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Abstract. As part of the efforts put in understanding the intricacies of the k-colorability
problem, different distributions over k-colorable graphs were analyzed. While the problem is
notoriously hard (not even reasonably approximable) in the worst case, the average case (with
respect to such distributions) often turns out to be “easy”. Semi-random models mediate
between these two extremes and are more suitable to imitate “real-life” instances than purely
random models. In this work we consider semi-random variants of the planted k-colorability
distribution. This continues a line of research pursued by Coja-Oghlan [7] and by Krivelevich
and Vilenchik [20]. Our aim is to study a more general semi-random framework than suggested
there. On the one hand we show that the algorithmic techniques developed in [20] extend to our
more general semi-random setting; on the other hand we give a hardness result, proving that
a closely related semi-random model is intractable. Thus, we provide some indication about
which properties of the input distribution make the k-colorability problem hard.
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1. Introduction and Definitions

A (proper) k-coloring of a graph G = (V, E) is a partition V1∪̇ . . . ∪̇Vk = V of its vertex set
such that u ∈ Vi and v ∈ Vj with i 6= j for every edge uv ∈ E. We will also denote this coloring
by simply writing V1, . . . , Vk. The chromatic number χ(G) of G is the minimal k such that there
is a k-coloring for G.

In the graph k-coloring problem we are asked to produce a k-coloring of a k-colorable graph G
for given k and G. This problem is of course well known to be NP-hard for k ≥ 3, and although
good approximation algorithms are at hand for several NP-hard problems, this is not the case for
the k-coloring problem. In fact, so far all known approximation algorithms for this problem use
as many as nα(k) colors in general, where n is the number of vertices of the input graph and α(k)
depends on k only [2, 3, 16, 19]. In addition, Dinur, Mossel, and Regev [8] recently gave some
evidence that an approximation of the k-coloring problem within a constant factor is unlikely.
This is not surprising, since (turning to the case where k is not necessarily fixed) almost a decade
ago Feige and Kilian [9] proved that no polynomial time algorithm approximates the chromatic
number χ(G) within a factor of n1−ǫ for all input graphs G.

Average Case Analysis. The wide range of worst-case NP-hardness and inapproximability
results for problems in graph theory motivates the study of heuristics that give “useful” answers
for a “typical” subset of the problem instances, where “useful” and “typical” are often not well
defined. One way of evaluating and comparing heuristics is by running them on a collection of input
graphs (“benchmarks”), and checking which heuristic usually performs better. Though empirical
results of this type are sometimes informative, we seek more rigorous measures of evaluating
heuristics. One possibility of rigorously modeling typical instances is to use a random distribution
over the set of possible inputs and design algorithms that work with high probability (whp for
short), i.e. with probability tending to 1 as n goes to infinity, with respect to this distribution. In
many settings the random graph Gn,p, generated by including each of the

(

n
2

)

possible edges on n
vertices with probability p = p(n) independently, is used for this purpose. However, Gn,p is not
suitable for the study of k-colorable graphs (when thinking of k as constant but allowing for an
arbitrarily large average degree np): for most values of p the chromatic number of Gn,p is known
to be roughly np/(2 ln(np)) [5, 22].
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To enable the average case study of graphs with a prescribed chromatic number k, Kučera [21]
suggested the following model for generating random k-colorable graphs, denoted by Gn,p,k. First
randomly partition the vertex set V = {1, ..., n} into k classes V1, ..., Vk of size n/k each. Then
for every i, j ∈ [k] with i 6= j, independently include every edge connecting a vertex in Vi with a
vertex in Vj with probability p = p(n, k); this type of random graph model is sometimes called
a planted model. The aim is then to develop an efficient algorithm that solves the corresponding
search problem (finding the planted coloring V1, ..., Vk in our case). For Gn,p,k it turned out that
this problem is comparably complicated in the sparse regime, i.e. when the average degree np does
not tend to infinity with n (but does possibly depend on k). In 1997 Alon and Kahale established
the following result.

Theorem 1 (Alon & Kahale [1]). There exists a polynomial time algorithm that whp finds a
k-coloring of Gn,p,k with np ≥ d0k

2 where d0 is a sufficiently large constant.

The proof of this theorem is constructive in the sense that an algorithm, based on spectral
techniques, is described. Similar results for the same or different planted models followed (see [17,
6, 11, 12, 13], to mention just a few).

