
Chances, Credences and Counterfactuals

Richard Bradley
LSE

April 24, 2016

Abstract

1 Introduction

This paper examines the relation between three concepts: rational degrees of
belief (or credences), counterfactuals and chances. All three notions are hotly
debated in philosophy and I will necessarily have to take lot for granted if any
progress is to be made on the question of how they are related. In particular
I will assume that the degrees of belief of a rational agent can be represented
by a probability measure on a Boolean algebra of propositions, su¢ ciently rich
as to contain both counterfactual propositions and propositions about chances.
Then my task becomes the somewhat more modest one of saying how degrees
of belief in counterfactual propositions and in chance propositions are related to
each other and to degrees of belief under suppositions. My hope is that doing
so will shed light on all three concepts by establishing the constraints that any
interpretation of them should satisfy.
The focus of this investigation will be a particular claim about how coun-

terfactuals and chances are related that I will call Skyrms�Thesis in honour of
its original proponent, Brian Skyrms (in Skyrms (1980) and Skyrms (1981)).
Skyrms�Thesis says, very roughly, that rational degrees of belief in a counter-
factuals go by the expected conditional chances of their consequents, given the
truth of their antecedents. For instance, suppose that I have in my hand a
coin that might be fair or two-headed or two-tailed and that you believe each
possibility to be equally likely. Then, according to Skyrms�Thesis, the degree
to which you should believe that if I were to toss the coin it would land heads
is given by the expected conditional chance of it landing heads given that it is
tossed. Its conditional chance of landing heads equals 0.5 or 1 or 0, according to
whether it is fair or two-headed or two-tailed. So its expected chance of landing
heads is ( 12 �

1
3 ) + (1 �

1
3 ) + (0 �

1
3 ) = 0:5. Hence it is probable to degree one-half

that if the coin were tossed it would land heads.
Skyrms�Thesis is a special case of what has come to be called the Ramsey

Test hypothesis, a principle that relates credence in conditionals (counterfactual
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or otherwise) to credence under a supposition. I will discuss the Ramsey Test
hypothesis and the notion of a supposition in more detail in section 4. A second
claim� that I will term the Principal Suppositional Principle� relating credence
under suppositions to conditional chances, is required to derived Skyrms�Thesis.
It is examined in section 5 along with one further claim about the independence
of credences in chances from suppositions of a particular kind. To get to the
Principal Suppositional Principle some background is required. To this end,
in section 3, I recall Lewis�treatment of the relation between chances and cre-
dences, suggesting a formulation of the relationship between them that allows
for elimination of the problematic notion of admissibility, so central to Lewis�
theory. This proposal depends however on understanding chances in a particular
kind of way, and motivating this interpretation will be my �rst task.
Some terminology that will be used throughout. I will take the degrees of

belief of a rational agent to be given by a probability function P de�ned on
a Boolean algebra of propositions. Propositions will be denoted by italicised
capitals and the conjunction of any two propositions X and Y by either their
concatenation XY or by the pair (X;Y ). The operations of negation and dis-
junction will be denoted by : and _ respectively and the logical contradiction
and tautology by ? and > respectively. The counterfactual �if A were the case
then X would be�will be denoted by A! X. Similarly the proposition that the
chance that X is true (at certain point in time t) is equal to x will be denoted
by Cht(X) = x and the proposition that the conditional chance that X, given
that A, at t, is equal to x will be denoted by Cht(XjA) = x .For simplicity the
time index will often be dropped.

2 Chance as Ideal Probability

We face uncertainty about a good many things. In a sense all uncertainty
stems from lack of information. But there is clearly a big di¤erence between
the uncertainty I might have about the time that the bus from Tel-Aviv to
Jerusalem departs in the morning, which derives from a simple failure to con-
sult the timetable, and uncertainty that is structural or irreducible in some
way. In indeterministic systems such as those described by quantum mechanics,
uncertainty is deeply structural because there is simply no information to be
obtained that will settle the question of where particles are located (prior to
their measurement). In other cases such information may exist in principle but
in practice is impossible to obtain. Our uncertainty about the rainfall in, say,
Kinshasa on the 1st of January 2050, is hardly less severe for all our knowledge
of the deterministic meteorological system governing the weather in Zaire, for
this system is chaotic and accurate predictions about distant events in such
systems is impossible. So too even for homely, deterministic and non-chaotic
systems like those governing coin tosses or the development of cancers or po-
litical insurrections. The uncertainty we face regarding such events deserve the
label �structural�because they re�ect not the idiosyncratic state of knowledge of
a particular individual but physical constraints on all of us on the accessibility
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of certain kinds of information. With regard to such uncertainty we are all in
the same boat.
These observations give strong support to Lewis�widely-shared view that

