the proof of Theorem 1. In
particular, we shall rigorously define the connected matchings and fork systems mentioned above
along with the extremal configurations appearing in the proof of Theorem 1.

Let G = (V,E) be a graph and X,X ′, X ′′ ⊆ V be pairwise disjoint vertex sets. Then we define

E(X) := E ∩
(

X
2

)

and E(X,X ′) := E ∩ (X ×X ′) and write G[X] for the graph with vertex set X
and edge set E(X). Similarly, G[X,X ′] is the bipartite graph with vertex set X∪̇X ′ and edge
set E(X,X ′) and G[X,X ′, X ′′] is the tripartite graph with vertex set X∪̇X ′∪̇X ′′ and edge set
E(X,X ′)∪̇E(X ′, X ′′)∪̇E(X ′′, X). For convenience we frequently identify graphs G with their edge
set E(G) and vice versa. We say that a subgraph G′ of G covers a vertex v of G if v is contained
in some edge of G′. For a vertex set D and an edge set M we denote by D ∩M the set of vertices
from D that appear in some edge of M . We write N(v) for the neighbourhood of a vertex v.

A matching M in a graph G = (V,E) is the union of vertex disjoint edges in E and its size
is the number of edges in M . For vertices v covered by M and vertex sets U covered by M we
also write, abusing notation, v ∈ M and U ⊆ M . Sometimes we also consider a matching as a
bijection M : VM → VM where VM ⊆ V is the set of vertices covered by M . For U ⊆ VM we then
denote by M(U) the set of vertices v ∈ VM such that uv ∈M for some u ∈ U .

By Kη
n, finally, we denote the class of all spanning subgraphs K of Kn,n,n with minimum degree

δ(K) > (2 − η)n. We also call the graphs in this class η-complete tripartite graphs.

2.1. Regularity. Let G = (V,E) be a graph and ε, d ∈ [0, 1]. For disjoint nonempty vertex sets
U,W ⊆ V the density d(U,W ) of the pair (U,W ) is the number of edges that run between U and
W divided by |U ||W |. A pair (U,W ) is ε-regular if |d(U ′,W ′) − d(U,W )| ≤ ε for all U ′ ⊆ U and
W ′ ⊆ W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W |. The following lemma states that in dense regular
pairs most vertices have many neighbours. This is an immediate consequence of the definition of
regular pairs.

Lemma 2. Let (U,U ′) be an ε-regular pair with density at least d and X ⊆ U with |X| ≥ ε|U |.
Then less than ε|U ′| vertices in U ′ have less than (d− ε)|X| neighbours in X. �

In the rest of the paper we will say that all other vertices in U ′ are (ε, d)-typical with respect
to X (or simply typical, when ε and d are clear from the context).

An equipartition of G = (V,E) is a partition V0∪̇V1∪̇ . . . ∪̇Vk of V with |Vi| = |Vj | for all
i, j ∈ [k]. An ε-regular partition of G = (V,E) with reduced graph G = ([k], EG) is an equipartition
V0∪̇V1∪̇ . . . ∪̇Vk of V with |V0| ≤ ε|V |, such that (Vi, Vj) is an ε-regular pair in G whenever
ij ∈ EG. If in addition d(Vi, Vj) ≥ d for every ij ∈ EG we say that G has (ε, d)-reduced graph G.
(Throughout this paper blackboard symbols such as G or M denote reduced graphs and their
subgraphs.) The partition classes Vi with i ∈ [k] are also called clusters of G and V0 is the bin set.
We also call a vertex i of the reduced graph a cluster and identify it with its corresponding set Vi.

Suppose that P is a partition of V . We then say that a partition V0∪̇V1∪̇ . . . ∪̇Vs of V refines P
if for every i ∈ [s] there exists a member A ∈ P such that Vi ⊆ A.

Now we state a version of Szemerédi’s celebrated regularity lemma [17] for graphs G with a
given prepartition. This lemma asserts the existence of a regular partition of G which refines the
given prepartition.

Lemma 3 (Regularity lemma). For all ε > 0 and integers k0 and k∗ there is an integer k1 such
that for all graphs G = (V,E) on n ≥ k1 vertices the following holds. Let G be given together
with a partition V = V ∗

1 ∪̇ . . . ∪̇V ∗
k∗

of its vertices. Then there is k ∈ N with k0 ≤ k ≤ k1 such

that G has an ε-regular partition V = V0∪̇V1∪̇ . . . ∪̇Vk refining V ∗
1 ∪̇ . . . ∪̇V ∗

k∗

with a reduced graph

G = ([k], EG), where |EG| ≥
(

k
2

)

− εk2. �

We also say that V = V ∗
1 ∪̇ . . . ∪̇V ∗

k∗

is a prepartition of G.
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2.2. Coloured graphs. A coloured graph G is a graph (V,E) together with a 2-colouring of its
edges by red and green. For χ ∈ {red, green} we denote by G(χ) the subgraph of G formed by
exactly those edges with colour χ. Two vertices are χ-joined in G if they lie in the same component
of G(χ). Let G be a coloured graph and v be a vertex of G and χ ∈ {red,green}. Then a vertex
u is a χ-neighbour of v if uv is an edge of colour χ in G. The χ-neighbourhood of v is the set of
all χ-neighbours of v.

Definition 4 (joined, odd, even). Let G′ be a subgraph of an uncoloured graph G. Then we say
that G′ is joined if any two vertices covered by G′ are in the same component of G. Further, the
component of G containing G′ is called the continent of G′ and is denoted by G<G′>.

Similarly, if G′ is a χ-monochromatic subgraph of a coloured graph G, we say that G′ is joined
if any two vertices covered by G′ are χ-joined in G. Again, the component of G(χ) containing G′

is called the continent of G′ and is denoted by G<G′>.
Further, G′ is odd if there is an odd cycle in G<G′>, otherwise G

′ is even.

For subgraphs containing edges of different colours the notion of being joined is not defined.

Definition 5 (fork, fork system). An r-fork (or simply fork) is the complete bipartite graph K1,r.
We also say that an r-fork has r prongs and one centre by which we refer to the vertices in the two
partition classes of K1,r. A fork system F in a graph G is the union of pairwise vertex disjoint
forks in G (not necessarily having the same number of prongs). We say that F has ratio r if all
its forks have at most r prongs. Then we also call F an r-fork system.

Suppose F is a joined fork system in G. Then the size |F | of F is defined as follows. We
distinguish two cases. If F is even, i. e., if the continent G<F> containing F is bipartite, then the
size |F | of F is the order of the bigger bipartition class of G<F>. In particular, if all the centres
belong to the same bipartition class of G<F>, then |F | is the total number of prongs in F . We
stress, however, that in our proofs it need not be the case that all centres of F belong to the same
partition class of G<F>.

If F is odd, on the other hand then we would in principle like to use the same definition of |F |
as in the first case. For this purpose we first identify a suitable bipartite subgraph of G<F> and
then define |F | as the order of its bigger partition class. More precisely, the size |F | of F is the
maximum number f for which there exists a connected bipartite subgraph G′ of G such that F
has size f in G′. For a vertex set D in G we say that F is centred in D if the centres of the forks
in F all lie in D.

Next, we define two properties of coloured graphs that characterise structures (in a reduced
graph) suitable for the embedding of trees as we shall see later (cf. Section 4). Roughly speak-
ing, these properties guarantee the existence of large monochromatic joined matchings and fork
systems.

Definition 6 (m-odd, (m, f, r)-good). Let G be a coloured graph on n vertices. Then G is called
m-odd if G contains a monochromatic odd joined matching of size at least m. We say that G is
(m, f, r)-good (in colour χ) if G contains a χ-coloured joined matching M of size at least m as
well as a χ-coloured joined fork system F of size at least f , and ratio at most r.

We further need to define a set of special, so-called extremal, configurations of coloured graphs
that will need special treatment in our proofs. To prepare their definition, let K be a graph
on n vertices and D,D′ be disjoint vertex sets in K. We say that the bipartite graph K[D,D′]
is η-complete if each vertex of K[D,D′] is incident to all but at most ηn vertices of the other
bipartition class. If K is a coloured graph then K[D,D′] is (η, χ)-complete for some colour χ if it
is η-complete and all edges in K[D,D′] are of colour χ. We call a set A negligible if |A| < 2ηn.
Otherwise, A is non-negligible.

Definition 7 (extremal). Let K = (V,E) be a coloured graph of order 3n. Suppose that η > 0 is
given. We say that K is a pyramid configuration with parameter η if it satisfies (E1) below and
a web configuration if it satisfies (E2). In both cases we call K extremal with parameter η or
η-extremal. Otherwise we say that K is not η-extremal.
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We need the following auxiliary definition. We say that K forms an η-thread if there is a
colour χ and pairwise disjoint subsets U (i),W (i) ⊆ V , i ∈ [3] such that |U (i) ∪W (i)| ≥ (1 − η)n
and K[U (i),W (j)] is (η, χ)-complete for all i 6= j ∈ {1, 2, 3}, the edges in all these bipartite graphs
together form a connected bipartite subgraph Kχ of K with (bi)partition classes

⋃

U (i) and
⋃

W (i)

(see Figure 1).

(E1) pyramid configurations: There are (not necessarily distinct) colours χ, χ′ and pairwise dis-
joint subsets D1, D2, D

′
1, D

′
2 ⊆ V of size at most n, with |D1|, |D2| ≥ (1−η)n and |D′

1|+|D′
2| ≥

(1 − η)n where D′
1 and D′

2 are either empty or non-negligible. Further, K[D1, D
′
1] and

K[D2, D
′
2] are (η, χ)-complete and K[D1, D

′
2], K[D2, D

′
1], and K[D1, D2] are η-complete.

In addition, either K[D1, D2] is (η, χ′)-complete or both K[D1, D
′
2] and K[D′

1, D2] are
(η, χ′)-complete. In the first case we say the pyramid configuration has a χ′-tunnel, and
in the second case that it has a crossing. The pairs (D1, D

′
1) and (D2, D

′
2) are also called

the pyramids of this configuration.

(E2) web configuration: K forms an η-thread. Further there are sets W
(i)
j ∪W (i)

k = W (i), i 6= 3,

j and k distinct, and W
(3)
1 ∪W

(3)
2 ∪W

(3)
3 = W (3), each of which is either empty or non-

negligible, such that the following conditions are satisfied, for distinct i, j, k:

1. |U (1)| ≥ |U (2)| ≥ |U (3) ∪W (3)
3 | and |W (i)

j | = |W (j)
i | ≤ n− |U (k)|,

2. either W
(3)
3 = ∅ or U

(1)
2 = ∅,

3. either W (1) = ∅ or |⋃W (i) \W (3)
3 | ≤ (1 − η) 3

2n,

4. either U (3) = ∅ or |⋃U (i)| < (1 − η) 3
2n or |U (2) ∪ U (3)| ≤ (1 − η) 3

4n.

U
(1)

U
(2)

U
(3)

W
(1)

W
(2)

W
(3)

Figure 1. Bipartite subgraph of Kχ. The dashed lines indicates between which
sets there are (η, χ)-complete graphs.

3. Joined matchings and fork systems

In this section we formulate the main structural lemma (Lemma 8) for the proof of Theorem 1.
The proof of this lemma splits in two cases dealing with non-extremal configurations and extremal
configurations, respectively. We formulate these cases in Lemma 9 and Lemma 10, respectively.
Since the proofs of these lemmas are rather technical we defer them to Section 7 and only show
here how these two lemmas imply Lemma 8.

In order to prove Theorem 1 we will use the following structural lemma about coloured graphs
from Kη

n. This lemma asserts that such graphs either contain large monochromatic odd joined
matchings or appropriate joined fork systems. With the help of the regularity method we will then,
in Section 4, use this result (on the reduced graph of a regular partition) to find monochromatic
trees. The reason why odd joined matchings and joined fork systems are useful for this task is
explained in Section 4.1.
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Lemma 8. For all η′ > 0 there are η > 0 and n0 ∈ N such that for all n ≥ n0 the following holds.
Every coloured graph K ∈ Kη

n is either (1 − η′) 3
4n-odd or

(

(1 − η′)n, (1 − η′) 3
2n, 3

)

-good.

We remark that the dependence of the constant n0 and η′ is only linear, and in fact we can
choose n0 = 200/η′. Lemma 8 is a consequence of the following two lemmas. The first lemma
analyses non-extremal members of Kη

n.

Lemma 9 (non-extremal configurations). For all η′ > 0 there are η ∈ (0, η′) and n0 ∈ N such
that for all n ≥ n0 the following holds. Let K be a coloured graph from Kη

n that is not η′-extremal.
Then K is (1 − η′) 3

4n-odd.

The second lemma handles the extremal configurations.

Lemma 10 (extremal configurations). For all η′ > 0 there is η ∈ (0, η′) such that the following
holds. Let K be a coloured graph from Kη

n that is η-extremal. Then K is ((1− η′)n, (1− η′) 3
2n, 3)-

good.

Proofs of Lemma 9 and Lemma 10 are provided in Section 7.2 on page 18 and Section 7.3 on
page 24, respectively. We get Lemma 8 as an easy corollary.

Proof of Lemma 8. Given η′ let ηL10 < η′ be the constant provided by Lemma 10 for input η′ and
let ηL9 be the constant produced by Lemma 9 for input η′L9 := ηL10. Set η := ηL9 = min{ηL10, ηL9}
and let K ∈ Kη

n be a given coloured graph. Then K ∈ KηL9
n and by Lemma 9 the graph K is either

(1−η′L9)3n/4-odd (and thus (1−η′)3n/4-odd as oddness is monotone) or ηL10-extremal. In the first
case we are done and in the second case Lemma 10 implies that K is

(

(1 − η′)n, (1 − η′) 3
2n, 3

)

-good
(goodness is also monotone) and we are also done. �

4. Proof of theorem 1

The goal of this section is to prove Theorem 1. We will first provide a brief outline and the
main ideas of this proof. Then we will state the two remaining lemmas which are necessary for this
proof: our main embedding result (Lemma 13), and the so-called “assignment lemma” (Lemma 14)
which provides sufficient conditions for the application of the embedding lemma. Since the proofs
of these two lemmas are comparably long we do not provide them in this section but defer them
to after the proof of Theorem 1, which we provide at the end of this section.

