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Abstract. The conjecture of Bollobás and Komlós, recently proved by Bött-

cher, Schacht, and Taraz [Math. Ann., 343 (2009), pp. 175–205], implies that
for any γ > 0, every balanced bipartite graph on 2n vertices with bounded
degree and sublinear bandwidth appears as a subgraph of any 2n-vertex graph

G with minimum degree (1+γ)n, provided that n is sufficiently large. We show
that this threshold can be cut in half to an essentially best-possible minimum
degree of ( 1

2
+ γ)n when we have the additional structural information of the

host graph G being balanced bipartite. This complements results of Zhao

[SIAM J. Discrete Math., 23 (2009), pp. 888–900], as well as Hladký and
Schacht [SIAM J. Discrete Math., 24 (2010), pp. 357–362], who determined a
corresponding minimum degree threshold for Kr,s-factors, with r and s fixed.
Moreover, our result can be used to prove that in every balanced bipartite

graph G on 2n vertices with minimum degree ( 1
2

+γ)n and n sufficiently large,
the set of Hamilton cycles of G is a generating system for its cycle space.

Keywords: Graph theory (05Cxx), Extremal combinatorics (05Dxx), Graph
embedding

1. Introduction

The Bollobás–Komlós conjecture, recently proved in [11], provides a sufficient
and essentially best-possible minimum degree condition for the existence of r-
chromatic spanning graphs H of bounded maximum degree and small bandwidth.

A graph is said to have bandwidth at most b if there exists an ordering {v1, . . . , vn}
of the vertices, such that for every edge {vi, vj} of the graph we have |i − j| ≤ b.
(For theorems on how the class of n-vertex graphs with o(n) bandwidth relates to
other important classes of graphs, see [9].)

Theorem 1 (Böttcher, Schacht, and Taraz [11]). For all r,∆ ∈ N and γ > 0, there
exist constants β > 0 and n0 ∈ N such that for every n ≥ n0 the following holds.
If H is an r-chromatic graph on n vertices with ∆(H) ≤ ∆ and bandwidth at most
βn and if G is a graph on n vertices with minimum degree δ(G) ≥ ( r−1

r + γ)n,
then G contains a copy of H. �

This theorem, in particular, implies that for any γ > 0, every bipartite graph H
on 2n vertices with bounded degree and sublinear bandwidth appears as a sub-
graph of any 2n-vertex graph G with minimum degree (1+ γ)n, provided that n is
sufficiently large. This bound is essentially the best possible for an almost trivial
reason: there are graphs G on 2n vertices with minimum degree just slightly below
n that are not connected and therefore do not contain a connected H as a subgraph.
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These counterexamples, however, involve a host graph which is structurally very
different from the desired subgraph in the sense that the chromatic number of G is
Ω(n), whereas H is bipartite. One should ask, thus, whether it is possible to lower
the minimum degree threshold in Theorem 1 for graphs G that are from the outset
assumed to have the same chromatic number as H.

In this paper we answer this question for the case of balanced bipartite graphs,
i.e., bipartite graphs on 2n vertices with n vertices in each color class.

Our result can be put into historical context as follows. While Dirac’s theo-
rem [17] says that an arbitrary 2n-vertex graph G with minimum degree at least n
contains a Hamilton cycle, it follows as a special case of a theorem of Moon and
Moser that in the case ofG being balanced bipartite, this minimum degree threshold
can be cut almost in half.

Theorem 2 (Moon and Moser [41]). Let G be a balanced bipartite graph on 2n
vertices. If δ(G) ≥ 1

2n+ 1, then G contains a Hamilton cycle.

It was subsequently shown by Czygrinow and Kierstead in [16] (for sufficiently
large graphs) that the same minimum degree bound as in Theorem 2 implies the
existence not only of a Hamilton cycle but of a bipartite noncyclic n-ladder (inter-
estingly, it seems to be not easy to deduce, at this minimum degree, the existence
of a cyclic spanning ladder from the existence of a noncyclic one; it is an open
problem whether δ(G) ≥ 1

2n+1 in a balanced bipartite graph implies the existence
of a cyclic spanning ladder).

In [21] it was proved that slightly increasing the bound δ(G) ≥ 1
2n+1 to δ(G) ≥

( 12 + γ)n does indeed imply the existence of a cyclic spanning ladder. In the
present paper we prove that this slightly increased minimum degree bound, in fact,
suffices to obtain all balanced bipartite graphs with bounded maximum degree and
sublinear bandwidth as subgraphs (this, e.g., includes all planar bipartite graphs
with bounded maximum degree).

Theorem 3. For all γ and ∆ there is a positive constant β and an integer n0 such
that for all n ≥ n0 the following holds. Let G and H be balanced bipartite graphs on
2n vertices such that G has minimum degree δ(G) ≥ ( 12 +γ)n and H has maximum
degree at most ∆ and bandwidth at most βn. Then G contains a copy of H.

We remark that the bandwidth condition in Theorem 3 cannot be omitted in
the following sense. Abbasi proved in [1] that the assertion of Theorem 1 becomes
false if β > 4γ, and it is not difficult to see that Abbasi’s example can also be used
to show that Theorem 3 becomes false when, roughly, β > 8γ. The (nonbipartite)
host graph which Abbasi uses for his counterexample contains a balanced bipartite
graph G meeting our condition on δ(G) and, of course, not containing Abbasi’s H
either. However, the bound on β coming from our proof is very small, having a
tower-type dependence on 1/γ.

Related work. In the past two decades, a wealth of results concerning spanning
subgraphs in dense graphs have been obtained. In particular, there also seems to be
increased interest in the topic of spanning subgraphs in r-partite graphs. This will
be corroborated by Table 1 in which we have collected relevant results concerning
spanning subgraphs in host graphs defined by a minimum degree condition. We
have sorted the results in Table 1 according to two independent criteria: First,
whether the subgraph whose existence is proved consists of subgraphs that are
vertex-disjoint copies of a fixed graph F (which we call F -factors) or whether it
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Table 1. Results (ordered by publication date) on spanning sub-
graphs in host graphs defined by a minimum-degree condition.

No restriction on χ(G) χ(G) ≤ r

H = F -factor [45], [5], [3], [18], [29], [27], [12],
[28], [35]

[24], [38], [15], [22], [39],
[40], [46]

Connected H [17], [6], [42], [2], [31], [32], [43],
[33], [13], [7], [26], [11], [25]

[41], [19], [16], [14], this
paper1

1Note that all five papers deal with the case r = 2.

is a globally connected spanning subgraph. Second, whether the only assumption
about the host graph is a high minimum degree, or whether there is an additional
assumption about the chromatic number of the host graph. We exclude related
topics, such as Ramsey-type results, decomposition results, or results for directed
graphs (see [34] for an extensive survey).

Organisation. The proof of Theorem 1 relies on the regularity lemma and a
complementing embedding lemma, which we introduce in section 2. The two main
lemmas, an outline of our technique, and the actual proof of Theorem 1 are then
given in section 3. The subsequent sections 4 and 5 are devoted to the proofs of the
two main lemmas. We close our paper with the section 6 which contains remarks on
an application of our main result and on a possible generalization of our threshold
to an r-partite setting.

2. The regularity method

In this section we formulate a version of Szemerédi’s regularity lemma [44] that
is convenient for our application (Lemma 5), introduce all necessary definitions,
and formulate an embedding lemma for spanning subgraphs (Lemma 7).

The regularity lemma relies on the concept of a regular pair. To define this,
let G = (V,E) be a graph and 0 ≤ ε, d ≤ 1. For disjoint nonempty vertex sets
U,W ⊆ V the density d(U,W ) of the pair (U,W ) is the number of edges that
run between U and W divided by |U ||W |. A pair (U,W ) with density at least d
is (ε, d)-regular if |d(U ′,W ′) − d(U,W )| ≤ ε for all U ′ ⊆ U and W ′ ⊆ W with
|U ′| ≥ ε|U | and |W ′| ≥ ε|W |. The following useful property of regular pairs follows
immediately from the definition.