there are two sorts of probabilities� the subjective degrees of belief of a Bayesian
agent and the objective chances of events� and that an understanding of uncer-
tainty and how to manage it, rests on the relationship between them. There is
much about this view that I think is correct. In particular, I will defend a version
of what Lewis called the Principal Principle relating objective and subjective
probability: informally, that a rational agent should set her degree of belief in
any proposition to what she expects its objective chance to be. But contrary to
the mainstream interpretation of Lewis�view, I will argue that the objectivity of
chances does not stem from the fact that chances are physical properties of the
world. Chances are probabilistic judgements whose objectivity resides in their
being expert or �best-possible� judgements given the physical facts. They are
thus neither simply frequencies, nor the propensities that purportedly explain
them. Rather they are the judgements of an ideal reasoner who is fully informed
of all the propensity and/or frequency facts, but not of the truth of the events
that are the bearers of chances.
The idea of an expert probability for an agent goes back to Haim Gaifman

(1988), who characterised it as a probability assignment the agent was com-
mitted to tracking in the sense of taking as a constraint on her attitudes, the
principle that her degrees of belief in some proposition X should equal the ex-
pert�s probability for X. In a sense, Truth is an expert of this kind, requiring
an agent who aims at the truth to obey the principle that:

P (XjX is true) = 1

Similarly, as Hall (2004) and Joyce (2007) suggest, the Principal Principle can
be read as saying that Chance is an expert probability, requiring those who seek
objectivity to align their credences with the objective chances in the sense of
satisfying for all events X:

P (XjCh(X) = x) = x

when Ch is a probability measure of the true chances of events.
This proposal is, on the face of it neutral about what chances are, and

indeed di¤erent authors have �lled it in di¤erent ways. Hacking (1965), for in-
stance, suggested that relative frequencies were expert probabilities and hence
that rational degree of belief in any repeatable event X should equal its rela-
tive frequency in the appropriate reference class of events. More often though,
Lewis�s principle has been read through the prism of a propensity interpretation
of chances. Neither, it seems to me, o¤er the possibility of a su¢ ciently general
interpretation because of some well-known limitations of each.
The main limitation of frequentism is that it does not allow for single case

chances. Yet there are many non-repeatable events for which talk of objective
probability of its occurrence seems perfectly sensible. In debate about the e¤ects
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of climate change, for instance, there is much discussion of the chances of human
extinction and other catastrophic events. Is all such talk purely subjective?
The propensity interpretation does not su¤er from this limitation; indeed

several variants of it are explicitly designed to deal with single-case chances.
The main problem here is that propensities are not probabilities at all in the
strict sense (as �rst observed by Paul Humphreys (1985)). A propensity is a
disposition of a set-up to produce certain kinds of outcomes: of spins of roulettes
wheels to cause to ball to land on even numbers, of weather systems to produce
snow, of levels of sugar consumption to result in diabetes. Such talk is causal
in nature and, indeed, the propensity interpretation provides a natural home
for accounts of probabilistic causation. But causation by its nature is typically
one-directional, while probabilities are always two-directional. The chance of
a window shattering if a stone is thrown at it might sensibly be viewed as a
physical propensity of a set-up involving �ying stones and windows, but the
chance of the stone being thrown, given that the window shattered, cannot.
But the two chances are equally well-de�ned.
To elaborate, consider a simple example in which a fair coin will be tossed

�ve times. What is meant by fair depends, of course, on the interpretation
that is given to chances. According to the propensity theorist, the coin will
have a certain disposition to land heads whose magnitude will depend on the
set-up: the properties of the coin, the manner in which it is tossed and various
environmental factors. A coin is fair therefore when the set-up is such as to
ensure that the coin is equally disposed to land heads as to land tails. The
frequency theorist on the other hand will say that the coin is fair because on
half the tosses in the relevant reference class of tosses of this coin it lands heads,
and on half it lands tails.
Let�s consult our intuitions on some basic cases. What is the chance of the

coin landing heads on the �rst toss? One-half is the only reasonable answer in
view of the fairness of the coin. And the chance of it landing heads on the last
(�fth) toss, given that it has landed heads on the �rst four tosses? Again the
answer is one-half, absent any grounds for thinking that the tossing of the coin
has undermined the conditions for its fairness. Finally what is the chance of it
landing heads on the last toss given that it has landed heads on the �rst four
tosses and that it will land heads in only four out of the �ve tosses? The answer
it seems to me, must be zero. For we cannot accommodate this information
about the proportion of heads landings without drawing this conclusion.
Let Hi be event of the ith coin toss landing heads and Ch be a chance

function on the Boolean algebra based on the events fH1; :::;H5g. Let E be
the event of four out of �ve tosses landing heads, i.e. E = H1H2H3H4:H5 _
:::_:H1H2H3H4H5. Now the description of the set-up plus our answers to the
three questions constrain Ch as follows:

1. Ch(H1) = 0:5

2. Ch(H1H2H3H4) = ( 12 )
4 = 0:062 5

3. Ch(H5jH1H2H3H4) = 0:5
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4. Ch(H5jH1H2H3H4 ^ E) = 0

Now the propensity view cannot give an interpretation of the (fragment of)
a chance function I have just implicitly de�ned on the algebra of coin landing
events. For the fact that the coin has landed heads on the �rst four tosses
and that it will land heads in only four out of the �ve tosses does not give us
much grounds for thinking that the coin is not fair. One should expect that
frequencies in small classes of events will diverge from propensities and so such
divergences are slim evidence for a change in the dispositional facts. So on the
propensity view, the chance of a fair coin landing heads on the �fth toss is still
one half, no matter what the frequency facts are. The root problem here, it
seems to me, is that the conditional probability of the last toss landing heads,
conditional on four out of �ve tosses landing heads is not really a propensity
at all. It is a judgement that is made in the light of knowledge of the relative
frequencies, knowledge that in this case overrides anything that we know about
the physical propensities.
Finite frequentism also cannot give an interpretation of these chances, though

for somewhat di¤erent reasons. From the frequentist�s point of view, it makes no
sense to talk of the chance of a fair coin landing heads given that the frequency
of heads landing is greater than one-half. If the coin has landed heads four out
of �ve times then it is not a fair coin (by the frequentist de�nition of fair). So
on the interpretation of chances as frequencies, constraint 3 is meaningless. It
does not matter whether the relevant frequencies come from a �nite reference
class or an in�nite one. Whatever the relevant reference class, the frequency of
heads must be one-half if the coin is fair. But in the reference class picked out
by the condition that H1H2H3H4 the frequency of heads is not one-half.
The deeper problem here is that the fact that frequentism doesn�t attribute

chances to events such as a particular coin landing heads independently of a
class to which that event belongs. Strictly there is no chance of a particular coin
landing heads, just a chance of that coin, qua member of a particular reference
class, landing heads. To put it somewhat di¤erently, the relevant empirical
facts concern classes of events, not particular ones. This of course means that
frequentists cannot allow for single-case chances, as we noted before. But even
on their home ground, where events are repeatable, it would be less confusing
to say that the chances of particular events are inferred from the frequencies
than to say that they are frequencies. That coins like to one to be tossed
land heads in the relevant reference class with a frequency of one-half grounds
the judgement that its chance of landing heads is one-half. But then chances
are the judgements mandated by the frequency facts, they are not themselves
frequencies.
In summary, I do not contest that both frequencies and propensities consti-

tute physical facts which in many circumstances determine the chances. Nor
that they indirectly constrain the others. But neither directly determines all
the chances that we are interested in, so neither can deliver a comprehensive in-
terpretation of chance. In contrast, by taking chances to be expert probabilities
we can make sense both of the role that these physical facts play in determining
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chances and account for the chances that are determined by inferences from
these facts.

3 Chance-Credence Principles

It is widely agreed that chances and credences should be related by some version
of what Lewis (1980) calls the Principal Principle. Roughly the principle says
that a rational agent should set her degrees of belief in accordance with their
expected chances or, equivalently, that the probability of any proposition con-
ditional on the truth of some chance hypothesis is just whatever chances that
hypothesis accords it. More formally, let 
 be a Boolean algebra of propositions
and Z be a subset of it consisting of the propositions governed by chance. Then:

Principal Principle: Let X 2 Z and x 2 [0; 1]. Let P be any reasonable
credence function, t be any time and E be any proposition consistent with
X that it admissible at t. Then:

P (XjCht(X) = x;E) = x

There are two notions in Lewis�principle that need �lling out: that of a rea-
sonable credence function and that of an admissible proposition. A reasonable
credence function, says Lewis, is a regular probability function (i.e. assigning 0
only to logically false propositions) such that taking it as one�s initial degrees
of belief and learning by conditionalisation on one�s total evidence leads only
to beliefs that are reasonable given one�s evidence. This is not a very helpful
characterisation at all since he says nothing about what beliefs are reasonable
to acquire from experience. Others have suggested something rather di¤erent:
that P should not encode any inadmissible information about the chances.
An admissible proposition is one that doesn�t include information that per-

tains to the truth of X except through its chance. As Lewis (1980, p. 92) puts
it:

�Admissible propositions are the sort of information whose im-
pact on credence about outcomes comes entirely by way of credence
about the chances of those outcomes.�

The usefulness of the Principal Principle therefore depends on how much
information is admissible. It is standardly assumed that, at least, historical
information prior to t and information about how possible histories and possible
laws bear on chances is admissible. But information relevant to the truth of X
that is not encoded in the chances is not. An obvious example is the information
that X itself is true, for P (XjCht(X) = x;X) = 1 if P (Cht(X) = x;X) 6=
0. So either the truth of X implies that its chance of truth is one at any
time t, or rational credence does not, in this case, track the chances. More
generally, information about future chances are also inadmissible, as is any
information about the truth value of X not screened o¤ by the chances. As
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Nissan-Rozen (2013) has shown this may include many types of information
yielded by experience that do not intuitively seem inadmissible by the lights of
Lewis�quoted explication of this notion.
It turned out that on Lewis own best-systems account of chances, proposi-

tions about the chances themselves are inadmissible, which led him and others
to suggest a somewhat di¤erent relationship between chances and credences.
We will not pursue this debate, however, as a slightly di¤erent principle, �rst
proposed by Ned Hall Hall (2004), better captures that relationship we are after
and shares with the New Principle the advantage of dispensing with the need
to talk of admissibility. It is the following:

Belief-Chance Principle: Let X;A 2 Z, x 2 [0; 1] and t be any time. If
P (A;Cht(XjA) = x) 6= 0, then:

P (XjA;Cht(XjA) = x) = x

The Belief-Chance Principle says that the degree of belief a rational agent
should have in a proposition X, given that A is true and given some hypothesis
as to the conditional chance of X given that A, should just equal whatever
the hypothesis says that the conditional chance is. Once again the idea is
that Chance functions as a probability expert. This being so, you should set
your conditional degrees of belief for X, given that A, in accordance with what
Chance says they should be.
Let us see why the notion of admissibility can now be dropped. Consider our

previous example. The coin has an equal propensity to lands heads and tails,
a fact which grounds an expert judgement of probability one-half for the coin
landing heads on the �nal toss, absent any further information. But, given the
information that the coin has landed heads in four out of �ve tosses, the expert
must judge that the coin has landed tails on the �nal toss, even though its
propensity to land tails is no greater than its propensity to land heads. What
makes the information inadmissible on Lewis� account is that it determines
judgement without going via the physical chances. But this matters not at
all for the Belief-Chance Principle which relates subjective degrees of belief to
expert judgement.

3.1 The Semantics of Chance

We have been speaking rather informally both about the chances of truth of
propositions and about credences in such chances. It is time to make such
talk more precise and in particular to specify the content of propositions about
chances. In possible worlds semantics, which I take as my starting point, propo-
sitions are modelled as sets of possible worlds; intuitively the set of worlds at
which the proposition is true. In similar fashion I propose to model chance
propositions as sets of probability functions; intuitively the set of probability
functions that make the chance proposition true. For instance the proposition
that the chance of rain tomorrow is greater than 0.4 is just the set of probability
functions assigning probability greater than 0.4 to rain.
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To capture this more formally, let Z = fZ; j=g be a Boolean algebra of
factual propositions; intuitively Z contains those propositions to which it is
meaningful to ascribe chances. Let � = fchg be the set of all probability
functions on Z and let � = }(�) be the set of all subsets of �. The elements
of � serve here as the chance propositions. In particular, for any X 2 Z, and
x 2 [0; 1], Ch(X) = x is the proposition de�ned by fch 2 � : ch(X) = xg. A
maximally speci�c chance hypothesis is simply the conjunction of a consistent
and exhaustive set of propositions regarding the chances (at some point in time)
of the factual prospects. In particular, Ch will denote the hypothesis that
says that the chances are as given by the probability function ch, and ChA
the hypothesis that the conditional chances, given that A, are as given by ch.
Note that while Ch is the singleton set fchg, the proposition ChA is not, since
di¤erent chance functions can agree on the conditional chances, given A.
The focus of our interest is the product set Z � � whose elements are

combinations of factual and chance propositions. For instance the proposition
(Y;Ch(X) = x) is the element of this set that is true when it is both the case
that Y and that the chance of X is x. Hereafter, for simplicity, I will write Y
for (Y;�) and Ch for (Z;Ch). The question we have been pursuing is: what at-
titudes are agents rationally permitted to hold with respect to these prospects?
Lewis�Principal Principle is one such an answer to this question, correct sub-
ject to speci�cation of the notion of admissibility. Another answer, the one I
am defending, takes the form of the Belief-Chance Principle, which we can now
state more exactly as:

Belief-Chance Principle: For all X;A 2 Z and any ChA 2 �, if P (X) 2
(0; 1) and ch 2 ChA then:

P (XjA;ChA) = ch(XjA)

So formulated, the Belief-Chance Principle says that the degree of belief a
rational agent should have in a factual prospect X, conditional on any factual
prospect A and corresponding maximally speci�c conditional chance hypothe-
sis ChA, equals the conditional chance of X, given that A, according to that
hypothesis.

4 Conditionals and Suppositions

The Ramsey Test hypothesis is the name given to a thesis that has �gured
prominently in contemporary debate in both the semantics and pragmatics of
conditionals, much of it fuelled by widespread dissatisfaction with the material
conditional as a rendition of the semantic content of ordinary language con-
ditionals.1 In its probabilistic version it asserts that the probability that if �

1The literature on both probabilistic and non-probabilistic version of the Ramsey Test
hypothesis is now very large. See for instance Gärdenfors Gärdenfors (1988) and Edgington
Edgington (1995).
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then � equals the probability that � on the supposition that � is true. More
formally, let * be a function on pairs of probability functions and propositions,
that maps any probability P and proposition � to a suppositional probabil-
ity P ��, where a suppositional probability is real-valued function on a Boolean
algebra of propositions satisfying, for any proposition �:

P �1 (Probability) P �� is a probability function

P �2 (Certainty) P ��(�) = P
�
�(>)

P �3 (Anchoring) P �>(�) = P (�)

Then the hypothesis can be rendered more formally by:

(Probabilistic Ramsey Test) Rational degrees of belief in conditionals equal
degrees of belief in their consequent on the supposition of their antecedent;
i.e.:

P (�! �) = P ��(�)

In general, when we suppose that � is true, we form a set of (suppositional)
beliefs that includes the belief that � and diverges as little as possible from our
actual beliefs. But there are many di¤erent standards for minimal divergence.
We might suppose that as a matter of fact � is true, such as when I suppose, to
help with my �nancial planning, that I won�t have enough money at the end of
the month to pay the rent. Suppositions of this kind should respect to as great
a degree as possible current unconditional beliefs: I should not, for instance,
adopt the belief that I will secure a large inheritance to cover the rent. Things
are quite di¤erent when we suppose or imagine that, contrary to the facts, � is
true. A supposition of this kind may well be best accommodated by giving up
some of one�s beliefs not contradicted by �, to allow retention of well-entrenched
ideas about the way that the world works. For example, when supposing that
it rained yesterday, in order to think about what I would have done had this
been the case, I might have to give up my belief that I went for a walk in the
mountains that day, even if I did in fact do so (and have sore feet to prove it).
A closely related distinction� between evidential and interventional suppositions�

has played an important role in the development of causal decision theory. When
you make a supposition as part of evidential reasoning, you reason as if you have
received evidence that implies the truth of the supposition. In contrast when
you suppose something interventionally you imagine that there has been some
intervention in the course of events which makes the supposition true. In this
latter case, unlike the former, you do not revise your degrees of belief in any
of the causes of the condition supposed true because you do not treat your
supposition as positive evidence for them.
Consider, for instance, the situation modelled by the causal graph in Figure

1, in which the arrows represent relations of causal in�uence between variables.2

2The use of graph to model causal relations is now well entrenched in many accounts of
causal inference. See, for instance, Spirtes et al. (2000) and Pearl (2009).
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Figure 1: Causal Graph for Breathing Di¢ culties