Semi-random Models. The main drawback of random models is that they may not capture
the space of “useful” instances we have in mind: the various results on random graph models (see
e.g. [18]) show that instances generated by such models typically have a very special structure,
which will probably not reflect “real-world” examples. Further, there is the temptation of over-
exploiting the statistical properties of random graphs (eigenvalue structure, vertex degrees, etc.)
and designing algorithms that perform well on a specific distribution but fail completely when
the distribution is slightly changed. Since it is desirable to have algorithms that are robust in
this sense, semi-random models were introduced. In the semi-random setting, first a random
instance I0 is generated. Then a computationally unlimited adversary may further change I0.
Of course these modifications cannot be arbitrary (otherwise the adversary can transform any
I0 into a worst-case instance) and therefore the operations the adversary is allowed to perform
on I0 are usually restricted. By blending random and adversarial decisions, semi-random models
intermediate between the overly pessimistic worst-case and the idealized purely random case. As
such, they often serve as a driving force towards designing more natural and efficient algorithms
(e.g., introducing semi-definite programming not only as an important tool in approximation
algorithms but rather as part of heuristics that solve typical and adversarial instances [10, 11]).

The following semi-random variant G∗
n,p,k of Gn,p,k was suggested by Blum and Spencer [4].

First, a graph G0 = Gn,p,k is generated. Then, an adversary is allowed to add arbitrary Vi − Vj

edges for i 6= j. The algorithm of Alon and Kahale fails on G∗
n,p,k (even for super-constants values

of np) because the adversary can completely jumble the spectrum of the graph G0. However, Blum
and Spencer [4] described a polynomial time algorithm that works whp for G∗

n,p,k when np ≥ nαk ,

αk ≥ 2/5. Feige and Kilian [10] improved upon this result, giving an SDP-based algorithm that
k-colors G∗

n,p,k for np ≥ c(1 + ǫ)k lnn. Coja-Oghlan [7] gave a simpler SDP-based heuristic that

k-colors G∗
n,p,k for np ≥ c(1 + ǫ)k lnn. Improving upon a hardness result of Feige and Kilian [10]

he moreover shows the following theorem.

Theorem 2 (Coja-Oghlan [7]). It is NP-hard to k-color G∗
n,p,k for np ≤ (1 − ε)k

2 ln n
k unless NP

is contained in RP.

For constant values of np this means that the coloring problem on G∗
n,p,k is as difficult as in the

worst-case world; accordingly, this model is not suitable to study the sparse regime of Gn,p,k. In
the next section we will address the question of how to deal with this difficulty.

2. Our Contribution

In this work we focus on the sparse regime of Gn,p,k, i.e. we suggest a semi-random framework
for the case np = O(1). As discussed in the last section, G∗

n,p,k is tractable for np = Ω(log n) but

gets hard for np = O(1). It follows that for defining our model we have to limit the power of the
adversary.
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Let A be some vertex property. We define GA
n,p,k to be the semi-random graph model where first

a random graph G0 = Gn,p,k is generated and then an adversary may add edges between vertices
with property A as long as they respect the planted coloring of G0. We will usually abstractly
define a set A (where A may depend on the choice of G0) as the set of all vertices with property
A and then simply write GA

n,p,k instead of GA
n,p,k. This defines a family of semi-random models,

where taking A = V gives G∗
n,p,k and setting A = ∅ is simply Gn,p,k.

In [20], A was a carefully chosen set of vertices that depends on G0 and typically contains most
vertices, let us call it H (in this paper we will call this set a super-core, see Definition 3 below). The
authors of [20] illustrate that the algorithm of Alon and Kahale fails on the semi-random graph
model GH

n,p,k (for all values of np). They also prove, however, that an appropriate adaptation of

this algorithm works whp on GH
n,p,k for np ≥ d0k

2 where d0 is some sufficiently large constant.

Thus, the k-coloring problem remains tractable on GH
n,p,k in the sparse setting.

The main disadvantage of the set H is that its definition depends on np. Furthermore, the
semi-random model GH

n,p,k imposes some arguably unnatural restrictions on the adversary. For
example, the adversary cannot add edges that connect vertices of very high degree. However one
may expect such vertices to be the ones most easily colored by an algorithm. Extending the work
of [20] we suggest a more natural and general semi-random model, which does not depend on np
and eases the restrictions. Before stating our results we need some more definitions.

