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Abstract. A conjecture by Bollobás and Komlós states the following: For

every γ > 0 and integers r ≥ 2 and ∆, there exists β > 0 with the following

property. If G is a sufficiently large graph with n vertices and minimum degree

at least ( r−1
r

+ γ)n and H is an r-chromatic graph with n vertices, bandwidth

at most βn and maximum degree at most ∆, then G contains a copy of H.

This conjecture generalises several results concerning sufficient degree con-
ditions for the containment of spanning subgraphs. We prove the conjecture
for the case r = 3.

1. Introduction and results

The study of sufficient degree conditions which imply that a given graph G
satisfies a certain property is one of the central themes in extremal graph theory.
In this paper we are concerned with conditions on the minimum degree of G which
guarantee that G contains a copy of a particular spanning subgraph H .

A well known example of such a result is Dirac’s theorem [13]. It asserts that
any graph G on n vertices with minimum degree δ(G) ≥ n/2 contains a spanning,
so called Hamiltonian, cycle. Another classical result of that type by Corrádi and
Hajnal [9] states that every graph G with n vertices and δ(G) ≥ 2n/3 contains
bn/3c vertex disjoint triangles. This was generalised by Hajnal and Szemerédi [19],
who proved that every graph G with δ(G) ≥ (r − 1)n/r must contain a family of
bn/rc vertex disjoint cliques, each of size r.

Pósa (see, e.g., [14]) and Seymour [36] indicated how these theorems could ac-
tually fit into a common framework. They conjectured that, at the same threshold
δ(G) ≥ (r − 1)n/r, one can in fact ask for ‘well-connected’ cliques, more precisely
that such a graph G contains a copy of the (r − 1)-st power of a Hamiltonian cycle
(where the (r − 1)-st power of an arbitrary graph is obtained by inserting an edge
between every two vertices of distance at most r−1 in the original graph). The fol-
lowing approximate version of this conjecture for the case r = 3 was proved by Fan
and Kierstead [17], and independently, by Komlós, Sárközy, and Szemerédi [26].

Theorem 1 ([17, 26]). For every constant γ > 0 there is a constant n0 such that

every graph G on n ≥ n0 vertices with δ(G) ≥ (2/3 + γ)n contains the square of a

Hamiltonian cycle.

Fan and Kierstead [18] also gave a proof for the exact statement (i.e., with γ = 0
and n0 = 1) for the square of a Hamiltonian path.1 Moreover, Komlós, Sárközy,
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path δ(G) ≥ (2n − 1)/3 is a sufficient and
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and Szemerédi [26] proved the approximate version concerning the (r− 1)-st power
of a Hamiltonian cycle. Finally, the same authors [23, 27] gave a proof of the sharp
Pósa–Seymour conjecture for sufficiently large graphs G and general r.

Recently, several other results of a similar flavour have been obtained which deal
with a variety of spanning subgraphs H , such as, e.g., trees, F -factors, and planar
graphs [3, 5, 6, 7, 10, 11, 22, 28, 29, 31, 32, 33, 37].

Facing this wealth of results, there seems to be a need for a unifying generali-
sation. Which parameter(s) of H determine the minimum degree threshold for G
to guarantee a spanning copy of H as a subgraph? The results above indicate that
the chromatic number of H plays a crucial rôle. Obviously, by the classical results
of Turán [39] and of Erdős, Stone and Simonovits [15, 16], any graph H of constant

size with χ(H) = r, is forced to appear as a subgraph in any sufficiently large graph
G if δ(G) ≥ ( r−2

r−1 + γ)n. However, if H has as many vertices as G and if in every
r-colouring of H the colour classes are of the same size, then it is clear that we do
indeed need δ(G) ≥ r−1

r n. For example, let G be the complete r-partite graph with
partition classes almost, but not exactly, of the same size and let H be the union of
vertex disjoint r-cliques. (See, e.g., [22, 32, 37] for a more detailed discussion how
a less balanced r-colouring of H can lead to a smaller minimum degree threshold
between r−2

r−1n and r−1
r n.)

Thus, in an attempt to move away from results that concern only graphs H
with a special, rigid structure, a näıve conjecture could be that δ(G) ≥ ( r−1

r + γ)n
suffices to guarantee that G contains a spanning copy of any r-chromatic graph H
of bounded maximum degree. While the results mentioned above are in accordance
with this idea, it is known that it fails in general as the following simple example
shows. Let H be a random bipartite graph with bounded maximum degree and
partition classes of size n/2 each, and let G be the graph formed by two cliques of
size (1/2 + γ)n each, which share exactly 2γn vertices. It is then easy to see that
G cannot contain a copy of H , since in H every set of vertices of size (1/2 − γ)n
has more than 2γn neighbours.

One way to rule out such expansion properties for H , is to restrict the bandwidth

of H . A graph is said to have bandwidth at most b, if there exists a labelling of
the vertices by numbers 1, . . . , n, such that for every edge {i, j} of the graph we
have |i − j| ≤ b. Bollobás and Komlós [21, Conjecture 16] conjectured that every
r-chromatic graph on n vertices of bounded degree and bandwidth limited by o(n),
can be embedded into any graph G on n vertices with δ(G) ≥ ( r−1

r + γ)n. In this
paper we give a proof of this conjecture for the case r = 3.

Theorem 2. For all ∆ ∈ N and γ > 0, there exist constants β > 0 and n0 ∈ N

such that for every n ≥ n0 the following holds.

If H is a 3-chromatic graph on n vertices with ∆(H) ≤ ∆, and bandwidth at

most βn and if G is a graph on n vertices with minimum degree δ(G) ≥ (2/3+γ)n,

then G contains a copy of H.

We note that our proof can be turned into an algorithm. More precisely, an
embedding of H can be found in O(n3.376) if H is given along with a valid 3-
colouring and a labelling of the vertices respecting the bandwidth bound βn (see
the last paragraph of Section 4 for more details).

sharp minimum degree condition.
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Theorem 2 embraces a fairly large class of 3-chromatic graphs H . In fact, most
graphs H considered so far were of constant bandwidth, whereas Theorem 2 includes
for example (higher-dimensional) grid graphs as possible graphs H .

The analogue of Theorem 2 for bipartite H was announced by Abbasi [1] in
1998, and can now easily be obtained by our methods (see [20]), too. In [2] it is
shown that in this case no sharp version of Theorem 2 (with γ = 0) is possible.
More precisely, it is shown that if γ → 0 and ∆ → ∞ then β must tend to 0 in
Theorem 2. However, the bound on β coming from our proof is rather poor, having
a tower-type dependence on 1/γ.

The proof of Theorem 2 is based on the regularity method and uses, in particular,
the regularity lemma [38] and the blow-up lemma [24] together with Theorem 1.
There is a well established strategy for proofs of this kind, which, as described by
Komlós in his survey [21], proceeds in several steps: First, prepare the graph H by
dividing it into a constant number of smaller pieces, which is usually possible and
not too difficult by calling upon the structural properties guaranteed for H . Sec-
ondly, prepare the graph G by applying the regularity lemma and thus obtaining a
sufficiently regular vertex partition. Thirdly, find an assignment that maps vertices
of H to the partition classes of G. Fourthly, ensure that the edges between the
different parts of H are mapped to edges in G. Finally, complete the embedding by
applying the blow-up lemma to the individual pieces of H and their counterparts
in G.

Steps 2, 3, and 5 have been standardised by the use of the powerful tools men-
tioned above, but the proofs are still technically rather involved: although H and
G have been ‘prepared’ roughly for each other, there is still a great deal of details
that have to be carefully adjusted and fitted, especially in step 4. Since, in our
case, we have very little control about the structure of H , this difficulty becomes
particularly pressing. In order to avoid the looming threat of many cases, we have
pushed the agenda described above a bit further.

We will prove two main lemmas. While they will deal exclusively with the
graph G and the graph H respectively, they are linked to each other in the following
way: the lemma for G (Lemma 11) will suggest a partition of G and communicate
the structure of this partition (but not the graph G) to the lemma for H . The
lemma for H (Lemma 12) will then try to find a partition of H with a very similar
structure, and return the sizes of its partition classes to the lemma for G. The
latter will then adjust its partition classes by shifting a few vertices of G, until they
fit exactly the class sizes of H . The embedding of H into G can then be found
using (a slight variant of) the embedding lemma (Lemma 10) first used by Chvátal
et al. for step 4 and the blow-up lemma (Theorem 9) for step 5.

This approach provides a very modular proof strategy that can easily be checked
and may be of further use for other similar problems. For example, our current
work-in-progress indicates that a proof of the Bollobás-Komlós conjecture for gen-
eral r-chromatic graphs H is now within reach.

This paper is organised as follows. In the next section, Section 2, we introduce
the regularity lemma together with the two embedding lemmas mentioned above.
In Section 3, we state and explain our two main lemmas, the lemma for G and
the lemma for H . Here we also outline how Theorem 2 can be deduced from these
lemmas, while the the full details of the proof are given in Section 4. Finally, we
prove the lemma for G and the lemma for H in Sections 5 and 6, respectively.
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2. The regularity method

In this section we recall the notation needed for Szemerédi’s regularity lemma
and the blow-up lemma. We also prove a few simple facts concerning ε-regular pairs,
which will be useful in the proofs of Theorem 2 and the lemma for G. We would
advise a reader familiar with Szemerédi’s regularity lemma to skip this section at
the first reading and go directly to the outline of the proof of Theorem 2 in Section 3.

We start with some basic definitions. Our general aim is to find a copy of some
graph H in some other graph G, by which we mean that G contains a subgraph
which is isomorphic to H . In other words, we are looking for an embedding of
H into G, i.e., an injective function f : V (H) → V (G) such that for every edge
{u, v} ∈ E(H) we have {f(u), f(v)} ∈ E(G).

2.1. Szemerédi’s regularity lemma. One of the main tools in our proof is the
regularity lemma [38] of Szemerédi, which pivots around the concept of an ε-regular
pair. Let G = (V, E) be a graph. For a vertex v ∈ V we write dG(v) := |NG(V )|
for the degree of v in G. Let A, B ⊆ V be disjoint vertex sets. We denote the
number of edges with one end in A and the other end in B by e(A, B). The ratio
d(A, B) := e(A, B)/(|A||B|) is called the density of (A, B). The pair (A, B) is ε-
regular, if for all A′ ⊆ A and B′ ⊆ B with |A′| ≥ ε|A| and |B′| ≥ ε|B| it is true
that |d(A, B) − d(A′, B′)| < ε. An ε-regular pair (A, B) is called (ε, d)-regular, if
it has density at least d. The following is the so-called degree form of Szemerédi’s
regularity lemma (see, e.g., [30, Theorem 1.10]).

