
Climate Change Assessments:

Confidence, Probability and Decision

Abstract. The Intergovernmental Panel on Climate Change has de-

veloped a novel framework for assessing and communicating uncer-

tainty in the findings published in their periodic assessment reports.

But how should these uncertainty assessments inform decisions? We

take a formal decision-making perspective to investigate how scien-

tific input formulated in the IPCC’s novel framework might inform

decisions in a principled way through a normative decision model.

1 Introduction

Assessment Reports produced by the Intergovernmental Panel on Climate Change

(IPCC) periodically summarize the present state of knowledge about climate

change, its impacts, and the prospects for mitigation and adaptation. More

than 800 lead authors and review editors (and an even greater number of sub-

sidiary authors and reviewers) contributed to the fifth and most recent report,

which comprises a tome from each of three working groups, plus the condensed

technical summaries, approachable summaries for policymakers, and a compre-

hensive synthesis report. There is no new research in an IPCC report; the aim

is rather to comprehensively assess existing research and report on the state

of scientific knowledge. It is an unusually generous allotment of scientific re-

sources to summary, review, consensus-building and communication, reflecting

the pressing need for authoritative scientific findings to inform policy-making in
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an atmosphere of skepticism and powerful status-quo interests.

Scientific knowledge comes in degrees of uncertainty, and the IPCC has

developed an innovative approach to characterizing and communicating this

uncertainty. Their primary tools are probability and a qualitative notion of

confidence. In the reports’ most carefully-framed findings, the two metrics are

used together, with confidence assessments qualifying statements of probability.

The question we examine here is how such findings might be incorporated into

a normative decision framework. While the IPCC’s treatment of uncertainties

has been discussed extensively in the scientific literature and in a major external

review (Shapiro et al., 2010), our question has not yet been addressed.

By exploring how scientific input in this novel format might systemati-

cally inform rational decisions, we hope ultimately to improve climate change

decision-making and to make IPCC findings more useful to consumers of the re-

ports. As will emerge below, the immediate lessons of this paper concern how the

decision-theoretic perspective can help shape the IPCC’s uncertainty framework

itself, and how that framework is used by IPCC authors. One broader theoret-

ical aim is to learn from the IPCC’s experience with uncertainty assessment to

better facilitate evidence-based policy making more generally.

We begin by explaining the IPCC’s approach to uncertainty in greater detail.

We then survey recent work in decision theory that makes room for second-

order uncertainty of (at least roughly) the kind conveyed by IPCC confidence

assessments when those assessments qualify probabilities. The details of IPCC

practice, together with general features of the policy decision context, point to

a family of decision models that is for our purposes the most promising (Hill,

2013). We show how to map IPCC-style findings onto these models, and, based

on the resulting picture of how such findings inform decisions, we draw some

lessons about the way the IPCC uncertainty framework is currently being used.
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2 Uncertainty in IPCC Reports

The fifth and most recent assessment report (AR5) affirms unequivocally that

the earth’s climate system is warming and leaves little room for doubt that

human activities are largely to blame.1 Yet climate change researchers con-

tinue to wrestle with deep and persistent uncertainties regarding many of the

specifics, such as the pace of change in coming decades, the extent and distri-

bution of impacts, or the prospect of passing potentially calamitous “tipping

points.” Further research can, to a degree, reduce some of this uncertainty, but

meanwhile it must be characterized, conveyed, and acted upon. Communication

of uncertainty by IPCC authors is informed by an evolving set of guidance notes

that share best practices and promote consistency across chapters and working

groups (Moss and Schneider, 2000; Manning, 2005; Mastrandrea et al., 2010).

These documents also anchor a growing, interdisciplinary literature devoted to

the treatment of uncertainties within IPCC reports (Adler and Hadorn, 2014;

Yohe and Oppenheimer, 2011).

One conspicuous feature of IPCC practice is the use of confidence assess-

ments to convey a qualitative judgement about the level of evidence and scien-

tific understanding that backs up a given finding. Naturally, this varies from one

finding to the next. And it is, intuitively, important information for policymak-

ers. The format for expressing confidence has changed subtly from one IPCC

cycle to the next, in part responding to critical review (Shapiro et al., 2010).

Likewise for the de facto implementation within each working group (Mastran-

drea and Mach, 2011). In AR5, confidence assessments are plentiful across all

three working groups, from the exhaustive, unabridged reports through all of

the summary and synthesis. The current guidance offers five qualifiers for ex-

1“Warming of the climate system is unequivocal, and since the 1950s, many of the observed
changes are unprecedented over decades to millennia.” (IPCC, 2013, 2) “It is extremely likely
that human influence has been the dominant cause of the observed warming since the mid-20th
century.” (IPCC, 2013, 15)
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pressing confidence: very low, low, medium, high, and very high. To pick the

right one, an author team appraises two aspects of the relevant body of evidence,

(roughly): how much evidence there is (considering quantity, quality and vari-

ety), and how well the different sources of evidence agree. The more evidence,

and the more agreement, the more confidence (Mastrandrea et al., 2010).

The second approved uncertainty metric is probability.2 And by far the most

common mode of presenting probabilities in AR5 is through words chosen from

a preset menu of calibrated language, where, for example, likely has an official

translation of “66-100% chance,” virtually certain means “99-100% chance,”

and more likely than not means “>50% chance.” There are ten phrases on

the menu, each indicating a different probability interval. (Precise probability

density functions are also sanctioned where there is sufficient evidence, though

authors rarely exercise this option; percentiles from cumulative density functions

are somewhat more common.)

