Bounded Degree Subgraphs of Dense Graphs

Julia Bőttcher

Technische Universität Műnchen

13th International Conference on Random Structures and Algorithms, May 28-June 1, 2007, Tel Aviv

(joint work with Mathias Schacht & Anusch Taraz)

Question

Given a graph *H*, which conditions on an *n*-vertex graph G = (V, E) ensure $H \subseteq G$?

Question

- Given a graph *H*, which conditions on an *n*-vertex graph G = (V, E) ensure $H \subseteq G$?
- Our aim: every graph *G* = (*V*, *E*) with minimum degree $\delta(G) \ge$?? contains a given graph *H*.

Question

- Given a graph *H*, which conditions on an *n*-vertex graph G = (V, E) ensure $H \subseteq G$?
- Our aim: every graph *G* = (*V*, *E*) with minimum degree $\delta(G) \ge$?? contains a given graph *H*.

H of small/fixed size

Erdős–Stone:
$$\delta(G) \ge \left(\frac{\chi(H)-2}{\chi(H)-1} + o(1)\right) n \implies H \subseteq G.$$

Question

- Given a graph *H*, which conditions on an *n*-vertex graph G = (V, E) ensure $H \subseteq G$?
- Our aim: every graph *G* = (*V*, *E*) with minimum degree $\delta(G) \ge$?? contains a given graph *H*.

H of small/fixed size

$$\mathsf{Erd} \tilde{\mathsf{o}}\mathsf{s}\mathsf{-}\mathsf{Stone} \text{: } \delta(\mathsf{G}) \geq \left(\tfrac{\chi(H)-2}{\chi(H)-1} + \mathsf{o}(1) \right) n \quad \Longrightarrow \quad H \subseteq \mathsf{G}.$$

This talk

H is a spanning subgraph of G.

Julia Bőttcher	TU Műnchen
----------------	------------

Question

- Given a graph *H*, which conditions on an *n*-vertex graph G = (V, E) ensure $H \subseteq G$?
- Our aim: every graph *G* = (*V*, *E*) with minimum degree δ(*G*) ≥?? contains a given graph *H*.

Classical example:

•
$$\delta(G) \ge \frac{1}{2}n \Rightarrow (Ham) \subseteq G$$

DIRAC'52

This talk

H is a spanning subgraph of G.

is a spanning subgraph of G.		
Julia Bőttcher	TU Műnchen	

From Small Graphs to Spanning Graphs

■ A graph *H* of constant size is forced in *G*, when

$$\delta(G) \geq \left(\frac{\chi(H) - 2}{\chi(H) - 1} + o(1)\right) n.$$

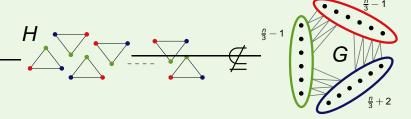
Julia Bőttcher

From Small Graphs to Spanning Graphs

A graph *H* of constant size is forced in *G*, when

$$\delta(\mathbf{G}) \geq \left(\frac{\chi(H)-2}{\chi(H)-1} + o(1)\right) n.$$

For spanning *H* we need at least $\delta(G) \ge \frac{\chi(H)-1}{\chi(H)}n$, because:

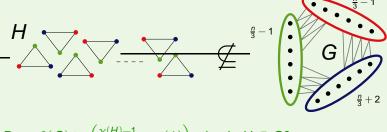


From Small Graphs to Spanning Graphs

A graph *H* of constant size is forced in *G*, when

$$\delta(\mathbf{G}) \geq \left(\frac{\chi(H)-2}{\chi(H)-1} + o(1)\right) n.$$

For spanning *H* we need at least $\delta(G) \ge \frac{\chi(H)-1}{\chi(H)}n$, because:



■ Does $\delta(G) \ge \left(\frac{\chi(H)-1}{\chi(H)} + o(1)\right)n$ imply $H \subseteq G$?

Does
$$\delta(G) \ge \left(\frac{\chi(H)-1}{\chi(H)} + o(1)\right)n$$
 imply $H \subseteq G$?

Does
$$\delta(G) \ge \left(\frac{\chi(H)-1}{\chi(H)} + o(1)\right)n$$
 imply $H \subseteq G$?