Proposition 4. Let G = (A,B) be an (ε, d)-regular pair. Let B′ be a subset of B
with |B′| ≥ ε|B|. Then there are at most ε|A| vertices in A with less than (d−ε)|B′|
neighbors in B′. �

The regularity lemma asserts that each graph admits a partition into a constant
number (depending only on the desired quality of the partition, not on the graph)
of vertex classes of equal size such that most pairs of these classes form an ε-regular
pair. The following definition makes this precise. A partition V0∪̇V1∪̇ · · · ∪̇Vk of V
with |V0| ≤ ε|V | is (ε, d)-regular on a graph R = ([k], ER) if ij ∈ ER implies that
(Vi, Vj) is an (ε, d)-regular pair in G. If such a partition exists, we also say that R
is an (ε, d)-reduced graph of G. Moreover, R is the maximal (ε, d)-reduced graph of
the partition V0∪̇V1∪̇ · · · ∪̇Vk if there is no ij 6∈ ER with i, j ∈ [k] such that (Vi, Vj)
is (ε, d)-regular. A partition V0∪̇V1∪̇ · · · ∪̇Vk of V is an equipartition if |Vi| = |Vj |
for all i, j ∈ [k].
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The partition classes Vi with i ∈ [k] are also called clusters of G and V0 is the
exceptional set. When the exceptional set V0 is empty (or when we want to ignore
it as well as its size), then we may omit it and say that V1∪̇ · · · ∪̇Vk is regular on R.
An (ε, d)-regular pair (U,W ) is (ε, d)-super-regular if every vertex u ∈ U has degree
degW (u) ≥ d|W | and every w ∈ W has degU (w) ≥ d|U |. For a graph G = (V,E) a
partition V = V0∪̇V1∪̇ · · · ∪̇Vk is said to be super-regular on a graph R with vertex
set VR, VR ⊆ [k], if (Vi, Vj) is super-regular whenever ij is an edge of R.

In this paper we consider bipartite graphs. The regular partitions that appear in
the proof of Theorem 3 refine some bipartition, and hence their reduced graphs are
bipartite as well. More precisely, for a bipartite graph G = (A∪̇B,E) we will obtain
a partition (A0∪̇B0)∪̇A1∪̇B1∪̇ · · · ∪̇Ak∪̇Bk that is (ε, d)-regular (or super-regular)
on some bipartite graph R such that A = A0∪̇ · · · ∪̇Ak and B = B0∪̇ · · · ∪̇Bk. In
particular, we have two different exceptional sets now, one in A called A0 and one
in B called B0, each of size εn at most. Such a partition is an equipartition if |A1| =
|B1| = |A2| = · · · = |Ak| = |Bk|. In addition, we consider only regular pairs running
between the bipartition classes, i.e., pairs of the form (Ai, Bj). Consequently, all
reduced graphs (also the maximal reduced graph of a partition) are bipartite.

We now state the version of the regularity lemma that we will use. This is a
corollary of the degree form of the regularity lemma and is tailored for embedding
applications in balanced bipartite graphs satisfying some minimum degree condi-
tion. We sketch its proof below.

Lemma 5 (regular partitions of bipartite graphs). For every ε′ > 0 and for every
∆, k0 ∈ N there exists K0 = K0(ε

′, k0) ∈ N such that for every 0 ≤ d′ ≤ 1, for

ε′′ :=
2∆ε′

1− ε′∆
and d′′ := d′ − 2ε′∆ ,

and for every bipartite graph G = (A∪̇B,E) with |A| = |B| ≥ K0 and δ(G) ≥ ν|G|
for some 0 < ν < 1 there exists a graph R and an integer k with k0 ≤ k ≤ K0 with
the following properties:

(a) R is an (ε′, d′)-reduced graph of an equipartition of G and |V (R)| = 2k.
(b) δ(R) ≥ (ν − d′ − ε′′)|R|.
(c) For every subgraph R∗ ⊆ R with ∆(R∗) ≤ ∆ there is an equipartition

A∪̇B = A′′
0 ∪̇B′′

0 ∪̇A′′
1 ∪̇B′′

1 ∪̇ · · · ∪̇A′′
k∪̇B′′

k

with A′′
i ⊆ A and B′′

i ⊆ B for all 0 ≤ i ≤ k and (ε′′, d′′)-reduced graph R,
which in addition is (ε′′, d′′)-super-regular on R∗.

Proof (sketch). The proof of this lemma is a standard combination of three standard
tools. As a first step we simulate the proof of the degree form (see [31], Lemma
2.1) of the regularity lemma starting with A∪̇B as the initial partition. This yields
a partition into clusters A0, . . . , Bk such that for all vertices v 6∈ A0 ∪B0 there are
at most (d′ + ε′)n edges e ∈ E with v ∈ e such that e is not in some (ε′, d′)-regular
pair (Ai, Bj). Hence we get (a). Let R be the maximal (bipartite) (ε′, d′)-reduced
graph of this partition. Then it is easy to see that R inherits the minimum degree
condition of G (except for a small loss); see [36, Proposition 9]. This yields (b).
Finally, for all pairs (Ai, Bj) with i, j ∈ [k] that correspond to edges in R∗ we take
those vertices in Ai or Bj that have too few edges in (Ai, Bj) and move them to
A0 or B0, respectively. See [36, Proposition 8] for details. This yields (c). �
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2.1. Embedding into regular partitions. For embedding spanning subgraphs H
into graphs G with high minimum degree the blow-up lemma of Komlós, Sárközy,
and Szemerédi [30] has proved to be an extremely valuable tool.

The blow-up lemma guarantees that bipartite spanning graphs of bounded degree
can be embedded into sufficiently super-regular pairs. In fact, this lemma is more
general and allows the embedding of graphs H into partitions that are super-regular
on some graph R if there is a homomorphism from H to R that does not send too
many vertices of H to each cluster of R.

When embedding a spanning graph H into a host graph G, a well-established
strategy is to utilize the blow-up lemma on small super-regular “spots” in a reg-
ular partition of G for embedding most of the vertices of H, and to use a greedy
embedding method to embed the few other vertices first. This embedding method
is summarized in the next lemma, the general embedding lemma. Before stating
it, we need to identify conditions under which it is possible to proceed in the way
just described. This is addressed in the following definition that specifies when a
partition of H is “compatible” with a regular partition of G with reduced graph R
and a subgraph R′ of R such that edges of R′ correspond to dense super-regular
pairs. In this definition we require that the partition of H has smaller partition
classes than the partition of G (condition (i), and that edges of H run only between
partition classes that correspond to a dense regular pair in G (condition (ii)). Fur-
ther, in each partition class Wi of H we identify two subsets Si and Ti that are
both supposed to be small (condition (iii)). The set Si contains those vertices that
send edges over pairs that do not belong to the super-regular pairs specified by R′,
and Ti contains neighbors of such vertices.

Definition 6 (ε-compatible). Let H = (W,EH) and R = ([k], ER) be graphs and
let R′ = ([k], ER′) be a subgraph of R. We say that a vertex partition W = (Wi)i∈[k]

of H is ε-compatible with an integer partition (ni)i∈[k] of n and with R′ ⊆ R if
the following holds. For i ∈ [k] let Si be the set of vertices in Wi with neighbors in
some Wj with ij 6∈ ER′ and i 6= j; set S :=

⋃

Si and Ti := NH(S)∩ (Wi \S). Then
for all i, j ∈ [k] we have that

(i ) |Wi| ≤ ni,
(ii ) xy ∈ EH for x ∈ Wi and y ∈ Wj implies ij ∈ ER,
(iii ) |Si| ≤ εni and |Ti| ≤ ε ·min{nj : i and j are in the same component of R′}.
The partition W = (Wi)i∈[k] of H is ε-compatible with a partition V = (Vi)i∈[k] of
a graph G and with R′ ⊆ R if W = (Wi)i∈[k] is ε-compatible with (|Vi|)i∈[k] and
with R′ ⊆ R.