4.1. The idea of the proof. We apply the Regularity Lemma on the coloured graph Kn,n,n

with prepartition as given by the partition classes of Kn,n,n. As a result we obtain a coloured
reduced graph K ∈ Kη

k where the colour of an edge in K corresponds to the majority colour in the
underlying regular pair. Such a regular pair is well-known to possess almost as good embedding
properties as a complete bipartite graph. We then apply our structural result Lemma 8 on this
reduced graph and infer that K is either (1 − η′) 3

4k-odd or ((1 − η′)k, (1 − η′) 3
2k, 3)-good, i.e.,

there is a colour, say green, such that K contains either an odd joined green matching Mo of size
at least (1− η′) 3

4k, or it contains a joined green matching M of size at least (1− η′)k and a joined

green 3-fork system F of size at least (1− η′) 3
2k. We shall show that using these structures we can

embed any tree T ∈ T ∆
t into the green subgraph of Kn,n,n. As a preparatory step, we cut T into

small subtrees, called shrubs.
Now let us first consider the case when we have an odd matching Mo. Our aim is to embed

each shrub S into a regular pair (A,B) corresponding to an edge e ∈ Mo. Shrubs are bipartite
graphs. Therefore there are two ways of assigning the colour classes of S to the clusters of e. This
corresponds to two different orientations of S for the embedding in (A,B). Our strategy is to
choose orientations for all shrubs (and hence assignments of their colour classes to clusters of edges
in Mo) in such a way that every cluster of V (Mo) receives roughly the same number of vertices
of T . We will show (as part of the assignment lemma, Lemma 14) that this is possible without
“over-filling” any cluster. It follows (as we show as part of the embedding lemma, Lemma 13)
that we can embed all shrubs into regular pairs corresponding to edges of Mo. The fact that Mo

is joined and odd then implies that between any pair of edges in Mo there are walks of both even
and odd length in the reduced graph K. We will show (as part of Lemma 14; see also the “walk
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condition” in Definition 19) that this allows us to connect the shrubs and to obtain a copy of T
in the green subgraph of Kn,n,n.

For the second case, i.e., the case when we have a matching M as well as a 3-fork system F

the basic strategy remains the same. We assign shrubs to edges of M or F. In difference to the
previous case, however, these substructures of the reduced graph are not odd. This means that we
cannot choose the orientations of the shrubs as before. Rather, these orientations are determined
by the connections between the shrubs. Therefore, we distinguish the following two situations
when embedding the tree T . If the partition classes of T are reasonably balanced, then we use
the matching M for the embedding. If T is unbalanced, on the other hand, we employ the fork
system F. Assume without loss of generality that the continent K<F> of F is bipartite (otherwise
take a suitable bipartite subgraph instead) and let V1 be the bigger colour class of K<F> and V2

the smaller (i.e., V1 contains mostly, but not exclusively, the prongs of forks in F, and V2 mostly
the centres). We use V1 to accommodate the bigger partition class of T and V2 for the smaller.
(This is also part of the assignment lemma, Lemma 14.)

4.2. The main embedding lemma. As indicated, in the proof of the main theorem we will
use the regularity lemma in conjunction with an embedding lemma (Lemma 13). This lemma
states that a tree T can be embedded into a graph given together with a regular partition if there
is a homomorphism from T to the reduced graph of the partition with suitable properties. In
the following definition of a valid assignment we specify these properties. Roughly speaking, a
valid assignment is a homomorphism h from a tree T to a (reduced) graph G such that no vertex
of G receives too many vertices of T and that h does not “spread” in the tree too quickly in the
following sense: for each vertex x ∈ V (T ) we require that the neighbours of x occupy at most two
vertices of G.

Definition 11 (valid assignment). Let G be a graph on vertex set [k], let T be a tree and L ∈ N.
A mapping h : V (T ) → [k] is a L-valid assignment of T to G if

1. h is a homomorphism from T to G,
2. |h(NT (x))| ≤ 2, for every x ∈ V (T ),
3. |h−1(i)| < L, for every i ∈ [k].

For formulating the embedding lemma we need, in addition, the concept of a cut of a tree,
which is a set of vertices that cuts the tree into small components which we call shrubs.

Definition 12 (cut, shrubs). Let q ∈ N and T be a tree with vertex set V (T ). A set C ⊆ V (T ) is
a q-cut (or simply cut) of T if all components of T −C are of size at most q. The components of
T − C are called the shrubs of T corresponding to C.

Now we can state the main embedding lemma.

Lemma 13 (main embedding lemma). Let G be an n-vertex graph with an (ε, d)-reduced graph
G = ([k], E(G)) and let T be a tree with ∆(T ) ≤ ∆ and a q-cut C. If T has a (1−̺)(1−ε)n

k -valid

assignment to G and ( 1
10d̺− 10ε)n

k ≥ |C| + q + ∆ then T ⊆ G.

The proof of Lemma 13 is deferred to Section 6 on page 15. Before we can apply it for embedding
a tree T in the proof of Theorem 1 we need to construct a valid assignment for T . This is taken care
of by the following lemma which states that this is possible if the reduced graph of some regular
partition contains an odd joined matching or a suitable fork system. The proof of Lemma 14 is
given in Section 5 on page 9.

Lemma 14 (assignment lemma). For all ε, µ > 0 with ε < µ/10 and for all k ∈ N there is
α = α(k) > 0 and n0 = n0(µ, ε, k) ∈ N such that for all n ≥ n0, all r ∈ N, all graphs G of order k,
and all trees T with ∆(T ) ≤ nα the following holds. Assume that either

(M) G contains an odd joined matching of size at least m and that t := |V (T )| ≤ (1 − µ)2mn
k , or

(F) G contains a joined fork system with ratio r and size at least f , and T has colour class sizes
t1 and t2 with t2 ≤ t1 ≤ t′ and t2 ≤ t′/r, where t′ = (1 − µ)f n

k .

Then there is an (εnk )-cut C of T with |C| ≤ εnk and a (1− µ
2 )(1−ε)n

k -valid assignment of T to G.
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4.3. The proof of the main theorem.

Proof of Theorem 1. We start by defining the necessary constants. Given µ > 0, set µ′ := η′ in
such a way that

1 − µ
3 ≤ (1 − η′)2(1 − µ′). (1)

Lemma 8 with input η′ > 0 provides us with η > 0 and k0 ∈ N. The regularity lemma, Lemma 3,
with input

ε := min{ 1
100η

2, 1
10η

′2, 10−3µ′} (2)

and k0 and k∗ := 3 returns a constant k1. Next we apply Lemma 14 with input ε
10 and µ′

separately for each value 3k with k0 ≤ 3k ≤ k1 and get constants α(3k) and n′0(3k) for each of
these applications. Set α := min{α(3k) : k0 ≤ 3k ≤ k1} and n′0 := max{n′0(3k) : k0 ≤ 3k ≤ k1}.
Finally, choose

n0 := max{n′0, k1, (k1

ε )1/(1−α)} . (3)

We are given a complete tripartite graph Kn,n,n with n ≥ n0 as input whose edges are coloured
with green and red. Our goal is to select a colour and show that in this colour we can embed every
member of T ∆

t with ∆ ≤ nα and t ≤ (3 − µ)n/2.
We first select the colour. To this end let G and R be the subgraphs of Kn,n,n formed by

the green and red edges, respectively. We apply the regularity lemma, Lemma 3, with input ε
10

on the graph G with prepartition V ∗
1 ∪̇V ∗

2 ∪̇V ∗
3 as given by the three partition classes of Kn,n,n.

We obtain an ε
10 -regular partition V = V0∪̇V1∪̇ . . . ∪̇V3k refining this prepartition such that k0 ≤

3k ≤ k1. Each cluster of this partition lies entirely in one of the partition classes of Kn,n,n. Let
K = ([3k], EK) be the graph that contains edges for all ε-regular cluster pairs that do not lie in
the same partition class of Kn,n,n. Clearly, K is a tripartite graph. Furthermore, there are less
than εk2 pairs (Vi, Vj) in our regular partition that are not ε

10 -regular in G. It follows that at
most 2

√
εk clusters Vi are contained in more than

√
εk irregular pairs. We move all these clusters

and possibly up to 6
√
εk additional clusters to the bin set V0. The additional clusters are chosen

in such a way that we obtain in each partition class of K the same number of clusters. We call
the resulting bin set V ′

0 and denote the remaining clusters by V ′
1 ∪̇ . . . ∪̇V ′

3k′ and the corresponding
subgraph of K by K

′. Observe that k′ ≥ (1 − 3
√
ε)k. Because each remaining cluster forms an

irregular pair with at most
√
εk ≤ 2

√
εk′ ≤ η′k′ of the remaining clusters we conclude that K

′ is
a graph from Kη

k′ . In addition, it easily follows from the definition of ε-regularity that each pair
(Vi, Vj) with i, j ∈ [k′] which is ε-regular in G is also ε-regular in R. This motivates the following
“majority” colouring of K′: We colour the edges ij of K′ by green if the ε-regular pair (Vi, Vj) has
density at least 1

2 and by red otherwise. In this way we obtain a coloured graph K
′
χ ∈ Kη

k′ .
Now we are in a position to apply Lemma 8 to K

′
χ. This lemma asserts that K

′
χ is either

(1 − η′) 3
4k

′-odd or
(

(1 − η′)k′, (1 − η′) 3
2k

′, 3
)

-good. By definition this means that in one of the
colours of K′

χ, say in green, we

(O) either have an odd joined matching Mo of size m1 ≥ (1 − η′) 3
4k

′ ≥ (1 − η′)(1 − 3
√
ε) 3

4k,
(G) or a joined matching M of size m2 ≥ (1 − η′)k′ ≥ (1 − η′)(1 − 3

√
ε)k together with a joined

fork system F of size f ≥ (1 − η′) 3
2k

′ ≥ (1 − η′)(1 − 3
√
ε) 3

2k and ratio 3.

In the following we use the matchings and fork systems we just obtained to show that we can
embed all trees of T ∆

t in the corresponding system of regular pairs. For this purpose let G be
the graph on vertex set [3k] that contains precisely all green edges of K′

χ. Observe that G is an
(ε, 1/2)-reduced graph for G.

Let T ∈ T ∆
t be a tree of order t ≤ (3 − µ)n/2 and with maximum degree ∆(T ) ≤ nα. Now we

distinguish two cases, depending on whether we obtained configuration (O) or configuration (G)
from Lemma 8. In both cases we plan to appeal to Lemma 14 to show that T has

an (εnk )-cut C with |C| ≤ εnk and a (1 − µ′

2 )(1 − ε) 3n
3k -valid assignment to G. (4)
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Recall that we fed constants ε, µ′ > 0 and 3k into this lemma. Assume first that we are in
configuration (O). Because m1 ≥ (1 − η′)(1 − 2

√
ε) 3

4k we have

t ≤ (3 − µ)
n

2
≤ 3(1 − µ

3 )
n

2

m1

(1 − η′)(1 − 3
√
ε) 3

4k

(1),(2)

≤ (1 − µ′)2m1 ·
3n

3k
.

Hence by (M) of Lemma 14 applied with the matching Mo (with n replaced by ñ := 3n and k

replaced by k̃ := 3k) we get (4) for T in this case, as ∆(T ) ≤ nα ≤ ñα.
If we are in configuration (G), on the other hand, then let t1 ≥ t2 be the sizes of the two colour

classes of T . We distinguish two cases, using the two different structures provided in (G). Assume
first that t2 ≤ t

3 . Then, we calculate similarly as above that

t2 ≤ 1
3 t ≤ (1 − 1

3µ)n
2 ≤ 1

3 (1 − µ′)f 3n
3k , and t1 ≤ t ≤ (1 − µ′)f 3n

3k .

Otherwise, if t2 ≥ t
3 then, similarly,

t2 ≤ t1 ≤ 2
3 t ≤ (1 − µ

3 )n ≤ (1 − µ′)m2 · 3n
3k .

Consequently, in both cases we can appeal to (F) of Lemma 14, in the first case applied to F with
r = 3 and in the second to M with r = 1. We obtain (4) for T as desired.

We finish our proof with an application of the main embedding lemma, Lemma 13. As remarked
earlier G is an (ε, 1/2)-reduced graph for G. We further have (4). For applying Lemma 13 it thus
remains to check that ( 1

2 · 1
10̺−10ε)n

k ≥ q+ |C|+∆ with ̺ = 1
2µ

′, q = εnk , |C| ≤ εnk , and ∆ ≤ nα.
Indeed,

(

1
20̺− 10ε

)

n
k =

(

1
20 · 1

2µ
′ − 10ε

)

n
k

(2)

≥ 3εnk
(3)

≥ εnk + εnk + nα .

So Lemma 13 ensures that T ⊆ G, i. e., there is an embedding of T in the subgraph induced by
the green edges in Kn,n,n. �

5. Valid Assignments

In this section we will provide a proof for Lemma 14. The idea is as follows. Given a tree T and
a graph G with reduced graph G we first construct a cut of T that provides us with a collection of
small shrubs (see Lemma 15). Then we distribute these shrubs to edges of the given matching or
fork system in G (see Lemmas 16 and 17). Finally, we slightly modify this assignment in order to
obtain a homomorphism from T to G that satisfies the conditions required for a valid assignment
(see Lemma 20).

Lemma 15. For every q ∈ N and for any tree T there is a q-cut of T that has size at most |V (T )|
q .

Proof. To prove Lemma 15 we need the following fact.

Fact 1. For any q ∈ N and any tree T with |V (T )| > q, there is a vertex x ∈ V (T ) such that the
following holds. If Fx is the forest consisting of all components of T − x with size at most q, then
|V (Fx)| + 1 > q.

To see this, root the tree T at an arbitrary vertex x0. If x0 does not have the required property,
it follows from |V (T )| > q that there exists a component T1 in T − x0 with |V (T1)| > q. Set
x1 := N(x0) ∩ V (T1). Let F (T1 − x1) be the forest consisting of the components of T1 − x1 that
have size at most q. Observe that F (T1 − x1) is a subgraph of Fx1

. So if |F (T1 − x1)| + 1 > q,
then x1 has the property required by Fact 1. Otherwise there exists a component T2 in T1 − x1
of size larger than q. Observe that T2 is also a component of T − x1. Now repeat the procedure
just described by setting x2 = N(x1) ∩ V (T2) and so on, i.e., more generally we obtain trees Ti
and vertices xi = N(xi−1) ∩ V (Ti). As the size of Ti decreases as i increases, there must be an xi
with the property required by Fact 1. �

Now we prove Lemma 15. Set C = ∅. Repeat the following process until it stops. Choose a
component T ′ of T − C with size larger than q. Apply Fact 1 to T ′ and obtain a cut vertex x
of T ′ together with a forest Fx consisting of components of T ′ − x that have size at most q and is
such that |V (Fx) ∪ {x}| > q. Add x to C and repeat unless there is no component of size larger
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than q in T −C. As |V (T −C)| decreases this process stops. Observe that then C is a q-cut. By
the choice of C we obtain

|V (T )| =
∑

x∈C

|V (Fx) ∪ {x}| > |C| · q,

which implies the required bound on the size of C. �

After Lemma 15 provided us with a cut and some corresponding shrubs we will distribute each
of these shrubs Ti to an edge e of the odd matching or the fork system in the reduced graph by
assigning one colour class of Ti to one end of e and the other colour class to the other end. Here
our goal is to distribute the shrubs and their vertices in such a way that no cluster receives too
many vertices. The next two lemmas guarantee that this can be done. Lemma 16 takes care of
the distribution of the shrubs to the clusters of a matching M and Lemma 17 to those of a fork
system F . We provide Lemmas 16 and 17 with numbers ai,1 and ai,2 as input. These numbers
represent the sizes of the colour classes Ai,1 and Ai,2 of the shrub Ti. Since we do not need any
other information about the shrubs in these lemmas the shrubs Ti do not explicitly appear in their
statement. Both lemmas then produces a mapping φ representing the assignment of the colour
classes Ai,1 and Ai,2 to the clusters of M or F .

