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Abstract. Let G be a graph on n vertices with maximum degree ∆. We use the Lovász
local lemma to show the following two results about colourings χ of the edges of the com-

plete graph Kn. If for each vertex v of Kn the colouring χ assigns each colour to at most
(n − 2)/(22.4∆2) edges emanating from v, then there is a copy of G in Kn which is properly
edge-coloured by χ. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random
Struct. Algorithms 23(4), 409–433, 2003]. On the other hand, if χ assigns each colour to at

most n/(51∆2) edges of Kn, then there is a copy of G in Kn such that each edge of G re-
ceives a different colour from χ. This proves a conjecture of Frieze and Krivelevich [Electron.
J. Comb. 15(1), R59, 2008].

Our proofs rely on a framework developed by Lu and Székely [Electron. J. Comb. 14(1), R63,

2007] for applying the local lemma to random injections. In order to improve the constants in our
results we use a version of the local lemma due to Bissacot, Fernández, Procacci, and Scoppola
[preprint, arXiv:0910.1824].
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1. Results

A form of the canonical Ramsey theorem [9] states that, for any graph G, if n is large enough,
then every colouring of the edges of the complete graph Kn contains at least one of the following
types of G-copies : a monochromatic copy of G; a copy of G such that each edge has a different
colour; a copy of G such that, after we order the vertices of G appropriately, the colour of each edge
is determined solely by the first vertex of this edge with respect to this ordering. The classical
Ramsey theorem [16] is a special case of this result where the number of colours used in the
colouring is restricted. In this paper we consider restrictions on the edge colourings of Kn which
are of different nature and show that under such restrictions certain copies of spanning graphs G
exist.

Let F be a graph. An edge colouring χ of F is called k-bounded if it does not use any colour
more than k times and it is called locally k-bounded if for every vertex v of F it does not use
any colour more than k times on the edges incident to v. We say that χ is proper if intersecting
edges of F receive different colours, and that it is rainbow if all edges of F receive different colours.
Clearly, proper colourings are exactly the locally 1-bounded colourings and the rainbow colourings
are exactly the 1-bounded colourings.

Given a graph G on n vertices we will consider problems of the following type: For which
numbers k does the complete graph Kn have one of the following properties?

(a ) Every locally k-bounded colouring χ of Kn contains a copy of G which is properly coloured
by χ.

(b ) Every k-bounded colouring χ of Kn contains a copy of G which is rainbow coloured by χ.

We also say that a colouring ofKn is G-proper if it has the property asserted by (a ), and G-rainbow

if it has the property asserted by (b ).

Our proofs apply a probabilistic method and rely on the Lovász local lemma [10].
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1.1. Properly coloured subgraphs. An old conjecture of Bollobás and Erdős [5] states that
for k = ⌊n/2⌋ every locally k-bounded colouring of Kn is Cn-proper, where Cn is the cycle on n
vertices (that is, a Hamilton cycle). Bollobás and Erdős showed that this is true for k < n/69.
This was improved by by Chen and Daykin [7] to k ≤ n/17, and by Shearer [18] to k < n/7.
Currently, the best result is due to Alon and Gutin [2], who showed that for any ε > 0 there is
an n0 such that for all n ≥ n0 we can choose k = ⌊(1− 2−1/2 − ε)n⌋.

Generalising from Cn to a larger class of graphs, Shearer [18] proposed the following conjecture.
A cherry in a graph G is a copy of a path of length 2 in G.

Conjecture 1 (Shearer [18]). For fixed k and p, if n is sufficiently large and if G is an n-vertex
graph containing at most pn cherries, then every locally k-bounded edge colouring of Kn is G-

proper.

This conjecture considers the case of constant k, but allows graphs G with maximum de-
gree Ω(

√
n). Replacing the global condition on the number of cherries in G by a local condition,

Alon, Jiang, Miller and Pritikin [3] proved that, for fixed k and ∆, if n is sufficiently large and G
is an n-vertex graph with maximum degree ∆, then every locally k-bounded edge colouring of Kn

is G-proper. More precisely they showed the following result.