 $\bullet \delta(G) \geq \frac{r-1}{r} n \Rightarrow \lfloor \frac{n}{r} \rfloor \text{ disj. copies of } K_r \subseteq G.$

HAJNAL, SZEMERÉDI'69

HAJNAL, SZEMERÉDI'69

Alon-Yuster conjecture

KOMLÓS, SÁRKÖZY, AND SZEMERÉDI '01

$$\bullet \ \delta(G) \ge \frac{\chi(F)-1}{\chi(F)}n \quad \Rightarrow \quad \lfloor \frac{n}{|F|} \rfloor \text{ disj. copies of } F \subseteq G$$

Alon-Yuster conjecture

KOMLÓS, SÁRKÖZY, AND SZEMERÉDI '01

$$\delta(\mathbf{G}) \geq \frac{r-1}{r} n \Rightarrow (Ham)^r \subseteq \mathbf{G}.$$

FAN, KIERSTEAD '95

KOMLÓS, SÁRKÖZY, AND SZEMERÉDI'98

$$\bullet \ \delta(G) \geq \frac{\chi(F)-1}{\chi(F)}n \quad \Rightarrow \quad \lfloor \frac{n}{|F|} \rfloor \text{ disj. copies of } F \subseteq G$$

Alon-Yuster conjecture

KOMLÓS, SÁRKÖZY, AND SZEMERÉDI '01

$$\delta(\mathbf{G}) \geq \frac{2}{3}n \quad \Rightarrow \quad \mathrm{Ham}^2 \quad ($$

Pósa's conjecture

FAN, KIERSTEAD '95

KOMLÓS, SÁRKÖZY, AND SZEMERÉDI'98

KOMLÓS, SÁRKÖZY, AND SZEMERÉDI'98

•
$$\delta(G) \ge (\frac{1}{2} + \gamma)n \Rightarrow$$
 every spanning tree with $\Delta(T) \le \frac{cn}{\log n} \subseteq G$.

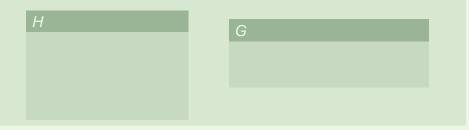
Tree universality

Julia Bőttcher

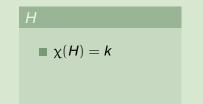
KOMLÓS, SÁRKÖZY, AND SZEMERÉDI'95

	TU Műno

Naíve conjecture

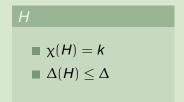


Naíve conjecture



 $\delta(\mathbf{G}) \geq (\frac{k-1}{k} + \gamma)n$

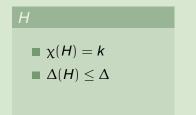
Naíve conjecture



 $\delta(\mathbf{G}) \geq (\frac{k-1}{k} + \gamma)n$

Naïve conjecture

For all k, $\Delta \ge 1$, and $\gamma > 0$ exists n_0 s.t.



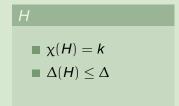
$$G$$

$$\delta(G) \ge \left(\frac{k-1}{k} + \gamma\right)n$$

$$\Longrightarrow G \text{ contains } H.$$

Naíve conjecture

For all k, $\Delta \ge 1$, and $\gamma > 0$ exists n_0 s.t.



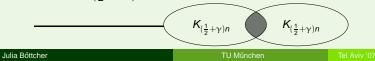
$$G$$

$$\delta(G) \ge \left(\frac{k-1}{k} + \gamma\right)n$$

$$\Longrightarrow G \text{ contains } H.$$

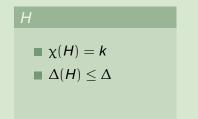
Counterexample:

- *H* : random bipartite graph on $\frac{n}{2} + \frac{n}{2}$ vertices with $\Delta(H) \leq \Delta$.
- **G**: two cliques of size $(\frac{1}{2} + \gamma) n$ sharing $2\gamma n$ vertices.



Conjecture

For all $k, \Delta \ge 1$, and $\gamma > 0$ exists n_0 and $\beta > 0$ s.t.