Lemma 16. Let {ai,j}i∈[s], j∈[2] be natural numbers with sum at most t and ai,1 + ai,2 ≤ q for all
i ∈ [s], and let M be a matching on vertices V (M). Then there is a mapping φ : [s]× [2] → V (M)
such that φ(i, 1)φ(i, 2) ∈M for all i ∈ [s] and

∑

(i,j)∈φ−1(v)

ai,j ≤
t

2|M | + 2q for all v ∈ V (M). (5)

Proof. A simple greedy construction gives the mapping φ: We consider the numbers ai,j as weights
that are distributed, first among the edges, and then among the vertices of M . For this purpose
greedily assign pairs (ai,1, ai,2) to the edges of M , in each step choosing an edge with minimum
total weight. Then, clearly, no edge receives weight more than q+t/|M |. In a second round, do the
following for each edge vw of M . For the pairs (ai,1, ai,2) that were assigned to e, greedily assign
one of the weights of this pair to v and the other one to w, such that the total weight on v and on
w are as equal as possible. Hence each of these vertices receives weight at most 1

2 (q + t/|M |) + q
and so the mapping φ corresponding to this weight distribution satisfies the desired properties. �

For the following lemma recall the definition of |F | for a joined fork system F , which was given
below Definition 5. In this definition we associated with F a bipartition V1(F )∪̇V2(F ) and denoted
by |F | the size of the bigger partition class.

Lemma 17. Let {ai,1}i∈[s] and {ai,2}i∈[s] be natural numbers with sum at most t1 and t2, respec-
tively. Let q ≤ t1 + t2 =: t and assume that ai,1 + ai,2 ≤ q for all i ∈ [s]. Let F be a fork system
with ratio at most r and partition classes V1(F ) and V2(F ) where |V1(F )| ≥ |V2(F )|. Then there
is a mapping φ : [s] × [2] → V1(F ) ∪ V2(F ) such that φ(i, 1)φ(i, 2) ∈ F and φ(i, j) ∈ Vj(F ) for all
i ∈ [s], j ∈ [2] satisfying that for all v1 ∈ V1(F ), v2 ∈ V2(F ) we have

∑

(i,1)∈φ−1(v1)

ai,1 ≤ t1
|F | +

√

12tq|F | and
∑

(i,2)∈φ−1(v2)

ai,2 ≤ rt2
|F | +

√

12tq|F | . (6)

In the proof of this lemma we will make use the so-called Hoeffding bound for sums of inde-
pendent random variables (see, e.g., [2, Theorem A.1.16]).

Theorem 18. Let X1, . . . , Xs be independent random variables with EXi = 0 and |Xi| ≤ 1 for
all i ∈ [s] and let X be their sum. Then P[X > a] ≤ exp(−a2/(2s)). �

Proof of Lemma 17. For showing this lemma we use a probabilistic argument and again consider
the ai,j as weights which are distributed among the vertices of F .

Observe first that we can assume without loss of generality that for all but at most one i ∈ [s]
we have 1

2q ≤ ai,1 + ai,2 since otherwise we can group weights ai,1 together, and also group the
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corresponding ai,2 together, such that this condition is satisfied and continue with these grouped
weights. This in turn implies, that s ≤ (2t/q) + 1 ≤ 3t/q.

We start by assigning weights ai,1 to vertices of V1(F ) by (randomly) constructing a mapping
φ1 : [s]× [1] → V1(F ). To this end, independently and uniformly at random choose for each i ∈ [s]
an image φ1(i, 1) in V1(F ). Clearly, there is a unique way of extending such a mapping φ1 to a
mapping φ : [s] × [2] → V1(F ) ∪ V2(F ) satisfying φ(i, 1)φ(i, 2) ∈ F . We claim that the probability
that φ1 gives rise to a mapping φ which satisfies the assertions of the lemma is positive.

Indeed, for any fixed vertex v = v1 ∈ V1(F ) or v = v2 ∈ V2(F ) let σ(v) be the event that the
mapping φ does not satisfy (6) for v. We will show that σ(v) occurs with probability strictly less
than 1/(2|F |), which clearly implies the claim above. We first consider the case v = v1 ∈ V1(F ).
For each i ∈ [s] let 1i be the indicator variable for the event φ(i, 1) = v1 and define a random
variable Xi by setting

Xi =
(

1i − 1
|F |

)

ai,1

q .

Observe that these variables are independent, and satisfy EXi = 0 and |Xi| ≤ 1 and so Theorem 18

applied with a =
√

12t|F |/q asserts that

P

[

∑

i∈[s]

Xi >
√

12t|F |/q
]

≤ exp

(

−12t|F |
q · 2s

)

≤ exp (−2|F |) < 1

2|F | (7)

where we used s ≤ 3t/q. Now, by definition we have

X :=
∑

i∈[s]

Xi =
1

q

∑

(i,1)∈φ−1(v1)

ai,1 −
t1

|F |q ,

and so, if (6) did not hold for v1, then we had X >
√

12t|F |/q, which by (7) occurs with probability
less than 1/(2|F |).

For the case v = v2 ∈ V2(F ) we proceed similarly. Let r′ ≤ r be the number of prongs of the
fork that contains v2. We define indicator variables 1′

i for the events φ(i, 2) = v2 for i ∈ [s] and
random variables

Yi =
(

1′
i − r′

|F |

)

ai,2

q .

with EYi = 0 and |Yi| ≤ 1. The rest of the argument showing that σ(v2) occurs with probability
strictly less than 1/(2|F |) is completely analogous to the case v = v1 above. With this we are
done. �

As explained earlier these two previous lemmas will allow us to assign the shrubs of a tree T to
edges of a reduced graph G. By applying them we will obtain a mapping ψ from the vertices of T
to those of G that is a homomorphism when restricted to the shrubs of T . The following lemma
transforms such a ψ to a homomorphism h from the whole tree T to G that “almost” coincides
with ψ provided the structures of T and G are “compatible” with respect to ψ in the sense of the
following definition.

Definition 19 (walk condition). Let T be a tree and C ⊆ V (T ). A mapping ψ : V (T ) \ C → G

satisfies the walk condition if for any x, y ∈ V (T ) \ C such that there is a path Px,y from x to y
whose internal vertices are all in C there is a walk Px,y between ψ(x) and ψ(y) in G such that the
length of Px,y and the length of Px,y have the same parity.

Lemma 20. Let T be a tree with maximum degree ∆, let C be a cut of T , and let G be a graph on k
vertices. Let ψ : V (T ) \ C → V (G) be a homomorphism that maps each shrub of T corresponding
to C to an edge of G and that satisfies the walk condition. Then there is a homomorphism
h : V (T ) → V (G) satisfying

(h1) |h(NT (x))| ≤ 2 for all vertices x ∈ V (T ) and
(h2) |{x ∈ V (T ) : h(x) 6= ψ(x)}| ≤ 3|C|∆2k+1.

Observe that Property (h1) in this lemma asserts that images of neighbours of any vertex in T
occupy at most two vertices in G. By assumption, this is clearly true for ψ but we need to make
sure that h inherits this feature. Property (h2) on the other hand states that h and ψ do not differ
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much. The assumption that ψ satisfies the walk condition is essential for the construction of the
homomorphism h.

Proof of Lemma 20. We start with some definitions. Choose a non-empty shrub corresponding
to C in T and call it shrub 1. Then choose a cut-vertex x∗0 ∈ C adjacent to this shrub. We
consider x∗0 as the root of the tree T . This naturally induces the following partial order ≺ on
the vertices V (T ) of T : For vertices x, y ∈ V (T ) we have x ≺ y iff y is a descendant of x in the
tree T with root x∗0. Note that x∗0 is the unique minimal element of ≺ and the leaves of T are
its maximal elements. Further, for x ∈ C set Wx := {z ∈ V (T ) : distT (x, z) ≤ 2k + 1 & x ≺ z}
and let W = C ∪⋃

x∈C Wx. Observe that the bound on the maximum degree of T implies that

|W | ≤ 2∆2k+1|C| + |C| ≤ 3∆2k+1|C|. For x ∈ V (T ) \W , we set h(x) := ψ(x). This ensures that
Condition (h2) is fulfilled. In addition the following fact holds because ψ maps each shrub to an
edge of G.

Fact 1. The mapping h restricted to V (T )\W is a homomorphism. For all vertices x ∈ V (T )\W
all children y of x that are not cut-vertices have the same h(y). �

We shall extend h to the set W . Our strategy is roughly as follows: We start by defining h(x∗0)
for the root cut-vertex x∗0 in a suitable way. Recall that all children of x∗0 are contained in W .
Then, we let h map all non-cut-vertex children y ∈ NT (x∗0) \ C of x∗0 to a suitable neighbour of
h(x∗0) in G and do the following for each of these y. Observe that y is the root of some shrub, which
we will call the shrub of y. Now, h(y) and ψ(y) might be different. However, we will argue that
there is a walk in G of even length m ≤ 2k between h(y) and ψ(y). Then we will define h for all
vertices y′ ∈Wx∗

0
contained in the shrub of y and with distance at most m from y. More precisely

we will use the walk of length m between h(y) and ψ(y) and let h map all y′ with distance i to y
to the i-th vertex of this walk. All vertices z in the shrub of y for which h is still undefined after
these steps are then mapped to h(z) := ψ(z). Once this has been done for all y ∈ NT (x∗0) \ C we
proceed in the same way with the next cut-vertex: We choose a cut-vertex x∗ with parent x for
which h(x) is already defined and proceed similarly for x∗ as we did for x∗0.

We now make the procedure for the extension of h on W precise. Throughout this procedure
we will assert the following property for all non-cut vertices y of T such that h(y) is defined.

There is a walk of even length in G between h(y) and ψ(y). (8)

Observe that (8) trivially holds for all y ∈ V (T ) \W .
As explained, we start our procedure with the root x∗0 of the tree T . Let x1 be the root of

shrub 1. By definition x1 is adjacent to x∗0. Note that, while ψ is not defined on x∗0 it is defined
on x1. Hence we can legitimately set h(y) = ψ(x1) for all neighbours y /∈ C of x∗0 in T and choose
h(x∗0) arbitrarily in NG(ψ(x1)). Observe that this is consistent with (8) because for any neighbour
y /∈ C of x∗0 we have h(y) = ψ(x1) and distT (y, x1) ∈ {0, 2}. By assumption ψ satisfies the walk
condition. Hence there is a walk in G with even length between h(y) = ψ(x1) and ψ(y). Let
Py = v0, v1, . . . , vm be a walk in G of minimum even length with v0 = h(y) and vm = ψ(y). As G

has k vertices we have that m ≤ 2k. For all vertices z ∈W that are in the shrub of y and satisfy
distT (y, z) = j for some j ≤ m, we then define h(z) := vj . For the remaining vertices z ∈W in the
shrub of y we set h(z) := ψ(z). Observe that this is again consistent with (8) and in conjunction
with Fact 1 implies the following condition (which we will also guarantee throughout the whole
process of defining h).

Fact 2. Let x∗ ∈ C and y /∈ C such that h(x∗) and h(y) are defined. Then the following holds:

(i) All children y′ /∈ C of x∗ have the same h(y′) and h(x∗)h(y′) ∈ E(G).
(ii) All children y′ /∈ C of y have the same h(y′) and h(y)h(y′) ∈ E(G).

�

In this way we have defined h for all shrubs adjacent to the root x∗0.
Next we consider any vertex x∗ ∈ C ∩ NT (x∗0) and set h(x∗) := h(x1), where x1 is as defined

above. We let z∗ be the parent of x∗, i.e., z∗ = x∗0. Then set h(y) := h(z∗) for all children
y /∈ C of x∗. This is consistent with Fact 2. Afterwards we have the following situation: x∗ and
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z∗ = x∗0 are neighbouring cut-vertices and the vertex x1 is a non-cut-vertex neighbour of x∗0. Let
y ∈ NT (x∗) \ C. Then we have distT (x1, y) = 3. Because y and x1 are both non-cut vertices the
properties of ψ imply as before that there is a walk in G of odd length between ψ(x1) and ψ(y).
By the walk condition and the facts that h(x1) = ψ(x1) and h(x∗0) = h(y), we know that in G

there is a walk Py of even length m ≤ 2k between h(y) and ψ(y). This verifies (8) for y. We thus
can define h for the vertices z contained in the shrub of y as above: if distT (y, z) ≤ m then we use
this walk and set h(z) according to distT (y, z) and otherwise we set h(z) := ψ(z). With this we
stay consistent with (8) and Fact 2. We then repeat the above procedure for all x∗ ∈ C ∩ NT (x∗0)
which implies that the next fact holds true.

Fact 3. All vertices x ∈ NT (x∗0) have the same h(x). �

Now we are in the following situation.

Fact 4. Suppose that h(x∗) is defined for a cut vertex x∗. Then h is defined on all shrubs adjacent
to x∗. Moreover, for each cut vertex x∗ for which h(x∗) is undefined and which has a parent z for
which h(z) is defined, this parent z has itself a parent z′ with h(z′) defined and h(z)h(z′) is an
edge of G. �

As long as h is not defined for all z ∈ V (T ) we then repeat the following. We choose a cut
vertex x∗ with h(x∗) undefined that is minimal with respect to this property in ≺. Denote the
parent of x∗ by z and let z′ be the parent of z. Then, by Fact 4, the mapping h has already
been defined for z′ and z. Set h(x∗) := h(z′) and for all children y /∈ C of x∗ set h(y) := h(z).
Because h(z′)h(z) is an edge of G by Fact 4 this gives the following property for x∗ (which we,
again, guarantee throughout the definition of h).

Fact 5. For all cut vertices x∗ ∈ C with h(x∗) defined we have that h(x∗)h(z) is an edge of G,
where z is the parent of x∗. Moreover if x∗ /∈ {x∗0} ∪ (C ∩ NT (x∗0)), we have that h(x∗) = h(z′),
where z′ is the parent of z. �

Because (8) holds for z′ and distT (x∗, z′) = 2, the definition of h(y) is consistent with (8), i.e.
there is a walk of even length in G between h(y) and ψ(y) for all children y /∈ C of x∗. Accordingly
we can again define h for the vertices in the shrub of y as before, using this walk.