Different author teams make somewhat different choices as they adapt the

common framework given by the two uncertainty metrics to the particulars of

their subject area. One way that authors have used the metrics is in combina-

tion: where the finding that is qualified by a confidence assessment is itself a

probabilistic statement. In this case confidence is pushed into second position

in a now two-stage characterization of overall uncertainty:

In the Northern Hemisphere, 1983–2012 was likely the warmest 30-

year period of the last 1400 years (medium confidence).

Multiple lines of evidence provide high confidence that an [Equilib-

rium Climate Sensitivity] value less than 1◦C is extremely unlikely.

Many, though not all, IPCC findings satisfy this format. Plenty of confidence

2The IPCC uses the term “likelihood,” though one should not read into this the technical
meaning from statistics. We will use the more neutral term “probability.”
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assessments do something other than modify a probability claim, such as when

an author team expresses confidence in an observational trend, or gives a blanket

appraisal of projections from a given modeling approach. All probabilities,

however, should be read as confidence-qualified. Sometimes the confidence level

is not written out explicitly, but the guidance note instructs that “a finding

that includes a probabilistic measure of uncertainty does not require explicit

mention of the level of confidence associated with that finding if the level of

confidence is ‘high’ or ‘very high’ ” (Mastrandrea et al., 2010, 3), meaning that

readers should take unaccompanied probabilities to enjoy high or very high

confidence.3 Findings reported in the form of the quotations above will be our

focus here.

3 Decision, Imprecision and Confidence

The action which follows upon an opinion depends as much upon

the amount of confidence in that opinion as it does upon the favor-

ableness of the opinion itself.—Frank Knight (1921, 227)

Like any assessment that reflects a state of knowledge (or belief), the judge-

ments of the IPCC can play two sorts of roles. On the one hand, they can

represent the salient features of the world and our uncertainty about them; on

the other hand, they can guide behavior, or policy. Any representation of un-

certainty can be evaluated by its capacity to fulfill each of these roles. Does it

capture our state of knowledge and uncertainty properly? Does it integrate into

a reasonable account of decision? While the IPCC uncertainty framework has

been developed mainly with the former role in mind—and we shall assume for

3The summaries for policymakers of working groups two and three introduce additional
conventions for communicating confidence without excessive parenthetical clutter: “Within
paragraphs of this summary, the confidence, evidence, and agreement terms given for a bold
key finding apply to subsequent statements in the paragraph, unless additional terms are
provided.” (IPCC, 2014a, 6; IPCC, 2014b, 4).
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the purposes of this paper that it fairs sufficiently well on this front—the focus

here is on the latter role. Are there existing normatively reasonable accounts

of decision making into which the IPCC representation of uncertainty provides

relevant input, and what are the consequences of bringing the two together?

At first pass, the IPCC’s uncertainty framework seems far-removed from

models developed by decision theorists. The standard approach in decision

theory, often termed Bayesianism, prescribes maximization of expected utility

relative to the probabilities of the possible states of the world and the utilities

of the possible consequences of available actions. Naturally, in order to apply

this theory, the decision maker must be equipped with all decision-relevant

probabilities. (Utilities are also required, but as they reflect judgements of

value or desirability, they should come not from scientific reports but from

society or the policy maker.) What the IPCC delivers, however, are not precise

probabilities but probability ranges, qualified by confidence judgements. The

former are too imprecise to be used in the standard expected utility model;

the latter have no role at all to play in that model. IPCC findings thus sit

uncomfortably with standard decision theory.

This mismatch need not reflect badly on the IPCC framework. On the con-

trary, several researchers (Bradley, 2009; Joyce, 2011; Gilboa et al., 2009, 2012;

Gilboa and Marinacci, 2011) have suggested that the standard insistence on

a single precise probability function leads to an inadequate representation of

uncertainty, and may moreover have unintuitive, and indeed normatively un-

desirable consequences for decision. This has sparked attempts within both

philosophy and economics to develop alternative theories of rational decision

making, and this literature provides the natural starting point for our attempt

to accommodate scientific findings expressed using the IPCC uncertainty frame-

work.
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3.1 Imprecise Probability

The use of probability ranges by the IPCC invokes what is sometimes known in

the theoretical literature as imprecise probability. Notions of imprecise probabil-

ity have a long history going back to at least Keynes, Koopman and Borel (see

Walley, 1991). Central to much of this literature is the use of sets of probability

functions to represent the epistemic state of an agent who cannot determine a

unique probability for all events of interest to her.4 Informally we can think

of this set as containing those probability functions that the decision maker

regards as permissible to adopt given the information she holds.

To motivate the idea, recall Popper’s paradox of ideal evidence (1974, 407–

8), which compares two situations in which a coin is tossed and we are asked

to provide a probability for it landing heads. In the first, we know nothing

about the coin; in the second, we have already observed 1000 tosses and seen

that it lands heads roughly half the time. Our epistemic state in the second

case can reasonably be represented by a precise probability of one-half for the

outcome of heads on the next toss. By contrast, the thought goes, the evidence

available in the first case can justify only a set of probabilities—perhaps, indeed,

the set of all possible probabilities. To adhere to a single probability, even

the “neutral” probability of one-half, would require a leap of faith from the

decision maker, and it is hard to see why she should be forced to make this leap.

Pragmatic considerations too suggest allowing imprecise probabilities. Given a

choice between betting in the first case or in the second, it seems natural that

one might prefer betting in the second—but a Bayesian decision maker cannot

have such preferences.5

4The use of sets of probability functions to represent imprecise belief states has been
advocated by, among others, Good (1952), Levi (1974, 1986), Jeffrey (1992), Kaplan (1996),
Gilboa and Schmeidler (1989), Joyce (2011) and Nehring (2009).