Theorem 2 (Alon, Jiang, Miller and Pritikin [3]). Let G be an n-vertex graph with maximum

degree ∆. If k satisfies 216(3k + 2∆)7(∆ + 1)20k < n then any locally k-bounded edge colouring

of Kn is G-proper.

Notice that for graphs G whose maximum degree is bounded by a constant, the parameter k can
be of order Ω(n1/8) in this theorem. The authors of [3] also suspected that it should be possible
to replace this bound on k by a bound which is linear in n.

As a consequence of Theorem 3 below, we show that this is indeed possible (see Corollary 4).
Theorem 3 uses the global condition on the total number of cherries from the conjecture of Shearer
together with a local condition on the distribution of these cherries.

Theorem 3. Let G be a graph on n vertices containing at most pn cherries such that each vertex

is contained in at most q cherries. For k ≤ 1
3

(

5
6

)5
(n − 2)/(q + 3p) every locally k-bounded edge

colouring of Kn is G-proper.

Observe that a graph with maximum degree ∆ contains at most
(

∆
2

)

n ≤ 1
2∆

2n cherries, and each

of its vertices is contained in at most
(

∆
2

)

+∆(∆− 1) ≤ 3
2∆

2 cherries. Therefore we immediately
obtain the following corollary.

Corollary 4. If G has n vertices and maximum degree ∆ > 0, then any locally
(

(n−2)/(22.4∆2)
)

-

bounded edge colouring of Kn is G-proper.

As mentioned earlier, this corollary asserts that for bounded degree graphs G we can even
choose k linear in n, which clearly is best possible up to the value of the constant. Moreover, on
the other extreme, this corollary implies that for each constant k there is a constant c = c(k) > 0
such that we can even take G with maximum degree c

√
n. Note that, therefore, Conjecture 1 does

hold for graphs G with maximum degree c
√
n.

In comparison, all graphs with maximum degree ∆ which contain at most pn cherries satisfy√
2pn ≥

(

2
(

∆
2

))1/2 ≈ ∆. It follows that the graphs G covered by Conjecture 1 have maximum

degree less than roughly
√
2pn, where p is a constant. Hence, in terms of the maximum degree,

our result achieves the ‘right’ order of magnitude.

1.2. Rainbow subgraphs. Erdős and Stein posed the question of determining the largest k such
that every k-bounded edge colouring of Kn is Cn-rainbow (see [11]). Hahn and Thomassen [14]
conjectured that k can be linear. This was shown by Albert, Frieze, and Reed [1] (see also [17]),
who improved on earlier sublinear bounds by Erdős, Nešetřil, and Rödl [11], by Hahn and
Thomassen [14], and by Frieze and Reed [13].

Theorem 5 (Albert, Frieze and Reed [1]). If k ≤ n/64 then every k-bounded edge colouring of Kn

is Cn-rainbow.
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Frieze and Krivelevich [12] extended this result and showed that there is a constant c > 0 such
that for k ≤ cn every k-bounded edge colouring of Kn is Cℓ-rainbow for all 3 ≤ ℓ ≤ n. Moreover,
they considered almost spanning trees with bounded maximum degree and proved the following
theorem.

Theorem 6 (Frieze and Krivelevich [12]). For every real number ε > 0 and every integer ∆ > 0
there is a constant c > 0 such that the following holds for every tree T on at most (1− ε)n vertices

with maximum degree ∆. If k ≤ cn then every k-bounded edge colouring of Kn is T -rainbow.

Frieze and Krivelevich also showed that for a special class of spanning trees T linearly bounded
colourings of Kn are T -rainbow. They conjectured that this is true for all bounded degree trees.

In this paper we prove this conjecture. In fact, our result is more general and shows that
the conclusion of the conjecture holds for all graphs with bounded maximum degree. This also
improves on a result in [6], which considers almost spanning bipartite subgraphs G with sublinear
bandwidth and constant maximum degree ∆. The result in [6] states that for k ≤ c(n/ log n)1/∆,
where c = c(η,∆) > 0, every k-bounded colouring of Kn is G-rainbow, as long as G has at
most (1− η)n vertices.