This finishes the description of the definition of h. It remains to verify that h is a homomorphism
and satisfies Condition (h1). For the first part it suffices to check that for any y ∈ V (T ) \ {x∗0}
with parent x we have h(y) ∈ NG(h(x)). If y is a vertex in some shrub then Facts 2(i) and 2(ii)
imply that h(x)h(y) is an edge of G. If y is a cut-vertex, on the other hand, Fact 5 implies that
h(x)h(y) is an edge of G. So h is a homomorphism.

Further, by Fact 2(i) and (ii) we get for all vertices x of T that all children x′ /∈ C of x have
the same h(x′). By Fact 5, if x 6= x∗0 then all children x′ ∈ C of x and the parent z of x have the
same h(x′) = h(z′). Together wit Fact 3, this implies Property (h1). �

Now we are ready to prove Lemma 14.

Proof of Lemma 14. Given ε, µ > 0 with ε ≤ µ/10 and k ∈ N we set α, n0 and an auxiliary
constant β > 0 such that

α · (2k + 1) = 1
2 , β = εµ/(500k3), and n0 = (1500k/(εµ))4. (9)

Let G be a graph of order k that has an odd joined matching M of size at least m or a fork system F

of size at least f and ratio r. Let T be a tree satisfying the respective conditions of Case (M) or (F)
and let V1(T ) and V2(T ) denote the two partition classes of T with t1 = |V1(T )| ≥ |V2(T )| = t2.
We first construct a q-cut C for T with q := βn ≤ εnk . Lemma 15 asserts that there is such a
cut C with

|C| ≤ |V (T )|
q

≤ (1 − µ)2k n
k

βn

(9)

≤ 1000k3

εµ

(9)

≤ ε
n

k
. (10)

Let T1, . . . , Ts be the shrubs of T corresponding to the cut C. We now distinguish whether we
are in Case (M) or (F) of the lemma. In both cases we will construct a mapping ψ that is a
homomorphism from T − C to either M or F and satisfies the walk condition. After this case
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distinction the mapping ψ will serve as input for Lemma 20 which we then use to finish this proof.

Case (M) : In this case we apply Lemma 16 in order to obtain an assignment of the shrubs to
matching edges of M as follows. Set ai,j := |V (Ti)∩Vj(T )| for all i ∈ [s], j ∈ [2]. This implies that
∑

i,j ai,j ≤ |V (T )| ≤ t = (1−µ)2mn
k and, because C is an q-cut, that ai,1 + ai,2 ≤ q for all i ∈ [s].

Accordingly Lemma 16 produces a mapping φ : [s] × [2] → V (M) satisfying φ(i, 1)φ(i, 2) ∈ M

and (5).
We now use φ to construct a mapping ψ : T \ C → V (M). Set ψ(v) := φ(ai,j) for all v ∈

V (Ti) ∩ Vj . Note that this definition together with (5) gives

|ψ−1(ℓ)| ≤ t

2m
+ 2q ≤ (1 − µ)

n

k
+ 2βn (11)

for all vertices ℓ of M. Each edge of T −C lies in some shrub Ti, i ∈ [s] and as the mapping φ sends
each shrub Ti to an edge of M, the mapping ψ is a homomorphism from T − C to M. Moreover,
as M is an odd joined matching, for any pairs of vertices ℓ, ℓ′ ∈ V (M) there are both an even and
an odd walk in G between ℓ and ℓ′. Thus ψ satisfies the walk condition.

Case (F) : In this case we apply Lemma 17 in order to obtain an assignment of the shrubs
corresponding to C to edges of the connected fork system F. For this application we use parameters
t1 = |V1(T )|, t2 = |V2(T )| and ai,j := |V (Ti) ∩ Vj(T )| for all i ∈ [s], j ∈ [2]. It follows that
∑

i ai,1 = t1 and
∑

i ai,2 = t2. Because C is a q-cut, we further have ai,1 + ai,2 ≤ q for all i ∈ [s].
Accordingly Lemma 17 produces a mapping φ : [s] × [2] → V (F) satisfying φ(i, 1)φ(i, 2) ∈ F

and (6).
Again, we use φ to construct the mapping ψ : T \ C → V (F) by setting ψ(v) := φ(ai,j) for all

v ∈ V (Ti) ∩ Vj(T ). By assumption we have t1 ≤ t′ = (1 − µ)f n
k and t2 ≤ t′

r = (1 − µ)f n
rk and

hence t1 + t2 ≤ (1 − µ)f n
k (1 + 1

r ). We write V1(F) and V2(F) to refer to the intersection of V (F)
with the respective partition classes of the bipartite continent G

′
<F>, G′ ⊆ G, in which F has size

f . Together with (6) this implies for all vertices ℓ1 ∈ V1(F) and ℓ2 ∈ V2(F) that

|ψ−1(ℓ1)| ≤ (1 − µ)f n
k

f
+
√

12(1 − µ)f n
k (1 + 1

r )qf

≤ (1 − µ)n
k + 2fn

√

6β/k ,

(12)

and similarly

|ψ−1(ℓ2)| ≤ r(1 − µ)f n
rk

f
+ 2fn

√

6β/k ≤ (1 − µ)
n

k
+ 2fn

√

6β/k . (13)

Putting (12) and (13) together, we conclude for any ℓ ∈ V (F) that

|ψ−1(ℓ)| ≤ (1 − µ)n
k + 2fn

√

6β/k ≤ (1 − µ)n
k + 2n

√

6βk . (14)

As before it is easy to see that the mapping ψ is a homomorphism from T −C to F. Moreover,
as F is a fork system, F is joined and bipartite with partition classes V1(F) and V2(F). Hence there
is an even path between any two vertices ℓ, ℓ′ ∈ V1(F) and between any two vertices ℓ, ℓ′ ∈ V2(F),
and an odd path between any two vertices ℓ ∈ V1(F) and ℓ′ ∈ V2(F). Because ψ maps vertices of
V1(T ) to V1(F) and vertices of V2(T ) to vertices of V2(F), the mapping ψ also satisfies the walk
condition in this case.

Applying Lemma 20 : In both Cases (M) and (F) we now apply Lemma 20 in order to trans-
form ψ into a homomorphism from the whole tree T to G. With input T , ∆ := nα, C, G, and ψ
this lemma produces a homomorphism h : V (T ) → V (G) satisfying (h1) and (h2). We claim
that h is the desired (1 − µ/2)(1 − ε)n

k -valid assignment.
Indeed, h is a homomorphism and so we have Condition 1 of Definition 11. Condition 2 follows

from (h1). To check Condition 3 let ℓ be any vertex of G. We need to verify that |h−1(ℓ)| ≤
(1 − 1

2µ)(1 − ε)n
k . By (h2) we have |h−1(ℓ)| ≤ |ψ−1(ℓ)| + 3|C|∆2k+1. Because |C| ≤ 1000k/(εµ)
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by (10) and ∆2k+1 = nα·(2k+1) =
√
n by (9) we infer that

|h−1(ℓ)| ≤ |ψ−1(ℓ)| +
3000k

εµ

√
n

(9)

≤ |ψ−1(ℓ)| + βn

(11),(14)

≤ (1 − µ)n
k + max

{

2βn, 2n
√

6βk
}

+ βn
(9)

≤ (1 − 1
2µ)(1 − ε)n

k ,

where in the last inequality we use that ε ≤ µ/10. �

6. Proof of the main embedding lemma

Our proof of Lemma 13 uses a greedy strategy for embedding the vertices of a tree with valid
assignment into the given host graph.

Proof of Lemma 13. Let V0∪̇V1∪̇ . . . ∪̇Vk be an (ε, d)-regular partition of G with reduced graph G

and let T be a tree with ∆(T ) ≤ ∆ and with a (1 − ̺)(1 − ε)n
k -valid assignment h to G. Further,

let C be an q-cut of T , let T1, . . . , Ts be the shrubs of T corresponding to C, and assume that

( 1
10d̺− 10ε)n

k ≥ |C| + q + ∆ . (15)

As last preparation we arbitrarily divide each cluster Vi = V ′
i ∪̇V ∗

i into a set V ′
i of size (1− 1

2̺)|Vi|,
which we will call embedding space, and the set of remaining vertices V ∗

i , the so-called connecting
space. Next we will first specify the order in which we embed the vertices of T into G, then
describe the actual embedding procedure, and finally justify the correctness of this procedure.

Pick an arbitrary vertex x∗1 ∈ C as root of T and order the cut vertices C = {x∗1, . . . , x∗q}, c = |C|
in such a way that on each x∗1 −x∗i -path in T there are no x∗j with j > i. Similarly, for each i ∈ [s]
let t(i) denote the number of vertices in the shrub Ti and order the vertices y1, . . . , yt(i) of Ti
such that all paths in Ti starting at the root of Ti have solely ascending labels. For embedding T
into G we process the cut vertices and shrubs according to these orderings, more precisely we first
embed x∗1, then all shrubs Ti that have x∗1 as parent, one after the other. For embedding Ti we
embed its vertices in the order y1, . . . , yt(i) defined above. Then we embed the next cut vertex x∗2
(which is a child of one of the shrubs embedded already or of x∗1), then all child shrubs of x∗2, and
so on. Let x1, . . . , x|V (T )| be the corresponding ordering of V (T ).

Before turning to the embedding procedure itself, observe that Property 2 of Definition 11
asserts the following fact. For a vertex xj of T and for i ∈ [k] let Ni(xj) be the set of neighbours xj′
of xj in T with j′ > j and h(xj′) = i.

Fact 1. For every vertex xj of T at most two sets Ni(xj) are non-empty. �

The idea for embedding T into G is as follows. We equip each vertex x ∈ V (T ) with a candidate
set V (x) ⊆ Vh(x) and from which x will choose its image in G. To start with, we set V (x∗) := V ∗

h(x∗)

for all vertices x∗ ∈ C and V (x) := V ′
h(x) for all other vertices x. Cut vertices will be embedded

to vertices in a connecting space and non-cut vertices to vertices in an embedding space. Then we
will process the vertices of T in the order x1, . . . , x|V (T )| defined above and embed them one by
one. Whenever we embed a cut vertex x∗ to a vertex v in this procedure we will set up so-called
reservoir sets Ri ⊆ Vi ∩ NG(v) for all (at most two) clusters Vi such that some child x of x∗ is
assigned to Vi, i.e., h(x) = i. Reservoir sets will be used for embedding the children x of cut
vertices x∗. They are necessary because the embedding of x∗ will cause the candidate set V (x)
of x to shrink to a size s and it can happen that more than s vertices are embedded before we
attempt to embed x. The reservoir sets assert that these vertices do not eat up V (x). More
precisely, when embedding x∗ then for each child x of x∗ we restrict V (x) to some reservoir set.
Then we (temporarily) remove the vertices in these reservoir sets from all other candidate sets but
put them back after processing all child shrubs of x∗. This will ensure that we have enough space
for embedding the children of x∗, even after possibly embedding ∆ − 1 child shrubs of x∗.

Now let us provide the details of the embedding procedure. Throughout, x∗ will denote the
cut vertex whose child-shrubs are currently processed. The set U will denote the vertices in G
used so far; thus initialise this set to U := ∅. As indicated above, initialise V (x∗) := V ∗

h(x∗) for all

vertices x∗ ∈ C and V (x) := V ′
h(x) for x ∈ V (T ) \ C, and set Ri := ∅ for all i ∈ [k]. Recall the
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definition of typical vertices with respect to a set of vertices in a regular pair (see Lemma 2 and
the definition below this lemma). For constructing an embedding f : V (T ) → V (G) of T into G,
repeat the following steps:

1. Pick the next vertex x from x1, . . . , x|V (T )|.
2. Choose a vertex v ∈ V (x) \ U that is typical with respect to V (y) \ U for all unembedded
y ∈ NT (x), set f(x) = v, and U := U ∪ {v}.

3. For all unembedded y ∈ NT (x) set V (y) := (V (y) \ U) ∩ NG(v).
4. If x ∈ C then set x∗ := x. Further, for all i with Ni(x) \ C 6= ∅ arbitrarily choose a reservoir

set Ri ⊆ (V ′
i \ U) ∩ NG(v) of size 5εnk + ∆, set V (y) := Ri for all y ∈ Ni(x) \ C, and

(temporarily) remove Ri from all other candidate sets in V ′
i , i.e., set V (y′) := V (y′) \Ri for all

y′ ∈ V (T ) \ Ni(x).
5. After the vertices of all child shrubs of x∗ are embedded put the vertices in Ri back to all

candidate sets in V ′
i for all i ∈ [k], i.e., V (y) := V (y) ∪ Ri for all y ∈ V (T ) \ C with h(y) = i,

and set Ri := ∅.

Steps 3 and 4 of this procedure guarantee for each vertex y with embedded parent x that the
candidate set V (y) is contained in NG(f(x)). Accordingly, if we can argue that in Step 2 we can
always choose an image v of x in V (x) (and that we can choose the reservoir sets in Step 4) we
indeed obtain an embedding f of T into G. To show this we first collect some observations that
will be useful in the following analysis. The order of V (T ) guarantees that all child shrubs of a
cut vertex are embedded before the next cut vertex. Notice that this implies the following fact
(cf. Step 4 and Step 5).

Fact 2. For all i ∈ [k], at any point in the procedure, the reservoir set Ri satisfies |Ri| = 5εnk + ∆
if there is a neighbour x of the current cut-vertex x∗ such that h(x) = i and |Ri| = 0 otherwise.
In addition no reservoir set gets changed before all child shrubs of x∗ are embedded. �

Further, since h is a (1 − ̺)(1 − ε)n
k -valid assignment and only cut-vertices are embedded into

connecting spaces V ∗
i , we always have

|V ′
i ∩ U | ≤ (1 − 1

2̺)n
k and |V ∗

i ∩ U | ≤ |C| for all i ∈ [k] . (16)

Now we check that Steps 2 and 4 can always be performed. To this end consider any iteration of
the embedding procedure and suppose we are processing vertex x. We distinguish three cases.

Case 1: Assume that x is a cut-vertex. Then we had V (x) = V ∗
h(x) until the parent x′ of x

got embedded. In the iteration when x′ got embedded then the set V (x) shrunk to a set of size
at least (d− ε)|V ∗

h(x) \ U | in Step 3 because f(x′) is typical with respect to V ∗
h(x) \ U . No vertices

embedded between x′ and x (except for possible vertices in C) alter V (x), and so by (16) we have

|V (x) \ U | ≥ (d− ε)|V ∗
h(x)| − |C| ≥ (d− ε) 1

2̺
n
k − |C|

(15)

> 4εnk

when we are about to choose f(x). By Fact 1 at most two of the sets Ni(x) are non-empty
and each of these two sets can contain cut vertices y∗ and non-cut vertices y′. We clearly have
V (y∗) = V ∗

i and V (y′) = V ′
i and so there are at most 4 different sets V (y) \ U , each of size at

least 1
2̺

n
k − |C| > εnk by (16) and (15), with respect to which we need to choose a typical f(x).