5The incompatibility of these and other reasonable preferences with Bayesianism is at the
heart of the structurally similar Ellsberg paradox (Ellsberg, 1961).
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Bayesian decision theory is unimpressed by these considerations. No matter

the scarcity of the decision maker’s information, she must pick a single probabil-

ity function as a reflection of her beliefs, to be used in all decisions. This is often

called her “subjective” probability, and particularly in cases where the available

information (combined with the decision maker’s expertise and personal judge-

ment) provides little guidance, the “subjective” element may be rather hefty

indeed. This probability function determines, together with a utility function

on consequences, an expected utility for each action available to the decision-

maker, and the theory enjoins her to choose the action with greatest expected

utility.

Despite the severity of uncertainty faced in the climate domain, Bayesian

decision theory has its adherents. John Broome, for instance, argues that in

climate policy decision making:

The lack of firm probabilities is not a reason to give up expected

value theory. You might despair and adopt some other way of coping

with uncertainty . . . That would be a mistake. Stick with expected

value theory, since it is very well founded, and do your best with

probabilities and values. (Broome, 2012, 129)

Paralleling the points made in the coin example above, critics of the Bayesian

view argue that the decision maker may be unable to supply the required precise

subjective probabilities, and that any “filling in” of the gap between probability

ranges and precise probabilities may prove too ad hoc to be a reasonable guide to

decision. Policy makers may quite reasonably refuse to base a policy decision on

a flimsy information base inflated with whatever guesses are required to adhere

to Bayesian tenets, especially when there is a lot at stake.

Imprecise probabilists, on the other hand, face the problem of spelling out

how a decision maker with a set of probability functions should choose. Her
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problem can be put in the following way. Each probability function in her

set determines, together with a utility function on consequences, an expected

utility for each available action; but except on rare occasions when one action

dominates all others in the sense that its expected utility is greatest relative

to every admissible probability function, this does not provide a sufficient basis

for choice. Were the decision maker to simply average the expected utilities

associated with each action, her decisions would then be indistinguishable from

those of a Bayesian. There are, however, other considerations that she can bring

to bare on the problem which will lead her to act in a way which cannot be given

a Bayesian rationalisation. She may wish, for instance, to act cautiously, by

giving more weight to the ‘down-side’ risks (the possible negative consequences

of an action) than the ‘up-side’ chances or by preferring actions with a narrower

spread of (expected) outcomes.

A much-discussed decision rule encoding such caution is the maximin ex-

pected utility rule (MMEU), which recommends picking the action with the

greatest minimum expected utility relative to the set of probabilities that the

decision maker is working with (Gilboa and Schmeidler, 1989). To state the

rule more formally, let C = {p1, ..., pn} be a set of probability functions,6 and

for any p ∈ C and action f , let EUp(f) be the expected utility of f computed

from p. The rule then ascribes a value V to each action f in accordance with:

(MMEU) V (f) = minp∈C [EUp(f)]

MMEU is simple to use, but arguably too cautious, paying no attention at all

to the full spread of possible expected utilities. This shortcoming is mitigated in

some of the other rules for decision making that draw on imprecise probabilities,

such as maximizing a weighted average of the minimum and maximum expected

utility (often called the α-MEU rule), or the minimum and mean expected

6For simplicity we suppose a finite set, but it needn’t be so.
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utility, where the averaging weights can be thought of as reflecting either the

decision maker’s pessimism or their degree of caution (see for instance Binmore,

2008; Ghirardato et al., 2004; Gilboa and Marinacci, 2011).

A question that all such rules must address is how to specify the set C of

probabilities on which they are based. Where evidence is sparse, the Bayesian

insistence on a single probability function seems too extreme. But if C contains

all probabilities logically consistent with the evidence, then the decision maker

is likely to end up with very wide probability intervals, which can in turn lead to

overly cautious decision-making. A natural thought is that C should determine

probability intervals only so broad as to ensure the decision-maker is confident

the “true” probabilities lie within them, or that they contain all reasonable

values (see, e.g., Gärdenfors and Sahlin, 1982). The decision maker may, for

instance, wish to discard some implausible probability functions even though

they are not, strictly speaking, contradicted by the evidence. Or if the source

of these probabilities are the opinions of others, the decision maker need not

consider every opinion consistent with the evidence, but rather only those in

which they have some confidence. But how confident need they be? We return

to this question below, after discussing the notion of confidence in more detail.

3.2 Confidence

The decision rules canvassed above can make use of the probability ranges found

in IPCC reports, but not the confidence judgements that qualify them. Now

we look at some rules that can be construed as drawing on such judgements.

According to the authors of the IPCC guidance notes “A level of confidence

provides a qualitative synthesis of an author team’s judgment about the validity

of a finding; it integrates the evaluation of evidence and agreement in one metric”

(Mastrandrea et al., 2011, 679). Let’s address these two contributors to IPCC
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confidence in turn.

“Evaluation of evidence” depends on the amount, or weight, of the evidence

relevant to the judgement in question. Suppose for instance that a decision

maker is pressed to report a single number for the chance of heads on the next

coin toss in the two situations we described before, namely when she knows

nothing about the coin and when she has observed it being tossed many times.

She may report one-half in both cases, but is likely to have more confidence in

that assessment in the case where the judgement is based on abundant evidence

(the previously observed tosses) as opposed to the case where it is based on scant

evidence. This is because a larger body of evidence is likely to be reflected in a

higher level of confidence in the judgements that are based on it.