Theorem 7. Let G be a graph on n vertices with maximum degree ∆ > 0. For k ≤ n/(51∆2)
every k-bounded edge colouring of Kn is G-rainbow.

Again, Theorem 7 can be applied to graphs with growing maximum degree; it asserts that
constantly bounded edge colourings force rainbow copies of all graphs with maximum degree c

√
n

for some constant c = c(k) > 0.

2. The local lemma and random injections

Probabilistic existence proofs often try to estimate from above the probability that any of a
set of bad events {Xi}i∈[t] occurs, with the goal of showing that P(

⋃

i∈[t] Xi) < 1 (here and in

what follows, [t] = {1, . . . , t}). In many classical applications the union bound P(
⋃

i∈[t] Xi) ≤
∑

i∈[t] P(Xi) is used for this purpose, which is obviously only a good estimate when the bad events

are disjoint or almost disjoint. If the bad events, on the other hand, are mutually independent
then P(

⋂

i∈[t] Xi) =
∏

i∈[t](1−P(Xi)), which clearly implies that P(
⋃

i∈[t] Xi) < 1 iff no bad event

occurs with probability 1. The local lemma is a compromise between these two extremes: it takes
dependencies into account but gives a more optimistic upper bound for P(

⋃

i∈[t] Xi) than the union

bound, provided the dependencies are not too dense.
Before we can formulate this powerful tool we need some definitions. For a graph G = (V,E)

and a vertex v ∈ V we denote the neighbourhood of v by ΓG(v) := {u ∈ V : uv ∈ E} and the
closed neighbourhood by Γ∗

G(v) := ΓG(v) ∪ {v}. We may also omit the subscript G. We let ∆(G)
denote the maximum degree of G.

Definition 8 (dependency graph). Let X be a set of events in some probability space. Then D =
(X , E) is a dependency graph for X if every event X ∈ X is mutually independent of its non-

adjacent events in D, i.e., for every set of events Z ⊆ X \ Γ∗
D(X) we have that P(X|⋂Z∈Z Z) =

P(X). We say that D is a negative dependency graph if P(X|⋂Z∈Z Z) ≤ P(X) for all such X
and Z.

The local lemma states that, if a given set X of bad events has a sufficiently sparse (negative)
dependency graph compared to their probabilities, then with positive probability no bad event
occurs.

Lemma 9 (Lovász local lemma [10, 8]). Let X = {Xi}i∈[t] be a set of events with negative

dependency graph D = (X , E). If

(i ) we have

P(Xi) <
1

e(∆(D) + 1)
for all i ∈ [t] ,

or
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(ii ) if there are numbers {xi}i∈[t] in (0, 1) such that

P(Xi) ≤ xi

∏

XiXj∈E
(1− xj) for all i ∈ [t] , (1)

then P(
⋂

i∈[t] Xi) > 0.

Originally, the local lemma was proved in [10] with the stronger assumption that D is a depen-
dency graph. Erdős and Spencer then observed in [8] that essentially the same proof applies when
negative dependency graphs are used instead.

A quick calculation shows that Lemma 9(ii ) implies Lemma 9(i ) (it suffices to take xi :=
1/(∆ + 1) for all i). Moreover, if in Lemma 9 we change from the variables {xi}i∈[t] to the
variables {µi}i∈[t] defined by xi = µi/(1 + µi), then Condition (1) becomes

P(Xi) ≤
µi

∏

Xj∈Γ∗

D
(Xi)

(1 + µj)
=

µi
∑

R⊆Γ∗

D
(Xi)

∏

Xj∈R µj
. (2)

As usual, an empty product has value 1.
Using connections between the local lemma, independent set polynomials, and lattice gas par-

tition functions, in [4] a version of the local lemma was recently established which often improves
the constants in the upper bounds on P(Xi). This lemma states that the sum over all R ⊆ Γ∗

D(Xi)
on the right hand side of (2) can be replaced by a sum over all such R which form an independent
set.