Definition 3. Jc is called a c-core of a k-colorable graph G0 (w.r.t a k-coloring V1, . . . , Vk of G0)
if every v ∈ Jc ∩Vi has at least c neighbors in Jc ∩Vj for every i 6= j. H is called a super-core of
a k-colorable graph G0 (w.r.t a k-coloring V1, . . . , Vk of G0) if every v ∈ H ∩Vi has (1±0.01)np/k
neighbors in H ∩ Vj for every i 6= j. When there is no danger of confusion we may also omit the
coloring we refer to.

By definition if Jc and J ′
c are c-cores of a graph G0 (w.r.t. the same coloring) then also Jc ∪ J ′

c

is a c-core of G0. Therefore, we may speak of a unique maximal c-core. Hence from now on, when
referring to the c-core of a graph we mean this maximal one (notice however, that a maximal
super-core H need not be unique). Observe further that Jd ⊆ Jc if d ≥ c. This explains why we
concentrate on the case c = 3 in the following; the case c = 2 seems to be more complicated, see
the discussion in Section 8. As we will see later, the 3-core of Gn,p,k typically contains all but a
tiny (though still constant) fraction of the vertices (see Lemma 8 in Section 3). This property will
be crucial in the proof of our first result, and also shows that the adversary can jumble a large
portion of the input graph.

Theorem 4. Let J3 denote the 3-core of a graph. There exists a polynomial time algorithm that
whp k-colors GJ3

n,p,k when np ≥ d0k
2, d0 a sufficiently large constant.

A result of similar flavor was proven in [20], with the 3-core J3 replaced by a super-core. As
we mentioned already, considering J3 is more natural in different respects. First of all it is not
difficult to see that it contains every super-core. In addition, J3 is unique and does not depend
on np.

For proving Theorem 4, we will show in Section 6 that the coloring algorithm used in [20]
continues to work when giving the adversary more freedom, i.e. allowing it to add edges to the
graph induced by the vertices of J3 instead of a the vertices of the super-core. For this purpose we
first need to investigate the properties of typical instances from Gn,p,k. This is done in Section 3.
Our analysis then relies on a decomposition of J3 that is centered around a super-core H contained
in J3. This decomposition is introduced in Section 4. In Section 5 we use this decomposition to
show that semidefinite programming can typically be used to color J3 which will turn out to
be important for the correctness of the algorithm. Thus, the main contribution of this paper
lies in new analytical insights and in suggesting a less strict semi-random framework for sparse
k-colorable graphs.

A natural question is which of the structural properties of the 3-core are essential for the
existence of a polynomial time coloring algorithm as asserted by Theorem 4. One characteristic of
a c-core is that it rules out vertices of degree smaller than c(k − 1). The following theorem shows
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however that replacing the 3-core by all vertices of degree at least c′ results in a semi-random
graph model that can not be k-colored in polynomial time whp in the sparse regime for every c′.
This suggests that it is essential in the definition of a c-core that its vertices have neighbors in
every color class other than their own; otherwise the problem becomes untractable.

Theorem 5. For all 4 ≤ k and c the following is true. Let Fc denote the set of vertices that have
degree at least c. Unless NP ⊆ RP there is no polynomial time algorithm that k-colors GFc

n,p,k whp

when np = O(1) and c = O(1).

The proof of this theorem is given in Section 7 and uses techniques developed in [7, 10]. The
following question however remains open.

Question 6. Let Uc be the set of vertices such that v ∈ Uc ∩ Vi has at least c neighbors in Vj

for every j 6= i (not necessarily in Uc). Does there exist a polynomial time algorithm that whp

k-colors GFc

n,p,k, for some constant c (in the regime np = O(1))?

Further discussion related to this problem is provided in Section 8.

3. Basic Properties of Gn,p,k

In this section we are interested in examining the typical structure of graphs in Gn,p,k. The
techniques applied here are standard and most of the properties we present (or variants of them)
are well-known. For several proofs we will therefore refer the reader to other sources from the
area.

Our first lemma states that whp a graph from Gn,p,k has no small dense subgraphs. The density
d(F ) of a graph F = (V, E) is the average degree of F , i.e. d(F ) := 2|E|/|V |.
Lemma 7. Let G0 be a random graph in Gn,p,k, and let δ ≤ (10np)−3. There whp exists no
subgraph F of G0 with |V (F )| ≤ δn and density d(F ) ≥ 3.