The second contributor to confidence is “agreement.” To tweak the coin

example, compare a situation in which a group of coin experts agrees that the

probability of heads on the next toss is one half with a case where the same

group is evenly split between those that think the probability is zero and those

that think that it is one. Here too, a decision maker pressed to give a single

number might say one-half in both cases, but it seems reasonable to have more

confidence in the former case than in the latter. Holding the amount of evidence

fixed, greater agreement in the expert judgement based on it engenders greater

confidence.

The two dimensions of IPCC confidence connect to largely distinct liter-

atures. The evidence dimension connects with that on the weight of evidence

behind a probability judgement and how this weight can be included in represen-

tations of uncertainty. The agreement dimension connects with the literature on

expert testimony and aggregation of expert probability functions (for a survey,

see Genest and Zidek, 1986). Models employing confidence weights on different

possible probabilities are to be found in both literatures. In the first, the prob-
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abilities are interpreted as different probabilistic hypotheses and the weights

as measures of the agent’s confidence in them. In the second, the probabili-

ties are interpreted as the experts’ judgements and the weights as a measure of

an agent’s confidence in the experts. So while weight of evidence and expert

agreement are two distinct notions, they can be represented similarly, and play

analogous roles in determining judgements and guiding action. It is thus not

unreasonable to proceed in the manner suggested by the IPCC and place both

under a single notion of confidence.

What role should these second-order confidence weights play in decision

making? To the extent that different probability judgements support different

assessments of the expected benefit or utility of an action, one would expect the

relative confidence (or lack of it) that a decision maker might have in the former

will transfer to the latter. For instance when the probability estimates derive

from different models or experts, the decision maker may regard some models as

better corroborated by evidence than others, or some experts as more reliable

than others. It is then reasonable, ceteris paribus, to favor actions with high

expected benefit based on the probabilities in which one has most confidence

over actions whose case for being beneficial depends on probabilities in which

one has less confidence.

One way to do this is to use the confidence weights over probability measures

to weight the corresponding first-order expected utilities, determining what

might be called the confidence-weighted expected utility (CWEU) of an ac-

tion. Formally, let C = {p1, ..., pn} be a set of probability functions, and {αi}

the corresponding weights, normalised so that
∑

i αi = 1. Then:

(CWEU) V (f) =
∑
i

αi.EUpi
(f)

Here the weights effectively induce a second-order probability over C, and max-

imizing CWEU is equivalent to maximizing the expected utility relative to the
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“consensus” probability obtained by averaging the elements of C using this

probability. But this seems unsatisfactory from a pragmatic point of view as

it would preclude a decision maker displaying the sort of caution, or aversion

to uncertainty, that we argued could be motivated in contexts like those exhib-

ited by the coin example. Given a choice between betting on one coin or the

other, an agent following CWEU cannot prefer betting on the coin for which

she has more evidence. But some degree of discrimination between high and

low confidence situations does seem appropriate for important policy decisions.

Other decision models proposed in the economics literature allow for this

kind of discrimination. The “smooth ambiguity” model of Klibanoff et al. (2005)

is a close variant of CWEU; it too uses second-order probability, but it allows

for an aversion to wide spreads of expected utilities by valuing an action f

in terms of the expectation (with respect to the second-order probability) of

a transformation of the EUpi
(f), rather than the expected utilities themselves.

Formally (and ignoring technicalities due to integration rather than summation),

the rule works as follows:

(KMM) V (f) =
∑
i

αi.φ(EUpi
(f))

where φ is a transformation of expected utilities capturing the decision maker’s

attitudes to uncertainty (the decision maker displays aversion to uncertainty

whenever φ is concave).

Other suggestions in this literature use general real-valued functions (rather

than probabilities) at the second-order level, and can be thought of as refine-

ments of the MMEU model discussed in the previous section. Gärdenfors and

Sahlin (1982), for instance, uses the weights to determine the set of probability

functions C = {p1, . . . , pn}, admitting only those that exceed some confidence

threshold and then apply MMEU to it; Maccheroni et al. (2006) value each

action as the minimum, across the set of probability functions C, of the sum of
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the action’s expected utility given pi and the second-order weight given to pi;

and Chateauneuf and Faro (2009) take the minimum of confidence-weighted ex-

pected utilities over probability functions whose second-order weight falls below

a certain absolute threshold.

From the perspective of this paper, all these proposals suffer from a fun-

damental limitation. Application of these rules requires a cardinal measure of

confidence to serve as the weights on probability measures. That is, the confi-

dence numbers matter: if not, it would make no sense to multiply or add them

as is done in these rules. By contrast, the IPCC provides only a qualitative, or-

dinal measure of confidence: it can say whether there is more confidence or less,

in one probability judgement compared to another, but not how much more or

less.7 So the aforementioned models of decision require more information than

is available in this context.

IPCC practice is not unreasonable in this respect. Indeed if the decision

maker has trouble forming precise first-order probabilities, why would he have

any less trouble forming precise second-order confidence weights? Such consid-

erations plead in favour of a more parsimonious representation of confidence,

in line with the ordinal ranking used by the IPCC. To connect this to decision

making, however, a model is required that can work with ordinal confidence

assessments without requiring cardinality.

3.3 Hill’s Decision Model

In this last subsection we look at a decision model proposed by Brian Hill

(2013) which has a number of features that make it particularly suitable for

our purposes. Hill’s central insight is that the probability judgements we adopt

can reasonably vary with what is at stake in a decision. Consider, for instance,

7Moreover, IPCC confidence applies to probability claims, not to (fully-specified) proba-
bility measures; it is not always straightforward to translate confidence in one to confidence
in the other.
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the schema for decision problems represented by Table 1, in which the option

Act has a low probability of a very bad outcome (utility x � 0) and a high

probability of a good outcome (utility y > 0). The table could represent a high

stakes decision, such as whether to build a nuclear plant near a town when there

is a small imprecise probability of an accident with catastrophic consequences.