Theorem 3 (Regularity lemma). For every ε > 0 and every integer k0 there is an

K0 = K0(ε, k0) such that for every d ∈ [0, 1] and for every graph G on at least K0

vertices there exists a partition of V (G) into V0, V1, . . . , Vk and a spanning subgraph

G′ of G such that the following holds:

(i ) k0 ≤ k ≤ K0,

(ii ) dG′(x) > dG(x) − (d + ε)|V (G)| for all vertices x ∈ V (G),
(iii ) for all i ≥ 1 the induced subgraph G′[Vi] is empty,

(iv ) |V0| ≤ ε|V (G)|,
(v ) |V1| = |V2| = · · · = |Vk|,
(vi ) all pairs (Vi, Vj) with 1 ≤ i < j ≤ k are either (ε, d)-regular or G′[Vi, Vj ] is

empty.

The sets Vi in Theorem 3 are called clusters and the set V0 is the exceptional

set. Given a partition V0∪̇V1∪̇ · · · ∪̇Vk as in Theorem 3, the reduced graph Rk is
the graph on vertices [k] and with edges {i, j} for 1 ≤ i, j ≤ k for exactly those
pairs (Vi, Vj) that are (ε, d)-regular in G′. Thus, {i, j} is an edge of Rk if and only
if G′ has an edge between Vi and Vj . On the other hand, for a graph G = (V, E)
and a graph Rk on the vertex set [k] we say that V1∪̇ · · · ∪̇Vk is (ε, d)-regular on Rk

if (Vi, Vj) is (ε, d)-regular for every {i, j} ∈ E(Rk). We will also use the following
simple corollary of Theorem 3 (see, e.g., [33, Proposition 9]).

Corollary 4. For every γ > 0 there exist d > 0 and ε0 > 0 such that for every

0 < ε ≤ ε0 and every integer k0 there exist K0 so that the following holds.

For every c ≥ 0, an application of Theorem 3 to a graph G of minimum degree

at least (c + γ)|V (G)| yields a partition V0, V1, . . . , Vk of V (G) and a subgraph G′

of G so that additionally to properties (i )–(vi ) the following holds:

(vii ) the reduced graph Rk has minimum degree at least (c + γ/2)k.
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2.2. Super-regular pairs. For the blow-up lemma we need the concept of a super-

regular pair. Roughly speaking a regular pair is super-regular if every vertex has a
sufficiently large degree.

Definition 5 (super-regular pair). Let ε, d > 0 and let (A, B) be an (ε, d)-regular

pair in a graph G. We say (A, B) is (ε, d)-super-regular if, in addition, every v ∈ A
has at least d|B| neighbours in B and every v ∈ B has at least d|A| neighbours in A.

Moreover, for a graph G = (V, E) and a graph Rk on vertex set [k] we say

V1∪̇ · · · ∪̇Vk ⊆ V is (ε, d)-super-regular on Rk if (Vi, Vj) is (ε, d)-super-regular for

every {i, j} ∈ E(Rk).

Proposition 6 implies that every (ε, d)-regular pair (A, B) contains a “large”
(2ε, d − 2ε)-super-regular sub-pair (A′, B′).

Proposition 6. Let (A, B) be an (ε, d)-regular pair and B ′ be a subset of B of

size at least ε|B|. Then there are at most ε|A| vertices v in A with |N(v) ∩ B ′| <
(d − ε)|B′|.

Proof. Let A′ = {v ∈ A : |N(v)| ∩ B′ < (d − ε)|B′|} and assume to the contrary
that |A′| > ε|A|. But then d(X, Y ) < ((d − ε)|A′||B′|)/(|A′||B′|) = d − ε which is
a contradiction since (A, B) is (ε, d)-regular. �

Repeating the last observation a fixed number of times, we obtain the following
proposition, which we will later combine with Corollary 4.

Proposition 7. With the notation of Corollary 4, let R′ be a subgraph of the

reduced graph R with ∆(R′) ≤ ∆. Then for each vertex i of R′, the corresponding

set Vi contains a subset V ′

i of size (1−ε∆)|Vi| such that for every edge {i, j} ∈ E(R′)
the pair (V ′

i , V ′

j ) is (ε/(1 − ε∆), d − ∆ε)-super-regular. Moreover, for every edge

{i, j} of the original reduced graph R, the pair (V ′

i , V ′

j ) is still (ε/(1− ε∆), d−∆ε)-
regular.

For the simple proof of Proposition 7 we refer to [33, Proposition 8]. We close this
section with the following useful observation. It states that the notion of regularity
is “robust” in view of small alterations of the respective vertex sets.

Proposition 8. Let (A, B) be an (ε, d)-regular pair and let (Â, B̂) be a pair such

that |Â4A| ≤ α̂|Â| and |B̂4B| ≤ β̂|B̂| for some 0 ≤ α̂, β̂ ≤ 1. Then, (Â, B̂) is an

(ε̂, d̂)-regular pair with

ε̂ := ε + 3
(
√

α̂ +

√

β̂
)

and d̂ := d − 2(α̂ + β̂)

If, moreover, (A, B) is (ε, d)-super-regular and each vertex v in Â has at least d|B̂|
neighbours in B̂ and each vertex v in B̂ has at least d|Â| neighbours in Â, then

(Â, B̂) is (ε̂, d̂)-super-regular with ε̂ and d̂ as above.

Proof. Let A, B, Â and B̂ be as above. First we estimate the density of (Â, B̂).
Let d′ := d(A, B) ≥ d be the density of (A, B). If (Â, B̂) had the same density as
(A, B), we would have e(Â, B̂) = d′|Â||B̂|. The actual value of e(Â, B̂) can deviate
by at most

|Â4A| · |B̂ ∪ B| + |B̂4B| · |Â ∪ A| ≤ α̂|Â| · (1 + β̂)|B̂| + β̂|B̂| · (1 + α̂)|Â|
≤ 2(α̂ + β̂)|Â||B̂|



6 JULIA BÖTTCHER, MATHIAS SCHACHT, AND ANUSCH TARAZ

from this value. So, clearly

d̂ = d − 2(α̂ + β̂) ≤ d′ − 2(α̂ + β̂) ≤ d(Â, B̂) ≤ d′ + 2(α̂ + β̂) .

Now let Â′ ⊆ Â and B̂′ ⊆ B̂ be sets of sizes |Â′| ≥ ε̂|Â| and |B̂′| ≥ ε̂|B̂|. Denote
Â′ ∩ A by A′ and B̂′ ∩ B by B′ and observe that

|A′| ≥ |Â′| − α̂|Â| ≥ (ε̂ − α̂)|Â| ≥ (ε +
√

α̂)|Â| ≥ ε(1 + α̂)|Â| ≥ ε|A|.
Similarly, |B′| ≥ ε|B|. It follows that d′ − ε ≤ d(A′, B′) ≤ d′ + ε. Moreover,
|A′| ≤ |Â′| and

|A′| ≥ |Â′| − α̂|Â| ≥ |Â′| − α̂
|Â′|
ε̂

≥ (1 −
√

α̂)|Â′| ,

where the last inequality follows from the definition of ε̂. The same calculations
yield

(1 −
√

β̂)|B̂′| ≤ |B′| ≤ |B̂′| .
For the number of edges between A′ and B′ we therefore get

e(Â′, B̂′) ≥ e(A′, B′) ≥ (d′ − ε)|A′||B′| ≥ (d′ − ε)(1 −
√

α̂)(1 −
√

β̂)|Â′||B̂′|

≥ (d′ − ε −
√

α̂ −
√

β̂)|Â′||B̂′|
since α̂, β̂ ≤ 1. Similarly,

e(Â′, B̂′) ≤ e(A′, B′) + (|Â′| − |A′|)|B̂′| + (|B̂′| − |B′|)|Â′|

≤ (d′ + ε)|A′||B′| +
√

α̂|Â′||B̂′| +
√

β̂|Â′||B̂′|

≤ (d′ + ε +
√

α̂ +

√

β̂)|Â′||B̂′| .
With this we can now compare the densities of (Â′, B̂′) and (Â, B̂):

d(Â, B̂) − d(Â′, B̂′) ≤ (d′ + 2(α̂ + β̂)) − (d′ − ε −
√

α̂ −
√

β̂) ≤ ε̂,

d(Â′, B̂′) − d(Â, B̂) ≥ (d′ + ε +
√

α̂ +

√

β̂) − (d′ − 2(α̂ − β̂)) ≤ ε̂,

This implies that (Â, B̂) is (ε̂, d̂)-regular. The second part of the proposition follows
immediately from Definition 5, since d̂|Â| ≤ d|Â| and d̂|B̂| ≤ d|B̂|. �

2.3. Embedding results for regular pairs. The important feature of super-
regular pairs is that a powerful theorem, the so-called blow-up lemma proven by
Komlós, Sárközy and Szemerédi [24] (see also [34] for an alternative proof), guar-
antees that bipartite spanning graphs of bounded degree can be embedded into
sufficiently super-regular pairs. In fact, the statement is more general and allows
the embedding of r-chromatic graphs into the union of r vertex classes that form
(

r
2

)

super-regular pairs, but we will only use this lemma in the following restricted
form for 3-chromatic graphs.

Theorem 9 (Blow-up lemma [24]). For every d, ∆, c > 0 there exist constants

εBL = εBL(d, ∆, c) and αBL = αBL(d, ∆, c) such that the following holds.

Let n1, n2, and n3 be arbitrary positive integers, 0 < ε < εBL, and G =
(V1∪̇V2∪̇V3, E) be a 3-partite graph with |Vi| = ni for i ∈ [3] and with all pairs

(Vi, Vj) being (ε, d)-super-regular for 1 ≤ i < j ≤ 3, i.e., V1∪̇V2∪̇V3 is (ε, d)-super-

regular on K3.
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Suppose H is a 3-partite graph on vertex classes W1∪̇W2∪̇W3 of sizes n1, n2,

and n3 with ∆(H) ≤ ∆. Moreover, suppose that in each class Wi there is a set of

at most αBLni special vertices y, each of them equipped with a set Cy ⊆ Vi with

|Cy| ≥ cni.

Then there is an embedding of H into G such that every special vertex y is

mapped to a vertex in Cy.

We say that the special vertices y in Theorem 9 are image restricted to Cy.
For some technical reasons (see Step 4 in the overview of the proof of Theo-

rem 2 discussed in Section 1) we also need the following weaker embedding lemma
(concerning only linear sized, but not spanning embeddings) in the less restric-
tive environment of (ε, d)-regular pairs. Such a lemma, in a slightly different con-
text, was first obtained by Chvátal, Rödl, Szemerédi, and Trotter [8] (see also [12,
Lemma 7.5.2]). The only difference between Lemma 10 and their embedding lemma
is that we only embed some of the vertices of a given graph B into G and reserve
sufficiently many places in G for a future embedding of the remaining vertices of
B.