This lemma is proved using a simple first moment calculation. Details omitted. It is not
possible to replace d(F ) ≥ 3 by d(F ) ≥ 2 in Lemma 7, which is not a mere weakness of the proof
technique, but a true obstacle: a random graph with np > 1 contains whp “short” cycles (see [18],
Chapter 5). This fact actually translates to the difficulty in (immediately) replacing J3 with J2

in Theorem 4.
We will now examine the structure of Gn,p,k in more detail and investigate some properties of

cores and super-cores. We will show that a super-core whp covers most vertices of Gn,p,k and is
contained in any 3-core (Lemma 8). The remaining vertices consist of connected components of
size O(logk n) only (Lemma 10).

Lemma 8. Let G0 be a graph from Gn,p,k with np ≥ d0k
2, d0 a sufficiently large constant (in-

dependent of k). Let J3 be the 3-core and H a super-core of G both w.r.t. the planted k-coloring
V1, . . . , Vk. Then, whp

(a ) |Hi|/|Vi| ≥ 1 − exp
(

− Ω(np/k)
)

, and
(b ) H ⊆ J3

where Hi = H ∩ Vi.

Proof. (Outline) Part (a ) was proven in [20] (Lemma 6 (a )). For part (b ) note that for c ≤
0.99np/k a super-core is in particular a c-core and thus also a 3-core. By the uniqueness and
maximality of the 3-core the claim follows. �

Corollary 9. Let H be as in Lemma 8. Then |H | ≥ n−k · exp
(

−Ω(np/k)
)

n
k ≥ (1− (10np)−3)n.

Lemma 10. Let G0 = Gn,p,k with np ≥ d0k
2, d0 a sufficiently large constant. Let J3 be the 3-core

of G w.r.t. the planted coloring, and let G[V \ J3] be the graph induced by the non-core vertices.
Then whp the largest connected component in G0[V \ J3] is of size O(logk n).

Proof. In [1] it is proven that if H is a super-core of G then G[V \H ] satisfies the required property.
Since H ⊆ J3 it follows immediately that also G[V \ J3] satisfies the property. �
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4. A decomposition of the 3-core

In order to use the structural properties established in the previous section we need to take
a closer look at the 3-core J3 of Gn,p,k. For this purpose we introduce a decomposition of J3

“centered” around some maximum super-core H contained in J3. We will start by defining the
notion of safe vertices in J3. Lemma 12 then demonstrates that this notion indeed provides a
decomposition of J3.

Definition 11. (safe vertices) Let G be a graph from Gn,p,k with super-core H contained in a
3-core J3. A vertex v in J3 is called 0-safe (w.r.t. H) if it belongs to H and i-safe (w.r.t. H) if
in every color class (other than its own) v has at least one neighbor which is j-safe with j < i.
We say that v is safe (w.r.t. H), if it is i-safe for some i. Otherwise v is unsafe.

Lemma 12. Let G0 = Gn,p,k, np ≥ d0k
2 where d0 is a sufficiently large constant. Further, let H

be a super-core contained in the 3-core J3 of G0. Then whp every vertex in J3 is safe w.r.t. H.

Proof. By contradiction, let U ⊆ J3 be the set of vertices which are unsafe. Now, consider some
vertex v in U . By definition there is a color class Vj such that v has no safe neighbor in Vj . Since
v ∈ J3 it follows that v has at least 3 unsafe neighbors in Vj . Thus G[U ] has minimum degree
at least 3. Further, |U | ≤ |J3 \ H | ≤ (1 − (10np)−3)n (Corollary 9); this however contradicts
Lemma 7. �

We conclude this section with the observation that Lemma 12 remains true for GJ3

n,p,k instead
of Gn,p,k.

Observation 13. Let G0 be a graph from Gn,p,k and assume that we constructed a decomposition
of its core J3 into sets Si of i-safe vertices (w.r.t. some super-core H). Now, observe that if we
construct a semi-random graph G from G0 we only add edges. Therefore vertices of Si are also
i′-safe in G with i′ ≤ i.

5. Using semidefinite programming for coloring the 3-core of Gn,p,k

In this section we prove that the planted coloring of the 3-core J3 of Gn,p,k can be typically
determined in polynomial time. The algorithmic tool that we will use in order to establish this
results is the following semidefinite programming relaxation for the Max k-Cut problem suggested
by Frieze and Jerrum [14].