The general embedding lemma asserts that a bounded-degree graph H can be
embedded into a graph G if H and G have compatible partitions. A proof can be
found in [8, Section 3.3.3].

Lemma 7 (general embedding lemma). For all d,∆, r > 0 there is a constant
ε = ε(d,∆, r) > 0 such that the following holds.

Let G = (V,E) be an n-vertex graph that has a partition V = (Vi)i∈[k] with
(ε, d)-reduced graph R on [k] which is (ε, d)-super-regular on a graph R′ ⊆ R with
connected components having at most r vertices each.

Further, let H = (W,EH) be an n-vertex graph with maximum degree ∆(H) ≤ ∆
that has a vertex partition W = (Wi)i∈[k] which is ε-compatible with V = (Vi)i∈[k]

and R′ ⊆ R. Then H ⊆ G. �
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For applying the general embedding lemma to spanning graphs H we would like
to have a partition of the graph H whose partition classes match the sizes of a
regular partition of G precisely. However, usually we cannot guarantee that this
is the case for a regular partition obtained from Lemma 5. Hence it will become
necessary to modify such a regular partition slightly by moving some vertices into
different clusters. The following lemma asserts that the resulting partition is still
regular with somewhat worse parameters.

For a proof see [10, Proposition 8].

Proposition 8. Let (A,B) be an (ε, d)-regular pair, and let Â and B̂ be vertex
sets with |Â△A| ≤ α|Â| and |B̂△B| ≤ β|B̂|. Then (Â, B̂) is an (ε̂, d̂)-regular pair
where

ε̂ := ε+ 3(
√
α+

√

β) and d̂ := d− 2(α+ β).

If, moreover, (A,B) is (ε, d)-super-regular and each vertex v in Â has at least d|B̂|
neighbors in B̂ and each vertex v in B̂ has at least d|Â| neighbors in Â, then (Â, B̂)
is (ε̂, d̂)-super-regular with ε̂ and d̂ as above. �

3. The proof of the main theorem

In the proof of Theorem 3 we will use the general embedding lemma (Lemma 7).
For applying this lemma we need compatible partitions of the graphs G and H
which are provided by the next two lemmas. We start with the lemma for G
which constructs a regular partition of G whose reduced graph R contains a perfect
matching within a Hamilton cycle of R. The lemma guarantees, moreover, that the
regular partition is super-regular on this perfect matching (see Figure 1) and that
the cluster sizes in the partition can be slightly changed.

We remark that, throughout, A∪̇B will denote the vertex set of the host graph G
while X∪̇Y is the vertex set of the bipartite graph H we would like to embed. The
sets Ai and Bi with i ∈ [k] for some integer k will denote the clusters of a regular
partition of G as well as the vertices of a corresponding reduced graph.

Lemma 9 (lemma for G). For every γ > 0 there exists dlg > 0 such that for
every ε > 0 and every k0 ∈ N there exist K0 ∈ N and ξlg > 0 with the following
properties.

For every n ≥ K0 and for every balanced bipartite graph G = (A∪̇B,E) on 2n
vertices with δ(G) ≥

(

1/2 + γ
)

n there exists k0 ≤ k ≤ K0 and a partition (ni)i∈[k]

of n with ni ≥ n/(2k) such that for every partition (ai)i∈[k] of n and (bi)i∈[k] of n
satisfying ai ≤ ni + ξlgn and bi ≤ ni + ξlgn, for all i ∈ [k], there exist partitions

A = A1∪̇ · · · ∪̇Ak and B = B1∪̇ · · · ∪̇Bk

such that

(G1) |Ai| = ai and |Bi| = bi for all i ∈ [k],
(G2) (Ai, Bi) is (ε, dlg)-super-regular for every i ∈ [k].
(G3) (Ai, Bi+1) is (ε, dlg)-regular for every i ∈ [k].

The proof of this lemma is presented in section 4. The following lemma, which
we will prove in section 5, constructs the corresponding partition of H.

It guarantees that the 2k partition classes of H are roughly of the same sizes
as the corresponding partition classes of G (see (H3)), and that all edges of H are
mapped to edges of a cycle C on 2k vertices and all edges except those incident to a
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Aℓ−1 Aℓ Aℓ+1 Aℓ+2

Bℓ−1 Bℓ Bℓ+1 Bℓ+2

Figure 1. The regular partition constructed by Lemma 9 with
regular pairs (Ai, Bi) and super-regular pairs (Ai, Bi+1).

very small set S (see (H1)) are, in fact, mapped to the edges of a perfect matching
in C (see (H2)).

Lemma 10 (lemma for H). For every k ∈ N and every ξ > 0 there exists
β > 0 and n0 ∈ N such that for every n ≥ n0 and for every balanced bipartite
graph H = (X∪̇Y, F ) on 2n vertices satisfying bw(H) ≤ βn and for every inte-
ger partition n = n1 + · · · + nk with ni ≤ n/8 there exists a set S ⊆ V (H) and
a graph homomorphism f : V (H) → V (C), where C is the cycle on the vertices
A1, B2, A2, . . . , Bk, Ak, B1, A1, such that

(H1) |S| ≤ ξ · 2k · n,
(H2) for every {x, y} ∈ F with x ∈ X\S and y ∈ Y \S there is i ∈ [k] such that

f(x) ∈ Ai and f(y) ∈ Bi,
(H3) |f−1(Ai)| < ni + ξn and |f−1(Bi)| < ni + ξn for every i ∈ [k].

With Lemma 7 (the general embedding lemma), Lemma 9 (the lemma for G),
and Lemma 10 (the lemma for H) at our disposal, we are ready to give the proof
of the main theorem.

Proof of Theorem 3. Given γ and ∆, let d be the constant provided by Lemma 9
for input γ. Let ε be the constant Lemma 7 returns for input d, ∆, and r = 2. We
continue the application of Lemma 9 with input ε and k0 := 2, get constants K0

and ξlg, and set ξlh := ξlgε/(100∆K2
0 ). Further, let β be the minimum of all the

values βk and n′
0 be the maximum of all the values n

(k)
0 that Lemma 10 returns for

input k and ξ, where k runs from k0 to K0. Finally, we set n0 := max{n′
0,K0}.

Let G = (A∪̇B,E) and H = (X∪̇Y, F ) be balanced bipartite graphs on 2n
vertices with n ≥ n0, δ(G) ≥ ( 12 + γ)n, ∆(H) ≤ ∆, and bw(H) ≤ βn. We
apply Lemma 9 to the graph G in order to obtain an integer k and an integer
partition (ni)i∈[k] with ni ≥ 1

2n/k for all i ∈ [k]. Next, we apply Lemma 10 to the
graph H and the integer partition (ni)i∈[k] and get a vertex set S ⊆ X ∪ Y and a
homomorphism f from H to the cycle C on vertices A1, B2, A2, . . . , Bk, Ak, B1, A1

such that (H1)–(H3) are satisfied. With this we can define the integer partitions
(ai)i∈[k] and (bi)i∈[k] required for the continuation of Lemma 9: set ai := |f−1(Ai)|
and bi := |f−1(Bi)| for all i ∈ [k]. By (H3) we have ai ≤ ni + ξlhn ≤ ni + ξlgn
and bi ≤ ni + ξlgn for all i ∈ [k]. It follows that Lemma 9 now gives us vertex
partitions A = (Ai)i∈[k] and B = (Bi)i∈[k] for G such that (G1)–(G3) hold. We
complement this with vertex partitions X = (Xi)i∈[k] and Y = (Yi)i∈[k] for H

defined by Xi := f−1(Ai) and Yi := f−1(Bi) and claim that we can use the general
embedding lemma (Lemma 7) for these vertex partitions of G and H.