Lemma 10 (Bissacot, Fernández, Procacci and Scoppola [4]). Let X = {Xi}i∈[t] be a set of events

with negative dependency graph D = (X , E). For each i ∈ [t] let Ri be the family of all subsets of

Γ∗(Xi) which are independent sets. If

(i ) there is a positive number µ such that

P(Xi) ≤
µ

∑

R∈Ri
µ|R|

for all i ∈ [t] , (3)

or

(ii ) if there are positive numbers {µi}i∈[t] such that

P(Xi) ≤
µi

∑

R∈Ri

∏

Xj∈R µj
for all i ∈ [t] , (4)

then P(
⋂

i∈[t] Xi) > 0.

A clique in a graph G is the vertex set of a complete subgraph of G. Note that Lemma 10
provides better bounds than Lemma 9 when the neighbourhoods of events in the independence
graph are ‘dense’, for instance, when they can be written as the union of few cliques. Hence, in an
application of this lemma we shall aim at decomposing the closed neighbourhood of each vertex
into cliques. We will rely on the following straightforward observation.

Remark. Assume we apply Lemma 10 to a negative dependency graph D = (X , E) which satisfies
the following condition for some integers ℓ and {qj}j∈[ℓ]. For each vertexXi we can write Γ∗

D(Xi) =
⋃

j∈[ℓ] Qi,j where |Qi,j | ≤ qj and Qi,j is a clique inD. (Note that we do not require Qi,j∩Qi,j′ = ∅.)
Then, if we replace Condition (3) by

P(Xi) ≤
µ

∏

j∈[ℓ](1 + µqj)
for all i ∈ [t] , (3’)

then the conclusion of Lemma 10 remains valid.
Alternatively, assume that we are in the following (somewhat special) situation. There are two

different types of vertices in D, that is, X = X1

.∪ X2. With each type s ∈ [2] of vertices we
associate an integer ℓs. Moreover, suppose that for each s ∈ [2] and each i ∈ [t] with Xi ∈ Xs

we can write Γ∗
D(Xi) =

⋃

j∈[ℓs]

(

Q
(1)
i,j

.∪ Q
(2)
i,j

)

such that for s′ ∈ [2] we have Q
(s′)
i,j ⊆ Xs′ and

|Q(s′)
i,j | ≤ qj,s′ for some {qj,s′}j∈[ℓs′ ]

. Assume in addition that D
[

Q
(1)
i,j ∪Q

(2)
i,j

]

is a clique. Then we
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can replace Condition (4) by requiring that there are positive numbers µ1 and µ2 such that for
each s ∈ [2] and each Xi ∈ Xs we have

P(Xi) ≤
µs

∏

j∈[ℓs]

(

1 + µ1qj,1 + µ2qj,2
) . (4’)

Next, we shall discuss how we construct negative dependency graphs in our applications of the
local lemma. For this purpose we use a framework developed by Lu and Székely [15] suited for
the case when the random experiment under consideration chooses an injection between two sets
uniformly at random.

Let A and B be two finite sets. We denote by I(A,B) the set of injections from A to B. In the
following we consider the probability space generated by drawing injections uniformly at random
from I(A,B). We shall use the following distinguished type of events.

Definition 11 (canonical events, conflicts). A canonical event X = X(A′, B′, π) for I(A,B) is

determined by two sets A′ ⊆ A, B′ ⊆ B and a bijection π : A′ → B′, and is defined as X :=
{σ ∈ I(A,B) : σ|A′ = π|A′}. We say that two canonical events X(A′

1, B
′
1, π1) and X(A′

2, B
′
2, π2)

conflict if there is no injection in I(A,B) that extends both π1 and π2.

Lu and Székely showed that for canonical events there is a simple way of constructing a negative
dependency graph: we only have to insert edges between conflicting events.

Lemma 12 (Lu and Székely [15]). Let X = {Xi}i∈[t] be a set of canonical events for I(A,B).
Then the graph D = (X , E) with

E := {XiXj : Xi and Xj conflict}

is a negative dependency graph.

We also call the graph D constructed in this lemma the canonical dependency graph for X . For
a set X of canonical events in I(A,B), let the intersection graph for X be the graph D′ := (X , E)
with precisely those edges X1X2 between events X1 = X1(A1, B1, π1) and X2 = X2(A2, B2, π2)
with (A1 ∩ A2) ∪ (B1 ∩ B2) 6= ∅. Observe that D′ is a supergraph of the canonical dependency
graph for X and hence D′ is a negative dependency graph.