Lemma 10 (Partial embedding lemma). For every integer ∆ ≥ 2 and every d ∈
(0, 1] there exist constants c = c(∆, d) and εPEL = εPEL(∆, d) such that for all

ε ≤ εPEL the following is true.

Let Rk be a graph with V (Rk) = [k] and G be a graph with V (G) = V1∪̇ · · · ∪̇Vk,

such that |Vi| ≥ (1−εPEL)n/k for all i ∈ [k] and V1∪̇ · · · ∪̇Vk is (ε, d)-regular on Rk.

Let, furthermore, B be a graph with V (B) = X ∪̇Y and f : V (B) → V (Rk) = [k]
be a mapping with {f(b), f(b′)} ∈ E(Rk) for all {b, b′} ∈ E(B).

If |V (B)| ≤ εPELn/k and ∆(B) ≤ ∆, then there exists an injective mapping

g : X → V (G) with g(x) ∈ Vf(x) for all x ∈ X such that for all y ∈ Y there exist

sets Cy ⊆ Vf(y) \ g(X) such that

(i ) if x, x′ ∈ X and {x, x′} ∈ E(B) then {g(x), g(x′)} ∈ E(G),
(ii ) for all y ∈ Y we have Cy ⊆ NG(g(x)) for all x ∈ NB(y) ∩ X, and

(iii ) |Cy | ≥ c|Vf(y)| for every y ∈ Y .

In other words, Lemma 10 provides a mapping g for those vertices x ∈ X of
B into the cluster Vf(x) required by f , respecting the edges between such vertices.
Moreover, for the other vertices y ∈ Y of B, it prepares sufficiently large sets
Cy ⊆ Vf(y) \ g(X) such that, no matter where y will later be embedded in Cy, it
will be adjacent to any of its already embedded neighbours x ∈ NB(y) ∩ X .

The proof of Lemma 10 follows very much along the lines of the embedding
lemma from [8]. We also proceed iteratively, embedding the vertices in X into G
one by one.

Proof. Given ∆ and d, choose c := (d/2)∆/2 and εPEL := c/∆. Note, that this
implies εPEL ≤ (d/2)∆/4 ≤ d/2. Let 0 < ε ≤ εPEL, and G, Rk and B with
V (B) = X∪̇Y be graphs as required. For the size of X we have for all i ∈ [k]

|X | ≤ |V (B)| ≤ εPELn/k ≤ |Vi|εPEL/(1− εPEL) ≤ 2εPEL|Vi| .
We now construct the embedding g : X → V (G). For this, we will create sets Cb

not only for the vertices in Y , but for all vertices b ∈ V (B). First, set Cb := Vf(b)

for all b ∈ V (B). Then, repeat the following steps for each x ∈ X :

(a ) For all b ∈ NB(x), delete all vertices v ∈ Cx with |NG(v)∩Cb| < (d−ε)|Cb|.
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(b ) Then, choose one of the vertices remaining in Cx as g(x).
(c ) For all b ∈ NB(x), delete all vertices v ∈ Cb with v 6∈ NG(g(x)).
(d ) For all b ∈ V (B), delete g(x) from Cb.

We claim, that at the end of this procedure, g and the Cy with y ∈ Y are as desired.
Indeed, conditions (i ) and (ii ) are satisfied by construction. It remains, to prove
that condition (iii ) is satisfied and that g(x) can be chosen in step (a ) throughout
the entire procedure.

We start, by showing, that we always have |Cb| ≥ c|Vf(b)| for all b ∈ V (B). This
implies condition (iii ). In total, step (d ) removes at most |X | vertices from each
Cb. By the choice of g(x) in step (a ) and (b ), an application of step (c ) to a vertex
b ∈ NB(x), reduces the size of Cb at most by a factor of d− ε. Since each vertex in
b ∈ B has at most ∆ neighbours, we always have

|Cb| ≥ (d − ε)∆|Vf(b)| − |X | ≥ ((d/2)∆ − 2εPEL)|Vf(b)| ≥ 1
2 (d/2)∆|Vf(b)| = c|Vf(b)|.

Finally we consider step (a ). The last inequality shows that we always have
|Cb| ≥ c|Vf(b)| ≥ ε|Vf(b)| for every vertex b ∈ V (B). Consequently, by Proposition 6,
at most ∆ε|Vf(x)| vertices are deleted from Cx in step (a ). Since ∆ε|Vf(x)| ≤
(c/2)|Vf(x)| < |Cx|, the set Cx doesn’t become empty and thus g(x) can be chosen
in step (b ). �

3. Main lemmas and outline of the proof

In this section we introduce the central lemmas that are needed for the proof
of our main theorem. Our emphasis in this section is to explain how they work
together to give the proof of Theorem 2, which itself is then presented in full detail
in the subsequent section, Section 4.

Our first lemma incorporates the regularity lemma, but before we can state it
we will need a few more definitions. For all n, k ∈ N with k divisible by 3, we call
an integer partition n1 + · · · + nk = n (with ni ∈ N for all i ∈ [k]) equitriangular,
if |n3(j−1)+l − n3(j−1)+l′ | ≤ 1 for all j ∈ [k/3] and l, l′ ∈ [3]. We denote by
R∗

k = ([k], E(R∗

k)) the square of the Hamiltonian cycle with edges {{i, i + 1} : i =
1, . . . , k − 1} ∪ {{1, k}}. Moreover, we write R∗∗

k for the subgraph of R∗

k consisting
of the family of k/3 vertex disjoint triangles in R∗

k with vertex sets 3(j − 1) + 1,
3(j − 1) + 2, and 3(j − 1) + 3 for j ∈ [k/3].

We can now state (and then explain) our first main lemma which ‘prepares’ the
graph G for the embedding of H into G.

Lemma 11 (Lemma for G). For all γ > 0 there exist d > 0 and ε0 > 0 such that

for all 0 < ε ≤ ε0 there exist K0 and ξ0 > 0 such that for all n ≥ K0 and for every

graph G on vertex set [n] with δ(G) ≥ (2/3 + γ)n there exist k ∈ N \ {0} and a

graph Rk on vertex set [k] with

(R1 ) k ≤ K0 and 3|k,

(R2 ) δ(Rk) ≥ (2/3 + γ/2)k,

(R3 ) R∗∗

k ⊆ R∗

k ⊆ Rk, and

(R4 ) there is an equitriangular integer partition m1 + · · · + mk of n with mi ≥
(1 − ε)n/k such that the following holds.

For every partition n = n1 + · · ·+ nk with mi − ξ0n ≤ ni ≤ mi + ξ0n there exists a

partition V1∪̇ · · · ∪̇Vk of V with

(V1 ) |Vi| = ni,
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(V2 ) V1∪̇ · · · ∪̇Vk is (ε, d)-regular on Rk, and

(V3 ) V1∪̇ · · · ∪̇Vk is (ε, d)-super-regular on R∗∗

k .

In order to understand what this lemma says, let us first ignore property (R4 ),
the two lines thereafter, and property (V1 ), and instead propose that the sizes |Vi|
form an equitriangular partition of n. In this case, Lemma 11 could be considered a
standard corollary of the regularity lemma, Theorem 3, and Theorem 1 for graphs
G with δ(G) ≥ (2/3 + γ)n (cf. Corollary 4 and Proposition 7). Here it would
guarantee a partition of the vertex set of G in such a way that the partition classes
form many (super-)regular pairs, and that these pairs are organised in a sort of
backbone, namely in the form of a square of a Hamiltonian cycle R∗

k for the regular
pairs, and, contained therein, a spanning family R∗∗

k of disjoint triangles for the
super-regular pairs.

However, the lemma says more. When we come to the point (R4 ), the lemma
‘has in mind’ the partition we just described, but doesn’t exhibit it. Instead, it
only discloses the sizes mi and allows us to wish for small amendments: for every
i ∈ [k], we can now look at the value mi and ask for the size of the i-th partition
class to be adjusted to a new value ni, differing from mi by at most ξ0n.

When proving Lemma 11, one needs to alter the partition by shifting a few
vertices. Note that while (ε, d)-regularity is very robust towards such small alter-
ations, (ε, d)-super -regularity is not, so this is where the main difficulty lies (cf.
Proposition 8). We give the proof of Lemma 11, which borrows ideas from [29], in
Section 5.

Now we come to the second main lemma. It prepares the graph H so that it can
be embedded into G. This is exactly the place where, given the values mi, the new
values ni in the setting described above are specified.

Lemma 12 (Lemma for H). Let k ≥ 1 be an integer and let β, ξ > 0 satisfy

β ≤ ξ2/104. Let H be a 3-chromatic graph on n vertices with bandwidth at most βn
and let Rk be a graph with V (Rk) = [k] such that δ(Rk) > 2k/3 and R∗∗

k ⊆ R∗

k ⊆ Rk.

Furthermore, suppose m1 + · · ·+mk is an equitriangular integer partition of n with

mi ≥ βn for every i ∈ [k].
Then there exists a mapping f : V (H) → [k] and a set of special vertices X ⊆

V (H) with the following properties

(a ) |X | ≤ kξn,

(b ) mi − ξn ≤ |Wi| := |f−1(i)| ≤ mi + ξn for every i ∈ [k],
(c ) for every edge {u, v} ∈ E(H) we have {f(u), f(v)} ∈ E(Rk), and

(d ) if {u, v} ∈ E(H) and, moreover, u and v are both in V (H) \ X, then

{f(u), f(v)} ∈ E(R∗∗

k ).

In other words, Lemma 12 receives a graph H as input and, from Lemma 11,
a reduced graph Rk (with R∗∗

k ⊆ R∗

k ⊆ Rk), an equitriangular partition n =
m1 + · · · + mk, and a parameter ξ.

Again we emphasise that this is all what Lemma 12 needs to know about G. It
then provides us with a function f which maps the vertices of H onto the vertex
set [k] of Rk in such a way that i ∈ [k] receives ni := |Wi| vertices from H , with
|ni−mi| ≤ ξn. Although the vertex partition of G is not known exactly at this point,
we already have its reduced graph Rk. Lemma 12 guarantees that the endpoints
of an edge {u, v} of H get mapped into vertices f(u) and f(v) of Rk, representing
future partition classes Vf(u) and Vf(v) in G which will form a super-regular pair
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(see (d )) – except for those few edges with one or both endpoints in some small
special set X . But even these edges will be mapped into pairs of classes in G that
will form at least regular pairs (see (c )). Lemma 12 will then return the values ni

to Lemma 11, which will finally produce a corresponding partition of the vertices
of G.