SDPk(G) := max
∑

(u,v)∈E

k − 1

k
(1 − 〈xu, xv〉)

s.t. ∀ u, v ∈ V, 〈xu, xv〉 ≥ − 1

k − 1
,

where the maximum is taken over all families (xv)v∈V of unit vectors in R
|V |. A solution of

SDPk(G) is a family (xv)v∈V for which the maximum is attained. A non-empty vertex set A =
{v ∈ V : xv = x} for some fixed x ∈ R

|V | is also called a color class of this solution. Restricting
the choice of the vectors xv to the vertices of an equilateral (k − 1)-dimensional simplex S on the
unit sphere in R

|V | shows that the optimal value of SDPk(G) gives an upper bound on the size
of a maximum k-cut C in G: simply assign one vertex of S to each of the classes of C. For a
k-colorable graph G = (V, E) we clearly have |C| = |E| and because SDPk(G) ≤ |E| by definition
we get that the optimal value of SDPk(G) = |E|. This implies the following observation.

Observation 14. For a k-colorable graph G = (V, E) a solution (xv)v∈V of SDPk(G) satisfies
〈xu, xv〉 = − 1

k−1 for all uv ∈ E.

Since SDPk is a semidefinite program, its optimal value (and a corresponding solution) can be
computed within any desired precision in time polynomial in n, k and the encoding of the tolerated
numerical error (e.g. using the ellipsoid method [15, 19]).
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Definition 15. Let G = (V, E) be a graph that admits a k-coloring V1, . . . , Vk A family (xv)v∈V

of vectors indexed by the vertices of G is called integral on the set A ⊆ V (w.r.t. this k-coloring),
if for all i, j ∈ [k] with i 6= j the following holds. For all s, s′ ∈ Vi ∩ A and t ∈ Vj ∩ A we have
vs = vs′ and 〈xs, xt〉 = − 1

k−1 . Moreover, we say that (xv)v∈V is non-degenerate on A if (xv)v∈A

spans at least k color classes.

Note, that a solution of SDPk that is integral on a vertex set A allows us to immediately
construct a k-coloring of A: simply group the vertices according to the color classes of the solution.
Therefore it is desirable to identify such sets A. The following lemma from [20] states that a
solution of SDPk is typically integral on the super-core when the input graphs are distributed
according to G∗

n,p,k. The proof of this lemma is rather technical and based on ideas from [7].

Lemma 16 (Krivilevich & Vilenchik [20]). Let G = G∗
n,p,k with np ≥ d0k

2, d0 a sufficiently large
constant, and let H be a super-core of the underlying graph G0 taken from Gn,p,k. Then whp a
solution (xv)v∈V of SDPk(G) is integral on H.

Our next step is to prove that Lemma 16 is also true for the 3-core J3 of G∗
n,p,k. For this we will

make use of the decomposition of J3 into i-safe vertices suggested in Section 3 (see Definition 11).

Lemma 17. Let G = G∗
n,p,k, np ≥ d0k

2, d0 a sufficiently large constant and let J3 be the 3-core

of G. Then whp a solution (xv)v∈V of SDPk(G) is integral on J3.

Proof. Let H be the super-core of the underlying random graph G0 of G, and let V1, . . . , Vk be
the planted k-coloring. Further, denote by Sj the set of j-safe vertices in J3 (w.r.t. H) and let
J i

3 := ∪j≤iSj . We will proof by induction on i that (xv)v∈V is integral and non-degenerate on J i
3.

Since by Lemma 12 and Observation 13 each vertex in J3 is safe (w.r.t. H) the claim follows.
The base case is given by Lemma 16 as J0

3 = H . Lemma 8 states that J0
3 ∩ Vj 6= ∅ for all

j ∈ [k] and therefore (xv)v∈V is non-degenerate on J0
3 . For the inductive step assume the claim

is true for i − 1, i.e. that (xv)v∈V is integral and non-degenerate on J i−1
3 . This means that there

are vectors y1, . . . , yk fulfilling 〈yj , yj′〉 = − 1
k−1 for all j, j′ ∈ [k] with j 6= j′ such that xs = yj

whenever s ∈ J i−1
3 ∩ Vj . Trivially, (xv)v∈V is also non-degenerate on J i

3. Moreover, we have

〈

y1 + · · · + yk , y1 + · · · + yk

〉

=
k

∑

j=1

〈yj , yj〉 +
∑

j,j′∈[k],j 6=j′

〈yj , yj′〉 = k − k(k − 1)
1

k − 1
= 0

which implies yk = −(y1 + · · · + yk−1). Now consider an i-safe vertex v ∈ J3. Without loss of
generality we assume that v ∈ Vk. By definition v has neighbors v1, . . . , vk−1 with vj ∈ J i−1

3 ∩ Vj

and by the induction hypothesis we have xvj
= yk. We need to prove that this implies xv = vk.

