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Julia Böttcher 1,2
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Abstract

For c ∈ (0, 1) let Pn(c) denote the set of n-vertex perfect graphs with density c and
Cn(c) the set of n-vertex graphs without induced C5 and with density c. We show
that log2 |Pn(c)|/

(

n
2

)

= log2 |Cn(c)|/
(

n
2

)

= h(c) + o(1) with h(c) = 1
2 if 1

4 ≤ c ≤ 3
4

and h(c) = 1
2H(|2c− 1|) otherwise, where H is the binary entropy function.

Furthermore, we use this result to deduce that almost all graphs in Cn(c) have
homogeneous sets of linear size. This answers a special case of a question raised by
Loebl et al.
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1 Introduction and results

In this paper we investigate classes of graphs that are defined by forbidding
certain substructures. Let H be such a class. We focus on two related goals:
to approximate the cardinality ofH and to determine the structure of a typical
graph in H. In particular, we add the additional constraint that all graphs in
H must have the same density c and would like to know how the answer to
these questions depends on the parameter c.

We consider induced C5-free graphs of density c and provide bounds for
their number. In [12] Prömel and Steger proved that the class of induced C5-
free graphs is closely related to two other classes of graphs: perfect graphs on
the one hand and generalised split graphs on the other. In the spirit of their
results we relate the sizes of these three classes when restricted to graphs of
given density c.

With Gn(c) being the set of all graphs on vertex set [n] with c
(

n

2

)

edges
and Forb∗n(F ) being the set of all graphs on vertex set [n] that do not contain
an induced copy of F , we define the following graph classes:

C(n, c) := Gn(c) ∩ Forb∗n(C5) ,

P(n, c) :=
{

G ∈ Gn(c) : G is perfect
}

,

S(n, c) :=
{

G ∈ Gn(c) : G is a generalised split graph
}

,

where G = (V,E) is defined to be a generalised split graph if G or its comple-
ment admits a partition V = V1∪̇ . . . ∪̇Vk such that G[Vi] is a clique and for
i > j > 1 we have e(Vi, Vj) = 0.

Observe that for all n and c ∈ (0, 1) we have S(n, c) ⊂ P(n, c) ⊂ C(n, c).
Our first result states that the cardinalities of these three sets are equal up
to a multiplicative term of order 2o(n

2) and can be described by the following
function (see also Figure 1). Let

h(c) :=











H(2c)/2 if 0 < c < 1
4
,

1/2 if 1
4
≤ c ≤ 3

4
,

H(2c− 1)/2 if 3
4
< c < 1 ,
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where H(x) is the binary entropy function, that is, for x ∈ (0, 1) we set
H(x) := −x log2 x− (1− x) log2(1− x).
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Fig. 1. Values of h(c) for c ∈ (0, 1).

Theorem 1.1 For all c ∈ (0, 1) we have

lim
n→∞

log2 |C(n, c)|
(

n

2

) = lim
n→∞

log2 |P(n, c)|
(

n

2

) = lim
n→∞

log2 |S(n, c)|
(

n

2

) = h(c) .

Let us now move from the question of approximating cardinalities to de-
termining the structure of a typical element in Forb∗n(C5). A well-known
conjecture by Erdős and Hajnal [7] states that any family of graphs that does
not contain a certain fixed graph F as an induced subgraph must contain a
homogeneous set, i.e., a clique or a stable set, whose size is polynomial in the
number of vertices. The conjecture is known to be true only for few graphs
F , but open already for F = C5 (see [9]). However, Loebl, Reed, Scott,
Thomason, and Thomassé [10] recently showed that for any graph F almost

all graphs in Forb∗n(F ) have a polynomially sized homogeneous set. Moreover,
they asked for which graphs F it is true that almost all graphs in Forb∗n(F )
do have a linearly sized homogeneous set.

It may seem at first sight that our estimates derived in Theorem 1.1 are
too rough to tell us something about the structure of almost all graphs in
Forb∗n(C5). However, we can combine them with the ideas of [10] to answer
the question of Loebl et al. in the affirmative for the case F = C5. In fact, we
can prove this assertion even in the case where we, again, restrict the class to
graphs with a given density, that is, to Forb∗n(C5, c) = Gn(c) ∩ Forb∗n(C5).

Theorem 1.2 For η > 0 denote by Forb∗n,η(F, c) the set of graphs G ∈
Forb∗n(F, c) without a homogeneous set of size at least ηn. Then for every

0 < c < 1 there exists η > 0 such that

lim
n→∞

|Forb∗n,η(C5, c)|

|Forb∗n(C5, c)|
= 0 .