Indeed, first observe that (G2) and (G3) imply that the partition V (G) =
(Ai)i∈[k] ∪̇ (Bi)i∈[k] is (ε, d)-regular on the graph C. Further, by (G3) this partition
is (ε, d)-super-regular on the graph R′ on the same vertices as C and with edges
AiBi for all i ∈ [k]. Notice that the components of R′ have size r = 2. It follows
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that we can apply Lemma 7 if the vertex partition V (H) = (Xi)i∈[k]∪̇(Yi)i∈[k] is
ε-compatible with the partition V (G) = (Ai)i∈[k]∪̇(Bi)i∈[k] and with R′ ⊆ C. To
check this first note that by (G1) we have |Ai| = ai = |Xi| and |Bi| = bi = |Yi|
for all i ∈ [k], and thus property (i) of an ε-compatible partition is satisfied.
Since f is a homomorphism from H to C we also immediately get property (ii)
for (Xi)i∈[k]∪̇(Yi)i∈[k]. In addition, since |Ai| = ai ≤ ni + ξlhn for all i ∈ [k],

we also have |Ai| ≥ ni − kξlhn ≥ 1
2n/k − kξlhn ≥ ∆ξlh2kn/ε by the choice

of ξlh. This together with (H1) implies that |S ∩ Ai| ≤ ξlh2kn ≤ ε|Ai| and
|NH(S) ∩ Ai| ≤ ∆|S| ≤ ∆ξlh2kn ≤ ε|Aj | for all i, j ∈ [k]. Similarly we get
|S ∩ Bi| ≤ ε|Bi| and |NH(S) ∩ Bi| ≤ ε|Bj | for all i, j ∈ [k]. This clearly implies
property (iii) of an ε-compatible partition.

Accordingly we can apply Lemma 7 to the graphs G and H with their partitions
V (G) = (Ai)i∈[k]∪̇(Bi)i∈[k] and V (H) = (Xi)i∈[k]∪̇(Yi)i∈[k], respectively, which
implies that H is a subgraph of G. �

4. A regular partition of G with a spanning cycle

In this section we will prove the lemma for G. This lemma is a consequence
of the regularity lemma (Lemma 5), Theorem 2, and the following lemma which
states that, under certain circumstances, we can adjust a (super)-regular partition
in order to meet a request for slightly differing cluster sizes.

Lemma 11. Let k ≥ 1 be an integer, 0 < ξ ≤ 1/(20k2), and let G = (A∪̇B,E)
be a balanced bipartite graph on 2n vertices with partitions A = A′

1∪̇ · · · ∪̇A′
k and

B = B′
1∪̇ · · · ∪̇B′

k such that |A′
i|, |B′

i| ≥ n/(2k) and (A′
i, B

′
i) is (ε′, d′)-super-regular

and (A′
i, B

′
i+1) is (ε

′, d′)-regular for all i ∈ [k]. Let (a′i)i∈[k] and (b′i)i∈[k] be integers
such that a′i, b

′
i ≤ ξn for all i ∈ [k] and

∑

i∈[k] a
′
i =

∑

i∈[k] b
′
i = 0. Then there

are partitions A = A1∪̇ · · · ∪̇Ak and B = B1∪̇ · · · ∪̇Bk with |Ai| = |A′
i| + a′i and

|Bi| = |B′
i| + b′i and such that (Ai, Bi) is (ε, d)-super-regular and (Ai, Bi+1) is

(ε, d)-regular for all i ∈ [k] where ε := ε′ + 100k
√
ξ and d := d′ − 100k2

√
ξ − ε′.

Proof. The lemma will be proved by performing a simple redistribution algorithm
that will iteratively adjust the cluster sizes. Throughout the process, we denote by
Ai and Bi the changing clusters, beginning with Ai := A′

i and Bi := B′
i. We call Ai

a sink when |Ai| < |A′
i|+a′i, and a source when |Ai| > |A′

i|+a′i, and analogously for
B′

i. Each iteration of the algorithm will have the effect that the number of vertices
in a single source decreases by one, the number of vertices in a single sink increases
by one, and all other cluster cardinalities stay the same.

We start by describing one iteration of the algorithm. Obviously, as long as
not every cluster in A has exactly the desired size, there is at least one source. We
choose an arbitrary source Ai, and, as will be further explained below, the regularity
of the pair (Ai, Bi+1) implies that within Ai there is a large set of vertices each
of which can be added to the neighboring cluster Ai+1 while preserving the super-
regularity of the pair (Ai+1, Bi+1). We do this with one arbitrary vertex from this
set. Thereafter, within Ai+1 there is again a large set of vertices (the newly arrived
vertex may or may not be one of them) suitable for being moved into Ai+2 while
preserving the super-regularity of the pair (Ai+2, Bi+2), and we again do this with
one arbitrary vertex from this set. We then continue in this way until for the first
time we move a vertex into a sink. (It may happen that it is not the vertex we
initially took out of Ai that arrives in the sink.) This is the end of the iteration.
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We repeat such iterations as long as there are sources; i.e., we choose an arbitrary
source and repeat what we have just described. Since each iteration ends with
adding a vertex to a sink while not changing the cardinality of the clusters visited
along the way, we do not increase the number of vertices in any source, let alone
create a new source, and hence after a finite number of iterations (which we will
estimate below) the algorithm ends with no sources remaining and therefore all
clusters within A having exactly the desired size.

We then repeat what we have just described for the clusters within B, the only
difference being that vertices get moved from Bi into Bi−1, not Bi+1, since only in
this direction can a regular pair be used ((Ai−1, Bi) is regular; (Ai+1, Bi) need not
be regular).

We now analyze the algorithm quantitatively. Clearly, the total number of itera-
tions (we call it t) is at most the sum of all positive a′i and all positive b′i. Obviously,
both the sum of all positive a′i and the sum of all positive b′i is bounded from above
by 1

2kξn; hence

t ≤ 1
2kξn+ 1

2kξn = kξn. (1)

We will now use this bound together with Proposition 8 to estimate the effect of
the redistribution on the regularity and density parameters. Since in each iteration
each cluster receives at most one vertex and loses at most one vertex, for every
i ∈ [k] and after any step of the algorithm, we have

|Ai∆A′
i| ≤ 2t ≤ 2kξn ,

and analogously |Bi∆B′
i| ≤ 2kξn. We now invoke Proposition 8 on the pairs

(Ai, Bi) and (Ai, Bi+1), once with Â := Ai, B̂ := Bi, once with Â := Ai, B̂ :=
Bi+1, and we claim that we may use α := β := 16k2ξ. Indeed, we have |Ai| ≥
|A′

i|− t ≥ n/(2k)−2kξn and because ξ ≤ 1/(20k2) implies 2kξn ≤ 5kξn−20k3ξ2n;
hence |Ai∆A′

i| ≤ 2kξn ≤ (5kξ − 20k3ξ2)n = 10k2ξ(n/(2k) − 2kξn) ≤ α|Ai|, and
analogously |Bi∆B′

i| ≤ β|Bi|. By Proposition 8, every pair (Ai, Bi) and (Ai, Bi+1)
is

(

ε̂, d̂
)

-regular with ε̂ := ε′ + 24k
√
ξ and d̂ := d′ − 64k2ξ; hence ε̂ ≤ ε and d̂ ≥ d,

proving the parameters claimed in the lemma, as far as mere regularity goes.
As for the claimed super-regularity of the vertical pairs, let Ai, Bi, and Bi+1 be

clusters at an arbitrary step of the algorithm. Using Proposition 4 and (1) we know
that the pairs (Ai, Bi) and (Ai, Bi+1) being (ε̂, d̂)-regular implies that there are at
least (1− ε̂)|Ai| vertices in Ai having at least (d̂− ε̂)|Bi+1|−t ≥ (d̂− ε̂)|Bi+1|−2kξn
neighbors in Bi+1, and it remains to prove that (d̂−ε̂)|Bi+1|−2kξn ≥ d|Bi+1| which
is equivalent to 2kξn/|Bi+1| ≤ 100k2