By Lemma 2 there are less than 4εnk vertices in V (x) \ U (which is a subset of Vi) that do not
fulfil this requirement. Hence we can choose f(x) whenever x ∈ C. In addition, we can choose
the reservoir sets in Step 4 of this iteration: Indeed, let i be such that Ni(x) \ C 6= ∅ and let
y ∈ Ni(x) \C be a neighbour of x we wish to embed to Vi. In Step 2, when we choose f(x), then
V (y) = V ′

i and so f(x) is typical with respect to V ′
i \ U . By Lemma 2 and (16) we thus have in

Step 3 of this iteration that

|(V ′
i \ U) ∩ NG(v)| ≥ (d− ε)|V ′

i \ U | ≥ (d− ε) 1
2̺

n
k

(15)

≥ 5εnk + ∆.

Therefore we can choose Ri in Step 4.

Case 2: Assume that x is not in C but the child of a cut vertex x∗. Then V (x) = Rh(x) before x
gets embedded. Moreover, due to Step 4, Ri has been removed from all candidate sets besides
those of the at most ∆ neighbours of x∗. By Fact 2 we have |Rh(x)| = 5εnk +∆ and so we conclude
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that |V (x)\U | ≥ 5εnk > 4εnk . As in the previous case, there are at most four different sets V (y)\U
for unembedded neighbours y of x, each of size at least 1

2̺
n
k − |Rh(y)| = 1

2̺
n
k − 5εnk − ∆ ≥ εnk

by (15) and (16). Thus Lemma 2 guarantees that there is v ∈ V (x) \ U which is typical with
respect to all these sets V (y) \ U and hence we can choose f(x) in this case.

Case 3: As third and last case, let x be a vertex of some shrub Tj which is the child of a (non-
cut) vertex x′ of Tj . Until x′ got embedded we had V (x) = V ′

h(x) \ Rh(x) and so, v′ = f(x′) was

chosen typical with respect to V ′
h(x)\(Rh(x)∪U) where U is the set of used vertices in G at the time

when x′ got embedded. In the corresponding iteration V (x) shrunk to (V ′
h(x)\(Rh(x)∪U))∩NG(v′).

This together with (16) implies that immediately after this shrinking we had

|V (x) \ U | ≥ (d− ε)( 1
2̺

n
k − |Rh(x)|) ≥ (d− ε)( 1

2̺
n
k − 5εnk − ∆)

(15)

> 4εnk + |Tj |.
By construction only vertices from Tj come between x′ and x in the order of V (T ) and so when
we want to embed x in the procedure above we still have |V (x) \U | > 4εnk where U now is the set
of vertices used until the embedding of x. Similarly as in the other two cases there are at most
four different types of candidate sets for non-embedded neighbours of x, all of these have more
than εnk vertices and so Lemma 2 allows us to choose an f(x) ∈ V (x) \ U typical with respect to
these sets. This concludes the case distinction and hence the proof of correctness of our embedding
procedure. �

7. Coloured tripartite graphs are either good or odd

In this section we provide the proofs of Lemma 9 (in subsection 7.2) and Lemma 10 (in subsec-
tion 7.3). Before turning to these proofs we first collect some simple but useful propositions (in
subsection 7.1).

7.1. Some tools. We start with two observations about matchings in η-complete graphs. The
first one states that a bipartite η-complete coloured graph contains a reasonably big matching in
one of the two colours.

Proposition 21. Let K be a coloured graph on n vertices and let D and D′ be vertex sets of size
at least m in K. If K[D,D′] is η-complete then K[D,D′] contains a matching M either in red or
in green of size at least m

2 − ηn.

Proof. Assume without loss of generality that |D| ≤ |D′|. Colour a vertex v ∈ D with red if it
has more red-neighbours than green-neighbours in K[D,D′] and with green otherwise. By the
pigeon-hole principle there is a set X ⊆ D of size at least 1

2 |D| such that all vertices in X have the

same colour, say red. But then each vertex in X has at least 1
2 |D′|−ηn ≥ |X|−ηn red-neighbours

in D′. Accordingly we can greedily construct a red matching of size at least |X| − ηn ≥ m
2 − ηn

between X and D′. �

The next proposition gives a sufficient condition for the existence of an almost perfect matching
in a subgraph of K ∈ Kη

n.

Proposition 22. Let K ∈ Kη
n have partition classes V (1), V (2), and V (3) and let U (1) ⊆ V (1),

U (2) ⊆ V (2), U (3) ⊆ V (3) with |U (1)| ≥ |U (2)| ≥ |U (3)|. If |U (1)| ≤ |U (2) ∪ U (3)| then there is a
matching in K[U (1), U (2), U (3)] covering at least |U (1) ∪ U (2) ∪ U (3)| − 4ηn− 1 vertices.

Proof. Let x := |U (2)| − |U (3)| and y := ⌊ 1
2 (|U (1)| − x)⌋. Observe that x ≤ |U (2)| ≤ |U (1)|.

Hence y ≥ 0, x + y ≤ 1
2 (|U (1)| + x) ≤ 1

2 (|U (2) ∪ U (3)| + x) = |U (2)|, and y ≤ 1
2 (|U (1)| − x) ≤

1
2 (|U (2) ∪ U (3)| − x) = |U (3)|. Choose arbitrary subsets W (2) ⊆ U (2) of size x + y, W (3) ⊆ U (3)

of size y, set W := W (2) ∪W (3), W̄ (2) := U (2) \W (2) and W̄ (3) := U (3) \W (3). Clearly |W̄ (3)| =
|U (3)|−y = |U (2)|− (x+y) = |W̄ (2)| and |U (1)|−1 ≤ x+2y = |W | ≤ |U (1)|. Thus we can choose a
subset W ′ of U (1) of size |W | that covers all but at most 1 vertex of U (1) and so that K[W,W ′] and
K[W̄ (2), W̄ (3)] are η-complete balanced bipartite subgraphs. A simple greedy algorithm allows us
then to find matchings of size at least |W | − ηn and |W̄ (2)| − ηn in K[W,W ′] and K[W̄ (2), W̄ (3)],
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respectively. These matchings together form a matching in K[U (1), U (2), U (3)] covering at least
|W ∪W ′ ∪ W̄ (2) ∪ W̄ (3)| − 4ηn ≥ |U (1) ∪ U (2) ∪ U (3)| − 4ηn− 1 vertices. �

The following proposition shows that induced subgraphs of η-complete tripartite graphs are
connected provided that they are not too small. Moreover, subgraphs that substantially intersect
all three partition classes contain a triangle.

Proposition 23. Let K ∈ Kη
n be a graph with partition classes V (1), V (2), V (3), and let U (1) ⊆

V (1), U (2) ⊆ V (2), U (3) ⊆ V (3).

(a) If |U (1)| > 2ηn then every pair of vertices in U (2) ∪ U (3) has a common neighbour in U (1).
(b) If |U (1)|, |U (2)| > 2ηn then K[U (1), U (2)] is connected.
(c) If |U (1)|, |U (2)|, |U (3)| > 2ηn then K[U (1), U (2), U (3)] contains a triangle.

Proof. As K ∈ Kη
n, each vertex in U (2)∪U (3) is adjacent to at least |U (1)|−ηn > |U (1)|/2 vertices

in U (1). Thus every pair of vertices in U (2) has a common neighbour in U (1) which gives (a). For
the proof of (b) observe that by (a) every pair of vertices in U (2) has a common neighbour in U (1).
Since the same holds for pairs of vertices in U (1) the graph K[U (1), U (2)] is connected. To see (c)
we use (a) again and infer that every pair of vertices in U (1) × U (2) has a common neighbour
in U (3). As |U (1)|, |U (2)| > 2ηn there is some edge in U (1) × U (2) and thus there is a triangle in
K[U (1), U (2), U (3)]. �

Similar in spirit to (c) of Proposition 23 we can enforce a copy of a cycle of length 5 in a system
of η-complete graphs as we show in the next proposition.

Proposition 24. Let K be a coloured graph on n vertices, let χ be a colour, vw be a χ-coloured
edge of K, and let D1, D2, D3 ⊆ V (K) such that all graphs K[v,D1], K[D1, D2], K[D2, D3], and
K[D3, w] are (η, χ)-complete bipartite graphs. Set D :=

⋃

i∈[3]Di ∪ {v, w}. If |Di| > 2ηn + 2 for

all i ∈ [3] then K[D] contains a χ-coloured copy of C5.

Proof. By Proposition 23(a) every pair of vertices in D1 ∪D3 is connected by a path of colour χ
and length 2 with centre in D2 \ {v, w}. Moreover, v has at least |D1| − ηn ≥ 1 neighbours in D1

and similarly w has a neighbour in D3. Hence there is a χ-coloured C5 in K[D]. �

7.2. Non-extremal configurations. In this subsection we prove Lemma 9. In the proof of
Lemma 9 we will use that coloured graphs K from Kη

n have the following property P . Either
one colour of K has a big odd joined matching or both colours have big joined matchings whose
continents are bipartite. Analysing these bipartite configurations will then lead to a proof of
Lemma 9. Property P is a consequence of the next lemma, Lemma 25, which states that if all
joined matchings in a colour of K are small then the other colour has bigger odd joined matchings.

Lemma 25 (improving lemma). For every η′ > 0 there are η > 0 and n0 ∈ N such that for all
n ≥ n0 the following holds. Suppose that a coloured graph K ∈ Kη

n is neither η′-extremal nor
3
4 (1− η′)n-odd. Let M be a maximum joined matching in K of colour χ. If η′n < |M | < (1− η′)n
then K has an odd joined matching M ′ in the other colour satisfying |M ′| > |M |.
Proof. Given η′ define η̃ := η′/3 and let η be small enough and n0 large enough so that ( 1

100η
′ −

5η)n0 > 1 (and hence η < 1
500η

′). For n ≥ n0 let K = (V (1)∪̇V (2)∪̇V (3), E) be a coloured graph

from Kη
n with partition classes V (1), V (2), and V (3) that is neither η′-extremal nor (1 − η′)3n/4-

odd. Suppose χ = green and hence that K has a maximum green joined matching M with
η′n < |M | < (1 − η′)n. For i 6= j ∈ [3] let Mij := M ∩ (V (i) × V (j)). We call the sets Mij the
blocks of M and say that a block Mij is substantial if |Mij | ≥ η̃n. Let R be the set of vertices in

K not covered by M . For i ∈ [3] let Ri := R ∩ V (i).

Fact 1. We have |R1| − |M23| = |R2| − |M13| = |R3| − |M12| > η′n.

Indeed, |R1| + |M12| + |M13| = |R2| + |M12| + |M23| and hence |R1| − |M23| = |R2| − |M13| =
|R2|−|M13| which proves the first part of this fact. For the second part observe that |R1|+2|M12|+
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|R2|+2|M23|+|R3|+2|M13| = 3n. Hence we conclude from |M | = |M12|+|M23|+|M13| < (1−η′)n
that

3(|R1| − |M23|) = (|R1| − |M23|) + (|R2| − |M13|) + (|R3| − |M12|)
= 3(n− |M12| − |M23| − |M13|) > 3η′n.

This finished the proof of Fact 1. �

In the remainder we assume without loss of generality that |R1| ≥ |R2| ≥ |R3|. By Fact 1 this
implies that |M23| ≥ 1

3η
′n since |M | > η′n and hence M23 is substantial. Our next main goal is

to find a joined matching in red that is bigger than M . For achieving this goal the following fact
about red connections between vertices of R will turn out useful.

Fact 2. There is a vertex u∗ ∈ R1 such that R− u∗ is red joined.

To see this, assume first that there is a vertex u∗ ∈ R1 that has more than 4ηn green-neighbours
in M23. Then more than 2ηn of these neighbours are in, say, M23 ∩ V (2). Call this set of

vertices V
(2)
∗ . Now let u 6= u∗ be any vertex in R \V (3). By the maximality of M the vertex u has

no green-neighbours in M(V
(2)
∗ ). This implies that u has at least |M(V

(2)
∗ )| − ηn > |M(V

(2)
∗ )|/2

red-neighbours in M(V
(2)
∗ ). Thus any two vertices in R \ V (3) have a common red-neighbour in

M(V
(2)
∗ ). A vertex u ∈ R3 on the other hand has at least |R1| − ηn ≥ |M23|+ η′n− ηn > 2ηn+ 1

neighbours in R1 where the first inequality follows from Fact 1. If at least 2 of these neighbours
are red then u is red connected to R1 − u∗. Otherwise u has a set U of more than 2ηn green-
neighbours in R1−u∗. But then, by the maximality of M , the graph K[U,M23∩V (2)] is red. Since
|M23| ≥ η′n > ηn the vertex u has a neighbour v in M23 ∩ V (2). Since u has a green-neighbour in
R1 it follows from the maximality of M that uv is red. Thus u is red connected to U and therefore
to all vertices of (R \ V (3)) − u∗.

If there is no vertex in R1 with more than 4ηn green-neighbours in M23 on the other hand,
then any two vertices in R1 obviously have at least |M23| − 4ηn− 2ηn ≥ 1

3η
′n− 6ηn > 0 common

red-neighbours in V (2)∩M23. Moreover, by the maximality of M , each vertex v ∈ R3∪R2 is either
red connected to R1 or it has only red-neighbours in M23. Thus v has a common red-neighbour
with any vertex in R1 which proves Fact 2 also in this case. �

Fact 3. K has a red joined matching M ′ with |M ′| ≥ |M | + 1
4η

′n.

Let uv be an arbitrary edge in M23. Then, by the maximality of M , one vertex of this edge,
say u, has at most one green-neighbour in R1. By Fact 1 we have |R1| ≥ |M23| + η′n and since u
has at most ηn < η′n non-neighbours in R1 it follows that u has at least |M23|+ 1 red-neighbours
in R1. Thus, a simple greedy method allows us to construct a red matching M ′

23 of size |M23|
between R1 − u∗ and such vertices u of matching edges in M23. Let R′

1 be the set of vertices
in R1 not covered by M ′

23. We repeat this process with M13 and M12, respectively, to obtain red
matchings M ′

13 and M ′
12 and sets R′

2 and R′
3.

By maximality of M , for each vertex w ∈ R′
1 the following is true: either w has no green-

neighbour in M23, or w has no green-neighbour in R′
2. Moreover w has at most ηn non-neighbours.