3. Proofs

For the proofs of Theorems 3 and 7 we combine the local lemma (Lemma 10) with Lemma 12.
For this purpose, given a graph G on n vertices, we let J = I

(

V (G), V (Kn)
)

be the set of
embeddings of G into Kn (viewed as injections). Without loss of generality we assume V (G) =
V (Kn) = [n].

We will use certain canonical events X(~e, ~f ;~a,~b) in J , which will be defined from pairs of

edges {e, f} in G and pairs of edges {a, b} in Kn. For the precise definition of X(~e, ~f ;~a,~b), we
introduce a way of orienting and labelling pairs of edges in G first.

For an edge e = {e1, e2} of G we denote an ordered pair formed by its endvertices by ~e (so ~e
is just an orientation of e). Given a pair of distinct edges of G, the canonical way we shall refer

to it is as the ordered pair (~e, ~f), where ~e = (e1, e2), ~f = (f1, f2), e1 < e2, f1 < f2, and ~e is

lexicographically smaller than ~f , that is, either e1 < f1, or e1 = f1 and e2 < f2 (for simplicity, we

say that ~e and ~f are lexicographically ordered). Note that, given a pair of distinct edges of G, the

pair (~e, ~f) is uniquely defined. Let ~a = (a1, a2) and ~b = (b1, b2) be distinct pairs in V (Kn).

We denote by X(~e, ~f ;~a,~b) the event containing all embeddings of G into Kn which map ~e to ~a,

and ~f to ~b, that is, X(~e, ~f ;~a,~b) is the canonical event X(e∪f, a∪b, π) with π(e1) = a1, π(e2) = a2,

π(f1) = b1, and π(f2) = b2. It goes without saying that we only consider events X(~e, ~f ;~a,~b) for

which such an injection π exists, and (~e, ~f) is the canonical labelling of a pair of distinct edges
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of G. We say that X(~e, ~f ;~a,~b) is of disjoint type if e and f (and hence also a and b) are disjoint,

and otherwise we say that X(~e, ~f ;~a,~b) is of intersecting type. We have

P
(

X(~e, ~f ;~a,~b)
)

=

{

1 / (n)3 if X(~e, ~f ;~a,~b) is of intersecting type,

1 / (n)4 otherwise,
(5)

where (n)k = n!/(n− k)! is the falling factorial.

Observe that two canonical events X(~e, ~f ;~a,~b) and X(~e ′, ~f ′;~a′,~b′) containing bijections π and
π′ conflict only if one of the following cases occurs. Either there is a vertex in (e ∪ f) ∩ (e′ ∪ f ′)
for which π and π′ are inconsistent, or there is a vertex in (a ∪ b) ∩ (a′ ∪ b′) for which π and π′

are inconsistent. In the first case e ∪ f and e′ ∪ f ′ share some element and in the second case
a ∪ b and a′ ∪ b′ share some element. This motivates the following definitions. We say that the

events X(~e, ~f ;~a,~b) and X(~e ′, ~f ′;~a′,~b′) are G-intersecting if (e ∪ f) ∩ (e′ ∪ f ′) 6= ∅ and that they
are Kn-intersecting if (a ∪ b) ∩ (a′ ∪ b′) 6= ∅.

3.1. Properly coloured subgraphs. In this section we prove Theorem 3. For this purpose we
take a random embedding of G into Kn. A ‘bad event’ occurs if two adjacent edges e and f of G
are mapped onto two (adjacent) edges of Kn with the same colour. We will use the local lemma
to show that the probability that none of those bad events occurs is positive.

Proof of Theorem 3. Given G and a locally k-bounded edge colouring χ of Kn, we consider a
random embedding σ : V (G) → V (Kn) of G into Kn (that is, a random injection from the set J
defined above) and show that with positive probability σ has the desired property.