From the optimality of (xv)v∈V for SDPk(G) and Observation 14 it follows that 〈yj , xv〉 = − 1
k−1

for all 1 ≤ j ≤ k − 1. Similarly as above we conclude

〈

y1 + y2 + ... + yk−1 + xv , y1 + y2 + ... + yk−1 + xv

〉

= 0

and thus xv = −(y1 + · · · + yk−1) = yk which completes the proof of the inductive step. �

Observe that, since GJ3

n,p,k is a special case of G∗
n,p,k, the lemmas of this section remain true if

G∗
n,p,k is replaced by GJ3

n,p,k.

6. Proof of Theorem 4

For proving Theorem 4 and coloring GJ3

n,p,k we use the following algorithm (a variant of) which

was described in [20]. A vertex v of a partially colored graph G is called suspicious if it has less
than 3 neighbors in some color other than its own (w.r.t. a given, not necessarily proper, coloring
of the graph).
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Algorithm 1: Color(GJ3

n,p,k)

Compute an optimal solution (xv)v∈V for SDPk(G) ;1

foreach i ∈ [k] do

Color the vertices of the i-biggest color class of (xv)v∈V with i ;2

Iteratively, while there exists a suspicious vertex, uncolor it ;3

Let U be the set of all uncolored vertices ;
if some component of G[U ] has size C0 logk n then give up ;4

Exhaustively color the components of G[U ] ;5

As we already mentioned, the optimal solution to SDPk(G) can be computed (up to any
numerical precision) in polynomial time. In the exhaustive search (Step 5) we use a brute force
algorithm to k-color the components of G[U ]. Since Step 4 guarantees that all these components
are of size at most C0 logk n, the exhaustive search consumes no more than n · kC0 logk n = nC0+1

steps, where C0 is the implicit constant in Lemma 10. All other steps of the algorithm are clearly
also polynomial. Thus it remains to prove that typically Algorithm 1 finds a legal k-coloring of
the input graph when the graph is sampled according to GJ3

n,p,k, np ≥ d0k
2, d0 some sufficiently

large constant. In the analysis that follows we assume hat G is a typical graph from GJ3

n,p,k, i.e. G
satisfies the properties studied in Section 3. As before, let J3 denote the 3-core of G and H the
super-core of the underlying graph G0 from Gn,p,k.

Claim 18. The SDP step of the algorithm (Step 1 and Step 2 of Algorithm 1) colors J3 according
to the planted coloring.

Proof. By Lemma 16 a solution (xv)v∈V of SDPk is integral on J3. Moreover, by Lemma 8 (a ),
|J3 ∩ Vi| ≥ |H ∩ Vi| ≥ (1 − exp(−C0 · np/k))n

k for all i ∈ [k] and therefore H ∩ Vi is contained in
one of the k biggest color classes of (xv)v∈V for every i. It follows that all vertices of J3 ∩ Vi are
colored (w.l.o.g.) by color i when Step 2 ends. �

Moreover, by Lemma 8 (a ), |J3 ∩ Vi| ≥ |H ∩ Vi| ≥ (1 − exp(−C0 · np/k))n
k for all i ∈ [k]

and therefore the color class of (xv)v∈V containing H ∩ Vi is among the k biggest color classes of
(xv)v∈V . It follows that in all vertices of H ∩ Vi are colored by i in Step 2 (up to a permutation
of the colors). Observe also, that the SDP step produces a legal partial k-coloring of G by the
definition of SDPk. Next, we will show that the uncoloring step (Step 3 of Algorithm 1) produces
a partial coloring that coincides with the planted coloring and, moreover, leaves all vertices of the
super-core colored. For this we use ideas from [1].

Claim 19. After the uncoloring step (Step 3 of Algorithm 1), all colored vertices are colored
according to the planted coloring and J3 ∩ U = ∅.
Proof. We will first prove the second claim. Assume to the contrary, that there is some first vertex
v of J3 that gets uncolored. Without loss of generality, let v ∈ Vk. However, by definition, v has
at least 3 neighbors in J3 ∩ Vi for each i ∈ [k − 1], which are all colored correctly by Claim 18.
Thus v is not suspicious and does therefore not get uncolored, a contradiction.