If we consider the triangles 3(j − 1) + 1, 3(j − 1) + 2, and 3(j − 1) + 3 for every
j ∈ [k/3] that form the edge set of R∗∗

k , then the blow-up lemma, Theorem 9, would
immediately give us an embedding of

H [W3(j−1)+1, W3(j−1)+2, W3(j−1)+3] into G[V3(j−1)+1, V3(j−1)+2, V3(j−1)+3]

that takes care of all edges of H [V (H) \ X ].
Edges of H with one or both vertices in the special set X will need some special

treatment. However, due to part (a ) of Lemma 12 the size of X is quite small.
In particular we will be able to ensure that |X | � n/k. Our strategy will be
first to find an embedding g of the vertices of X into V (G) such that for every
y ∈ NH(X) := {y ∈ V (H) \ X : ∃ xy ∈ E(H) with x ∈ X} the set Cy :=
Vf(y) ∩

⋂

x∈NH(y)∩X NG(g(x)) is sufficiently large. The partial embedding lemma,

Lemma 10, guarantees the existence of such an embedding g of X . Once we have
applied it, we can complete the partial embedding g with the blow-up lemma, which
will ‘respect’ the image restriction to Cy for every y ∈ NH(X). In the next section
we give the precise details how Theorem 2 can be deduced from Lemma 11 and
Lemma 12 following the outline discussed above.

4. Proof of Theorem 2

In this section we give the proof of Theorem 2 based on Theorem 9, Lemma 10,
Lemma 11, and Lemma 12 from Section 2.3 and Section 3. In particular, we will use
Lemma 11 for partitioning G, and Lemma 12 for assigning the vertices of H to the
parts of G. For this, it will be necessary to split the application of Lemma 11 into
two phases. The first phase is used to set up the parameters for Lemma 12. With
this input, Lemma 12 then defines the sizes of the parts of G that are constructed
during the execution of the second phase of Lemma 11.

Finally, H is embedded into G by using the blow-up lemma, Theorem 9, on the
partition of G and by treating the special vertices X ⊆ V (H) from Lemma 12 with
the help of the partial embedding lemma, Lemma 10.

Here is how the constants that appear in the proof are related:

1

∆
, γ � d � ε � 1

K0
� ξ � β, as well as c � ε � α .

Proof of Theorem 2. Given ∆ and γ, let ε0 and d be as asserted by Lemma 11 for
input γ. Let c = c(∆, d) and εPEL = εPEL(∆, d) be as given by Lemma 10, and
εBL = εBL(d, ∆, c) and αBL = αBL(d, ∆, c) as given by Theorem 9. Set

ε := min{ε0, εPEL/2, εBL/2, d/4} . (1)

Then, the lemma for G (Lemma 11) provides constants K0 and ξ0 for this ε. We
define

ξ := min{ξ0, 1/(4K0), ε/(K2
0(∆ + 1)), αBL/(2K2

0(∆ + 1))} (2)

as well as n0 := K0, β := min{ξ2/2940, (1− ε)/K0} and consider arbitrary graphs
H and G on n ≥ n0 vertices that meet the conditions of Theorem 2.
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Applying Lemma 11 to G we get an integer k with 0 < k ≤ K0, graphs R∗∗

k ⊆
R∗

k ⊆ Rk on vertex set [k], and an equitriangular partition m1 + · · ·+ mk of n such
that (R1 )–(R4 ) are satisfied.

Before continuing with Lemma 11, we apply the lemma for H (Lemma 12). Note
that due to (R4 ) and the choice of β above, we have mi ≥ (1−ε)n/k ≥ βn for every
i ∈ [k]. Consequently, for constants k, β, and ξ, graphs H and R∗∗

k ⊆ R∗

k ⊆ Rk, and
the equitriangular integer partition m1 + · · · + mk = n we can apply Lemma 12.
This yields a mapping f : V (H) → [k] and a set of special vertices X ⊆ V (H).
These will be needed later. For the moment we are only interested in the sizes
ni := |Wi| = |f−1(i)| for i ∈ [k]. Condition (b ) of Lemma 12 and the choice of
ξ ≤ ξ0 in (2) imply that the partition n = n1 + · · · + nk satisfies mi − ξ0n ≤
mi − ξn ≤ ni ≤ mi + ξn ≤ mi + ξ0n for every i ∈ [k]. Accordingly, we can continue
with Lemma 11 to obtain a partition V = V1∪̇ · · · ∪̇Vk with |Vi| = ni that satisfies
conditions (V1 )–(V3 ) of Lemma 11. Note that

|Vi| = ni ≥ mi − ξn
(R4 )

≥ (1 − ε)
n

k
− ξn = (1 − (ε + ξk))

n

k
(1),(2)

≥ (1 − εPEL)
n

k
≥ 1

2

n

k
.

(3)

Now, we have partitions W1∪̇ · · · ∪̇Wk of H and V1∪̇ · · · ∪̇Vk of G with |Wi| = |Vi| =
ni for all i ∈ [k]. We will build the embedding of H into G such that each vertex
v ∈ Wi ⊆ V (H) will be embedded into the corresponding set Vi ⊆ V (G) for i ∈ [k].

For embedding the special vertices X of H in G, we use the partial embed-
ding lemma (Lemma 10). We provide Lemma 10 with constants ∆, d, and k,
the graph Rk, the graph G with vertex partition V1∪̇ · · · ∪̇Vk = V (G), the graph
B := H [X∪̇Y ] where Y := NH(X) consists of the neighbours of vertices of X
outside X , and the mapping f restricted to X∪̇Y . By (V2 ) of Lemma 11 and (c )
of Lemma 12, G and f fulfil the requirements of Lemma 10. Moreover, since
∆(B) ≤ ∆(H) ≤ ∆

|X | + |Y | = |V (B)| ≤ (∆ + 1)|X | ≤ (∆ + 1)kξn
(2)

≤ ε
n

k
(4)

by (a ) of Lemma 12. Accordingly, since ε ≤ εPEL we can apply Lemma 10 for
obtaining an embedding g of the vertices in X , and for every y ∈ Y sets Cy such
that

Cy ⊆ Vf(y) \ g(X) and |Cy| ≥ c|Vf(y)| ≥ c|Vf(y) \ g(X)| .
The sets Cy will be used in the blow-up lemma for the image restriction of the

vertices in Y = NH(X). We first check that there are not too many of these
restrictions. Let W ′

i := Wi \ X , V ′

i := Vi \ g(X) and n′

i := |W ′

i | = |V ′

i | for each
i ∈ [k]. Observe that

|X | + |Y |
(4)

≤ (∆ + 1)kξn
(2)

≤ αBL

2k
n

(3)

≤ αBLni,

and hence

|NH(X)| = |Y | ≤ αBLni − |X | ≤ αBL(ni − |X |) ≤ αBLn′

i.

For any j ∈ [k/3] we apply the blow-up lemma, Lemma 9, and find an embed-
ding of H [W ′

3(j−1)+1, W
′

3(j−1)+2, W
′

3(j−1)+3] into G[V ′

3(j−1)+1, V
′

3(j−1)+2, V
′

3(j−1)+3]

in such a way that every y ∈ NH(X) will be embedded into Cy . It is easy to
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check the the respective conditions are satisfied. Indeed, recall that by (V3 ) the
pair (V3(j−1)+l, V3(j−1)+l′ ) is (ε, d)-super-regular and that V ′

i = Vi \ g(X) for ev-
ery i ∈ [k]. Hence it follows directly from the definition of a super-regular pair
and (3), (4), and ε ≤ d/4, that (V ′

3(j−1)+l, V
′

3(j−1)+l′ ) is (2ε, d/2)-super-regular

with ε ≤ εBL/2 (see (1)).
Having applied the blow-up lemma for every j ∈ [k/3], we have obtained a

bijection

h : W ′

1∪̇ · · · ∪̇W ′

k → V ′

1 ∪̇ · · · ∪̇V ′

k with h(W ′

i ) = V ′

i for every i ∈ [k]

such that

h(y) ∈ Cy for every y ∈ NH(X) (5)

and H [W ′

1∪̇ · · · ∪̇W ′

k] ⊆ G[h(W ′

1)∪̇ · · · ∪̇h(W ′

k)].

Now we finish the proof by checking that the united embedding h̄ : V (H) → V (G)
defined by

v 7→ h̄(v) :=

{

h(v) if v ∈ V (H) \ X

g(v) if v ∈ X

is indeed an embedding of H into G. Let e = {u, v} be an edge of H . We distinguish
three cases.

If u, v ∈ X , then {h̄(u), h̄(v)} = {g(u), g(v)}, which is an edge in G since g is an
embedding of H [X ] into G by the partial embedding lemma.

If u ∈ X and v ∈ V (H) \X , then v ∈ NH(u) ⊆ NH(X), so we have h(v) ∈ Cv ⊆
NG(g(u)) by (5) and part (ii ) of Lemma 10, thus {h̄(u), h̄(v)} = {g(u), h(v)} ∈
E(G).

If, finally, u, v ∈ V (H)\X , then by part (d ) of Lemma 12, {f(u), f(v)} ∈ E(R∗∗

k ).
In other words, there exists a j ∈ [k/3], such that

{u, v} is contained in H [W ′

3(j−1)+1, W
′

3(j−1)+2, W
′

3(j−1)+3]

and hence {h̄(u), h̄(v)} = {h(u), h(v)} ∈ E(G) by (5). �

Algorithmic embeddings. We note that the proof of Theorem 2 presented above
yields an algorithm, which finds an embedding of H into G, if H is given along with
a valid 3-colouring and a labelling of the vertices respecting the bandwidth bound
βn. This follows from the observation that the proof above is constructive, and all
the lemmas used in the proof (Theorem 9, Lemma 10, Lemma 11, and Lemma 12)
have algorithmic proofs. Algorithmic versions of the blow-up lemma, Theorem 9,
were obtained in [25, 35]. In [25] a running time of order O(max{n1, n2, n3}3.376)
was proved. The key ingredient of Lemma 11 is Szemerédi’s regularity lemma for
which a O(n2.376) algorithm exists due to [4]. All other arguments in the proof
of Lemma 11 can be done algorithmically in O(n2) (see Section 5). Similarly,
the proof of Lemma 12 is constructive if a 3-colouring of H and a bandwidth
ordering is given (see Section 6). Finally, we note that the proof of Lemma 10
(following along the lines of [8]) gives rise to a O(n3) algorithm. Thus there is a
O(k× ((1/k+ ξ0)n)3.376 +n2.376 +n3) = O(n3.376) embedding algorithm, where the
implicit constant depends on γ and ∆ only.