But it could equally well represent a low stakes situation in which the agent

is deciding whether to get on the bus without a ticket when there is a small

imprecise probability of being caught.

prob.< 0.01 prob.≥ .99

Act x� 0 y > 0

Don’t Act 0 0

Table 1: A small chance of a bad outcome.

Standard decision rules, such as expected utility maximisation or Maximin

EU, are invariant with respect to the scaling of the utility function. Conse-

quently they cannot treat a high stakes and a low stakes decision problem dif-

ferently if outcomes in the former are simply a “magnification” of those in the

latter—for instance if the nuclear accident was 100,000 times worse than being

fined and the benefits of nuclear energy 100,000 times better than those of trav-

elling for free. But it does not seem at all unreasonable to act more cautiously

in high stakes situations than low stakes ones.8

To accommodate this intuition, Hill allows for the set of probability mea-

sures on which the decision is based to be shaped by how much is at stake in the

decision. This stakes-sensitivity is mediated by confidence: each decision situa-

tion will determine an appropriate confidence level for decision making based on

what is at stake in that decision. When the stakes are low the decision maker

may not need to have a great deal of confidence in a probability assessment

8More recent models also have trouble properly capturing this intuition (Hill, 2013, §1.2).
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in order to base her decision upon it. When the stakes are high, however, the

decision maker will need a correspondingly high degree of confidence.

To formulate such a confidence-based decision rule, Hill draws on a purely

ordinal notion of confidence, requiring only that the set of probability measures

forms a nested family of sets centred on the measures that represent the decision

maker’s best-estimate probabilities. This structure is illustrated in Figure 1,

where each circle is a set of probability measures. The inner-most set is assigned

the lowest confidence level and each superset a higher confidence level than the

one it encloses. These confidence assignments can be thought of as expressing

the decision maker’s confidence that the “true” probability measure is contained

in that set. Probability statements that hold for every measure in a superset

enjoy greater confidence because the decision maker is more confident that the

“true” measure endorses the statement. As will be made clear below, the nested

family of sets of probability measures is ordinal at the second-order level in a

way that the representations discussed in the previous section are not. As such,

it does not suffer from the limitation that affects the latter.

If the stakes are:

then base decision on
this set of measures:

high
medium

low

Figure 1: How much is at stake in a decision determines the set of probability
measures that the decision rule can “see.”
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For any given decision, the stakes determine the requisite level of confidence,

which in turn determines the set of probability measures taken as the basis for

choice: intuitively, the smallest set that enjoys the required level of confidence.

(Formally, Hill (2013) requires both a measure of the stakes associated with a

decision problem and a cautiousness coefficient which maps stakes onto confi-

dence thresholds.) Once the set of measures has been picked out in this way,

the decision maker can make use of one of the rules for decision making un-

der ambiguity discussed earlier, such as MMEU or α-MEU. (Given that the set

of measures used depends on the decision maker’s confidence and the stakes

involved in the decision, this approach mitigates some of the shortcomings of

these decision rules, such as the extreme caution of MMEU discussed above.)

In the special case that the set picked out contains just one measure, ordinary

expected utility maximisation is applicable.

As should be evident, what Hill provides is a schema for confidence-based

decision rather than a specific model. Different notions of stakes and accounts of

cautiousness will determine different confidence levels. And there is the question

of which decision rule to apply in the final step. But these details are less

important than the fact that the schema can incorporate roughly the kind of

information that the IPCC provides. Spelling this out is our next task.

4 A Model of Confidence

Now we develop more formally the notion of confidence required to link IPCC

communications to the model of decision making just introduced. As is stan-

dard, actions or policies will be modelled as functions from states of the world

to outcomes, where outcomes are understood to pick out features of the world

that matter to the decision maker and which she seeks to promote or inhibit.

States are features of the world that, jointly with the actions, determine what
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outcome will eventuate. What counts as an outcome or a state depends on

the context: when a decision concerns how to prepare for drought, for instance,

mean temperatures may serve as states, while in the context of climate change

mitigation they may serve as outcomes.

Central to our model is a distinction between two types of propositions that

are the objects of different kinds of uncertainty: propositions concerning “ordi-

nary” events, such as global mean surface temperature exceeding 21◦C in 2050,

and probability propositions such as there being a 50% chance that tempera-

ture will exceed 21◦C in 2050. Intuitively the probability propositions represent

possible judgements yielded by scientific models or by experts and, hence, are

propositions in which the decision maker can have more or less confidence.

Let S = {s1, s2, ..., sn} be a set of n states of the world and Ω = {A,B,C, ...}

be a Boolean algebra of sets of such states, called events or factual propositions.

Let Π = {pi} be the set of all possible probability functions on Ω, and ∆(Π)

be the set of all subsets of Π.9 Members of ∆(Π) play a dual role: as both

the possible imprecise belief states of the agent and as probability propositions,

i.e., propositions about the probability of truth of the factual propositions in

Ω. For instance, if X is the proposition that it will rain tomorrow, then the

proposition that the probability of X is between one-half and three-quarters is

given by the set of probability distributions p such that 0.5 ≥ p(X) ≥ 0.75. So

the probabilistic statements that are qualified by confidence assessments in the

IPCC examples given in Section 2 correspond to elements of ∆(Π).