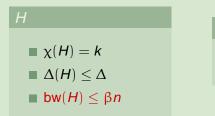
$$G$$

$$\delta(G) \ge \left(\frac{k-1}{k} + \gamma\right)n$$

$$\Longrightarrow G \text{ contains } H.$$

Theorem

For all $k, \Delta \ge 1$, and $\gamma > 0$ exists n_0 and $\beta > 0$ s.t.



$$G$$

$$\delta(G) \ge \left(\frac{k-1}{k} + \gamma\right)n$$

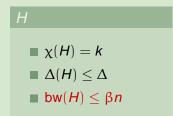
$$\Rightarrow G \text{ contains } H.$$

Bandwidth:

■ bw(G) ≤ *b* if there is a labelling of V(G) by 1,..., *n* s.t. for all $\{i, j\} \in E(G)$ we have $|i - j| \leq b$.

Theorem

For all $k, \Delta \ge 1$, and $\gamma > 0$ exists n_0 and $\beta > 0$ s.t.



$$G$$

$$\delta(G) \ge \left(\frac{k-1}{k} + \gamma\right)n$$

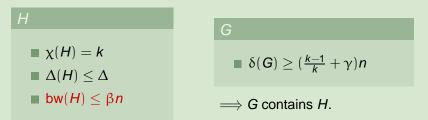
$$\Longrightarrow G \text{ contains } H.$$

Examples for *H*:

Hamiltonian cycles (bandwidth 2)

- graphs of constant tree width (bandwidth $O(n/\log_{\Delta} n)$)
- bounded degree planar graphs (bandwidth $O(n/\log_{\Delta} n)$)

For all $k, \Delta \geq 1$, and γ	> 0 exists n_0	and $\beta > 0$ s.t.
---	--------------------	----------------------



- Abbasi '98 annouced 2-chromatic case (see also Hiêp Hàn '06)
- additional γn is necessary
- Proof uses regularity lemma, blow-up lemma, and affirmative solution of Pósa's conjecture G

$$\chi(H) = k, \Delta(H) \le \Delta, \mathsf{bw}(H) \le \beta n$$
$$\delta(G) \ge (\frac{k-1}{k} + \gamma)n$$

Naïve conjecture

 $\chi(H) = 2, \Delta(H) \le \Delta$ $\delta(G) \ge (\frac{2-1}{2} + \gamma)n$

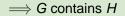
 \implies *G* contains *H*

Counterexample:

- *H* : random bipartite graph on $\frac{n}{2} + \frac{n}{2}$ vertices with $\Delta(H) \leq \Delta$.
- **G**: two cliques of size $(\frac{1}{2} + \gamma) n$ sharing $2\gamma n$ vertices.

$$- K_{(\frac{1}{2}+\gamma)n} K_{(\frac{1}{2}+\gamma)n}$$

$$\chi(H) = 2, \Delta(H) \le \Delta$$
$$\delta(G) \ge (\frac{3-1}{3} + \gamma)n$$



$$\chi(H) = 2, \Delta(H) \le \Delta$$
$$\delta(G) \ge (\frac{3-1}{3} + \gamma)n$$

 \implies *G* contains *H*

Counterexample:

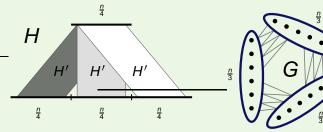
■ *H*' : random bipartite graph on $\frac{n}{4} + \frac{n}{4}$ vertices with $\Delta(H) \leq \frac{\Delta}{3}$.

$$\chi(H) = 2, \Delta(H) \le \Delta$$
$$\delta(G) \ge (\frac{3-1}{3} + \gamma)n$$

 \implies *G* contains *H*

Counterexample:

■ *H*' : random bipartite graph on $\frac{n}{4} + \frac{n}{4}$ vertices with $\Delta(H) \leq \frac{\Delta}{3}$.

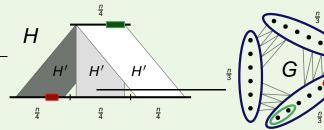


$$\chi(H) = 2, \Delta(H) \le \Delta$$
$$\delta(G) \ge (\frac{3-1}{3} + \gamma)n$$

 \implies *G* contains *H*

Counterexample:

■ *H*' : random bipartite graph on $\frac{n}{4} + \frac{n}{4}$ vertices with $\Delta(H) \leq \frac{\Delta}{3}$.