√
ξ− 64k2ξ− 24kξ. Because of 2kξn/|Bi+1| ≤

2kξn/(|B′
i+1|− t) ≤ 2kξn/(n/2k−2kξn) = 4k2ξ/(1−4k2ξ) it is therefore sufficient

that 4k2ξ/(1− 4k2ξ) ≤ 100k2
√
ξ− 64k2ξ− 24k

√
ξ, and it is easy to check that this

is true by the hypothesis on ξ. �

Now we will prove Lemma 9. To this end we will apply Lemma 5 to the input
graph G. By (a) and (b) of Lemma 5 we obtain a regular partition with a bipartite
reduced graph R of high minimum degree. Theorem 2 then guarantees the existence
of a Hamilton cycle in R which will imply property (G3). This Hamilton cycle
serves as R∗ in Lemma 5(c) which promises a regular partition of G that is super-
regular on R∗. For finishing the proof we will use a greedy strategy for distributing
the vertices into the exceptional sets over the clusters of this partition (without
destroying the super-regularity required for (G2)) and then apply Lemma 11 to
adjust the cluster sizes as needed for (G1).
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Proof of Lemma 9. Let γ > 0 be given. We assume without loss of generality that
γ < 1/20 and set dlg := γ2/100. Now let ε > 0 and k0 ∈ N be given. We assume
that ε ≤ γ2/1000, since otherwise we can set ε := γ2/1000, prove the lemma, and
all statements will still hold for any larger ε.

Our next task is to choose ε′ and d′. For this, consider the following functions
in ε′ and d′:

ε′′ :=
ε′

1− 2ε′
, ε̂ := ε′′ + 6

√

ε′′/γ(1− ε′′) ,

d′′ := d′ − 4ε′ , d̂ := d′′ − 4ε′′/γ(1− ε′′) .
(2)

Observe that
ε′ ≪ ε′′ ≪ ε̂ and d̂ ≪ d′′ ≪ d′ ,

by which we mean, for example, that ε′ ≤ ε′′ but that we can make ε′′ arbitrarily
small by choosing ε′ sufficiently small. Keeping in mind that γ < 1/20, it is easy
to check that when setting ε′ := ε3γ3 and d′ := ε + γ2, the following inequalities
are all satisfied:

ε̂ ≤ 1
10ε , d̂− ε ≥ 2dlg , γ − d′ − ε′′ > 0, (3)

( 12 + γ − ε′′)(1− d′′)−1 ≥ 1
2 + 2

3γ , d′′(1− d′′)−1 ≤ 1
6γ . (4)

Next, using (3), we can choose an integer k′0 with k0 ≤ k′0 such that for all integers
k with k′0 ≤ k we have

(γ − d′ − ε′′)k ≥ 1 . (5)

Apply Lemma 5 with ε′, ∆ := 2, and with k0 replaced by k′0, to obtain K0.
Choose ξlg > 0 such that

100K0

√

ξlg ≤ 1
10ε, 100(K0)

2
√

ξlg ≤ dlg. (6)

Now let G be given. Feed d′ and G into Lemma 5 and obtain k ∈ N with k0 ≤
k′0 ≤ k ≤ K0 together with an equipartition of G into 2k+2 classes and an (ε′, d′)-
reduced graph R on 2k vertices by (a) of Lemma 5. By assumption δ(G) ≥ ( 12+γ)n,
so setting ν := 1/2 + γ and making use of part (b) of Lemma 5, we get

δ(R) ≥ ( 12 + γ − d′ − ε′′)|V (R)| = 1
2 |V (R)|+ (γ − d′ − ε′′)k

(5)

≥ 1
2 |V (R)|+ 1.

We infer from Theorem 2 that R contains a Hamilton cycle R∗. Now apply part (c)
of Lemma 5 and obtain an equipartition ofG which is (ε′′, d′′)-regular on R, (ε′′, d′′)-
super-regular on R∗, and has classes

A = A′′
0 ∪̇ · · · ∪̇A′′

k and B = B′′
0 ∪̇ · · · ∪̇B′′

k .

Obviously, R and thus R∗ are bipartite and so, without loss of generality (renum-
bering the clusters if necessary), we can assume that the Hamilton cycle R∗ consists
of the vertices representing the classes

A′′
1 , B

′′
2 , A

′′
2 , B

′′
3 , . . . , B

′′
k , A

′′
k , B

′′
1 , A

′′
1

with edges in this order. Therefore, we know that the pairs (A′′
i , B

′′
i ) and (A′′

i , B
′′
i+1)

are (ε′′, d′′)-super-regular for all i ∈ [k]. Let L := |A′′
i | = |B′′

i | and observe that

(1− ε′′)
n

k
≤ L ≤ n

k
.

Our next aim is to get rid of the classes A′′
0 and B′′

0 by moving their vertices
to other classes. We will do this, roughly speaking, as follows. When moving a
vertex x ∈ A′′

0 to some class A′′
i , say, we will move an arbitrary vertex y ∈ B′′

0 to
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the corresponding class B′′
i at the same time. We will also make sure that x has at

least d′′|B′′
i | neighbors in B′′

i and y has at least d′′|A′′
i | neighbors in A′′

i . Here are
the details for this procedure. For an arbitrary pair (x, y) ∈ A′′

0 ×B′′
0 we define

I(x, y) :=
{

i ∈ [k] : |NG(x) ∩B′′
i | ≥ d′′ |B′′

i | and |NG(y) ∩A′′
i | ≥ d′′ |A′′

i |
}

.

We claim that for every (a, b) ∈ A′′
0 × B′′

0 we have |I(x, y)| ≥ γk. To prove this
claim, first recall that L = |A′′

i | = |B′′
i | for all i ∈ [k]. Define

I(x) :=
{

i ∈ [k] : |NG(x) ∩B′′
i | ≥ d′′|B′′

i |
}

,

I(y) :=
{

i ∈ [k] : |NG(y) ∩A′′
i | ≥ d′′|A′′

i |
}

.

As |A′′
0 | = |B′′

0 | ≤ ε′′n we have

( 12 + γ)n ≤ degG(x) ≤ |I(x)|L+ (k − |I(x)|) d′′L+ ε′′n

= |I(x)|(1− d′′)L+ kd′′L+ ε′′n,

and hence

|I(x)| ≥ ( 12 + γ)n− kd′′L− ε′′n

(1− d′′)L
=

( 12 + γ − ε′′)

1− d′′
n

L
− d′′

1− d′′
k

(4)

≥ ( 12 + 2
3γ)k − 1

6γk = ( 12 + 1
2γ)k .

Similarly, |I(y)| ≥ ( 12 + 1
2γ)k. Since I(x) and I(y) are both subsets of [k], this

implies that |I(x, y)| = |I(x) ∩ I(y)| ≥ γk, which proves the claim.
We group the vertices in A′′

0 ∪ B′′
0 into (at most ε′′n) pairs (x, y) ∈ A′′

0 × B′′
0

and choose an index i ∈ I(x, y) which has the property that (A′′
i , B

′′
i ) has so far

received a minimal number of additional vertices. Then we move x into A′′
i and

y into B′′
i . Hence, at the end, every cluster A′′

i or B′′
i gains at most ε′′n/(γk)

additional vertices. Denote the final partition obtained in this way by

A∪̇B = Â1∪̇B̂1∪̇ · · · ∪̇Âk∪̇B̂k .

Set α := β := ε′′/γ(1− ε′′) and observe that

ε′′n

γk
= α(1− ε′′)

n

k
≤ αL .