SPANNING 3-COLOURABLE GRAPHS IN DENSE GRAPHS 13

5. Lemma for G

The main ingredients for the proof of Lemma 11 are Szemerédi’s regularity lemma
which provides a reduced graph Rk for G, Theorem 1 which guarantees the square of
a Hamiltonian cycle in Rk, and a strategy for moving vertices between the clusters
of Rk in order to adjust the sizes of these clusters. We first prove Lemma 11 for
the special case that ni = mi for all i ∈ [k].

Proposition 13. For all γ > 0 there exist d > 0 and ε0 > 0 such that for all

0 < ε ≤ ε0 there exists K0 such that for all n ≥ K0 and for every graph G on

vertex set [n] with δ(G) ≥ (2/3 + γ)n there exists k ∈ N \ {0}, and a graph Rk on

vertex set [k] with

(R1 ) k ≤ K0 and 3|k,

(R2 ) δ(Rk) ≥ (2/3 + γ/2)k,

(R3 ) R∗∗

k ⊆ R∗

k ⊆ Rk, and

(R4 ) there is an equitriangular integer partition m1 + · · · + mk of n with mi ≥
(1 − ε)n/k such that the following holds.

There is a partition U1∪̇ · · · ∪̇Uk = V with

(U1 ) |Ui| = mi,

(U2 ) U1∪̇ · · · ∪̇Uk is (ε, d)-regular on Rk,

(U3 ) U1∪̇ · · · ∪̇Uk is (ε, d)-super-regular on R∗∗

k .

Notice that once we have Proposition 13, the only thing that is left to be done
when proving Lemma 11 is to show that the sizes of the classes Ui can be slightly
changed from mi to ni without “destroying” properties (U2 ) and (U3 ).

In the proof of Proposition 13 we proceed in three steps. From the regularity
lemma we first obtain a partition U ′

0∪̇U ′

1∪̇ · · · ∪̇U ′

k of V (G) with reduced graph Rk

such that R∗∗

k ⊆ R∗

k ⊆ Rk. We then use Proposition 7 to get a new partition
U ′′

0 ∪̇U ′′

1 ∪̇ · · · ∪̇U ′′

k that is super-regular on R∗∗

k (and still regular on Rk). In a last
step we distribute the vertices in U ′′

0 to the sets U ′′

i with i ∈ [k], while maintain-
ing the super-regularity. The partition obtained in this way will be the desired
equitriangular partition U1∪̇ · · · ∪̇Uk.

Proof of Proposition 13. We first fix all constants necessary for the proof. Let
γ > 0 be given. The regularity lemma in form of Corollary 4 applied with γ′ = γ/2
yields positive constants d′ and ε′0. We fix the promised constants d and ε0 for
Proposition 13 by setting

d := min

{

d′

3
, γ

}

and ε0 := ε′0 . (6)

Now let some positive ε ≤ ε0 be given, for which Proposition 13 asks us to define K0.
For that let k0 be sufficiently large so that we can apply Theorem 1 to graphs Rk

on k ≥ k0 vertices with minimum degree δ(Rk) ≥ (2/3 + γ/2)k. We then define
some auxiliary constants ε′ and k′

0 by

ε′ := min

{

ε4

124
,
(d′)2

122
,

γ2

242
,
1

8

}

and k′

0 := max

{

k0,
8

γ
,

2

ε′

}

+ 2 . (7)

Let K ′

0 be given by Corollary 4 applied with γ′, ε′, and k′

0. We finally set K0 := K ′

0

for Proposition 13. After we have defined K0, let G = (V, E) be a graph satisfying
the assumptions of Proposition 13.
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Since ε′ ≤ ε ≤ ε0 = ε′0, by the choice of ε′0 and d′, Corollary 4 applied with
input γ′, ε′, k′

0 and c′ := 2/3 + γ/2 yields a partition U ′

0∪̇U ′

1∪̇ · · · ∪̇U ′

k′ = V and a
subgraph G′ so that properties (i )–(vi ) of Theorem 3 and (vii ) from Corollary 4
hold. In particular, k′

0 ≤ k′ ≤ K ′

0, the set U ′

0 is the exceptional set and there is a

reduced graph R̃k′ such that U ′

1∪̇ · · · ∪̇U ′

k′ is (ε′, d′)-regular on R̃k′ and such that

δ(R̃k′) ≥ (2/3 + γ/2 + γ/4)k′.
Let L′ := |U ′

1| = · · · = |U ′

k′ | and note that |U ′

0| ≤ ε′n implies that

(1 − ε′)n/k′ ≤ |L′| ≤ n/k′. (8)

Let k := 3 · bk′/3c and Rk be the graph induced by the vertices [k] in R̃k′ . Observe,
that k ≤ k′ ≤ K ′

0 = K0 and that 3 divides k. Therefore Rk satisfies property (R1 )
of Proposition 13. Moreover, Rk is a reduced graph for G[U ′

1∪̇ · · · ∪̇U ′

k] with

|V (Rk)| = k ≥ k′ − 2 ≥ k′

0 − 2
(7)

≥ k0 (9)

and

δ(Rk) ≥ δ(R̃k′ ) − 2 ≥ (2/3 + γ/2 + γ/4)k′ − 2
(7)

≥ (2/3 + γ/2)k.

Thus, we also have property (R2 ). By (9) and the choice of k0, Theorem 1 implies
that R∗

k ⊆ Rk. Moreover, R∗∗

k ⊆ R∗

k since 3|k and thus we get (R3 ).
Proposition 7 applied with R′ := R∗∗

k and accordingly ∆(R′) = 2 asserts that
for every i ∈ [k] there are subsets U ′′

i of U ′

i of size

L′′ := |U ′′

1 | = · · · = |U ′′

k | = (1 − 2ε′)L′ ,

such that U ′′

1 ∪̇ · · · ∪̇U ′′

k is (ε′/(1−2ε′), d′−2ε′)-regular on Rk, and (ε′/(1−2ε′), d′−
2ε′)-super-regular on R∗∗

k . By (7) we have ε′/(1−2ε′) ≤ 2ε′ and d′−2ε′ ≥ d′/2. This
implies that U ′′

1 ∪̇ · · · ∪̇U ′′

k is (2ε′, d′/2)-regular on Rk, and (2ε′, d′/2)-super-regular
on R∗∗

k . Moreover,

n

k
≥ L′′ = (1 − 2ε′)L′

(8)

≥ (1 − 2ε′)(1 − ε′)
n

k′
≥ (1 − 3ε′)

n

k + 2
(7)

≥ (1 − 3ε′)
n

k + ε′k
=

(

1 − 3ε′

1 + ε′

)

n

k
≥ (1 − 4ε′)

n

k
.

(10)

Now we collect all vertices from V not contained in U ′′

1 ∪̇ · · · ∪̇U ′′

k in a set U ′′

0 , i.e.,
let

U ′′

0 := V \
⋃

i∈[k]

U ′′

i .

It follows that

|U ′′

0 | = n −
∑

i∈[k]

|U ′′

i |
(10)

≤ n − k(1 − 4ε′)n/k = 4ε′n. (11)

In order to obtain the required partition of V with clusters Ui for i ∈ [k] we will
distribute the vertices in U ′′

0 to the clusters U ′′

i so that the resulting partition is
equitriangular and still (ε, d)-regular on Rk and (ε, d)-super-regular on R∗∗

k .
For this purpose, let u be a vertex in U ′′

0 . A triangle i, i+1, i+2 of R∗∗

k is called
u-friendly, if u has at least dn/k neighbours in each of the clusters U ′′

i , U ′′

i+1, and
U ′′

i+2. We claim that each u ∈ U ′′

0 has at least γk/3 u-friendly triangles. Indeed,
assume for a contradiction that there were only x < γk/3 u-friendly triangles for
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some u. Then, since u has less than 2L′′ + dn/k neighbours in clusters of triangles
that are not u-friendly, we can argue that

|NG(u)| < x · 3L′′ +

(

k

3
− x

) (

2L′′ +
dn

k

)

+ |U ′′

0 | ≤ xL′′ +
2k

3
L′′ +

d

3
n + 4ε′n

(10)

<
γk

3

n

k
+

2k

3

n

k
+

d

3
n + 4ε′n

(6),(7)

≤
(

2

3
+ γ

)

n,

which is a contradiction.
In a first step we now assign the vertices u ∈ U ′′

0 as evenly as possible to u-
friendly triangles in R∗∗

k . Since each vertex u ∈ U ′′

0 has at least γk/3 u-friendly
triangles, each triangle of R∗∗

k gets assigned at most 3|U ′′

0 |/(γk) vertices.
Then in the second step, in each triangle we distribute the vertices that have

been assigned to this triangle as evenly as possible among the three clusters of
this triangle. It follows immediately that the resulting partition is equitriangular.
Moreover, every cluster U ′′

i with i ∈ [k] gains at most

3|U ′′

0 |
γk

(11)

≤ 12ε′n

γk

(10)

≤ 12ε′

γ(1− 4ε′)
L′′

(7)

≤ 24
ε′

γ
|U ′′

i |
(6),(7)

≤
√

ε′|U ′′

i | (12)

vertices from U ′′

0 during this process. We claim that the resulting partition U1∪̇ · · · ∪̇Uk

of V satisfies properties (U1 )–(U3 ). For that we first define

mi := |Ui| ≥ |U ′′

i | = L′′
(10)

≥ (1 − 4ε′)n/k ≥ (1 − ε)n/k,

and note that for this choice (R4 ) and (U1 ) of Proposition 13 hold. Moreover, recall
that U ′′

1 ∪̇ · · · ∪̇U ′′

k is (2ε′, d′/2)-regular on Rk and (2ε′, d′/2)-super-regular on R∗∗

k .

By (12), Proposition 8 with α̂ = β̂ =
√

ε′ assures that U1∪̇ · · · ∪̇Uk is (ε̂, d̂)-regular
on Rk and (ε̂, d̂)-super-regular on R∗∗

k , where

ε̂ := 2ε′ + 6
4
√

ε′ and d̂ :=
d′

2
− 2

√
ε′.

Since 2ε′ + 6 4
√

ε′ ≤ ε and d′/2− 2
√

ε′ ≥ d′/3 ≥ d by (6) and (7), this implies (U2 )
and (U3 ) and concludes the proof of Proposition 13. �

Next we deduce the lemma for G (Lemma 11) from Proposition 13.