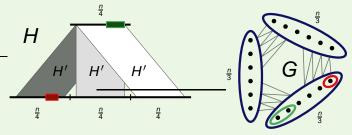


$$\chi(H) = 2, \Delta(H) \le \Delta$$
$$\delta(G) \ge (\frac{3-1}{3} + \gamma)n$$

 \implies G contains H

Counterexample:

■ *H*' : random bipartite graph on $\frac{n}{4} + \frac{n}{4}$ vertices with $\Delta(H) \leq \frac{\Delta}{3}$.



Obstacle: G has big subsets A and B with e(A, B) empty.

Obstacle: G has big subsets A and B with e(A, B) empty.

Obstacle: G has big subsets A and B with e(A, B) empty.

■ (n, d, λ) -graphs *G* (i.e. *d*-regular with $\lambda(G) \leq \lambda$) have

$$\left| e(A, B) - \frac{d}{n} |A||B| \right| \le \lambda \sqrt{|A||B|}$$
 for all $A, B \subseteq V(G)$.

Obstacle: G has big subsets A and B with e(A, B) empty.

■ (n, d, λ) -graphs *G* (i.e. *d*-regular with $\lambda(G) \leq \lambda$) have

$$\left| e(A, B) - \frac{d}{n} |A| |B| \right| \le \lambda \sqrt{|A| |B|}$$
 for all $A, B \subseteq V(G)$.

Observation

For $d = \gamma n$ and $\lambda = o(n)$ every (sufficiently large) (n, d, λ) -graph G contains all H on n vertices with $\Delta(H) \leq \Delta$.

Obstacle: G has big subsets A and B with e(A, B) empty.

■ (n, d, λ) -graphs *G* (i.e. *d*-regular with $\lambda(G) \leq \lambda$) have

$$\left| e(A, B) - \frac{d}{n} |A||B| \right| \le \lambda \sqrt{|A||B|}$$
 for all $A, B \subseteq V(G)$.

Observation

For $d = \gamma n$ and $\lambda = o(n)$ every (sufficiently large) (n, d, λ) -graph G contains all H on n vertices with $\Delta(H) \leq \Delta$.

Because:

■ *H* has an Δ + 1-colouring with colour classes of equal size. (THM OF H.Sz.)

Obstacle: G has big subsets A and B with e(A, B) empty.

■ (n, d, λ) -graphs *G* (i.e. *d*-regular with $\lambda(G) \leq \lambda$) have

$$\left| e(A, B) - \frac{d}{n} |A| |B| \right| \le \lambda \sqrt{|A| |B|}$$
 for all $A, B \subseteq V(G)$.

Observation

For $d = \gamma n$ and $\lambda = o(n)$ every (sufficiently large) (n, d, λ) -graph G contains all H on n vertices with $\Delta(H) \leq \Delta$.

Because:

- *H* has an Δ + 1-colouring with colour classes of equal size. (THM OF H.Sz.)
- Every equi-partition of *G* into Δ + 1 parts is ε -regular.

Obstacle: G has big subsets A and B with e(A, B) empty.

■ (n, d, λ) -graphs *G* (i.e. *d*-regular with $\lambda(G) \leq \lambda$) have

$$\left| e(A, B) - \frac{d}{n} |A| |B| \right| \le \lambda \sqrt{|A| |B|}$$
 for all $A, B \subseteq V(G)$.

Observation

For $d = \gamma n$ and $\lambda = o(n)$ every (sufficiently large) (n, d, λ) -graph G contains all H on n vertices with $\Delta(H) \leq \Delta$.

Because:

- *H* has an Δ + 1-colouring with colour classes of equal size. (THM OF H.Sz.)
- Every equi-partition of *G* into Δ + 1 parts is ε -regular.
- There is such a partition that is also super-regular.

Obstacle: G has big subsets A and B with e(A, B) empty.