According to the graph the presence or otherwise of a certain gene is a proba-
bilistic cause of both lung cancer and of smoking, while both of these are causes
of breathing di¢ culties. These causal relations will induce probabilistic cor-
relations between the variables relevant to evidential reasoning. In particular,
evidence that the agent will in fact smoke makes its more probable that they
have the gene in question, which in turn makes it more likely that they will
get lung cancer. On the other hand, if we suppose that there is an intervention
from outside of the causal system represented by the graph (for instance, a freely
made choice) which makes it true that the agent will smoke, then their smok-
ing no longer provides evidence for the presence of the gene. So interventional
supposition of the agent smoking should not lead to revision of the degree to
which we believe that the agent will get cancer.
How are these two sets of distinctions� factual versus counterfactual and

evidential versus interventional� related? Evidential supposition and matter-
of-fact supposition are just the same thing I think. But the relation between
counterfactual and interventional supposition is less straightforward. What
counterfactual and interventional supposition have in common is that they lead
to revision of beliefs about the facts in a way which retains entrenched beliefs
about causal connections. They do so in slightly di¤erent ways however. When
we engage in interventional supposition we do not presuppose that the hypoth-
esised prospect is as a matter of fact false. When I think about what would
happen if I were to cancel my classes and take the day o¤, for instance, I need
not be sure that I won�t do it. On the contrary, the very reason why I engage
in the supposition is to help me to decide whether I should do it. In doing so
I suspend belief about whether the supposition is true, rather than presume
that it is false. So interventional supposition is not a form of counterfactual
supposition.
Equally not all cases of counterfactual supposition seem to involve interven-

tional reasoning (though many clearly do). When we make an interventional
supposition we don�t revise our probabilities for the causes of the things sup-
posed true. In entertaining the supposition that I smoke (by choice), I must
not, as we saw, revise my probability for having the gene. On other hand,
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when I suppose, say contrary to the facts, that I didn�t get lung cancer, then I
don�t need to imagine that someone intervened to prevent it. Consequently, I
may revise my degrees of belief for the possible causes of the lung cancer in a
way that would be inappropriate for interventional supposition. For example, I
might infer that I must not have had the gene, even though having it is a causal
antecedent, not consequent, of having lung cancer.
The di¤erences between counterfactual and interventional supposition can

be subtle and will not matter to our subsequent discussion. So I will focus
on the distinction between evidential, matter-of-fact supposition and interven-
tional (potentially contrary-to-fact) supposition. Now one of the advantages of
the Ramsey Test hypothesis is that it allows us to link the fact that there are
di¤erent kinds of suppositions or ways of supposing something true to the widely
accepted distinction between indicative and counterfactual conditionals. Indeed
the Ramsey Test is best viewed as a test schema with di¤erent types of belief
revision associated with di¤erent modes of supposition being suitable for testing
the credibility of di¤erent kinds of conditionals: evidential supposition for in-
dicative conditionals and interventional and/or contrary-to-fact supposition for
counterfactual conditionals.
Consider, for example, the following two conditionals concerning Jim, a

canny investor who very rarely loses money, and an investment in ostrich farm-
ing futures, a currently fashionable �nancial instrument, the market for which
the wise consider to be a bubble.

1. If Jim invests in ostrich futures, then he will make a packet.

2. If Jim were to invest in ostrich futures, he would make a loss.

Although this pair of conditionals make �opposite�claims, assertion of both
is quite reasonable from the point of view of the Ramsey Test schema. The
�rst conditional, being indicative, is evaluated by supposing that Jim will as
a matter of fact make the investment. Since he rarely makes a mistake, it
is reasonable to conclude that the investment will be pro�table. The second
conditional, being an interventional counterfactual, is evaluated by supposing,
(potentially) contrary to the facts, that Jim makes the investment. Since we
expect the bubble to pop, it is reasonable to conclude that he would lose money
if he did so.
Most of the literature on the Ramsey Test hypothesis has focused on a ver-

sion appropriate to indicative conditionals, known as Adams�Thesis and which
asserts that the probability of an indicative conditional is the conditional prob-
ability of its consequent given its antecedent. Some have argued that Adams�
Thesis holds for counterfactual conditionals as well, with appropriate allowance
for temporal considerations. But this is clearly refuted in our example. The
conditional probability of Jim making money, conditional on him investing in
ostrich futures, is high because in almost every credible world in which Jim
makes an investment, the investment is pro�table. So while Adams�Thesis cor-
rectly predicts the high probability of the �rst conditional, it also incorrectly
predicts the low probability of the second conditional.
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In contrast, the aforementioned proposal of Brian Skyrms correctly predicts
the high credibility of the second conditional. Recall that Skyrms�Thesis says
that the probability of a counterfactual conditional equals the expected condi-
tional chance of its antecedent given the truth of its consequent. Formally:

Skyrms�Thesis: P (A! X) =
P
ch(XjA) � P (ChA)

Hence to ascertain how credible it is that Jim would lose money if he were
to invest in ostrich futures, we should, according to this thesis, consider various
possible hypotheses regarding the chances of losing money given such an invest-
ment, and then weight them by how likely we think each such hypothesis is to
be true. In this case the relevant chance hypotheses will re�ect combinations
of causal conditions that determine the success of the ostrich farming industry
(demand for ostrich products, costs of animal feed, capital costs and so on). In
bubbles of the kind postulated, supply of a good rapidly outstrips demand, lead-
ing to losses. So, in expectation, the conditional chance of Jim making money,
given an investment, is low.

5 Suppositions and Chances

Skyrm�s Thesis seems to accord well with our intuitive judgements as to cred-
ibility of counterfactual conditionals. What I want to do now is show how it
can be derived from our basic postulates about chances and conditionals (the
Chance-Credence principle and the Ramsey Test hypothesis). To do so we must
�rst say something about how chances behave under suppositions. Consider
a variant of the previous example in which smoking (S) and lung cancer (L)
have a common genetic cause (G), but in which smoking is also a probabilistic
cause of lung cancer. Our interest is in the e¤ect of taking up smoking on our
prospects for lung cancer and for this reason we need to separate the contribu-
tions of genetic factors to lung cancer from those of the smoking itself. Consider
a set of mutually exclusive and exhaustive hypotheses fCHSg concerning the
conditional chances of relevant prospects given smoking and let ch be a repre-
sentative chance function picked out by hypothesis CHS . For de�niteness let
smoking mean 20 a day for 10 years.
Because smoking and lung cancer have a common genetic cause, P �S(L), the

probability of lung cancer on the interventional supposition of smoking, will not
equal P (LjS), the conditional probability of lung cancer given smoking (i.e. the
probability of lung cancer on the evidential supposition of smoking). Hence:

P �S(LjS) =
P �S(LS)

P �S(S)
= P �S(L) 6= P (LjS)

So the conditional probability of lung cancer given smoking in not invariant
under the supposition of smoking.
In contrast, I claim, the conditional probability of lung cancer given smoking

and any hypothesis about the conditional chances given smoking, is invariant
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under the supposition of smoking. This is obviously true when we suppose that
we will, as a matter of fact, smoke, since the fact of smoking is already being
conditioned on. But it is equally true if the mode of supposition is interventional.
For entertaining the possibility of smoking does not alter the conditional chance,
given smoking, that the chance hypothesis under consideration confers on lung
cancer. On the contrary, the probabilistic causal e¤ect of smoking is already
built into this hypothesis. And the latter uniquely determine what degrees of
belief for lung cancer it is rational to adopt.
We can put the claim slightly di¤erently. Suppose that your conditional

chance of lung cancer, given smoking, is 60%. This fact concerns a relationship
that holds between you smoking and you developing lung cancer that holds
irrespective of whether you smoke or not. In taking up smoking I have a causal
e¤ect on lung cancer (i.e. I a¤ect my chances of lung cancer) via, but not on,
the conditional chances of lung cancer given smoking. This is precisely what
makes these conditional chances a structural feature of our environment, rather
than an epistemic one.
The point is a general one. The conditional probability attaching to any

proposition, given some condition, that derives from the possible truth of a
hypothesis concerning its conditional chances given the condition in question is
not a¤ected by the supposition that the condition is true. More formally:

Rigidity of Chances: For all X;A 2 Z and any ChA 2 �:

P �A(XjA;ChA) = P (XjA;ChA)

I take Rigidity of Chances to be a fundamental condition on chances in the
following sense. If we are ask ourselves what propositions play the role of chances
in an agent�s deliberations, and especially deliberations about what to do, then
only propositions satisfying this condition can be considered candidates. Other
propositions can satisfy this condition� for instance, propositions of the form
�God ordains that X�� but any proposition not satisfying it cannot express a
structural constraint on the agent�s interventions.
Now from Rigidity of Chances and the Belief-Chance Principle it follows

that:

P �A(XjChA) = P �A(XjA;ChA)
= P (XjA;ChA)
= ch(XjA)

This yields a natural generalisation of the Belief-Chance Principle:

Principal Suppositional Principle: For all X;A 2 Z and any ChA 2 �, if
P (XjA) 2 (0; 1) and ch 2 ChA then:

P �A(XjChA) = ch(XjA)
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The Principal Suppositional Principle (PSP) says that the conditional prob-
ability of X, given the truth of both A and a hypothesis as to the conditional
chances ofX, under the supposition that A is or were true, equals the conditional
chances of X, given that A, according to the hypothesis. For instance, suppose
that the conditional chance of lung cancer, given smoking, equals 60%. Then,
given this, your degree of belief in developing lung cancer, on the supposition
of smoking should just be 60%.
Now from PSP and the law of total probability, it follows that:

P �A(X) =
X

P �A(XjChA) � P �A(ChA)

=
X

ch(XjA) � P �A(ChA) (1)

In other words the subjective probability of X under the interventional sup-
position that A equals the expected conditional chance of X, given that A,
calculated relative to the probabilities of the conditional chance hypotheses in-
duced by the supposition that A. When supposition is evidential in form this
just reduces to:

P (XjA) =
X

ch(XjA) � P (ChAjA) (2)

i.e. to the requirement that one�s conditional degrees of belief in X given that
A should equal the expected conditional chance of X given that A. (For this to
hold it is su¢ cient that P �A(XjA) = P (XjA). See Bradley (2012)).
In contrast, to get a �x on the relationship between conditional chance and

credence under interventional supposition one further assumption is required.
It is that the maximally speci�c hypotheses regarding the conditional chances
given A, are probabilistically independent of A, i.e. that:

Chance Independence: P �A(ChA) = P (ChA)

When Chance Independence hold it follows from equation (1) that:

P �A(X) =
X

ch(XjA) � P (ChA) (3)

In other words, the probability of X under the interventional supposition that
A is just the expected conditional chance of X, given the truth of A.
Finally, we can return to the rational credence in conditionals. Recall that

by the Ramsey Test Hypothesis, P (A! X) = P �A(X). Together with equation
2, this gives us a version of Adams�Thesis. Together with equation 3 it gives
us Skyrms�Thesis, that the probabilities of counterfactuals equal the expected
conditional chances of their consequents given the truth of their antecedents.
The status of Skyrms�Thesis thus depends on that of Chance Independence.

The latter is an attractive principle, but I don�t think that it holds with complete
generality. Failure of the principle would imply that the probabilities of some
chance hypotheses are not independent of the supposition that certain kinds of
interventions will be performed. This might happen if an intervention is proba-
bilistically correlated with factors that determine the conditional chances given
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the intervention. Suppose for example that the causal in�uence on the devel-
opment of lung cancer due to genetic factors is correlated with smoking, even
though smoking is not a cause of these factors. Then the conditional chances
of lunch cancer given smoking may not be invariant under the supposition that
one smokes. And Skyrms�Thesis will fail.

References

Bradley, Richard. 2012. Multidimensional Possible-world Semantics for Condi-
tionals. Philosophical Review, 121(4), 539�571.

Edgington, Dorothy. 1995. On Conditionals. Mind, 104(414), 113�128.

Gaifman, Haim. 1988. A theory of higher order probabilities. Pages 191�219
of: Causation, chance and credence. Springer.

Gärdenfors, P. 1988. Knowledge in �ux: Modeling the Dynamics of Epistemic
States. MIT Press, Cambridge.

Hacking, Ian. 1965. Logic of statistical inference. CUP Archive.

Hall, Ned. 2004. Two mistakes about credence and chance. Australasian Journal
of Philosophy, 82(1), 93�111.

Humphreys, Paul. 1985. Why propensities cannot be probabilities. The philo-
sophical review, 557�570.

Joyce, James M. 2007. Epistemic deference: The case of chance. Pages 187�206
of: Proceedings of the Aristotelian Society. JSTOR.

Lewis, David. 1980. A Subjectivist�s Guide to Objective Chance. In: Je¤rey,
Richard C. (ed), Studies in Inductive Logic and Probability. University of
California Press.

Nissan-Rozen, Ittay. 2013. Je¤rey Conditionalization, the Principal Principle,
the Desire as Belief Thesis, and Adams�s Thesis. The British Journal for the
Philosophy of Science, 64(4), 837�850.

Pearl, Judea. 2009. Causality. Cambridge university press.

Skyrms, B. 1980. Causal Necessity: A Pragmatic Investigation of the Necessity
of Laws. Yale University Press.

Skyrms, Brian. 1981. The prior propensity account of subjunctive conditionals.
Pages 259�265 of: Ifs. Springer.

Spirtes, Peter, Glymour, Clark N, & Scheines, Richard. 2000. Causation, pre-
diction, and search. Vol. 81. MIT press.

15