Observe that |R′
2|, |R′

1| > η′n by Fact 1 and the set X of vertices in M23 that are not covered by
M ′

23 has size at least 1
3η

′n since |M23| = |M ′
23| ≥ 1

3η
′n and each edge of M ′

23 uses exactly one
vertex from M23. This implies that we can again use a greedy method to construct a red matching
M ′

R with edges from (R′
1 − u∗)× (R′

2 ∪X) of size at least 1
3η

′n− ηn− 1 ≥ 1
4η

′n. Hence we obtain

a red matching M ′ := M ′
23∪̇M ′

13∪̇M ′
12∪̇M ′

R of size at least |M | + 1
4η

′n. For establishing Fact 3 it
remains to show that M ′ is red joined. This follows from Fact 2 since each edge of M ′ intersects
R− u∗. �

If the matching M ′ is odd then the proof of Lemma 25 is complete. Hence assume in the
remainder that M ′ is even. Since M ′ intersects R − u∗ this together with Fact 2 immediately
implies the next fact. For simplifying the statement as well as the following arguments we will
first delete the vertex u∗ from K (and let K denote the resulting graph from now on).

Fact 4. No odd red cycle in K contains a vertex of R. �
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Fact 8 below uses this observation to conclude that K is extremal, contradicting the hypothesis
of Lemma 25. To prepare the proof of this fact we first need some auxiliary observations.

Fact 5. For any choice of i, j, k such that {i, j, k} = {1, 2, 3}, if Mij is a substantial block then
there is a vertex v∗ ∈ Rk such that K[Mij , Rk − v∗] is red and K[Mij ] is green.

We first establish the first part of the statement. We may assume that there are vertices
v∗ ∈ Rk and v ∈ Mij such that v∗v is green (otherwise we are done). Without loss of generality

v ∈ V (i). Let X = N(v∗). Then, by the maximality of M , all edges between v∗ and X ∩ R
are red. By Fact 4 this implies that all edges between X ∩ Ri and X ∩ Rj are green. Since
min{|X ∩ Ri|, |X ∩ Rj |} > ηn, this set of edges is not empty. We use the maximality of M to
infer that all edges between Mij and X ∩ (Ri ∪ Rj) are red. Using Fact 4 this in turn implies
that edges between Y := Mij ∩X and v∗ are green. By the maximality of M all edges between
M(Y ) and Rk − v∗ are consequently red. We claim that therefore K[Rj ∩ X,Rk − v∗] is green.
Indeed, assume there was a red edge ww′ ∈ (Rj ∩X) × (Rk − v∗). Then w and w′ have at least

|M(Y )∩V (i)| − 2ηn ≥ |Mij | − 3ηn ≥ η̃n− 3ηn > 0 common neighbours w′′ in M(Y )∩V (i). Since
edges between M(Y ) and Rk − v∗ and edges between Mij and X ∩ Rj are red, so are the edges
ww′′ and w′w′′ and thus we have a red triangle ww′w′′ contradicting Fact 4.

By Fact 1 we have |Rj ∩X| ≥ η′n− ηn > ηn and so each vertex in Rk − v∗ is connected by a
green edge to some vertex in Rj ∩X. The maximality of M implies that K[Mij , Rk − v∗] is red
as required.

For the second part of Fact 5 observe that the fact that K[Mij , Rk−v∗] is red and |Rk| ≥ η′n >
2ηn+ 1 imply that each pair of vertices in Mij has a common red neighbour in Rk − v∗ and so by
Fact 4 the graph K[Mij ] is green. This establishes Fact 5. �

Now we also delete all (at most 3) vertices from R that play the rôle of v∗ in Fact 5 (and again
keep the names for the resulting sets).

Fact 6. Suppose that {i, j, k} = {1, 2, 3} and that Mij is a substantial block. Then for one of

the sets V (i) and V (j), say for V (i), the graph K[Mij , Ri] is red and K[Rk, Ri] is green. For the

other set V (j) the following is true. If v ∈ Rj then K[v,Mij ] and K[v,R] are monochromatic,
with distinct colours.

We start with the first part of this fact and distinguish two cases. First, assume that there
is a red edge ww′ with w ∈ Rk and w′ ∈ Rj . We will show that in this case K[Mij , Ri] is red
and K[Rk, Ri] is green. Since Mij is substantial, edges between w and Mij are red by Fact 5 and
hence, owing to Fact 4, edges between Mij ∩ N(w) and w′ are green. Since K[Mij ] is green by

Fact 5, since M is maximal, and since each vertex in Mij∩V (j) has some neighbour in Mij∩N(w′)

this implies that all edges between Mij and Ri are red. Moreover, edges between Mij ∩ V (j) and
Rk are red by Fact 5 and hence we conclude from Fact 4 that K[Rk, Ri] is green. If, on the other
hand, there is no red edge between Rk and Rj then the first part of the fact is true with i and j
interchanged: Clearly K[Rk, Rj ] is green and by maximality of M we infer that K[Mij , Rj ] is red.

For the second part of the fact suppose, say, that K[Mij , Ri] is red and K[Rk, Ri] is green. Let
v ∈ Rj and assume first that v has a green neighbour in Mij . The maximality of M then implies
that K[v,R] is red and since K[Rk,Mij ] is also red (by Fact 5) we get that K[v,Mij ] is green.
Hence it remains to consider the case that K[v,Mij ] is red. By Fact 5 the graph K[Rk,Mij ] is
red and so Fact 4 forces the graph K[v,Rk] to be green. To show that also K[v,Ri] is green
assume to the contrary that there is a red edge vw with w ∈ Ri. Recall that K[v,Mij ∩ V (i)],

K[Mij ∩V (i), Rk], K[Rk,Mij ∩V (j)], and K[Mij ∩V (j), w] are red (and clearly η-complete). Since

|Mij ∩ V (i)|, |Rk|, |Mij ∩ V (j)| ≥ η̃n− 1 ≥ 2ηn+ 2 we can apply Proposition 24 to infer that there
is a red C5 touching R which contradicts Fact 4. �

Fact 7. For any choice of i, j, k with {i, j, k} = {1, 2, 3}), if Mij and Mjk are substantial, then
K[Mij ,Mjk] and K[Rk, Ri] are green and K[Mij ∪Mjk, Rk ∪Ri] is red. Moreover, if v ∈ Rj then
K[v,Mij ∪Mjk] and K[v,R] are monochromatic, with distinct colours.

By Fact 6 every vertex in Rk ∪ Ri sends some green edges to R and hence the maximality
of M implies that K[Mij ∪Mjk, Rk ∪ Ri] is red. Since there is no red triangle touching R, the
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graphs K[Mij ∩ V (i),Mjk ∩ V (j)], K[Mij ∩ V (j),Mjk ∩ V (k)], and K[Rk, Ri] are green. Using

Proposition 24 we get similarly as before that also edges in K[Mij ∩ V i),Mjk ∩ V (k)] are green,
since otherwise there was a red C5 touching R. It remains to show the second part of Fact 7. By
Fact 6 the graph K[v,R] is monochromatic. Moreover, applying Fact 6 once to Mij and once to
Mjk, we obtain that K[v,R] and K[v,Mij ∪Mjk] are monochromatic graphs of distinct colours.�

Now we have gathered enough structural information to show that K is η̃-extremal, a contra-
diction.

Fact 8. K is in web configuration with parameter η̃.

We first argue that we can assume without loss of generality that Fact 6 implies for any {i, j, k} =
{1, 2, 3} that

K[Ri,Mi,j ] is red if Mij is substantial and i 6= 3 (∗)

Indeed, since M2,3 is substantial, Fact 7 implies (∗) in the case {j, k} = {2, 3}. It remains to
consider the case {j, k} = {1, 3}. If in addition the block M13 is substantial then Fact 7 also
implies (∗) in this case. If, on the other hand, M13 (and hence also M12) is not substantial, then
j = 3 and hence k = 1. If in addition K[Ri,Mij ] = K[R2,M23] is not red then V (i) = V (2) plays

the rôle of V (j) = V (3) in Fact 6. Then however we may delete at most η̃n vertices from R2 in
order to guarantee |R2| ≤ |R3| and then the following argument still works with V (2) and V (3)

interchanged. This implies (∗).
To obtain the web configuration set U (i) := Ri, for i = 1, 2 and let U (3) be the set of those

vertices v ∈ R3 such that K[v,M23] is red, let W
(3)
3 := R3 \ U (3), and define W

(i)
j := Mij ∩ V (i)

for all i 6= j ∈ [3]. If any of the sets we just defined has less than η̃n vertices delete all vertices in
this set. Finally, define W (i), i ∈ [3] as in the definition of the web configuration (Definition 7).

Observe that this together with Fact 6 implies that K[W
(3)
3 ,M23] is green and K[W

(3)
3 , R] is red.

Now let {i, j, k} = {1, 2, 3} arbitrarily. Clearly we have |U (i) ∪W (i)| ≥ (1 − 3η̃)n ≥ (1 − η′)n.
Moreover K[U (i),W (j)] is η-complete. We next verify that this graph is also red. We distinguish
two cases. First assume that j 6= 3. In this case

U (i) ⊆ Ri and W (j) = W
(j)
i ∪W (j)

k ⊆ (Mij ∩ V (j)) ∪ (Mjk ∩ V (j)) .

We have W
(j)
k 6= ∅ only if Mjk is substantial and then Fact 5 implies that K[Ri,Mjk] is red.

Similarly W
(j)
i 6= ∅ only if Mij is substantial. By (∗) we have that K[Ri,Mij ] is red if i 6= 3.

By the definition of U (3) we also get that K[U (i),Mij ] is red if i = 3. Thus all edges between

U (i) and W (j) are red as desired. If j = 3 on the other hand then U (1) ⊆ Ri and W (j) =

W
(j)
i ∪W (j)

k ∪W (3)
3 ⊆ (Mij ∩ V (j)) ∪ (Mik ∩ V (j)) ∪W (3)

3 . Analogous to the argument in the first
case the graphs K[Ri,Mjk] and K[Ri,Mij ] are red (since i 6= 3 and by (∗)). As noted above in

addition all edges between R and W
(3)
3 are red and so K[U (i),W (j)] is also red in this case.

We finish the proof of Fact 8 (and hence Lemma 25) by checking that we have a web configu-
ration with colour χ = red. Observe that the graph K[

⋃

U (i),
⋃

W (j)] is connected and bipartite.

We now verify Conditions 1–4 of the web configuration. For Condition 2 assume that W
(3)
3 6= ∅.

Fact 7 and the definition of W (3) imply then that M12 is not substantial and hence |W (1)
2 | = 0.

Moreover, since |R1| ≥ |R2| ≥ |R3| we get the first part of Condition 1, and |W (i)
j | = |W (j)

i |
is clearly true by definition. By Fact 1 we have n − |Mik ∪Mjk| = |Rk| > |Mij | which implies

n− |W (k)| > |W (i)
j | unless k = 3 and W

(3)
3 6= ∅ (if k 6= 3 or W

(3)
3 = ∅ then |Mij | = |W (i)

j |). And if

W
(3)
3 6= ∅ Condition 2 implies |W (i)

j | = |U (1)
2 | = 0 and thus we also get n− |W (k)| > |W (i)

j | in this

case. This establishes Condition 1. To see Condition 3, note that if U (1) is non-empty then either
M12 or M13 are substantial. Since in addition M23 is substantial by assumption we conclude from
Fact 7 that there is a green triangle connected to M23 and hence to the green matching M . As K is

not 3
4 (1−η′)n-odd this implies 1

2 |
⋃

i,j W
(i)
j | ≤ |M | < 3

4 (1−η′)n. It remains to verify Condition 4.

Assume, for a contradiction, that U (3) 6= ∅ and |⋃U (i)| ≥ (1−η) 3
2n and |U (2)∪U (3)| > (1−η) 3

4n.

As |R1| ≥ |R2| ≥ |R3| ≥ |U (3)| and U (3) 6= ∅ all these sets have size at least η̃n and so U (i) = Ri, for
i = 1, 2, 3. By Fact 6 and the definition of U (3) the graph K[U (1), U (2), U (3)] is (η, green)-complete
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and thus contains a green triangle by Proposition 23(c) and is connected by (b) of the same propo-
sition. Observe that this implies that any matching in K[U (1), U (2), U (3)] is joined and odd. We
will show that K[U (1), U (2), U (3)] contains a green matching of size at least 3

4 (1−η′)n contradicting

the fact that K is not 3
4 (1 − η′)n-odd. We distinguish two cases. If |U (1)| ≥ |U (2) ∪ U (3)| an easy

greedy algorithm guarantees a green matching of size |U (2)∪U (3)|−ηn > (1−3η) 3
4n ≥ 3

4 (1−η′)n
in K[U (1), U (2)∪U (3)]. If |U (1)| ≤ |U (2)∪U (3)|, on the other hand, there is a green matching cover-
ing at least |U (1)∪U (2)∪U (3)|−4ηn−1 > (1−4η) 3

2n−1 ≥ 3
2 (1−η′)n vertices in K[U (1), U (2), U (3)]

by Proposition 22. �

�

We will now use Lemma 25 to prove Lemma 9.

Proof of Lemma 9. Let η′ be given and set η̃ := η′/15. Let ηL25 and n0 be provided by Lemma 25
for input η′L25 = η̃ and set η := min{ηL25, η̃/5}. Let K = (V (1)∪̇V (2)∪̇V (3), E) be a non-extremal
coloured graph in Kη

n with partition classes V (1), V (2), V (3) and assume for a contradiction that K
is not (1 − η′)3n/4-odd.

Our first step is to show that K has big green and red joined matchings.

Fact 1. K has even joined matchings Mr and Mg in red and green, respectively, with |Mr|, |Mg| ≥
(1 − η̃)n.

Assume for a contradiction that a maximum matching M in red has size less than (1− η̃)n. By
Lemma 25 applied with η̃ we conclude that there is an odd joined matching M ′ with |M ′| > |M |.
On the other hand K is not

(

(1 − η′)3n/4
)

-odd, hence |M ′| < (1 − η′)3n/4. Another application
of Lemma 25 with η̃ ≤ η′ thus provides us with a red joined matching of size bigger than |M ′|
which contradicts the maximality of M . We conclude that there is a red joined matching Mr, and
by symmetry also a green joined matching Mg, of size at least (1 − η̃)n. Clearly, Mr and Mg are
even since K is not

(

(1 − η′)3n/4
)

-odd. �

Let R be the continent of Mr and G be the continent of Mg in K. Fact 1 states, that R and G
are bipartite. We observe in the following fact that both R and G substantially intersect all three

partition classes. For this purpose define V
(i)
r := V (i)∩V (R) and V

(i)
g := V (i)∩V (G), and further

V̄
(i)
r := V (i) \ V (i)

r and V̄
(i)
g := V (i) \ V (i)

g for all i ∈ [3].

Fact 2. For all i ∈ [3] we have |V (i)
r |, |V (i)

g | ≥ 2η̃n.