Proof of Lemma 11. Again we first fix the constants involved in the proof. Let
γ > 0 be given by Lemma 11. For γ, Proposition 13 yields constants d′ > 0 and
ε′0 > 0. For Lemma 11 we set

ε0 := min{ε′0, d′/8} and d := d′/2 . (13)

For given ε ≤ ε0, we fix

ε′ := min

{

ε

6
√

2
,

√

d

8

}

(14)

and note that 0 < ε′ ≤ ε ≤ ε0 ≤ ε′0. Therefore we can apply Proposition 13 with
γ and ε′ to obtain K ′

0. Finally, we define the constants K0 and ξ0 promised by
Lemma 11 and set

K0 := K ′

0 and ξ0 :=

(

ε′

2K0

)2

. (15)

Having fixed all the constants, let G = (V, E) be a graph on n ≥ K0 vertices.
We now apply Proposition 13 with γ and ε′ to the input graph G and get a positive
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integer k ≤ K ′

0, a graph Rk, and a partition U1∪̇ · · · ∪̇Uk = V so that (R1 )–(R4 )
and (U1 )–(U3 ) of Proposition 13 hold with ε replaced by ε′ and d replaced by d′.
Since K0 = K ′

0 and ε ≥ ε′, this shows that k, Rk, and mi = |Ui| for all i ∈ [k] also
satisfy properties (R1 )–(R4 ) of Lemma 11.

It remains to prove the ‘second part’ of Lemma 11. For that let n1 + · · ·+ nk be
an integer partition of n = |V | satisfying ni = mi ± ξ0n for every i ∈ [k]. Our goal
is to modify the partition U1∪̇ · · · ∪̇Uk = V to obtain a partition V1∪̇ · · · ∪̇Vk = V
that satisfies (V1 )–(V3 ) for ε and d.

The problem that occurs here is the following. Although a pair remains almost
as regular as before when a few vertices leave or enter a cluster, the property of
being super-regular is not that robust: every vertex that is moved to a new cluster
which is part of a super-regular triangle must make sure that it has sufficiently
many neighbours inside the neighbouring clusters within the triangle.

We first set Vi := Ui for all i ∈ [k]. In the following, we will perform several
steps to move vertices out of some clusters and into some other clusters. During
this process we will call a cluster Vi deficient, if |Vi| < ni, and excessive, if |Vi| > ni.
In the end we will neither have deficient clusters nor excessive clusters and thus
obtain the desired partition.

In the following the cyclic structure of R∗

k will be important. To simplify the
arguments, we will therefore allow the index i of a cluster Vi to become negative or
bigger than k. Thus V0 will denote cluster Vk, V−1 cluster Vk−1, and Vk+1 cluster
V1, and so on.

Note that σ : [k] → [3] with

σ(3j + l) := l for j ∈ {0, . . . , (k/3) − 1} and l ∈ [3]

is a valid 3-colouring of R∗

k. We will also say that cluster Vi has colour σ(i).
The following facts will allow us to balance deficient and excessive clusters. The

first observation will be useful to address imbalances within clusters of colour 1 or
3.

Fact 14. Suppose that |Vi| ≥ (1 − ε)n/k for all i ∈ [k], and that V1∪̇ · · · ∪̇Vk

is (ε, d)-regular on Rk. Then, for each j ∈ {0, . . . , (k/3) − 1}, there are at least

(1−3ε)n/k “good” vertices v ∈ V3j+1 that have at least dn/(2k) neighbours in each

of V3(j−1)+2 and V3(j−1)+3. Similarly, there are at least (1−3ε)n/k “good” vertices

v ∈ V3j+3 that have at least dn/(2k) neighbours in each of V3(j+1)+1 and V3(j+1)+2.

Proof of Fact 14. Note that the four pairs

{3j+1, 3(j−1)+2}, {3j+1, 3(j−1)+3}, {3j+3, 3(j+1)+1}, {3j+3, 3(j+1)+2}
are all edges of R∗

k. Since V1∪̇ · · · ∪̇Vk is (ε, d)-regular on R∗

k we can apply Propo-
sition 6 once with input ε, d, A = V3j+1, and B = B′ = V3(j−1)+2 and once
with input ε, d, A = V3j+1, and B = B′ = V3(j−1)+3. This asserts that at least
|V3j+1| − 2ε|V3j+1| vertices of V3j+1 have more than (d − ε)|V3(j−1)+2| neighbours
in V3(j−1)+2 and more than (d−ε)|V3(j−1)+2 | neighbours in V3(j−1)+3. This implies
the first part of Fact 14, because

|V3j+1| − 2ε|V3j+1| ≥ (1 − 2ε)(1 − ε)
n

k
≥ (1 − 3ε)

n

k
(16)

and

(d − ε)|V3(j−1)+2| ≥ (d − ε)(1 − ε)
n

k
≥ (d − 2ε)

n

k

(13)

≥ dn

2k
.
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The second part concerning vertices in V3j+3 follows analogously. �

Before we continue, let us briefly illustrate how Fact 14 is used later. Suppose
that for some j, j′ ∈ {0, . . . , (k/3) − 1} the set V3j+1 is an excessive cluster and
V3j′+1 is a deficient cluster, both of colour σ(3j + 1) = 1. Then by Fact 14 there is
some vertex v (in fact (1− 3ε)n/k vertices) in V3j+1 which has “many” neighbours
in V3(j−1)+2 and V3(j−1)+3. Hence, we move v from V3j+1 to V3(j−1)+1 without
loosing the super-regularity of the resulting partition on R∗∗

k , nor the regularity
on R∗

k. Recall that R∗

k was the square of a Hamiltonian cycle. Hence, repeating
this process by moving a vertex from V3(j−1)+1 to V3(j−2)+1 and so on, we will
eventually reach V3j′+1. Observe that it is of course not necessarily the vertex
v ∈ V3j+1 we started with, which is really moved all the way to V3j′+1 during
this process, but rather a sequence of vertices each moving one cluster further. The
crucial thing to note is that whenever we move a vertex from one cluster to another,
it still has many neighbours in the new neighbouring clusters within R∗∗

k . Therefore,
after such a sequence of applications of Fact 14, we end up with a new partition
V1∪̇ · · · ∪̇Vk with the following properties. The cardinality of V3j+1 decreased by
one and |V3j′+1| increased by one. For all i ∈ [k] different from 3j + 1 and 3j ′ + 1
the size of Vi remains the same. We say then that we moved a vertex along colour

class 1 of R∗

k from V3j+1 to V3j′+1 and if, as assumed above, V3j+1 was excessive
and V3j′+1 was deficient, then such a move decreases the imbalances within clusters
of colour 1. Similarly, we can apply the second part of Fact 14, for moving vertices
along colour class 3 of R∗

k.

PSfrag replacements

R∗

k

V1

V2

V3

V4

V5

V6

V7

V8

V9

Figure 1. Moving a vertex from V7 to V1 along colour class 1 of
R∗

k and thus decreasing the size of V7 and increasing the size of V1.

The clusters of colour 2 however need special treatment. Consider e.g. V3j+2.
Unfortunately we have no other vertex in R∗

k that is adjacent to 3j + 1 and 3j + 3.
Hence vertices cannot be moved analogously along colour class 2 of R∗

k.
Therefore the following observation will be useful, which will allow us to deal

with deficient clusters V3j+2 of colour 2.

Fact 15. Suppose that |Vi| ≥ (1 − ε)n/k for all i ∈ [k], and that V1∪̇ · · · ∪̇Vk is

(ε, d)-regular on Rk. For each j ∈ {0, . . . , (k/3)−1} there is an i ∈ [k] with σ(i) 6= 2,
such that 3j + 1, 3j + 3 ∈ NRk

(i) and there are at least (1− 3ε)n/k “good” vertices

v ∈ Vi that have at least dn/(2k) neighbours in each of V3j+1 and V3j+3.

Proof of Fact 15. Since δ(Rk) ≥ (2/3 + γ/2)k, the joint neighbourhood of 3j + 1
and 3j+3 has size at least (1/3+γ)k > k/3. Hence, there must be a joint neighbour
which is not of colour 2, and therefore i can be chosen. The existence of the vertices
v follows as in the proof of Fact 14. �
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This fact will be used for moving a vertex v from a cluster of Vi of colour 1 or 3
to a deficient cluster V3j+2 (of colour 2) for some j ∈ {0, . . . , (k/3) − 1}.

The last simple fact allows to address imbalances across different colours. More
precisely, it will be used for moving a vertex v from cluster Vi to any of the clusters
V3j+1, V3j+2, or V3j+3.

Fact 16. Suppose that |Vi| ≥ (1 − ε)n/k for all i ∈ [k], and that V1∪̇ · · · ∪̇Vk is

(ε, d)-regular on Rk. For each i ∈ [k] there is a j ∈ {0, . . . , (k/3) − 1}, such that

3j + 1, 3j + 2, 3j + 3 ∈ NRk
(i) and there are at least (1 − 4ε)n/k “good” vertices

v ∈ Vi that have at least dn/(2k) neighbours in each of V3j+1, V3j+2, and V3j+3.

Proof of Fact 16. Since δ(Rk) ≥ (2/3 + γ/2)k > 2k/3, there must be at least one
triangle 3j + 1, 3j + 2, 3j + 3 in R∗∗

k such that all three vertices of this triangle are
adjacent to i in Rk. The existence of the vertices v follows similar as in the proof
of Fact 14. Indeed, by Proposition 6, there are at least

|Vi| − 3ε|Vi| ≥ (1 − 3ε)(1 − ε)n/k ≥ (1 − 4ε)n/k

such vertices (cf. (16)). �

Now, we are ready to describe the process for eliminating deficient and excessive
clusters. In a first phase, we deal with the deficient clusters of colour 2. One
iteration of this phase is as follows. Let V3j+2 with j ∈ {0, . . . , (k/3) − 1} be such
a cluster. By Fact 15, there is an i ∈ [k] with σ(i) 6= 2 such that we can move a
vertex from Vi to V3j+2. We repeat this step, until no deficient cluster of colour 2
remains.

An iteration of the second phase performs the following steps. Choose an arbi-
trary excessive cluster Vi and a deficient cluster Vi′ . Note that there are deficient
clusters as long as there are excessive clusters by definition, and vice versa. Note
further, that σ(i′) 6= 2 by phase one. We distinguish two cases.

If σ(i) = σ(i′) and, hence, σ(i′) 6= 2, we use Fact 14 for moving a vertex along
colour class σ(i) of R∗

k from cluster Vi to cluster Vi′ .
Otherwise, we first apply Fact 16 to cluster Vi, which gives us a j ∈ {0, . . . , (k/3)−

1}, so that we can move a vertex from cluster Vi to V3j+σ(i′). Then, we can proceed
as in the previous case and move a vertex along colour class σ(i′) of R∗

k from cluster
V3j+σ(i′) to Vi′ with Fact 14.