Let the canonical events X(~e, ~f ;~a,~b) with e, f ∈ E(G) and a, b ∈ E(Kn) of J be as defined

above. Let the set of bad events X be the set of events X(~e, ~f ;~a,~b) of intersecting type such that
χ(a) = χ(b) and let D′ be the intersection graph for X . Observe that, if no bad event occurs,
then σ provides a properly coloured copy of G. Our goal is to apply version (i ) of Lemma 10 to
show that P(

⋂

X∈X X) > 0. For this purpose it suffices to check Condition (3’). Therefore we will
next analyse the closed neighbourhood Γ∗

D′(X) of events X in D′.

Let X = X(~e, ~f ;~a,~b) ∈ X be fixed. Let SG(X) be the set of events in X that are G-intersecting
with X and SKn

(X) be the set of events in X that are Kn-intersecting with X. Clearly we have
X ∈ SG(X) ∩ SKn

(X). Thus Γ∗
D′(X) = SG(X) ∪ SKn

(X).
Observe that e and f form a cherry in G. Call its three vertices x, y and z. Assume that

X(~e ′, ~f ′;~a′,~b′) ∈ X is G-intersecting with X. Then the cherry (spanned by) e′ and f ′ contains
some vertex x′ ∈ {x, y, z}. Recall that x′ is contained in at most q cherries of G. Hence, given x′

there are at most q choices for e′, f ′. Once {e′, f ′} has been fixed, the vertices of ~a′ can be chosen
in (n)2 ways, and for fixed ~a′ there are at most k choices for the third vertex in a′ ∪ b′ since
χ(a′) = χ(b′) and χ is k-bounded. It follows that SG(X) is the union of three (overlapping)
cliques in D′ of order at most q · (n)2k each.

Similarly, a and b form a cherry. Call its vertices u, v and w. If X(~e ′, ~f ′;~a′,~b′) ∈ X is Kn-

intersecting with X(~e, ~f ;~a,~b), then the cherry a′, b′ contains some vertex u′ ∈ {u, v, w}. The
number of monochromatic cherries in Kn containing u′ as an end point is at most (n − 1)k and
the number of those containing u′ as the middle point is at most 1

2 (n− 1)k. Moreover, there are
two injections from the vertices of a cherry in G to such a monochromatic cherry and there are at
most pn cherries in G by hypothesis. We infer that SKn

(X) can be written as the union of three
(overlapping) cliques in D′ of order at most 2

(

(n− 1)k + 1
2 (n− 1)k

)

· pn = 3p · (n)2k each.

In conclusion Γ∗
D′

(

X(~e, ~f ;~a,~b)
)

is the union of three cliques of order at most q(n)2k and three
cliques of order at most 3p(n)2k. For checking Condition (3’), it is enough to show that there is
a positive number µ such that

P
(

X(~e, ~f ;~a,~b)
) (5)
=

1

(n)3
≤ µ
(

1 + q(n)2kµ
)3(

1 + 3p(n)2kµ
)3 .
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We claim that for µ :=
(

6
5

)6
/(n)3 this inequality is satisfied. Indeed, since k ≤ 1

3

(

5
6

)5
(n−2)/(q+3p)

we have kµ ≤ 2
5/
(

(n)2(q + 3p)
)

. This implies

(

1 + q(n)2kµ
)3(

1 + 3p(n)2kµ
)3 ≤

(

(

1 +
2

5
· q

q + 3p

)(

1 +
2

5
· 3p

q + 3p

)

)3

=

(

1 +
2

5
+

4

25
· 3qp

(q + 3p)2

)3

≤
(

1 +
2

5
+

4

25
· 1
4

)3

=

(

6

5

)6

,

where in the last inequality we used that st/(s + t)2 ≤ 1/4 for all reals s and t with s + t 6= 0.
Therefore we obtain

µ
(

1 + q(n)2kµ
)3(

1 + 3p(n)2kµ
)3 ≥

(

6
5

)6

(

6
5

)6 · (n)3
= P

(

X(~e, ~f ;~a,~b)
)

,

as required. �

3.2. Rainbow subgraphs. In this section we prove Theorem 7. Its proof follows the strategy of
the proof for Theorem 3. The major difference is that now we have to consider both, canonical
events of intersecting and of disjoint type. This is why we will consider bad events with very
different probabilities and therefore we will apply version (ii ) of the local lemma in the form of
Lemma 10.