2 Background

In this chapter we give a brief overview of how our results relate to earlier
counting results for classes H defined by forbidden (induced) structures. The
quantity |Hn| where Hn := {G ∈ H : V (G) = [n]} is called the speed of H.
Often exact formulas or good estimates for |Hn| are out of reach. In these
cases, however, one might still ask for the asymptotic behaviour of the speed
of H. One prominent result in this direction was obtained by Erdős, Frankl
and Rödl [6] who considered properties Forb(F ) defined by a single forbidden
(weak) subgraph F . They proved that for each graph F with χ(F ) ≥ 3 the
class Forbn(F ) of n-vertex graphs that do not contain F as a subgraph satisfies
|Forbn(F )| = 2ex(F,n)+o(n2) where ex(F, n) := (χ(F ) − 2)

(

n

2

)

/(χ(F ) − 1). In
other words, if χ(F ) ≥ 3 then the speed of Forb(F ) asymptotically only
depends on the chromatic number of F .

As explained in Section 1, we are interested in features of the picture at a
more fine grained scale. Let Forbn(F, c) = Forbn(F )∩Gn(c). Straightforward
modifications of the proof of the theorem of Erdős, Frankl and Rödl [6] yield
the following bounds for |Forbn(F, c)| with F being a graph with χ(F ) = r
and c ∈ (0, r−2

r−1
). We have

lim
n→∞

log2 |Forbn(F, c)|
(

n

2

) = r−2
r−1

H
(

r−1
r−2

c
)

.

Notice that limn→∞ (log2 |Forbn(F, c)|) /
(

n

2

)

= 0 for c ≥ r−2
r−1

by the theorem
of Erdős and Stone [8].

Determining |Forb∗n(F )| is more challenging and was first considered by
Prömel and Steger [13]. They specified a graph parameter, the so-called
colouring number χ∗(F ) of F , that serves as a suitable replacement of the
chromatic number in the theorem of Erdős, Frankl and Rödl. More precisely,
they showed that |Forb∗n(F )| = 2ex

∗(F,n)+o(n2) with ex∗(F, n) :=
(

χ∗(F ) −
2
)(

n

2

)

/
(

χ∗(F )−1
)

where χ∗(F ) is defined as follows. A generalised r-colouring
of F with r′ ∈ [0, r] cliques is a partition of V (F ) into r′ cliques and r − r′

independent sets. The colouring number χ∗(F ) is the largest integer r + 1
such that there is an r′ ∈ [r] for which F has no generalised r-colouring with
r′ cliques. Alekseev [1], and Bollobás and Thomason [4] generalised the result
of Prömel and Steger to arbitrary hereditary graph properties H (i.e., graph
classes which are closed under isomorphism and taking induced subgraphs).
More precise estimates for the speed of H were given by Alon, Balogh, Bol-
lobás, and Morris [2]. For the case of Forb∗n(C4) and Forb∗n(C5) the speed



can in fact be approximated up to a factor of 2O(n) and it can be shown that
almost all graphs in Forb∗n(C5) are generalised split graphs [11,12].

Bollobás and Thomason [5] studied the probability PH := P[G(n, p) ∈ H]
of an arbitrary hereditary property H in the probability space G(n, p). In this
context, our Theorem 1.1 estimates the probability of H = Forb∗n(C5) in the
probability space G(n,m) with m = c

(

n

2

)

.

3 Sketch of proofs

The proofs of Theorem 1.1 and Theorem 1.2 use the regularity method for
induced subgraphs and ideas from [5] and [10]. Here we summarise the main
steps of the proof of Theorem 1.2.

For each graph G in Forb∗n,η(C5, c) we apply the regularity lemma to obtain
a reduced graph R = R(G) of bounded size. We encode densities of regular
pairs by colouring the edges in R white, grey or black depending on whether
the regular pairs have density in [0, δ], (δ, 1 − δ) or [1 − δ, 1]. The resulting
coloured graph is called a type. The crucial observation is that R cannot have
a grey triangle as this would force an induced copy of C5 in G (see, e.g., the
embedding lemma for induced subgraphs in [3]). For a fixed type R we then
obtain an upper bound for the number of graphs G ∈ Forb∗n,η(C5, c) with type
R which only depends on (the density c and) the number of grey edges in R
through the following observations.

We consider each cluster Vi of a partition of V (G) corresponding to R
separately. We show that the fact that G does not contain homogeneous sets
of size ηn implies that G[Vi] has a linear number of vertex-disjoint induced
copies of P3, the path on three vertices, or a linear number of vertex-disjoint
induced copies of the anti-path P 3, the complement of P3. We next prove
that many induced copies of P3 or P 3 in two clusters Vi and Vj, however, limit
the number of possibilities to insert edges between Vi and Vj without inducing
a C5.

Using the fact that the number of grey edges in R is bounded by Turán’s
theorem we thus obtain an upper bound on |Forb∗n,η(C5, c)|. Together with
the estimate for |Forb∗n(C5, c)| from Theorem 1.1 this yields the desired result.
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[9] Gyárfás, A., Reflections on a problem of Erdös and Hajnal, in: R. L. Graham
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graphs have the Erdős-Hajnal property, in: An Irregular Mind, Bolyai Society
Mathematical Studies 21, Springer, 2010 pp. 405–414.
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