In total we have to move at most

k
∑

i=1

|ni − mi| ≤ kξ0n

vertices in order to guarantee that |Vi| = ni, hence at most kξ0n iterations have to
be performed in the first phase and at most kξ0n in the second phase. Moreover, in
each iteration not more than one vertex gets moved out of each Vi with i ∈ [k], and
at most one vertex gets moved into each Vi. So, throughout the process we have

|Ui4Vi| ≤ 2 · 2kξ0n
(15)

≤ (ε′)2n/k, (17)

for all i ∈ [k].
Note that since by (13) we have (1−4ε)n/k ≥ ε′2n/k, in every step of phase one

and two the “moving” vertex v can be chosen from the set of (1 − 4ε)n/k “good”
vertices guaranteed by Facts 14–16.
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In addition it follows that

|Vi| ≥ |Ui| − |Ui4Vi|
(R4 ),(17)

≥
(

1 − ε′ − (ε′)2
) n

k

(14)

≥ (1 − ε)
n

k
(18)

after phase one and two for all i ∈ [k]. Recall that U1∪̇ · · · ∪̇Uk is (ε′, d′)-regular on
R∗

k and (ε′, d′)-super-regular on R∗∗

k . Therefore, we can apply Proposition 8 with
input ε′, d′, A = Ui, Â := Vi, and B := Ui′ , B̂ := Vi′ for any {i, i′} ∈ E(Rk). For
this, we set

α̂ := β̂ := 2(ε′)2 ≥ (ε′)2

1 − ε

(18),(17)

≥ |Ui4Vi|
|Vi|

. (19)

Since

ε̂ = ε′ + 3
(
√

α̂ +

√

β̂
) (19)

= ε′ + 6
√

2ε′
(14)

≤ ε

and

d̂ = d′ − 2(α̂ − β̂)
(19)
= d′ − 8(ε′)2

(13),(14)

≥ d.

we deduce from Proposition 8 that V1∪̇ · · · ∪̇Vk remains (ε, d)-regular on R∗

k and,
since we only moved “good” vertices, V1∪̇ · · · ∪̇Vk remains (ε, d)-super-regular on
R∗∗

k throughout the entire process.
This also justifies that we could indeed apply Facts 14, 15, and 16 throughout

the entire process. Therefore V1∪̇ · · · ∪̇Vk satisfies (V1 )–(V3 ) and this concludes
the proof of Lemma 11. �

6. Lemma for H

In order to prove the lemma for H (Lemma 12), we need to exhibit a mapping
f : V (H) → [k] with properties (a )–(d ). Basically, we would like to use the fact
that H is 3-colourable, visit the vertices of H in bandwidth order and arrange that
f maps the first vertices of colour 1 to 1, the first vertices of colour 2 to 2, and the
first vertices of colour 3 to 3. It would be ideal if, at more or the less same moment,
we would have dealt with m1 vertices of colour 1, m2 vertices of colour 2 and m3

vertices of colour 3, since we could then move and let f assign vertices to 4, 5 and
6.

Now the problem is that the mi are equitriangular, i.e., almost identical, but
the colour classes of H may vary a lot in size. Therefore, our first step towards
the proof of Lemma 12 will be to show that we can find a recolouring of H with
more or less balanced colour classes. We cut H into pieces of length ξn and find
a 3-colouring for each of these pieces, such that for all i the largest colour class
of the union of pieces 1 to i has the same colour as the smallest colour class of
the (i + 1)-st piece, and vice versa. In order to glue these colourings together and
obtain a proper colouring of the whole graph H , we need to assign the new colour
0 to some of the vertices. We start with three simple observations, which will be
helpful later in the proof of Lemma 12.

Observation 17. Let a, a′, b, b′, c, c′ and x be positive integers with a ≤ b ≤ c ≤
a + x and c′ ≤ b′ ≤ a′ ≤ c′ + x. If we set A := a + a′, B := b + b′, and C := c + c′,
then max{A, B, C} ≤ min{A, B, C} + x.

Proof. Indeed, a + a′ ≤ b + c′ + x and therefore A ≤ b + b′ + x = B + x and
A ≤ c + c′ + x = C + x. Similarly, B ≤ a + x + a′ = A + x, B ≤ c + c′ + x = C + x,
C ≤ b + x + b′ = B + x, and C ≤ a + x + a′ = A + x. �
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We say that a graph H on vertex set [n] with bandwidth at most b is given in

bandwidth order, if the vertex labels 1, . . . , n satisfy that for every edge {i, j} ∈
E(H) we have |i − j| ≤ b.

Observation 18. Let H be a 3-colourable graph on vertex set [n] with bandwidth

at most βn and suppose that the vertices are in bandwidth order. Let s ∈ [n] and

suppose σ : [n] → {0, . . . , 3} is a proper 4-colouring of V (H) such that σ(u) 6= 0
for all vertices u > s − 2βn. Then for any two colours l, l′ ∈ [3] the mapping

σ′ : [n] → {0, . . . , 3} defined by

σ′(v) :=











l′ if σ(v) = l, v > s

l if σ(v) = l′, v > s

σ(v) otherwise

can be turned into a proper 4-colouring σ′′ of H by colouring all vertices w ∈
[s − βn, s + βn] satisfying σ(w) = l with colour 0.

We shall say that σ′′ is obtained from σ by an (l, l′)-switch at vertex s. Note
that σ′′(u) 6= 0 for all vertices u ≥ s + βn.

Proof. Indeed, as σ′ is derived from the proper colouring σ by interchanging the
colours l and l′ after the vertex s, the only monochromatic edges that σ′ can possibly
yield are edges {u, v} with u ≤ s and s < v and {σ(u), σ(v)} = {l, l′}. Since H has
bandwidth at most βn, we must have that u ∈ [s − βn, s] and v ∈ [s + 1, s + βn].

Suppose now that we construct a new colouring σ′′ obtained from σ′ through
recolouring all the vertices of colour l in the interval [s − βn, s + βn] by colour 0.
Thus all previous monochromatic edges have disappeared: If σ(u) = l and σ(v) = l′,
then σ′′(u) = 0 and σ′′(v) = l. If σ(u) = l′ and σ(v) = l, then σ′′(u) = l′ and
σ′′(v) = 0. Moreover, the newly 0-coloured vertices cannot be adjacent to each
other (because they were all assigned colour l by σ). Furthermore, by assumption
for vertices u ∈ [s− 2β, s− βn] we have σ(u) 6= 0 and hence σ′′(u) 6= 0. Therefore,
due to the bandwidth assumption on H no new monochromatic edges of colour 0
can appear in σ′′ and, hence, it is a proper 4-colouring. �

The next observation is based on repeated applications of the two preceding facts.
Roughly speaking, it states that 3-chromatic graphs H with small bandwidth can
be 4-coloured, so that one colour is “very rare” (see (21)) and the other three colours
appear “equally distributed” (see (20)). For the inductive proof we consider the
following somewhat technical statement.

Observation 19. Let H be a 3-colourable graph on vertex set [n] with bandwidth

at most βn and suppose that the vertices are in bandwidth order. Let ξ be a con-

stant with β < ξ/6 and assume that 1/ξ is an integer. For all integers i ∈ [1/ξ]
there exists a proper 4-colouring σi : [n] → {0, . . . , 3} of the vertices of H with the

following properties. For all j ∈ [i]

max
l∈[3]

{

|σ−1
i (l) ∩ [jξn]|

}

≤ min
l∈[3]

{

|σ−1
i (l) ∩ [jξn]|

}

+ ξn + 5jβn. (20)

and

σ−1
i (0) ⊆

⋃

j∈[i−1]

[jξn, jξn + 5βn] (21)



SPANNING 3-COLOURABLE GRAPHS IN DENSE GRAPHS 21

Proof. We prove this statement by induction on i. Clearly, for i = 1, we let σ1 be
the proper 3-colouring of H . Then (20) holds trivially and no vertices of colour 0 are
needed. Now suppose that σi is given. We will obtain σi+1 from σi by appropriate
(l, l′)-switches at iξn + βn and iξn + 4βn.

More precisely, suppose w.l.o.g. that the smallest colour class of σi on the first
iξn vertices of H is that of colour 1, and the largest is that of colour 3. Since
every permutation of the set [3] can be written as the composition of at most two
transpositions, there must be colours l1, l

′

1, l2, l
′

2 such that if we obtain σi+1 from
σi by an (l1, l

′

1)-switch at iξn+ βn followed by an (l2, l
′

2)-switch at iξn+ 4βn, then
the smallest colour class of σi+1 on

I := [iξn + 5βn, (i + 1)ξn]

is that of colour 3, and the largest is that of colour 1. Clearly, the assumptions of
Observation 18 are satisfied before each of the switches, since before the first switch
by induction assumption σi(u) 6= 0 for all u > (i − 1)ξn + 5βn and, hence, for all
u ≥ iξn − βn, as ξ > 6β. Similarly, after the first switch the largest vertex v of
colour 0 obeys v ≤ iξn + 2βn. It follows from Observation 18 that σi+1 is a proper
4-colouring of H .

It is now easy to check that σi+1 satisfies the requirements of the claim. Indeed,
as σi+1(v) = σi(v) for all v ≤ iξn, we already know that (20) holds for all j ∈ [i]
and thus, by induction we now have

|σ−1
i+1(1) ∩ [iξn]| ≤ |σ−1

i+1(2) ∩ [iξn]| ≤ |σ−1
i+1(3) ∩ [iξn]|

≤ |σ−1
i+1(1) ∩ [iξn]| + ξn + 5iβn.

Since, trivially,

|σ−1
i+1(3) ∩ I | ≤ |σ−1

i+1(2) ∩ I | ≤ |σ−1
i+1(1) ∩ I |

≤ |σ−1
i+1(3) ∩ I | + ξn ≤ |σ−1

i+1(3) ∩ I | + ξn + 5iβn,

we can now apply Observation 17 to see that

max
l∈[3]

{

|σ−1
i+1(l) ∩ [(i + 1ξn]|

}

≤ min
l∈[3]

{

|σ−1
i+1(l) ∩ [(i + 1)ξn]|

}

+ ξn + 5iβn +
∣

∣[iξn, (i + 1)ξn] \ I
∣

∣,

which implies equation (20) for j = i + 1 as well. Finally, we note that (21) follows
directly from the induction assumption on σi and the definition of σi+1. �

In the following lemma we sum up what we have achieved so far. First note that
(20) and (21) imply that for all i ∈ [1/ξ], every j ∈ [i], and l ∈ [3]

j(ξ − 5β)n

3
− (ξ + 5jβ)n ≤ |σ−1

i (l) ∩ [jξn]| ≤ j(ξ + 5β)n

3
+ (ξ + 5jβ)n. (22)

In other words, the colourings σi use the colours 1, 2, 3 almost evenly, at least if
we consider intervals of the form [jξn]. Moreover, colour 0 is only used in certain
relatively small intervals. The following definitions try to capture these features in
a form that is convenient for the proof of Lemma 12.