To represent the confidence assessments appearing in IPCC reports we in-

troduce a weak pre-order, D, on ∆(Π), i.e., a reflexive and transitive binary

relation on sets of probability measures. Intuitively D captures the relative con-

fidence that a group of IPCC authors has in the various probability propositions

9Although the state space (and other technical notions discussed here) may be infinite—and
indeed have measure-theoretic or topological structure—we abstract from such technicalities
here and conduct the discussion as if everything were finite.
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about the state of the world, with P1 D P2 meaning that they are at least as

confident in the probability proposition expressed by P1 as that expressed by

P2, as would be the case if they gave P2 a medium confidence assessment and

P1 high confidence. In practice, a confidence relation drawn from IPCC reports

will have up to five levels, corresponding to the five qualifiers in their confidence

language (Section 2). It is reasonable to assume that D is non-trivial (that

Π B ∅) and monotonic with respect to logical implication between probability

propositions (i.e., that P1 D P2 whenever P2 ⊆ P1), because one should have

more confidence in less precise propositions.

We do not, however, assume that D is complete. But note that completeness

can fail to hold for two different reasons. First, there may be issues represented

in the state space about which the agent makes no confidence judgements. For

example, the IPCC does not assess the chance of rain in London next week.

Second, the agent may make a confidence judgement about a certain probability

proposition, but no judgments about other probability propositions concerning

the same issue. For example the IPCC may report medium confidence that

a certain occurrence is likely (66–100% chance), but say nothing about how

confident one should be that the same occurrence is more likely than not (50–

100% chance).

To see how to translate this into the terms of Hill’s decision model, let us

first reformulate the model. Hill’s model of confidence effectively consists of a

chain of probability propositions, {L0, L1, . . . , Ln} with Li ⊂ Li+1. L0 is the

most precise probability proposition that the agent accepts; it summarizes her

beliefs in the sense that every probability proposition that she accepts (with

sufficient confidence) is implied by every probability function in L0. The other

Li are progressively less precise probability propositions held with progressively

greater confidence. The chain {L0, L1, . . . , Ln} is equivalent to what we shall
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call a confidence partition: an ordered partition of the space Π of probability

measures. Any nested family of probabilities {L0, ..., Ln} induces a confidence

partition {P0, ..., Pn} where L0 = P0 and Pi = Li − Li−1. Pi (for i > 0)

contains those probability measures that the agent rules out as contenders for

the “true” measures at the confidence level i−1 but not at the higher confidence

level i. Inversely, any confidence partition π = {P0, ..., Pn} induces a nested

family of sets of probability measures {L0, ..., Ln} such that L0 = P0 and Li =

P0 ∪ ... ∪ Pi. A sample confidence partition and corresponding nested family

are given in Figure 2, for the issue of the weather tomorrow. P0, the agent’s

best-estimate probability range for rain, is the proposition that the probability

of rain tomorrow is between 0.4 and 0.6, P1 that it is either between 0.3 and

0.4 or between 0.6 and 0.7, P2 that it is between 0.1 and 0.3 or 0.7 and 0.9, and

P3 the remaining probabilities. As is generally the case with the Hill model,

the agent is represented by this figure as having made confidence judgements

regarding any pair of these probability propositions for rain.

Figure 2: A confidence partition for the proposition that it will rain tomorrow.
Bracketed intervals show probabilities given by the probability propositions.
Nested sets L0, L1, L3 can be constructed from the partition P0, . . . , P3. The
overall ordering is: L2 D L1 D L0 ≡ P0 D P1 D P2 D P3.

P3

P2

P1

P0
[.4− .6]

[.3− .4), (.6− .7]

[.1− .3), (.7− .9]

[0− .1), (.9− 1]

L0 [.4− .6]

L1 [.3− .7]

L2 [.1− .9]

Which chain of probability propositions (or, equivalently, which confidence

partition) does an IPCC-style assessment recommend for decision purposes?

The probability measures in the lowest element of the partition are those that
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satisfy all of the probability propositions, on a given issue, that are affirmed by

the IPCC (with any confidence level). The additional measures to be consid-

ered as contenders at the next level up, P1, need only satisfy those probability

propositions affirmed by the IPCC with this next-level-up (or higher) level of

confidence. Additional probability measures collected in P2 should satisfy the

IPCC probability propositions that are on or above the next level up, and so

on. Only confidence partitions satisfying these conditions faithfully capture the

IPCC confidence and probability assessments.

Note that this protocol picks a unique confidence partition only in the case

where the confidence relation D is complete. Otherwise, several confidence

partitions will be consistent with the confidence relation; as noted above, this

will generally be the case for IPCC assessments. Since each confidence partition

corresponds to a unique complete confidence relation, the use of a particular

partition essentially amounts to “filling in” confidence assessments that were

not provided.

To relate this model of confidence to the preceding discussion, if the partition

has just two members, then in effect the relation D divides Π into those measures

in which the agent has sufficient confidence to take as a basis for choice and

those in which she does not. In this case our model reduces to the single set

of probability measures on which the MMEU rule and related decision criteria

are based. And if, furthermore, this sufficient-confidence set contains only one

probability measure, then we are returned to the standard Bayesian framework.

Hence these models are special cases of Hill’s, corresponding to a nested family

containing a single set (which, in the Bayesian case, is a singleton).

And while a confidence partition does induce a confidence measure on its

elements—constructed by assigning numbers to the partition members in accor-

dance with the confidence ranking—this measure is purely ordinal and carries no
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more information than the qualitative confidence categories (“low,” “medium,”

“high”) that qualify IPCC probability judgements. An ordinal measure of con-

fidence is all that is required to apply Hill’s model. In contrast, the decision

models discussed in Section 3.2 require a cardinal measure on every probability

function in Π, something that cannot be extracted from the confidence relation

D unless it has further properties beyond those assumed here.