So Proposition 8 tells us that for all i ∈ [k] the pairs (Âi, B̂i) are still (ε̂, d̂)-super-
regular and the pairs (Âi, B̂i+1) are still (ε̂, d̂)-regular, because

ε̂
(2)
= ε′′ + 6

√

ε′′/γ(1− ε′′) = ε′′ + 3(
√
α+

√

β) and

d̂
(2)
= d′′ − 4ε′′/γ(1− ε′′) = d′′ − 4α = d′′ − 2(α+ β) .

Now we return to the statement of Lemma 9. We set ni := |Âi| = |B̂i| for all
i ∈ [k]. Let (ai)i∈[k] and (bi)i∈[k] be given and set a′′i := ai − ni and b′′i := bi − ni.
Then

a′′i ≤ ξlgn, b′′i ≤ ξlgn,
∑

i∈[k]

a′′i =
∑

i∈[k]

ai −
∑

i∈[k]

ni = n− n = 0 =
∑

i∈[k]

b′′i .
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Therefore we can apply Lemma 11 with parameter ξlg to the graph G with parti-
tions Â1∪̇ · · · ∪̇Âk and B̂1∪̇ · · · ∪̇B̂k. Since

ε̂+ 100k
√

ξlg
(3),(6)

≤ 1
10ε+

1
10ε ≤ ε and

d̂− 100k2
√

ξlg − ε
(3),(6)

≥ 2dlg − dlg = dlg ,

we obtain sets Ai and Bi for each i ∈ [k] such that |Ai| = |Âi|+a′′i = ni+a′′i = ai and
|Bi| = bi, and with the property that (Ai, Bi) is (ε, d)-super-regular and (Ai, Bi+1)
is (ε, d)-regular. This completes the proof of Lemma 9. �

5. The proof of the lemma for H

5.1. Summary of the proof. In this section we prove the lemma for H (Lemma
10), and in this subsection we summarize the proof. In the beginning, H is cut
into small pieces of exactly equal size along a bandwidth ordering (ordering of the
vertices of H that respects the bandwidth bound). This makes H controllable in
the sense that we have the guarantee that edges of H either run within one piece
or from one piece to its successor, but that other edges do not exist. Our goal is to
“weave” this path-like graph onto the (much smaller) Hamilton cycle C within the
reduced graph. This cycle has already been prepared at this point by the lemma
for G (Lemma 9). In particular, the sizes of the clusters Ai and Bi have already
been decided upon except that the lemma for G tolerates small final adjustments of
at most ξlgn vertices per cluster. The crucial point about the proof of the lemma
for H is not to demand more than the lemma for G is willing to tolerate.

Importantly, we do not (care to) know anything about how the bandwidth or-
dering moves back and forth between the bipartition classes of H. Therefore, the
equal overall sizes of pieces do not imply equal sizes of pieces per color class—which
are the sizes that really count when it comes to putting a particular piece into an
edge (i.e., bipartite graph) AiBi. This is what thwarts the following naive attempt
at weaving H onto C: Distribute the pieces in the order induced by the bandwidth
ordering to the edges AiBi, without making any “jumps,” and then trust to luck
that for each i, both Ai and Bi get filled up approximately at the same time (so
that one can move on to the edge Ai+1Bi+1 without leaving one of Ai or Bi fur-
ther from being filled up exactly than what the lemma for G can tolerate). This,
however, need not come to pass at all and does not seem to be easy to guarantee
even when one tries to find a bandwidth ordering specially fitted for this purpose
(which we do not do in the present solution).

Our solution to this problem is to force luck to be on our side by using the
probabilistic method to show that there exists some way of assigning the pieces
of H to the pairs AiBi so that all Ai and Bi are approximately filled to a pre-
cision within the tolerances of the lemma for G. In such an assignment, there
are typically large “jumps” from one pair AiBi to another Ai′Bi′ with i′ > i.
The details of this preparatory argument are given in subsection 5.2. At this
point, we have only assigned the pieces of H but have not “woven” anything yet:
the edges running from one of the pieces to its successor do not necessarily fit
into the reduced graph C; i.e., we do not yet have a homomorphism V (H) →
B1, A1, B2, A2, B3, A3, B4, . . . , Bk, Ak, B1 = C. To correct this, we finally resort to
a greedy deterministic “linking” procedure, presented in subsection 5.3. It robs the
approximately filled pieces of a tiny number of vertices whose attached H-edges are
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then woven all the way from one random piece to the next. In the end we will have
succeeded in constructing a homomorphism V (H) → C and will still have kept the
demands for adjustment within the tolerances of the lemma for G.

5.2. Approximate assignment. Our goal is to group small pieces W1, . . . ,Wℓ of
the balanced bipartite graph H on 2n vertices into packages P1, . . . , Pk that form
balanced bipartite subgraphs of H. This is equivalent to the following problem.
Given the sizes aj and bj of the color classes of each piece Wj (i.e., aj counts the
vertices of Wj that are in X and bj those that are in Y ), we know that the aj ’s
sum up to n and the bj ’s sum up to n. Then we would like to have a mapping
ϕ : [ℓ] → [k] such that for all i ∈ [k] the aj with j ∈ ϕ−1(i) sum up approximately
to the same value as the bj with j ∈ ϕ−1(i). The following lemma asserts that such
a mapping ϕ exists. The package Pi will then (in the proof of Lemma 10) consist
of all pieces Wj with j ∈ ϕ−1(i).

Lemma 12. For all 0 < ξ ≤ 1/4 and all positive integers k there exists ℓ ∈ N

such that for all integers n ≥ ℓ the following holds. Let (ni)i∈[k], (aj)j∈[ℓ], and

(bj)j∈[ℓ] be integer partitions of n such that ni ≤ 1
8n and aj + bj ≤ (1 + ξ) 2nℓ for

all i ∈ [k], j ∈ [ℓ]. Then there is a map ϕ : [ℓ] → [k] such that for all i ∈ [k],
āi :=

∑

j∈ϕ−1(i) aj, and b̄i :=
∑

j∈ϕ−1(i) bj, we have

āi < ni + ξn and b̄i < ni + ξn . (7)

In the proof of Lemma 12 we will use a Chernoff bound and the following for-
mulation of a concentration bound due to Hoeffding.

Theorem 13 (Hoeffding bound [4, Theorem A.1.16]). Let X1, . . . , Xs be indepen-
dent random variables with EXi = 0 and |Xi| ≤ 1 for all i ∈ [s] and let X be their
sum. Then P[|X| ≥ a] ≤ 2 exp(−a2/(2s)). �

Proof of Lemma 12. For the proof of this lemma we use a probabilistic argument
and show that under a suitable probability distribution a random map satisfies the
desired properties with positive probability.

For this purpose set ℓ :=
⌈

1000k5/ξ2
⌉

and construct a random map ϕ : [ℓ] → [k]
by choosing ϕ(j) = i with probability ni/n for i ∈ [k], independently for each
j ∈ [ℓ]. To show that this map satisfies (7) with positive probability, we first
estimate the sum of all aj ’s and bj ’s assigned to a fixed i ∈ [k]. To this end, let
1j be the indicator variable for the event ϕ(j) = i and define a random variable
Si :=

∑

j∈[ℓ] 1j . Clearly Si is binomially distributed, we have ESi = ℓni

n , and by

the Chernoff bound P[|Si| ≥ ESi + t] ≤ 2 exp(−2t2/ℓ) (cf. [23, Remark 2.5]) we get

P

[

∣

∣

∣
Si − ℓ

ni

n

∣

∣

∣
≥ 1

2
ξℓ

]

≤ 2 exp

(

−1

2
ξ2ℓ

)

.

Next, we examine the difference between the sum of the aj ’s assigned to i and the

sum of the bj ’s assigned to i. We define random variablesDi,j :=
ℓ
3n (aj−bj)(1j−ni

n )

and set Di :=
∑

j∈[ℓ] Di,j . Then EDi,j = 0 and as aj + bj ≤ 3n
ℓ we have |Di,j | ≤ 1.