For x ∈ N, a colouring σ : [n] → {0, . . . , 3} is called x-balanced, if for each interval
[a, b] ⊆ [n] and each l ∈ [3], we have

b − a

3
− x ≤

∣

∣σ−1(l) ∩ [a, b]
∣

∣ ≤ b − a

3
+ x.
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Moreover, σ is called x-zero free, if for each t ∈ [n] there exists a t′ ∈ [n] with
t− 2x ≤ t′ ≤ t + 2x such that σ(u) 6= 0 for all u ∈ [t′ − x, t′ + x]. We also say that
the interval [t′ − x, t′ + x] is zero free.

Lemma 20 (Balancing lemma). Let H be a 3-colourable graph on vertex set [n]
with bandwidth at most βn and suppose that the vertices are in bandwidth order. Let

ξ be a constant with β < ξ2/10 and assume that 1/ξ is an integer. Then there exists

a proper 4-colouring σ : V (H) → {0, . . . , 3} that is 5βn-zero free and 5ξn-balanced.

Proof. Given β, let H and ξ be as required. We set i := 1/ξ and claim that the
colouring σ = σi guaranteed by Observation 19 has the desired properties.

First it is easy to check that σ is indeed 5βn-zero free because 5β < ξ and
we know from (21) that the vertices of colour zero all lie in intervals of the form
[jξn, jξn + 5βn] with j ∈ [1/ξ].

Second, observe that by Observation 19, properties (20) and (21) and, conse-
quently, (22) hold for σ. Moreover, since β ≤ ξ2/10 < 3ξ2/20, we infer from (22)
that for every j ∈ [1/ξ]

jξn

3
− 2ξn < |σ−1

i (l) ∩ [jξn]| <
jξn

3
+ 2ξn . (23)

Now for an arbitrary interval [a, b] ⊆ [n], we choose j, j ′ ∈ [i] such that

a − ξn ≤ jξn ≤ a ≤ b ≤ j ′ξn ≤ b + ξn .

This yields that

|σ−1(l) ∩ [(j + 1)ξn, (j′ − 1)ξn]| ≤
∣

∣σ−1(l) ∩ [a, b]
∣

∣ ≤ |σ−1(l) ∩ [jξn, j′ξn]|.
The lower bound is equal to

|σ−1(l) ∩ [(j′ − 1)ξn]| − |σ−1(l) ∩ [(j + 1)ξn)|

≥
(

(j′ − 1)ξn

3
− 2ξn

)

−
(

(j + 1)ξn

3
+ 2ξn + 1

)

≥
(

b − ξn

3
− 2ξn

)

−
(

a + ξn

3
+ 2ξn

)

− 1 ≥ b − a

3
− 5ξn.

Similarly, the upper bound equals

|σ−1(l) ∩ [j′ξn]| − |σ−1(l) ∩ [jξn)|

≤
(

j′ξn

3
+ 2ξn

)

−
(

jξn

3
− 2ξn − 1

)

≤
(

b + ξn

3
+ 2ξn

)

−
(

a − ξn

3
− 2ξn

)

+ 1 ≤ b − a

3
+ 5ξn.

Thus, σ is 5ξn-balanced. �

After these preparations, we are ready to prove the lemma for H , Lemma 12.

Proof of Lemma 12. Given k and β let ξ, Rk and H be as required, with V (H) = [n]
in bandwidth order. Set ξ′ = ξ/21, and note that β ≤ ξ2/104 ≤ ξ′2/10. Therefore,
by Lemma 20 with input β, ξ′, and H , there is a 5βn-zero free and 5ξ′n-balanced
colouring σ : V (H) → {0, . . . , 3} of H .

Observe that for each triple of vertices in Rk, the common neighbourhood of
these vertices is nonempty, because δ(Rk) > 2k/3. It follows that for each j ∈ [k/3]
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there exists a vertex rj ∈ V (Rk) that is adjacent in Rk to each vertex of the j-th
triangle of R∗∗

k . These vertices rj will be needed to construct the mapping f .
Given an equitriangular partition m1, . . . , mk of n set

Mj := m3(j−1)+1 + m3(j−1)+2 + m3(j−1)+1

for j ∈ [k/3]. The aim now is to cut H into intervals of length approximately
M1, . . . , Mk/3 and then define f in such a way that it maps almost all vertices of
the j-th interval to the j-th triangle of R∗∗

k .
For this purpose, set t0 := 0 and tk/3 := n, and for every j = 1, . . . , k/3 − 1

choose a vertex

tj ∈





j
∑

j′=1

Mj′ − 10βn,

j
∑

j′=1

Mj′ + 10βn





such that σ is zero free on [tj − 5βn, tj + 5βn].
Such a tj indeed exists since σ is 5βn-zero free. For a vertex u ∈ V (H), let j(u)

be the index in [k/3] for which u ∈ [tj(u)−1, tj(u)]. We say, that (tj−1, tj ] is the j-th
interval of H . The first βn vertices of such an interval are called early, the last βn
late. Early and late vertices are also called untimely, all other vertices are timely.
Observe that the choice of the tj implies that

(∗ ) untimely vertices are not assigned colour 0 by σ and they also have no
neighbours of colour 0.

Using σ, we will now construct f and X . For each j ∈ [k/3], and each v ∈
(tj−1, tj ] in the j-th interval of H we set

f(v) :=



















rj if σ(v) = 0,

3j + 1 if σ(v) = 1 and v is late,

3(j − 2) + 3 if σ(v) = 3 and v is early,

3(j − 1) + σ(v) otherwise.

Let further

X :=
{

v ∈ V (H) : σ(v) = 0
}

∪
{

v ∈ V (H) : v untimely and σ(v) ∈ {1, 3}
}

.

It remains to show that f and X satisfy properties (a )–(d ) of Lemma 12.
Since σ is 5ξ′n-balanced, (n/3) − 5ξ′n ≤ |σ−1(l)| ≤ (n/3) + 5ξ′n for all l ∈ [3].

Consequently at most 15ξ′n vertices of of H receive colour 0. It follows, that

|X | ≤ 15ξ′n + 2βn
k

3
≤ 16kξ′n ≤ kξn,

which shows (a ).
For (b ), observe that for each i ∈ [k] with i = 3(j − 1) + l, f maps all timely

vertices v in the j-th interval of H with σ(v) = l ∈ [3] to i. Since σ is 5ξ ′n-balanced
and by the choice of tj−1 and tj , there are at most (Mj + 10βn)/3 + 5ξ′n ≤
mi + 4βn + 5ξ′n such vertices, and at least mi − 4βn − 5ξ′n. In addition, some
late vertices of the j-th and (j − 1)-st interval, some early vertices of the j-th and
(j + 1)-st interval and some vertices of colour 0 might be mapped to i. It follows,
that

|Wi| ≤ mi + 4βn + 5ξ′n + 4βn + 15ξ′n ≤ mi + 21ξ′n = mi + ξn.

Similarly, |Wi| ≥ mi − ξn and this shows (b ).
Now, we turn to (c ) and (d ). Let {u, v} be an edge of H . Clearly, σ(u) 6= σ(v).

Moreover, if u and v are in different intervals of H , then one of them is late and
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PSfrag replacements

H

R∗

k

f

1-st interval 2-nd interval

1

2

3

4

5

6

σ−1(1)

σ−1(2)

σ−1(3)

L1 E2

Figure 2. The mapping f from H to R∗

k. The late vertices of the
1-st interval are denoted by L1 and the early vertices of the 2-nd
interval by E2.

the other one is early, because the bandwidth of H is at most βn. Since not both
vertices can have colour 2, it follows that one of them is in X .

We will first consider the case where neither u ∈ X nor v ∈ X . Consequently, u
and v are in the same interval of H , i.e., j(u) = j(v). Thus, for all w ∈ V (H)\X we
have f(w) = 3(j(w)−1)+σ(w) and hence {f(u), f(v)} ∈ E(R∗∗

k ), which proves (d ).
It remains to investigate the case u ∈ X . If σ(u) = 0, then σ(v) 6= 0 and,

due to (∗ ) both u and v are timely. Therefore, j(v) = j(u), and we have f(v) =
3(j(v) − 1) + σ(v) and f(u) = rj(v). Hence {f(u), f(v)} ∈ E(Rk). If, on the other
hand, both σ(u) and σ(v) are not 0, then u ∈ X implies u is untimely and either of
colour 1 or of colour 3. If σ(u) = 1, then u is either mapped to 3(j(u) − 1) + 1 or
to 3j(u) +1. In the former case, u is early, and so, either f(v) = 3(j(u)− 1) +σ(v)
or f(v) = 3(j(u) − 2) + σ(v). In both cases, {f(u), f(v)} ∈ E(Rk). If u is mapped
to 3j(u) + 1, on the other hand, then u is late, and so f(v) = 3(j(u)− 1) + σ(v) or
f(v) = 3j(u) + σ(v), which, again, implies {f(u), f(v)} ∈ E(Rk). The case where
σ(u) = 3 follows analogously. Therefore (c ) holds for f , too. �
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4. N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster, The algorithmic aspects of the

regularity lemma, J. Algorithms 16 (1994), no. 1, 80–109. 4
5. N. Alon and E. Fischer, 2-factors in dense graphs, Discrete Math. 152 (1996), no. 1-3, 13–23.

1



SPANNING 3-COLOURABLE GRAPHS IN DENSE GRAPHS 25

6. N. Alon and R. Yuster, Almost H-factors in dense graphs, Graphs Combin. 8 (1992), no. 2,
95–102. 1

7. , H-factors in dense graphs, J. Combin. Theory Ser. B 66 (1996), no. 2, 269–282. 1
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15. P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar 1

(1966), 51–57. 1
16. P. Erdös and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52

(1946), 1087–1091. 1
17. G. Fan and H. A. Kierstead, The square of paths and cycles, J. Combin. Theory Ser. B 63

(1995), no. 1, 55–64. 1, 1
18. , Hamiltonian square-paths, J. Combin. Theory Ser. B 67 (1996), no. 2, 167–182. 1, 1
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35. V. Rödl, A. Ruciński, and M. Wagner, Matchings meeting quotas and their impact on the

blow-up lemma, SIAM J. Comput. 31 (2001), no. 2, 428–446. 4
36. P. Seymour, Problem section, Combinatorics (Proc. British Combinatorial Conf. 1973) (T. P.

McDonough and V. C. Mavron, eds.), Cambridge Univ. Press, London, 1974, pp. 201–204.
London Math. Soc. Lecture Note Ser., No. 13. 1

37. A. Shokoufandeh and Y. Zhao, Proof of a tiling conjecture of Komlós, Random Structures
Algorithms 23 (2003), no. 2, 180–205. 1
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