Indeed, assume that |V (i)
r | < 2η̃n which implies |V̄ (i)

r | > (1 − 2η̃)n. As |Mr| ≥ (1 − η̃)n it

follows that |V (ℓ)
r | > (1 − 3η̃)n for ℓ 6= i. By definition all edges between V̄

(i)
r and V

(j)
r ∪ V (k)

r

are green and thus K is in pyramid configuration with tunnel, pyramids (V
(j)
r , V̄

(i)
r ) and (V

(k)
r , ∅),

and parameter 3η̃ < η′, which is a contradiction. �

Next we strengthen the last fact by showing that at most one of the sets {V̄ (i)
c , V̄

(i)
g : i ∈ [3]} is

significant.

Fact 3. For at most one element D ∈ {V̄ (i)
r , V̄

(i)
g : i ∈ [3]} we have that |D| ≥ η̃n. If such a D

exists we assume, without loss of generality, D = V̄
(1)
r .

Assume that V̄
(1)
r ≥ η̃n. First we show that then

|V̄ (2)
r |, |V̄ (3)

r | < η̃
2n . (17)

Assume for a contradiction and without loss of generality that |V̄ (2)
r | ≥ η̃

2n. By definition, all

edges in E(V̄
(1)
r , V

(2)
r ∪̇V (3)

r ) and E(V̄
(2)
r , V

(1)
r ∪̇V (3)

r ) are green. Since |V̄ (1)
r |, |V̄ (2)

r | ≥ η̃n > 2ηn

by assumption and |V (1)
r |, |V (2)

r | ≥ 2η̃n/2 > 2ηn (by Fact 2) we can apply Proposition 23(b) to

infer that the graph with edges E(V̄
(1)
r , V

(2)
r ∪̇V (3)

r ) and E(V̄
(2)
r , V

(1)
r ∪̇V (3)

r ) is connected. As Mr

is even we conclude that all edges in E(V
(i)
r , V

(j)
r ), are red for all i 6= j ∈ [3]. Since by Fact 2

|V (i)
r | ≥ η̃n > 2ηn, for i ∈ [3], we infer from Proposition 23(c) that the graph K[V

(1)
r , V

(2)
r , V

(3)
r ] ⊆

R contains a red triangle which contradicts the fact that Mr is even.
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Thus it remains to show that |V̄ (i)
g | < η̃n for all i ∈ [3]. By (17) and Fact 2 we have for i = 2, 3

that |V (i)
r ∩ V (i)

g | > η̃
2n > ηn which implies that there is an edge in E(V

(2)
r ∩ V (2)

g , V
(3)
r ∩ V (3)

g ).

By assumption we also have |V̄ (1)
r | ≥ η̃n > 2ηn and thus each pair of vertices in V

(2)
r ∪̇V (3)

r

has a common neighbour in V̄
(1)
r by (a) of Proposition 23. By definition of V̄

(1)
r all edges in

E(V̄
(1)
r , V

(2)
r ∪̇V (3)

r ) are green, and therefore we conclude that all edges in E(V
(2)
r ∩V (2)

g , V
(3)
r ∩V (3)

g )

are red since otherwise there would be a green triangle connected to Mg. Accordingly |V̄ (1)
g | ≤

2ηn < η̃n/2 since otherwise we could equally argue that all edges in E(V
(2)
r ∩V (2)

g , V
(3)
r ∩V (3)

g ) are

green, a contradiction. Therefore |V (1)
g | ≥ (1 − η̃/2)n. As |V̄ (1)

r | ≥ η̃n this implies |V (1)
g ∩ V̄ (1)

r | ≥
η̃/2n > ηn and from (17) we also get |V (2)

r ∩ V̄
(2)
g | ≥ η̃/2n > ηn. Thus there is an edge in

E(V
(1)
g ∩ V̄ (1)

r , V
(2)
r ∩ V̄ (2)

g ). However, this edge can neither be red since it connects V̄
(1)
r and V

(2)
r ,

nor green since it connects V̄
(2)
g and V

(1)
g , a contradiction. Therefore |V̄ (2)

g | < η̃n and by symmetry

also |V̄ (3)
g | < η̃n which finishes the proof of Fact 3. �

Now, we label the vertices in each of the bipartite graphs R and G according to their bipartition
class by 1 and 2 (where the choice of bipartition class 1 and bipartition class 2 is arbitrary). In
the remaining part of the proof we examine the distribution of these bipartition classes over the
partition classes of K. Let Fij denote the set of vertices in V (R) ∩ V (G) with label i in R and

label j in G for i, j ∈ [2]. Let further F0j be the set of vertices in V̄
(1)
r ∩ V (G) that have label j

in G for j ∈ [2]. Next we observe that each of the sets Fij with i, j ∈ [2] is essentially contained
in one partition class of K.

Fact 4. For all i, j ∈ [2] there is at most one partition class ℓ ∈ [3] of K with |Fij ∩ V (ℓ)| ≥ η̃n.
Moreover E(F0j , Fij) = ∅.

To prove the first part of Fact 4 assume for a contradiction that |Fij∩V (ℓ)|, |Fij∩V (ℓ′)| ≥ η̃n for

ℓ 6= ℓ′. Then there would be an edge in K[V (ℓ) ∩Fij , V
(ℓ′) ∩Fij ] since η̃ > η. This contradicts the

fact that Fij is independent by definition. For the second part observe that an edge in E(F0j , Fij)

can neither be red as such an edge would connect vertices from V̄
(1)
r to R nor green since F0j ∪Fij

lies in one bipartition class j of G. �

Fact 5. There are indices k, ℓ ∈ [3] with k 6= ℓ and indices b, b′, c, c′ ∈ [2] with bb′ 6= cc′ such that
|Fbb′ ∩ V (k)|, |Fcc′ ∩ V (ℓ)| ≥ (1 − 5η̃)n and |F0b′ |, |F0c′ | ≤ η̃n.

We divide the proof of this fact into three cases: The first case deals with V̄
(1)
r 6= ∅, the second

one with V̄
(1)
r = ∅ and the additional assumption that there are k ∈ [3] and ij 6= i′j′ ∈ [2] such

that |V (k) ∩ Fij |, |V (k) ∩ Fi′j′ | ≥ η̃n. The third and remaining case treats the situation when

V̄
(1)
r = ∅ and for each k ∈ [3] there is at most one index pair (i, j), where i = i(k) and j = j(k),

with |V (k) ∩ Fij | ≥ η̃n.
For the first case, let j ∈ [2] be such that F0j 6= ∅. Observe that then the second part of

Fact 4 implies that |F1j ∩ (V (2) ∪ V (3))|, |F2j ∩ (V (2) ∪ V (3))| < ηn. Let c′ = b′ ∈ [2] with c′ 6= j.

Then, because Fact 3 implies that |V̄ (i)
r |, |V̄ (i)

g | < η̃n for i = 2, 3, we have that |V (2) ∩ (F1b′ ∪
F2b′)| ≥ (1 − 4η̃)n and |V (3) ∩ (F1c′ ∪ F2c′)| ≥ (1 − 4η̃)n. Thus there is a b ∈ [2] such that
|V (2)∩Fbb′ | ≥ η̃n. Let c′ ∈ [2] with c′ 6= b′. The first part of Fact 4 implies that |V (3)∩Fbc′ | < η̃n,
thus |V (3) ∩ Fcc′ | ≥ (1 − 5η̃)n ≥ η̃n. By symmetry we also get |V (2) ∩ Fbb′ | ≥ (1 − 5η̃)n. This
proves the first part of the statement for the first case. To see the second part, observe that if
F0b′ 6= ∅, then |F1b′ ∩ (V (2) ∪ V (3))|, |F2b′ ∩ (V (1) ∪ V (3))| < ηn by Fact 4, a contradiction.

The second part of the second and third cases is straightforward as F01, F02 ⊆ V̄
(1)
r = ∅. To

see the first part of the second case let k ∈ [3] and ij 6= i′j′ ∈ [2] with |V (k) ∩ Fij |, |V (k) ∩ Fi′j′ | ≥
η̃n, and let ℓ, ℓ′ ∈ [3] be such that {ℓ, ℓ′, k} = {1, 2, 3}. The first part of Fact 4 implies that

|Fij∩V (ℓ)|, |Fi′j′∩V (ℓ)|, |Fij∩V (ℓ′)|, |Fi′j′∩V (ℓ′)| < η̃n. Thus |(Fij′∪Fi′j)∩V (ℓ)| ≥ (1−2η̃)n−2η̃n,

as |V̄ (ℓ)
r |, |V̄ (ℓ)

g | < η̃n. Without loss of generality, let ij′ be such that |V (ℓ) ∩ Fij′ | ≥ η̃n. We set
b := i, b′ := j′, c = i′ and c′ := j. The rest of the proof is similar to the first case, proving that
then |V (ℓ′) ∩ Fcc′ | ≥ (1 − 5η̃)n and by symmetry that |V (ℓ) ∩ Fbb′ | ≥ (1 − 5η̃)n.
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It remains to prove the first part of the third case. For this observe that for all k ∈ [3] we have
that |V (k) ∩⋃

(i′j′) 6=(i,j) Fi′j′ | < 3η̃n, where i = i(k) and j = j(k) are as specified in the definition

of the third case. Observe also that |V̄ (k)
r |, |V̄ (k)

g | < η̃n for k ∈ {2, 3} by Fact 3. This implies
|V (k) ∩ Fi′j′ | ≥ (1 − 5η̃)n for k ∈ {2, 3} and i′ ∈ [3] \ {i(k)}, j′ ∈ [3] \ {j(k)}, as desired. Hence,

for k = 2 and ℓ = 3 we obtain indices b, b′, c, c′ such that |V (k) ∩ Fbb′ |, |V (ℓ) ∩ Fcc′ | ≥ (1 − 5η̃)n,
with bb′ 6= cc′ as required in Fact 5. �

This brings us to the last step, which shows that K is extremal, a contradiction.

Fact 6. K is in pyramid configuration with parameter η′.

Let k, ℓ ∈ [3] and b, b′, c, c′ ∈ [2] be as in Fact 5. Let ℓ′ ∈ [3] \ {k, ℓ}. Assume without loss
of generality that b = b′ = 1. Thus Fact 5 states that |F11 ∩ V (k)| ≥ (1 − 5η̃)n and |F01| ≤ η̃n.
We distinguish two cases. First, assume that c′ = 2 and set c̄ := 3 − c. By Fact 5 this implies
|Fc2 ∩ V (ℓ)| ≥ (1 − 5η̃)n and |F02| ≤ η̃n and thus |(Fc̄2 ∪ F21) ∩ V (ℓ′)| ≥ (1 − 5η̃)n by Fact 4.

Moreover E(F11 ∩ V (k), F21 ∩ V (ℓ′))) forms an η-complete red bipartite graph since F11 ∪ F21 is

an independent set in G. Similarly E(Fc2 ∩ V (ℓ), Fc̄2 ∩ V (ℓ′))) forms an η-complete red bipartite

graph. Further, if c = 2 then E(Fc2 ∩ V (ℓ), F21 ∩ V (ℓ′)) and E(F11 ∩ V (k), Fc̄2 ∩ V (ℓ′)) form η-
complete green bipartite graphs (leading to crossings) and if c = 1 then E(F11 ∩ V (k), Fc2 ∩ V (ℓ))
forms an η-complete green bipartite graph (leading to a tunnel). Therefore, in both subcases, K

is in pyramid configuration with parameter 5η̃ ≤ η′ and pyramids (F11 ∩ V (k), F21 ∩ V (ℓ′)) and

(Fc2 ∩ V (ℓ), Fc̄2 ∩ V (ℓ′)), unless one of the sets F21 ∩ V (ℓ′) and Fc̄2 ∩ V (ℓ′) has size at most 10η̃n.
In this case, however, we can simply replace this set by the empty set and still obtain a pyramid
configuration with parameter at most 15η̃ ≤ η′.

In the case c′ = 1 we have c = 2. Fact 5 guarantees that |F21 ∩ V (ℓ)| ≥ (1 − 5η̃)n. Since

|F01| ≤ η̃n we conclude from Fact 4 that |(F12∪F22∪F02)∩V (ℓ′)| ≥ (1−5η̃)n. Similarly as before

E(F11 ∩ V (1), (F12 ∪ F02) ∩ V (ℓ′)) and E(F21 ∩ V (ℓ), F22 ∩ V (ℓ′)) form η-complete green bipartite
graphs and E(F11 ∩ V (k), F21 ∩ V (ℓ)) forms an η-complete red bipartite graph. Accordingly we
also get a pyramid configuration with parameter 5η̃ ≤ η′ in this case, where the pyramids are
(F11 ∩ V (k), (F12 ∪ F02) ∩ V (ℓ′)) and (F21 ∩ V (ℓ), F22 ∩ V (ℓ′)) unless, again, (F12 ∪ F02) ∩ V (ℓ′) or

F22 ∩ V (ℓ′) are too small in which case we proceed as above. �

�

7.3. Extremal configurations. Our aim in this section is to provide a proof of Lemma 10. This
proof naturally splits into two cases concerning pyramid and web configurations, respectively. The
former is covered by Proposition 26, the latter by Proposition 27.

Proposition 26. Lemma 10 is true for pyramid configurations.

Proof. Given η′ set η = η′/3. Let K be a coloured graph from Kη
n that is in pyramid configuration

with parameter η and pyramids (D1, D
′
1) and (D2, D

′
2) such that the requirements of (E1) in

Definition 7 are met for colours χ and χ′.

Fact 1. If the pyramid configuration has crossings then K is
(

(1 − η′)n, (1 − η′) 3
2n, 2

)

-good.

Indeed, by Proposition 21 there is a matching M of colour either χ or χ′ and size at least
(1−2η) 1

2n in K[D1, D2]. Note further, that the pyramid configuration with crossings is symmetric
with respect to the colours χ and χ′ and hence we may suppose, without loss of generality, that M
is of colour χ and that |D′

1| ≥ (1 − η) 1
2n. As K[D1, D

′
1] and K[D2, D

′
2] are (η, χ)-complete, there

are χ-coloured matchings M1 and M2 in K[D1, D
′
1] and K[D2 \M,D′

2], respectively, of size at
least min{|D′

1|, |D1|} − ηn and min{|D′
2|, |D2 \M |} − ηn, respectively. This implies

|M | + |M1| + |M2| ≥ (1 − 3η)
3

2
n = (1 − η′)

3

2
n.

Observe that, depending on the size of M , either M ∪M2 or M1 ∪M2 is a matching of size at
least (1 − 3η)n = (1 − η′)n. Now, the union of M , M1, and M2 forms a 2-fork system F and
since K[D1, D

′
1] and K[D2, D

′
2] are (η, χ)-complete the bipartite graph formed by these two graphs
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and M is connected and has partition classes D1 ∪ D′
2 and D2 ∪ D′

1. It follows that F has size
|M | + |M1| + |M2| ≥ (1 − η′) 3

2n. �

Fact 2. If the pyramid configuration has a χ′-tunnel and if there is a matching M of colour χ′ and
size at least (1−η′) 1

2n in K[D1, D
′
1∪D′

2] or in K[D2, D
′
1∪D′

2] then K is
(

(1−η′)n, (1−η′) 3
2n, 2

)

-
good in colour χ′.