Thus Theorem 13 implies

P

[

|Di| ≥
1

6
ξℓ

]

≤ 2 exp

(

− 1

72
ξ2ℓ

)

.
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By the union bound, the probability that we have

|Si − ℓ
ni

n
| < 1

2
ξℓ and |Di| <

1

6
ξℓ for all i ∈ [k] (8)

is therefore at least 1−k · 2 exp(− 1
2ξ

2ℓ)−k · 2 exp(− 1
72ξ

2ℓ) which is strictly greater
than 0 by our choice of ℓ. Therefore there exists a map ϕ with (8). We claim
that this map satisfies (7). To see this, observe first that 3n

ℓ Di =
∑

j∈ϕ−1(i)(aj −
bj) = āi − b̄i which together with (8) implies āi − b̄i < 1

2ξn. Moreover, we have

Si = |ϕ−1(i)| and

āi =
1

2
(āi + b̄i) +

1

2
(āi − b̄i) ≤

1

2
(1 + ξ)

2n

ℓ
|ϕ−1(i)|+ 1

2
· 1
2
ξn

(8)

<
1

2
(1 + ξ)

2n

ℓ

(

ℓ
ni

n
+

1

2
ξℓ

)

+
1

4
ξn ≤ ni + ξn,

where the last inequality follows from ξ ≤ 1
4 and ni ≤ 1

8n. Since an entirely
analogous calculation shows that b̄i < ni + ξn, this completes the proof of (7). �

5.3. Linking the random pieces. We will now use Lemma 12 to finally prove
the lemma for H (Lemma 10) in the manner that has been outlined in the summary
at the beginning of the present section.

Proof of Lemma 10. Let k and ξ be given. Give ξ′ := ξ/4 and k to Lemma 12, get
ℓ, set β := ξ′/(4ℓk) and n0 := ⌈k/β⌉, and let H = (X∪̇Y, F ) and (ni)i∈[k] be given
as in the statement of the lemma for H.

We assume that the vertices of H are given in a bandwidth ordering, partition
V (H) along this ordering into ℓ sets W1, . . . ,Wℓ of as equal sizes as possible and
define xi := |Wi∩X| and yi := |Wi∩Y |. Then xi+yi = |Wi| ≤ ⌈2n/ℓ⌉ ≤ 2n/ℓ+1 ≤
(1 + ξ)2n/ℓ and since n ≥ n0 ≥ ℓ by definition of n0 and ni ≤ n/8 by hypothesis,
we can give (ni)i∈[k], (xi)i∈[ℓ] and (yi)i∈[ℓ] to Lemma 12 and get a ϕ : [ℓ] → [k]
with (7). Trivially, we may also get a ϕ : [ℓ] → {0, 1, . . . , k − 1} with (7), and it is
this ϕ that we will use in what follows for the sake of being able to calculate indices
in the group Z/kZ.

We have now arrived at the difficulty already described in the summary in sub-
section 5.1. Since the map ϕ is obtained via the probabilistic method, there is no
control over how far apart in the Hamilton cycle C two sets Wϕ(i−1) and Wϕ(i) end
up. If there are edges between Wϕ(i−1) and Wϕ(i), we need to guarantee, however,
that these edges are mapped to edges of C in order to obtain the desired homo-
morphism f . To overcome this difficulty, we resort to the aforementioned greedy
linking process which robs the pieces Wi of a small number of linking vertices, small
enough that this modification can still be tolerated by the lemma for G. The linking
vertices are then distributed (always in the “direction” Bi, Ai, Bi+1) over all the
clusters lying in between the cluster pairs Aϕ(i−1), Bϕ(i−1) and Aϕ(i), Bϕ(i). This is
done in such a way that the edges attached to the linking vertices end up on edges
of C. In the process, each Ai and Bi may accumulate many sets of linking pieces,
but since these sets are so tiny, it will be possible to declare the still tiny union of
all the linking vertices to be the “special set” S in (H1) (whose role in the proof
as a whole is explained by Definition 6 and Lemma 7 together with the proof of
Theorem 3).

We now carry out this argument formally. For every i ∈ [ℓ] let wi be the first
vertex in Wi according to the bandwidth ordering fixed at the beginning, capture
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the length of the “random jump” by

Ii :=
[

2 ·
(

(ϕ(i)− ϕ(i− 1)) mod k
)]

, (9)

and define sets of linking vertices by setting, for every pair (i, j) ∈ [ℓ]× Ii,

Li
j := [wi + (j − 1)⌈βn⌉, wi + j⌈βn⌉) ⊆ Wi,

where adding 1 to a vertex signifies taking its successor in the bandwidth ordering
and the half-open interval has its obvious meaning. Finally, abbreviate Li :=
∪j∈IiL

i
j and NLi := Wi\Li (the nonlinking vertices).

Then all Li
j have the common cardinality ⌈βn⌉ and |Li| = |Ii| · ⌈βn⌉ ≤ 2(k −

1) · ⌈βn⌉ ≤ 2kβn, the latter being implied by n ≥ n0 ≥ k/β. Since β ≤ 1/(4kℓ)
implies that 2kβn + βn ≤ ⌊2n/ℓ⌋ ≤ |Wi| for every i ∈ [ℓ], we have Li ( Wi and,
for every i ∈ [ℓ], |NLi| = |Wi| − |Li| ≥ |Wi| − 2kβn ≥ (2kβn + βn) − 2kβn = βn;
i.e., at the end of every set Wi there definitely are at least βn nonlinking vertices
(we need this guarantee for our proof but nothing more—actually, the nonlinking
vertices are vastly in the majority in a “typical” piece but since this is something
we do not use in any way in the formal argument, we do not need to make this
more precise). All this is illustrated on the left-hand side of Figure 2.

We now construct a map f : V (H) → V (C) = {A1, . . . , Ak, B1, . . . , Bk} by defin-
ing, for every i ∈ [ℓ],

f(x) :=

{

Aϕ(i−1)+⌊j/2⌋ if x ∈ Li
j with j ∈ Ii,

Aϕ(i) if x ∈ NLi,
(10)

for every x ∈ Wi ∩X, and

f(y) :=

{

Bϕ(i−1)+⌈j/2⌉ if y ∈ Li
j with j ∈ Ii,

Bϕ(i) if y ∈ NLi,
(11)

for every y ∈ Wi ∩ Y , where all indices of A′s and B′s are to be taken modulo
k. Directly from the construction, every v ∈ V (H) is in exactly one Wi and then
either in a Li

j for exactly one j ∈ Ii or in NLi, so this is a well-defined map on all
of V (H).

We now show that f is a graph homomorphism H → C. To do this, we let an
arbitrary edge e ∈ F = E(H) be given and prove that the 2-set of the images of
the two vertices in e under f is an edge of C. We will identify a set containing a
single vertex with the vertex itself, so that we can write, e.g., e ∩X ∈ Iij .

To begin with, note that a set {Ai, Bi′} is an edge of C if and only if the number
(i′ − i) mod k, henceforward referred to as “the difference,” is 0 or 1. Moreover,
it follows directly from the construction of Li

j and NLi (remember that we made

sure that |NLi| ≥ βn) that exactly one of the following five statements is true.

(1) For exactly one i ∈ [ℓ] and exactly one j ∈ Ii, both vertices in e are in Li
j .

(2) For exactly one i ∈ [ℓ] and exactly one j ∈ Ii\{|Ii|}, one vertex in e is in
Li
j and one is in Li

j+1.

(3) For exactly one i ∈ [ℓ], one vertex in e is in Li
|Ii|

and one is in NLi.

(4) For exactly one i ∈ [ℓ], both vertices in e are in NLi.
(5) For exactly one i ∈ [ℓ], one vertex in e is in NLi and one is in Li+1

1 .