Proof of Theorem 7. Observe that for n < 77 the condition of Theorem 7 implies k ≤ 1 and
therefore in this case the theorem holds trivially. Hence we assume n ≥ 77.

Given G and a k-bounded edge colouring χ of Kn, let J and its canonical events X(~e, ~f ;~a,~b)
be as defined at the beginning of Section 3, and let σ : V (G) → V (Kn) be a random injection
from J . Let m denote the number of edges in G.

Let the set of bad events X be the set of canonical events X(~e, ~f ;~a,~b) (of intersecting and
disjoint type) such that χ(a) = χ(b) and let D′ be the intersection graph for X . Again, if no bad
event occurs, then σ gives a rainbow copy of G. Hence, if we can apply version (ii ) of Lemma 10
to show that P(

⋂

B∈X B) > 0, we are done.
For Lemma 10(ii ) it suffices to define for every bad event B ∈ X a positive number µB such

that (4’) is satisfied . In order to find out how we should set these numbers we will investigate the
neighbourhood of B in D′, write it as a union of cliques, and derive bounds on their sizes.

Let X = X(~e, ~f ;~a,~b) be an arbitrary bad event. If X is of intersecting type then we have
e ∪ f = {x1, x2, x3} and a ∪ b = {u1, u2, u3}; otherwise we have e ∪ f = {x1, x2, x3, x4} and

a ∪ b = {u1, u2, u3, u4}. In either case, for ℓ ∈ [4], let Q
(ℓ)
G denote the set of bad events which are

G-intersecting with X and contain xℓ. Analogously, let Q
(ℓ)
Kn

denote the set of bad events which
are Kn-intersecting with X and contain uℓ. Hence we have

Γ∗
D′(X) =







⋃

ℓ∈[3]

(

Q
(ℓ)
G ∪Q

(ℓ)
Kn

)

if X is of intersecting type ,

⋃

ℓ∈[4]

(

Q
(ℓ)
G ∪Q

(ℓ)
Kn

)

if X is of disjoint type .

Moreover, we write Q
(ℓ)
int(G) for the set of those events in Q

(ℓ)
G that are of intersecting type and

Q
(ℓ)
dis(G) for the set of those of disjoint type; therefore Q

(ℓ)
G = Q

(ℓ)
int(G)

.∪ Q
(ℓ)
dis(G). Analogously

Q
(ℓ)
Kn

= Q
(ℓ)
int(Kn)

.∪ Q
(ℓ)
dis(Kn)

.

Claim 13. For each ℓ the sets {X} ∪Q
(ℓ)
G and Q

(ℓ)
Kn

are cliques in D′ and we have

∣

∣Q
(ℓ)
int(G)

∣

∣ ≤ γint :=
3
2∆

2n2k ,
∣

∣Q
(ℓ)
dis(G)

∣

∣ ≤ γdis := ∆2n3k ,
∣

∣Q
(ℓ)
int(Kn)

∣

∣ ≤ κint := ∆2n2k ,
∣

∣Q
(ℓ)
dis(Kn)

∣

∣ ≤ κdis := ∆2n3k .
(6)
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Proof. Clearly Q
(ℓ)
G is a clique in D′ since each of its events contains xℓ, and Q

(ℓ)
Kn

is a clique since
each of its events contains uℓ.

The bound on the number of events X ′ = X(~e ′, ~f ′;~a′,~b′) in Q
(ℓ)
int(G) follows from the following

facts. We have xℓ ∈ e′ ∪ f ′ and there are at most 3
2∆

2 cherries in G containing xℓ (recall that ~e ′

and ~f ′ are lexicographically ordered). The two edges forming the cherry a′, b′ can be chosen in
(

n
2

)

k ways, and there are 2 isomorphisms from the cherry e′, f ′ to this cherry.