As K has a χ′-tunnel, there is a joined matching M ′ of colour χ′ and size at least |D1| − ηn ≥
(1 − η′)n in K[D1, D2]. We will extend the matching M ′ (which is a 1-fork system) to a 2-fork
system. Without loss of generality assume that the matching M promised by the assumptions is
in K[D1, D

′
1 ∪D′

2]. As M ∩D1 and D2 are non-negligible the bipartite graph K[M ∩D1, D2] is
connected by Proposition 23(b) and thus M is joined. Hence M ∪M ′ forms a joined 2-fork system
centred in D1 and of size |M ′| + |M | ≥ (1 − η′) 3

2n. �

Fact 3. If the pyramid configuration has a χ′-tunnel but no crossings and there is no matching
of colour χ′ and size at least (1 − η′) 1

2n in K[D1, D
′
1 ∪ D′

2] or in K[D2, D
′
1 ∪ D′

2] then K is

((1 − η′)n, (1 − η′) 3
2n, 3)-good in colour χ.

To obtain the 3-fork system note that Proposition 21 implies that there are matchings M1

and M2 of colour χ and sizes at least (1−η′) 1
2n in K[D1, D

′
1∪D′

2] and K[D2, D
′
1∪D′

2], respectively.

The union of M1 and M2 forms a 2-fork system F centred in D′
1 ∪D′

2 covering at least (1− η′) 1
2n

vertices in D1 and at least (1 − η′) 1
2n vertices in D2. We can assume without loss of generality

that |D′
1| ≥ (1 − η) 1

2n ≥ (1 − η′) 1
2n. As K[D1, D

′
1] is (η, χ)-complete and |D1 \ F | ≤ (1 − η′)n−

(1 − η′) 1
2n = (1 − η′) 1

2n we can greedily find a matching between D′
1 and D1 \ F covering all but

at most ηn vertices of D1 \ F . Its union with F forms a 3-fork system F ′ centred in D′
1 ∪ D′

2

covering at least (1 − η′)n vertices in D1 and at least (1 − η′) 1
2n vertices in D2, implying that F ′

has size at least (1 − η′) 3
2n. The graph K[D1, D

′
1] ∪K[D2, D

′
2] clearly contains a matching M of

size at least |D′
1 ∪D′

2| − ηn ≥ (1 − η′)n in colour χ.
Since the pyramid configuration has no crossings there are edges of colour χ in K[D1, D

′
2] ∪

K[D2, D
′
1]. Together with the fact that D1, D2, D′

1, and D′
2 are non-negligible, we obtain that

the bipartite graphs K[D1, D
′
1 ∪D′

2] and K[D2, D
′
1 ∪D′

2] are connected by (b) of Proposition 23.
Thus the matching M and the fork system F ′ are both joined. �

�

Proposition 27. Lemma 10 is true for web configurations.

Proof. Given η′ set η = η′/5 and let K be a coloured graph from Kη
n that is in web configuration

with parameter η, i. e., it satisfies (E2) of Definition 7. In this proof we construct only matchings
and fork systems of colour χ. Observe that these are joined by definition. We distinguish two
cases.

Case 1: First assume that |⋃U (i)| < (1−η) 3
2n. We will show that in this case our configuration

contains both a joined matching of size at least (1 − η′)n and a joined 3-fork system of size at
least (1 − η′) 3

2n. We need the following auxiliary observation.

Fact 1. If |⋃U (i)| < (1 − η) 3
2n then W

(1)
2 = W

(2)
1 = ∅. Moreover |U (1)| + ηn ≥ |W (2)

3 | = |W (3)
2 |

and |U (2)| + ηn ≥ |W (1)
3 | = |W (3)

1 |.

Indeed, by Condition 3 of (E2) either W (1) = ∅ and hence W
(1)
2 ⊆ W (1) is empty or |W (1) ∪

W (2)∪ (W (3) \W (3)
3 )| ≤ (1−η) 3

2n. In the second case we conclude from |⋃U (i)| < (1−η) 3
2n that

|U (1) ∪W (1)| + |U (2) ∪W (2)| + |U (3) ∪ (W (3) \W (3)
3 )| < (1 − η)3n.

As |U (1)∪W (1)|, |U (2)∪W (2)|, |U (3)∪W (3)| ≥ (1−η)n it follows that |U (3)∪(W (3)\W (3)
3 )| < (1−η)n

and thus W
(3)
3 6= ∅. By Condition 2 of (E2) we get W

(1)
2 = ∅. For the second part of the fact

observe that Condition 1 of (E2) states that n − |W (1)| ≥ |W (2)
3 | = |W (3)

2 | and thus we conclude

|U (1)| ≥ (1 − η)n − |W (1)| ≥ |W (2)
3 | − ηn = |W (3)

2 | − ηn. The inequality |U (2)| ≥ |W (1)
3 | − ηn is

established in the same way. �
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Fact 2. If |⋃U (i)| < (1 − η) 3
2n then K is

(

(1 − η′)n, (1 − η′) 3
2n, 3

)

-good.

From Condition 1 of (E2) we infer that |W (1)
3 | < n − |W (2)| ≤ |U (2)| + ηn and Fact 1 implies

that |U (1)|+ |W (1)
3 | = |U (1)|+ |W (1)| ≥ (1− η)n and |U (3)|+ |W (3)| ≥ (1− η)n. We thus conclude

from |⋃U (i)| < (1 − η) 3
2n that

|W (1)
3 | − ηn < |U (2)| < (1 − η) 3

2n− |U (1) ∪ U (3)| < |W (1)
3 | + |W (3)| − ηn.

This (together with the fact that K[U (2),W
(1)
3 ] and K[U (2),W (3)] are (η, χ)-complete) justifies

that there is a χ-coloured matching M1 in K[U (2),W
(1)
3 ∪W (3)] covering all vertices of U (2) and all

but at most ηn vertices of W
(1)
3 . Further, by Fact 1 we know that |W (2)

3 | ≤ |U (1)|+ ηn and hence

we can find a matching M2 of colour χ in (the (η, χ)-complete graph) K[W
(2)
3 , U (1)] covering all

but at most ηn vertices of W
(2)
3 . The matching M := M1 ∪M2 satisfies

|M | ≥ |U (2)| + |W (2)
3 | − ηn = |U (2)| + |W (2)| − ηn ≥ (1 − η)n− ηn ≥ (1 − η′)n,

where the equality follows from Fact 1. Next, we extend the matching M to a joined 3-fork system
of colour χ and size at least (1 − η′) 3

2n in the following way. Consider maximal matchings M3,

M4, and M5 in K[U (2),W
(3)
1 \M1], K[U (1),W

(3)
2 \M1] and K[U (1),W

(3)
3 \M1], respectively. By

Fact 1 we infer that M3 and M4 each cover all but at most ηn vertices of W
(3)
1 \M1 and W

(3)
2 \M1,

respectively. As |W (3)
3 | ≤ |W (3)

3 ∪ U (3)| ≤ |U (1)| by Condition 1 of (E2) the matching M5 covers

all but at most ηn vertices of W
(3)
3 .

Then the union M ∪M3 ∪M4 ∪M5 is a 3-fork system F centred in U (1) ∪ U (2) and covering

all but at most 5ηn vertices of W
(1)
3 ∪W (2)

3 ∪W (3)
1 ∪W (3)

2 ∪W (3)
3 = W (1) ∪W (2) ∪W (3). Thus F

has size at least (1 − η)3n− |U (1) ∪ U (2) ∪ U (3)| − 5ηn ≥ (1 − η′) 3
2n. �

Case 2: Now we turn to the case |⋃U (i)| ≥ (1 − η) 3
2n. We further divide this case into two

subcases, treating U (3) = ∅ and U (3) 6= ∅, respectively.

Fact 3. If |⋃U (i)| ≥ (1 − η) 3
2n and U (3) = ∅ then K is

(

(1 − η′)n, (1 − η′) 3
2n, 2

)

-good.

By definition |W (3)| ≥ (1 − η)n − |U (3)| = (1 − η)n in this case. Therefore, using the fact
that K[U (1),W (3)] and K[U (2),W (3)] are (η, χ)-complete, we can greedily construct a maximal
matching MA in K[U (1),W (3)] and a maximal matching M ′

B in K[U (2),W (3) \MA] such that the

matching M := MA ∪M ′
B covers W (3) (as |U (1) ∪ U (2)| = |⋃U (i)| > |W (3)| + ηn) and thus has

size at least (1− η)n. Then we extend M ′
B to a maximal matching MB in K[U (2),W (3)]. Observe

that MA and MB cover all but at most ηn vertices of U (1) and U (2), respectively. Thus the 2-fork
system F := MA∪MB has size at least |U (1)∪U (2)|−2ηn = |U (1)∪U (2)∪U (3)|−2ηn ≥ (1−η′) 3

2n.
�

Now consider the subcase when U (3) 6= ∅.

Fact 4. If |⋃U (i)| ≥ (1 − η) 3
2n and U (3) 6= ∅ then |U (2) ∪ U (3)| ≤ (1 − η) 3

4n and we have

|W (3)| ≥ (1 − η) 1
4n and |U (3)| ≤ |W (2)| − ηn.

The first inequality follows from Condition 4 of (E2). Accordingly |W (3)| ≥ (1− η)n− |U (3)| ≥
(1 − η) 1

4n which establishes the second inequality. For the third inequality we use that |U (2) ∪
W (2)| ≥ (1 − η)n by definition and so

|U (3)| ≤ (1 − η) 3
4n− |U (2)| ≤ (1 − η) 3

4n− (1 − η)n+ |W (2)| ≤ |W (2)| − ηn.

�

Fact 5. If |⋃U (i)| ≥ (1− η) 3
2n and U (3) 6= ∅ then there is a matching M of size at least (1− η)n

and colour χ covering U (3).

Let M1 be a maximal matching in K[U (3),W (2)]. We conclude from Fact 4 that M1 covers U (3).
Let M2 be a maximal matching in K[W (3), U (1)∪U (2)]. As |W (3)| ≤ n−|U (3)| ≤ |U (1)∪U (2)|−ηn
the matching M2 covers W (3). Setting M := M1 ∪ M2, we obtain a matching of size |M | =
|U (3)| + |W (3)| ≥ (1 − η)n as required. �
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Fact 6. If |⋃U (i)| ≥ (1 − η) 3
2n and U (3) 6= ∅, then there is a 3-fork system of colour χ and of

size at least (1 − η′) 3
2n.

Let M be the matching from Fact 5. Clearly, we can greedily construct a 2-fork system F ′ in the
(η, χ)-complete graph K[W (3), (U (1)∪U (2))\M ] which either is of size 2|W (3)| or covers all but at
most ηn vertices of |(U (1)∪U (2))\M |. Then F := M ∪F ′ forms a 3-fork system. If the former case
occurs we infer from Fact 4 that F is of size at least (1−η)n+2|W (3)| ≥ (1−η) 3

2n. In the latter case

F covers all but at most ηn vertices of
⋃

U (i) and thus has size at least (1−η) 3
2n−ηn ≥ (1−2η) 3

2n.

We conclude that K is ((1− η′)n, (1− η′) 3
2n, 3)-good also in the subcase |⋃U (i)| ≥ (1− η) 3

2n and

U (3) 6= ∅. �

�

8. Concluding remarks

8.1. Extensions to random graphs. As noted earlier our proof of Theorem 1 applies to suitably
chosen (sparser) subgraphs of Kn,n,n as well. More precisely, for any fixed p ∈ (0, 1) the same
method can be used to show that asymptotically almost surely Gp(n, n, n) → T ∆

t , where Gp(n, n, n)
is a random tripartite graph with edge probability p and partition classes of size n, and where
t ≤ (1−µ)n/2 and ∆ ≤ nα for a small positive α = α(µ, p). Indeed, standard methods can be used
to show that the following holds asymptotically almost surely for G = Gp(n, n, n) with partition
classes V1∪̇V2∪̇V3 and for any ζ > 0:

• G has at most 4pn2 edges.
• e(U,W ) ≥ p|U ||W |/2 for all U ⊆ Vi and W ⊆ Vj , i 6= j, with min{|U |, |W |} > ζn.

The first property guarantees that we obtain a graph with few edges compared to Kn. We claim
further that these two properties imply that G → T ∆

t . To see this we proceed as in the proof of
Theorem 1 and apply the regularity lemma on the coloured graph G. We then colour an edge in
the reduced graph G by green or red, respectively, if the corresponding cluster pair is regular and
has density at least p/4 in green or red. Using the two properties from above it is not difficult to
verify that G is a coloured tripartite graph that is η-complete. Hence, from this point on, we can
use the strategy described in the proof of Theorem 1, apply our structural lemma, Lemma 8, the
assignment lemma, Lemma 14, and the embedding lemma, Lemma 13.

One may ask whether this approach can be pushed even further and consider random tripartite
graphs Gp(n, n, n) with edge probabilities p(n) that tend to zero as n goes to infinity. It is likely
that similar methods can be used in this case in conjunction with the regularity method for sparse
graphs (see, e.g., [11]).

8.2. Sharp version. One can ask whether our asymptotic result in Theorem 1 can be strength-
ened to an exact one. In particular, it is reasonable to believe that

Kn,n,n → T ∆
t , (18)

where ∆ = n and t = ⌈3n/2⌉+2. It seems likely that imposing stricter bounds on ∆ allows one to
increase t. In particular, when ∆ is a fixed constant and n is large, (18) is likely to hold even for
t = cn, where c > 3/2. This intuition is supported by the known bounds on the Ramsey number
of somewhat balanced trees (cf. [10]).

It seems likely that some results in the directions above could be obtained using the Stability
Method of Simonovits. The Stability Method is a widely used technique in the area which usually
carries tedious technical difficulties.

8.3. A question of Matoušek. We close with an extension of Schelp’s conjecture that was
suggested to us by Jǐŕı Matoušek.

Question 28. Is it true that for all ∆ ∈ N and µ > 0 there is an n0 ∈ N such that the following
holds for all n ≥ n0? If t ≤ (1 − µ) 1

2n and G is a graph on n vertices with minimum degree

δ(G) ≥ ( 2
3 − µ)n then G→ T ∆

t .
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12. Y. Kohayakawa, V. Rödl, M. Schacht, and E. Szemerédi, Sparse partition universal graphs for graphs of bounded
degree, Preprint.

13. T.  Luczak, R(Cn, Cn, Cn) ≤ (4 + o(1))n, J. Combin. Theory Ser. B 75 (1999), no. 2, 174–187.

14. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), no. 2, 264–286.
15. Vera Rosta, On a Ramsey-type problem of J. A. Bondy and P. Erdős. I, II, J. Combinatorial Theory Ser. B
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