Next we illustrate the confidence partition concept by applying it to a con-

crete example from the IPCC’s Fifth Assessment Report (AR5).

4.1 An Example

Equilibrium climate sensitivity (ECS) is often used as a single-number proxy for

the overall behavior of the climate system in response to increasing greenhouse

gas concentrations in the atmosphere. The greater the value, the greater the

tendency to warm in response to greenhouse gasses. The quantity is defined

by a hypothetical global experiment: start with the pre-industrial atmosphere

and instantaneously double the concentration of carbon dioxide; now sit back

and allow the system to reach its new equilibrium (this would take hundreds of

years). ECS is the difference between the annual global mean surface tempera-

ture of the pre-industrial world and that of the new equilibrium world. In short,

it answers the question: How much does the world warm if we double CO2?

The most recent IPCC findings on ECS draw on several chapters of the

Working Group One contribution to the AR5. Estimates of ECS are based on

statistical analyses of the warming observed so far, similar analyses using simple

to intermediate complexity climate models, reconstructions of climate change

in the distant past (paleoclimate), as well as the behavior of the most complex,

supercomputer-driven climate models used in the last two phases of the colos-

sal Coupled Model Intercomparison Project (CMIP3 and CMIP5). An expert
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author team reviewed all of this research, weighing its strengths, weaknesses,

and uncertainties, and came to the following collective judgements. With high

confidence, ECS is likely in the range 1.5◦C to 4.5◦C and extremely unlikely less

than 1◦C. With medium confidence it is very unlikely greater than 6◦C (Stocker

et al., 2013, 81).

In light of the confidence model discussed above, reports of this kind can be

understood in terms of a confidence partition over probability density functions

(pdfs). Beginning from all possible pdfs on the real line—each one expressing a

(precise) probability claim about ECS—think of what the author team is doing,

as they evaluate and debate the evidence, as sorting those pdfs into a partition

π = {P0, ..., Pn}. The findings cited above then communicate aspects of this

confidence partition. To illustrate, we present a toy partition that exemplifies

the IPCC’s findings on ECS.

Suppose the confidence partition has four elements π = {P0, ..., P3}. Fig-

ure 3 displays the pdfs in the first two elements of the partition. The functions

plotted in black are those from P0; collectively, these functions indicate what

the IPCC’s experts regard as a plausible range of probabilities for ECS in light

of the available evidence. The pdfs in P1 collectively represent a second tier of

plausibility; these are plotted in grey. P2 is another step down from there, and

P3 is the bottom of the barrel—all of the pdfs more or less ruled out by the

body of research that the experts evaluated. (P2 and P3 are not represented in

Figure 3.)

Recall that the partition π generates a nested family of subsets {L1..., Ln},

where Li is the union of P0 through Pi and each L is associated with a level

of confidence. Here we are concerned mainly with L0 = P0 and L1 = P0 ∪

P1, and we suppose in this case that L0 corresponds to medium confidence,

and L1 to high confidence. To see how an IPCC-style finding follows from the
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confidence partition, consider what our partition says about ECS values above

6◦. If we restrict attention to L0, there are only two pdfs to examine; one

assigns (nearly) zero probability to values above 6◦ while the other assigns just

under 0.1 probability (the shaded area in Figure 3). In the IPCC’s calibrated

language, the probability range 0− 0.1 is called very unlikely, thus the finding:

ECS is very unlikely greater than 6◦C (medium confidence).

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5 P0 pdfs

P1 pdfs

degrees C

de
ns
ity

Figure 3: An illustration of a confidence partition that is consistent with the
IPCC findings on Equilibrium Climate Sensitivity. The shaded area corresponds
to the finding that ECS is very unlikely greater than 6◦C (medium confidence).

The IPCC’s two other findings on ECS are reflected in our partition as

follows. Reporting with high confidence means broadening our view from L0 to

L1, taking the P1 pdfs into account in addition to those in P0. The interval 1.5−

4.5 is indicated in Figure 3 with dotted vertical lines. The smallest probability

given to that interval by any of the functions pictured is a little more than 0.6,

and the highest probability is nearly 1, an interval that corresponds roughly

with the meaning of likely (0.66 − 1). Regarding ECS values below 1, several

pdfs give that region zero probability, while the most left-leaning of them gives
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it 0.05. The range 0 − 0.05 is called extremely unlikely. Thus we have: ECS is

likely in the range 1.5◦C to 4.5◦C and extremely unlikely less than 1◦C (both

with high confidence).

The three findings discussed above are far from the only ones that follow

from the example partition. To report again on ECS values above 6◦C, only

now with high confidence rather than medium, the probability interval should

be expanded from 0−0.1 to 0−0.2 (0.2 being the area to the right of 6◦ under the

fattest-tailed of the P1 pdfs). Or to report on values below 1◦C with medium

confidence rather than high, the probability interval should be shrunk from

0− 0.5 to 0− 0.01 (exceptionally unlikely). The confidence partition determines

an imprecise probability at medium confidence, and another at high confidence,

for any interval of values for ECS.