We claim that there are at most ∆m · (n)2(2k) events X ′ = X(~e ′, ~f ′;~a′,~b′) in Q
(ℓ)
dis(G). Indeed,

note first that there are at most ∆ ways to form an edge in G containing xℓ and for the second
edge of e′, f ′ there are at most m possibilities. Moreover, for ~a′ we have (n)2 choices. Since

χ(a′) = χ(b′) this leaves at most k choices for b′ and there are 2 ways to obtain ~b′ from b′. The
bound claimed in (6) then follows from m ≤ 1

2∆n.

For the events X ′ = X(~e ′, ~f ′;~a′,~b′) in Q
(ℓ)
int(Kn)

observe that there are at most
(

∆
2

)

n ≤ 1
2∆

2n

cherries in G. It follows that we can choose ~e ′, ~f ′ in at most 1
2∆

2n ways. Moreover, uℓ ∈ a′ ∪ b′.
For finding a monochromatic cherry in Kn which contains uℓ we have at most nk choices, and
there are two isomorphisms from the cherry e′, f ′ to this cherry. Hence there are at most ∆2n2k
such events.

Finally, we check that the number of events X ′ = X(~e ′, ~f ′;~a′,~b′) contained in Q
(ℓ)
dis(Kn)

is at

most 1
8∆

2n2 ·4 ·n(2k). Indeed, there are at most
(

m
2

)

≤ 1
8∆

2n2 possibilities to choose ~e ′, ~f ′, and uℓ

can be each of the 4 vertices in a′ ∪ b′. Moreover, for the second vertex in the edge of X ′ which

contains x, say a′, there are then at most n possibilities, and for ~b′ we have again 2k choices. �

Now we define for each B ∈ X the number

µB :=

{

µint :=
(

7
5n

)3
if B is of intersecting type,

µdis :=
(

7
5n

)4
if B is of disjoint type,

(7)

and claim that with these numbers Condition (4’) is satisfied. Indeed, let Bint ∈ X be an arbitrary
intersecting type event and Bdis ∈ X an arbitrary disjoint type event. Claim 13 and Condition (4’)
imply together with (7) that it is sufficient to check the two conditions

P(Bint) ≤
µint

(1 + γintµint + γdisµdis)3(1 + κintµint + κdisµdis)3
=: pint ,

P(Bdis) ≤
µdis

(1 + γintµint + γdisµdis)4(1 + κintµint + κdisµdis)4
=: pdis .

(4’’)

Since k ≤ n/(51∆2) we have

(1 + γintµint + γdisµdis)(1 + κintµint + κdisµdis)

(6)

≤ (1 + 3
2∆

2n2kµint +∆2n3kµdis)(1 + ∆2n2kµint +∆2n3kµdis)

(7)

≤
(

1 + 3
2 · 1

51

(

7
5

)3
+ 1

51

(

7
5

)4
)(

1 + 1
51

(

7
5

)3
+ 1

51

(

7
5

)4
)

≤ 50
51 · 7

5 ,

where the last inequality can be easily verified numerically. This implies the second part of (4’’)
because

pdis ≥
µdis

(

50
51 · 7

5

)4

(7)
=
( 51

50n

)4

≥ 1

(n)4

(5)
= P(Bdis) ,

where we used n ≥ 77 in the last inequality. The first part of (4’’) follows analogously. Hence we
can apply Lemma 10(ii ) to conclude that P(

⋂

B∈X B) > 0, which finishes our proof. �

4. Concluding remarks

In this paper we showed how the framework developed by Lu and Székely [15] for applying
the local lemma to random injections can be used for obtaining results about copies of spanning
graphs in bounded or locally bounded edge colourings of Kn. In our proofs we used the version of
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the local lemma given in Lemma 10, which enabled us to obtain better constants than Lemma 9
would have yielded. We close with two remarks:

(i ) If n ≥ 100 then in Theorem 7 the constant 51 can be improved to 42, using calculations
analogous to those in the proof of Theorem 7.

(ii ) Albert, Frieze, and Reed [1] used the local lemma in the form of Lemma 9 to obtain Theo-
rem 5. Using Lemma 10 instead, one can improve the constant 64 in Theorem 5 to 38, if n
is sufficiently large.
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[10] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Infinite
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