To see the first claim, let W be the set of vertices not colored according to the planted coloring
(but not uncolored) when the uncoloring step ends, and assume without loss of generality that
there is some vertex v ∈ W ∩ V1 colored k. Since v did not get uncolored, it has at least 3
neighbors colored with 1 and from v ∈ V1 it follows that all these vertices are contained in W as
well; therefore, G[W ] has density at least 3. Further, W ∩J3 = ∅ by Claim 18 and the first part of
this proof; since the adversary cannot add any edges to W , also the density of G0[W ] is bounded
from below by 3. Moreover, |W | ≤ n − |J3| ≤ n − |H | ≤ (10np)−3n (Corollary 9), contradicting
Lemma 7. �

Claim 19 and Lemma 10 imply that all components of U are of size at most C0 logk n. Therefore
Algorithm 1 typically does not fail in Step 4. By Claim 19 the partial coloring can be extended
to a coloring of the whole graph. It follows that the exhaustive search (Step 5 of Algorithm 1)
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eventually assigns a color to every vertex, and thus we conclude that Algorithm 1 produces a
k-coloring of G which verifies Theorem 4.

7. Proof of Theorem 5

In the proof of Theorem 5 we follow the strategy of [7]. We will need the following easy lemma.

Lemma 20. For all 4 ≤ k and c = O(1) there is an ε such that the following is true. Let G0 be
a graph from Gn,p,k with planted coloring V1, . . . , Vk and such that np = O(1). Whp each color
class Vi with i ∈ [3] has at least εn/k vertices that have no neighbors in V1 ∪ V2 ∪ V3 and at least
c neighbors in V4 ∪ · · · ∪ Vk.

Proof. Let d := np and choose ε such that exp(−4d/k) ≥ √
ε/2 and (d/4c)c exp(−2d/5) ≥ √

ε/2.
The probability that a vertex v ∈ Vi for i ∈ [3] has no neighbor in V1 ∪ V2 ∪ V3 is at least

(1 − p)2n/k ≥ exp

(

−2p
2n

k

)

= exp(−4d/k) ≥ √
ε/2.

On the other hand, the probability that v has at least c neighbors in V4 ∪ . . . Vk is greater than
(

n − 3n
k

c

)

pc(1 − p)n− 3n
k

−c ≥
(n

4

c

)

pc(1 − p)
n
5 ≥

(np

4c

)c

exp
(

−2p
n

5

)

≥ (d/4c)c exp(−2d/5) ≥ √
ε/2.

We conclude that the probability that v has both required conditions is at least ε/2. Therefore
there are at least (n/k)(ε/2) such vertices v in Vi in expectation. By the Chernoff bound we
have concentration around the expected value and it follows that whp there are at least εn/k such
vertices in Vi. �

Proof of Theorem 5. Let ε be the constant guaranteed by Lemma 20 for k and c and assume that
GFc

n,p,k can be k-colored whp in polynomial time by an algorithm A. We will show that we can use
A to solve 3-colorability in randomized polynomial time and thus derive a contradiction.

Let H be an arbitrary 3-colorable graph with color classes of size εn
k and let G0 be a graph from

Gn,p,k. Our adversary then pursues the following strategy. First it finds a k-coloring of G0 with
color classes V 1∪̇ . . . ∪̇Vk of equal size and with vertex sets Wi ⊆ Vi with i ∈ [3] of size εn

k such
that each v ∈ Wi has no neighbors in V1 ∪ V2 ∪ V3 and at least c neighbors in V4 ∪ · · · ∪ Vk. Such
a coloring exists whp by Lemma 20 (if not, we give up on finding a 3-coloring for H). Then, the
adversary inserts all edges uv between Vi and Vj with i 6= j and v 6∈ W1 ∪W2 ∪W3. Furthermore,
it permutes the vertices of each color class of H randomly and then inserts the edges of H into
W1 ∪W2 ∪W3 by mapping color class i of H to Wi. The resulting graph G is a graph from GFc

n,p,k.
Therefore A finds a k-coloring of G whp .