■ (n, d, λ) -graphs *G* (i.e. *d*-regular with $\lambda(G) \leq \lambda$) have

$$\left| e(A, B) - \frac{d}{n} |A| |B| \right| \le \lambda \sqrt{|A| |B|}$$
 for all $A, B \subseteq V(G)$.

Observation

For $d = \gamma n$ and $\lambda = o(n)$ every (sufficiently large) (n, d, λ) -graph G contains all H on n vertices with $\Delta(H) \leq \Delta$.

Because:

- *H* has an Δ + 1-colouring with colour classes of equal size. (THM OF H.Sz.)
- Every equi-partition of *G* into Δ + 1 parts is ε -regular.
- There is such a partition that is also super-regular.
- By blow-up lemma, *G* contains *H*.

(KOMLÓS, SÁRKÖZY, SZEMERÉDI)

Obstacle: G has big subsets A and B with e(A, B) empty.

■ (n, d, λ) -graphs *G* (i.e. *d*-regular with $\lambda(G) \leq \lambda$) have

$$\left| e(A, B) - \frac{d}{n} |A| |B| \right| \le \lambda \sqrt{|A| |B|}$$
 for all $A, B \subseteq V(G)$.

Observation

For $d = \gamma n$ and $\lambda = o(n)$ every (sufficiently large) (n, d, λ) -graph G contains all H on n vertices with $\Delta(H) \leq \Delta$.

What about sparser graphs?

Obstacle: G has big subsets A and B with e(A, B) empty.

■ (n, d, λ) -graphs *G* (i.e. *d*-regular with $\lambda(G) \leq \lambda$) have

$$\left| e(A, B) - \frac{d}{n} |A| |B| \right| \le \lambda \sqrt{|A| |B|}$$
 for all $A, B \subseteq V(G)$.

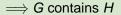
Observation

For $d = \gamma n$ and $\lambda = o(n)$ every (sufficiently large) (n, d, λ) -graph G contains all H on n vertices with $\Delta(H) \leq \Delta$.

What about sparser graphs?

If
$$\lambda(G) = o\left(\frac{d^3}{n^2 \log n}\right)$$
 (i.e. $d \gg n^{4/5} \log^{2/5} n$) then G has a triangle factor.

$$\chi(H) = k, \Delta(H) \le \Delta, bw(H) \le \beta n$$
$$\delta(G) \ge (\frac{k-1}{k} + \gamma)n$$



$$\chi(H) = k, \Delta(H) \le \Delta, \mathsf{bw}(H) \le \beta n$$
$$\delta(G) \ge (\frac{k-1}{k} + \gamma)n$$

 \implies G contains H

Which further restrictions on G allow us to ommit the bandwidth restriction on H?

$$\chi(H) = k, \Delta(H) \le \Delta, bw(H) \le \beta n$$

$$\delta(G) \ge (\frac{k-1}{k} + \gamma)n$$

- Which further restrictions on G allow us to ommit the bandwidth restriction on H?
- How many copies of H do we get? (for bipartite H see Person'07)

$$\chi(H) = k, \Delta(H) \le \Delta, bw(H) \le \beta n$$

$$\delta(G) \ge (\frac{k-1}{k} + \gamma)n$$

- Which further restrictions on G allow us to ommit the bandwidth restriction on H?
- How many copies of H do we get? (for bipartite H see Person'07)
- What about spanning graphs *H* of non-constant max. degree?

$$\chi(H) = k, \Delta(H) \le \Delta, bw(H) \le \beta n$$

$$\delta(G) \ge (\frac{k-1}{k} + \gamma)n$$

- Which further restrictions on G allow us to ommit the bandwidth restriction on H?
- How many copies of H do we get? (for bipartite H see Person'07)
- What about spanning graphs *H* of non-constant max. degree?

$$\chi(H) = k, \Delta(H) \le \Delta, bw(H) \le \beta n$$

$$\delta(G) \ge (\frac{k-1}{k} + \gamma)n$$

 \implies *G* contains *H*

- Which further restrictions on G allow us to ommit the bandwidth restriction on H?
- How many copies of H do we get? (for bipartite H see Person'07)
- What about spanning graphs *H* of non-constant max. degree?

Bấ Łakashah!