If (1) is true, then {f(e∩X), f(e∩Y )} = {Aϕ(i−1)+⌊j/2⌋, Bϕ(i−1)+⌈j/2⌉}, and the
difference is (⌈j/2⌉ − ⌊j/2⌋) mod k, which is either 0 or 1 according to whether j
is even or odd.
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Figure 2. The linking procedure. On the right-hand side, |Ii| = 6.

If (2) is true, then {f(e∩X), f(e∩Y )} depends on whether it is e∩X or e∩Y that
is in Li

j+1 but on nothing else. If e∩Y ∈ Li
j+1, then e∩X ∈ Li

j , hence {f(e∩X), f(e∩
Y )} = {Aϕ(i−1)+⌊j/2⌋, Bϕ(i−1)+⌈(j+1)/2⌉} and the difference is (⌈(j+1)/2⌉− ⌊j/2⌋)
mod k, which is always 1, whether j is even or odd. If e∩Y ∈ Li

j , then e∩X ∈ Li
j+1,

hence {f(e ∩X), f(e ∩ Y )} = {Aϕ(i−1)+⌊(j+1)/2⌋, Bϕ(i−1)+⌈j/2⌉} and the difference
is (⌈j/2⌉ − ⌊(j + 1)/2⌋) mod k, which is always 0, whether j is even or odd.

If (3) is true, then {f(e∩X), f(e∩ Y )} depends on whether it is e∩X or e∩ Y ,
that is, in NLi but on nothing else. If e∩Y ∈ NLi, then e∩X ∈ Li

|Ii|
, hence {f(e∩

X), f(e ∩ Y )} = {Aϕ(i−1)+⌊ 1
2 |Ii|⌋

, Bϕ(i)} = {Aϕ(i−1)+(ϕ(i)−ϕ(i−1)) mod k, Bϕ(i)} =

{Aϕ(i−1) mod k+(ϕ(i)−ϕ(i−1)) mod k, Bϕ(i)} = {Aϕ(i) mod k, Bϕ(i)} = {Aϕ(i), Bϕ(i)},
since all indices have been defined to be modulo k, hence the difference is 0. If e∩Y ∈
Li
|Ii|

, then e ∩ X ∈ NLi, hence {f(e ∩ X), f(e ∩ Y )} = {Aϕ(i), Bϕ(i−1)+⌈ 1
2 |Ii|⌉

} =

{Aϕ(i), Bϕ(i−1)+(ϕ(i)−ϕ(i−1)) mod k} = {Aϕ(i), Bϕ(i)}, analogously to the preceding
calculation, hence the difference is 0 once more.
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If (4) is true, then {f(e∩X), f(e∩ Y )} = {Aϕ(i), Bϕ(i)}, and the difference is 0.
If (5) is true, then {f(e∩X), f(e∩ Y )} depends on whether it is e∩X or e∩ Y

that is in Li+1
1 but on nothing else. If e ∩ Y ∈ Li+1

1 , then e ∩ X ∈ NLi, hence
{f(e ∩ X), f(e ∩ Y )} = {Aϕ(i), Bϕ((i+1)−1)+⌈1/2⌉} = {Aϕ(i), Bϕ(i)+1}, hence the

difference is 1. If e ∩X ∈ Li+1
1 , then e ∩ Y ∈ NLi, hence {f(e ∩X), f(e ∩ Y )} =

{Aϕ((i+1)−1)+⌊1/2⌋, Bϕ(i)} = {Aϕ(i), Bϕ(i)}, hence the difference is 0.
Since in all possible cases, the difference is 0 or 1, we have completed the proof

that f is a graph homomorphism H → C.
We now prove (H1) and (H2). Define S :=

⋃

i∈[ℓ] L
i. Then |S| ≤ ℓ · 2k · βn ≤

ℓ · 2k · (ξ′/(2ℓk)) · n = ξ′n ≤ ξn, which shows (H1), and (H2) is obvious from the
definitions of S and the map f above.

We now prove (H3). For this it suffices to note, rather crudely, that for every
j ∈ [k], no preimage f−1(Aj) can become larger than the sum of the sizes of all
sets Wi assigned to Aj by ϕ (which by the definition of f equals the sum of all
xi = |X ∩ Wi| with ϕ(i) = j) plus the total number of linking vertices, i.e., for
every j ∈ [k], using the choice of β and using that ϕ has the property promised by
Lemma 12, we have |f−1(Aj)| ≤

(
∑

i∈ϕ−1(j) xi

)

+ |⋃i∈[ℓ] L
i| ≤ nj + ξ′n+ ℓ · |Li| =

nj + ξ′n+ 2kℓβn ≤ nj + 2ξ′n = nj + ξn, completing the proof of (H3). �

6. Concluding remarks

Unbalanced H and G. Essentially the same proof allows for an analogue of
Theorem 3 for bipartite graphs H and G that are not balanced but whose color
classes have the same sizes. More precisely, let H = (X∪̇Y, F ) and G = (A∪̇B,E)
be as in Theorem 3, except that |X| = |A| = n1 and |Y | = |B| = n2 (where
n1+n2 = 2n) and the minimum degree condition on G is replaced by the following
condition. For all v ∈ A we have degG(v) ≥ ( 12 + γ)n2 and for all w ∈ B we have

degG(w) ≥ ( 12 + γ)n1. Then H is a subgraph of G.

Thresholds for r-partite H and G. We believe that the following r-partite
analogues of our main result might be true and susceptible to similar methods as
those used in this paper.

(1) For all r, γ, and ∆ there is a positive constant β and an integer n0 such that
for all n ≥ n0 the following holds. Let G and H both be balanced r-partite
graphs on n vertices such that G has minimum degree δ(G) ≥ ( 2r−3

2r + γ)n
and H has maximum degree at most ∆ and bandwidth at most βn. Then
G contains a copy of H.

(2) Same formulation as (1), but now G and H are allowed to be arbitrary r-
partite graphs having compatible sizes of partition classes (an obvious nec-
essary condition) while the minimum degree threshold is raised to δ(G) ≥
( 3r−5
3r−2 + γ)n.

Concerning (1), interested readers are encouraged to compare the relevant ar-
ticles of Magyar and Martin [38], and Martin and Szemerédi [39] who considered
sufficient degree conditions for the existence of Kr-factors in balanced r-partite
graph for r = 3 and r = 4.

Both statements, if true, would be essentially the best possible in the sense that
replacing γ by 0 makes them false. This is witnessed by the following example:
As to (1), start with a balanced complete r-partite graph with k vertices in each
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class, delete all the edges of exactly one of the complete bipartite graphs in it,
and replace them by the edges of two vertex-disjoint complete balanced bipartite
graphs, one having ⌊k/2⌋, the other ⌈k/2⌉ vertices on either side. It is not difficult
to see that this graph G does not contain an (r−1)th power of a Hamilton cycle. As
to (2), modify the example just described by starting with a nonbalanced complete
r-partite graph G having cluster sizes of (r − 2)-times 3

3r−2n and 2-times 2
3r−2n

and take the two smaller classes as the ones supporting the special bipartite graph.
Moreover, by taking a certain H similar to the (r−1)th power of a Hamilton cycle,
it is not difficult to define an admissible H meeting the requirement of compatible
sizes of partition classes compared to G (an (r−1)th power of a Hamilton cycle does
not, and is therefore no longer a valid example) which is nevertheless not contained
in G for similar reasons as before.

Generating systems for the cycle space. As an application of Theorem 3 one
can show the following result. For every γ > 0 there is n0 ∈ N such that for every
n ≥ n0 every balanced bipartite graph G on 2n vertices with δ(G) ≥ ( 12 + γ)n has
the property that the edge sets of all Hamilton cycles in G form a generating system
for the cycle space of G. A proof for this will be given in a forthcoming paper [20].
The proof strategy is to first show that a specific spanning subgraph H of bounded
maximum degree and bandwidth has this property and then show (using a result
of Locke [37]) that the property transfers to the whole graph G.
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