The key observation now is that in the generation of G above two vertices u ∈ Wi and v ∈ Wj

with i 6= j are indistinguishable in the sense that exchanging u and v in G does not result in a
different graph G. Thus the distribution of G is equivalent to the following distribution (that can
be generated in polynomial time): Given H let G′ be a graph on n vertices with color classes
V ′

1 ∪̇ . . . ∪̇V ′
k of equal size. Select vertex sets W ′

i ⊆ V ′
i with i ∈ [3] of size (n

k )ε and embed H
randomly on W ′

1 ∪ W ′
2 ∪ W ′

3 (without taking care of the coloring of H). Then, again, insert all
edges uv between V ′

i and V ′
j with i 6= j and v 6∈ W ′

1 ∪ W ′
2 ∪ W ′

3. It follows that we can use A to

find a k-coloring of G′ whp and thus a 3-coloring of H which gives the desired contradiction. �

8. Discussion

In this work we investigate the tractability of semi-random distributions over k-colorable graphs
where the random part has constant average degree. The main contribution of this work is to
extend the machinery currently available for coloring graphs of this type to a more general and
natural semi-random framework. Several questions remain open. Recall in this connection that
we are interested in the sparse case, as otherwise already the model G∗

n,p,k is tractable [7].
One question is whether one can replace the 3-core J3 by the set Uc of all vertices having

degree at least c for some constant c in every color class other than their own. This was already
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mentioned in Section 2, Question 6 (note the difference from GJ3

n,p,k). This question somewhat
mediates between our Theorems 4 and 5. Our analysis breaks down when replacing J3 with U3

in Theorem 4 because it heavily relies on the decomposition of J3 around some super-core H of
the underlying graph from Gn,p,k suggested in Section 4. Although (as in the case of J3) the set
U3 contains every super-core, there need not necessarily be a corresponding decomposition for U3

since we do not have control over the neighbors of v ∈ U3 inside U3. At this point it is not clear
if the k-coloring problem for this semi-random model is tractable at all.

Another problem is to consider GJ2

n,p,k where J2 denotes the 2-core of the underlying random
graph G0 = Gn,p,k. Our analysis also breaks down in this case. As mentioned in Section 3 there
is no analogue of Lemma 7 claiming that there are no small subgraphs of density at least 2 in
Gn,p,k. As a consequence the decomposition of the 3-core introduced in Section 4 does not carry

over to the 2-core. As in the previous question it is not clear if the k-coloring problem for GJ2

n,p,k

is tractable or not.
We feel that solving the above questions should contribute to a better understanding of the

nature of the k-colorability problem, and hopefully will lead to the development of new algorithmic
techniques and new approaches in the analysis of algorithms solving this problem.
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6. J. Böttcher, Coloring sparse random k-colorable graphs in polynomial expected time, Proc. of the 30th Internat.

Sympos. Math. Found. Comput. Sci. (MFCS), 2005, pp. 156–167.
7. A. Coja-Oghlan, Coloring semirandom graphs, Combin. Probab. Comput. 16 (2007), 515–552.
8. I. Dinur, E. Mossel, and O. Regev, Conditional hardness for approximate coloring, Proc. 38th ACM Sympos.

Theory Comput. (STOC), 2006, pp. 344–353.
9. U. Feige and J. Kilian, Zero knowledge and the chromatic number, J. Comput. System Sci. 57 (1998), no. 2,

187–199.
10. , Heuristics for semirandom graph problems, J. Comput. System Sci. 63 (2001), no. 4, 639–671.
11. U. Feige and R. Krauthgamer, Finding and certifying a large hidden clique in a semirandom graph, Random

Structures Algorithms 16 (2000), no. 2, 195–208.
12. U. Feige and D. Vilenchik, A local search algorithm for 3SAT, Tech. report, Weizmann Institute, 2004.
13. A. Flaxman, A spectral technique for random satisfiable 3CNF formulas, Proc. 14th ACM-SIAM Symp. on

Discrete Algorithms, 2003, pp. 357–363.
14. A. Frieze and M. Jerrum, Improved approximation algorithms for MAX k-CUT and MAX BISECTION, Al-

gorithmica 18 (1997), no. 1, 67–81.

15. M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial optimization, Springer,
1993.

16. E. Halperin, R. Nathaniel, and U. Zwick, Coloring k-colorable graphs using relatively small palettes, J. Algo-
rithms 45 (2002), no. 1, 72–90.

17. C. Hui and A. Frieze, Coloring bipartite hypergraphs, Proc. of the 5th Internat. Conf. Integer Program. Comb.
Optim. (IPCO), 1996, pp. 345–358.

18. S. Janson, T.  Luczak, and A. Rucinski, Random graphs, Wiley-Interscience, 2000.
19. D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite programming, J. ACM 45

(1998), no. 2, 246–265.
20. M. Krivelevich and D. Vilenchik, Semirandom models as benchmarks for coloring algorithms, Third Workshop

on Analytic Algorithmics and Combinatorics (ANALCO), 2006, pp. 211–221.
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