It should be emphasized that these additional findings do not follow from

the three that the IPCC in fact published. They follow from this particular

confidence partition, which is constrained—though not fully determined—by

the IPCC’s published findings. Asking what could be reported about ECS at

very high confidence further highlights the limits of what the IPCC has con-

veyed. Suppose the set L2 corresponds to very high confidence. As the IPCC

has said nothing with very high confidence, we have no information about the

pdfs that should go into P2, and thus L2, so we have no indication of how much

the reported probability ranges should be expanded in order to claim very high

confidence. This may be because in the confidence partition representation of

the experts’ group beliefs, P2 is a sprawling menagerie of pdfs. In this case prob-

abilities at the very high confidence level would be so imprecise as to appear

uninformative. On the other hand, it may sometimes be of interest to policy-

makers just how much (or how little) can be said at the very high confidence

level.
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5 Discussion

We began by highlighting an important subset of IPCC findings in which uncer-

tainty is expressed using imprecise probability qualified by confidence. We asked

how scientific knowledge coded in this format might be used within a normative

model of decision making. We surveyed work in decision theory that makes room

for something like the IPCC’s confidence qualifications and found the family of

models in Hill (2013), which have been defended as normatively reasonable on

independent grounds, to be the most promising. We now treat some possible

objections, identify open questions and challenges, and point out some potential

consequences of this decision-theoretic take on IPCC assessments.

Our model should be understood as illustrating how, in principle, such find-

ings can be used in decision making. It provides a disciplining structure for the

uncertainty expressed in IPCC findings—structure that is a prerequisite for the

use of such findings within a normative decision model. (As noted above, there

remains a gap between IPCC findings and the decision model in so far as the

model involves a full confidence partition whereas the statements provided by

the IPCC constrain but do not fully determine one.) Our model sketches one

way in which such findings can be harnessed to provide concrete decision sup-

port, but other procedures for generating confidence partitions, or even for using

the partial information without introducing new structure, deserve exploration.

This is particularly so since our model has implications for judgements of

joint probability and confidence that some may find implausible. Suppose that

two IPCC author groups respectively report with high confidence that low rain-

fall is likely and that low temperature is likely. What can be inferred about the

prospect of both low rainfall and low temperature? This question turns on at

least three issues. The first is the standard issue of joint probabilities. As is well

known, one cannot conclude from these probability assessments that low rainfall
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and temperature is likely. And indeed, under the model set out in Section 4,

nothing more than what follows from the individual probability propositions is

assumed about the joint probability.

The second is the issue of “joint confidence.” The nested sets representa-

tion of confidence employed in Hill’s model implies that if both “low rainfall is

likely” and “low temperature is likely” are held with high confidence, then their

conjunction “low rainfall is likely and low temperature is likely” must be held

with high confidence as well. This follows from the fact that a proposition is

held with high confidence if it is supported by every probability function con-

tained in the high-confidence set. On the other hand, it does not follow that

the proposition “A combination of low rainfall and low temperature is likely”

is held with high confidence since the high probability of this combination does

not follow from high probability of its elements.

The third issue involves the calibration of confidence levels between groups.

How do we know that what one group means by “high confidence” is the same as

the other (and, indeed, that they mean the same thing to the policy maker using

their findings)? A proper calibration scale—analogous to the 0–1 scale for prob-

abilities, or the standard meter in Paris—would enable clear and unambiguous

formulation and communication of confidence judgements across authors and

actors. Were one to take our proposal for connecting the IPCC uncertainty

language with theories of decision seriously, one major challenge is to develop

such a scale. This development would likely go hand-in-hand with elicitation

mechanisms—modelled on those used in behavioural economics, perhaps, or

in structured expert elicitation—that would allow IPCC authors to reveal and

express their confidence in probability assessments.

Turning now to the use of the confidence partition in decision making, the

Hill (2013) family of models gives confidence a role in guiding decision makers
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to the set of probability measures that is right for them in a given context. The

decision maker’s utilities determine the stakes, and their cautiousness coefficient

maps the stakes to a level of confidence and thus to the set of probability mea-

sures that their decision rule will take into account in evaluating actions. IPCC

findings inform the confidence element of Hill’s model, but they deliver neither

a measure of the stakes associated with a decision problem nor a cautiousness

coefficient. Where an individual acts alone, the stakes are determined by her

preferences (or her utility function) while the cautiousness coefficient reflects

some feature of her attitudes to uncertainty. In the case of climate policy deci-

sions, things are analogous but more complicated. Putting utilities on outcomes

and fixing the level of cautiousness are difficult tasks, insofar as both should re-

flect the interests and attitudes of individuals living in different places and at

different times. That IPCC findings (at least those addressing the physical sci-

ence basis of climate change) do not provide these elements is as it should be:

this is not a “fact” dimension, on which climate scientists have expertise, but a

“value” dimension, which derives from the stakeholders to the decision.

This fact-value distinction (or belief-taste distinction in economics) is mud-

died by many of the decision models surveyed above; it is known, for instance,

that the MMEU decision model (Gilboa and Schmeidler, 1989), as well as those

of Maccheroni et al. (2006) and Chateauneuf and Faro (2009), do not permit a

clean separation of beliefs from tastes. In the case of MMEU for example, the

set of probability functions captures both the beliefs or information at the deci-

sion maker’s disposal, but also his taste for choosing in the face of uncertainty:

using a smaller range of probabilities can be interpreted as having a less cau-

tious attitude towards one’s ignorance. Such models are less suitable in a policy

decision context where scientists’ input should in principle be restricted to the

domain of facts (and uncertainty about them), and a values element should not
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automatically be read into that input.

By contrast, as argued in Hill (2013), the decision model employed here does

support a clean fact-value distinction. Confidence is exclusively a belief aspect,

whereas the cautiousness coefficient is a taste factor. So the encroachment of

value judgements into scientific reporting is not, at least, a theoretical conse-

quence of the model. (And, indeed, with appropriate calibration of the sort

described above, it may even be possible to largely avoid it in practice; though

see Steele (2012) on the difficulty of doing so.)

This normatively attractive property of the model is relatively rare: indeed,

it is one of two non-Bayesian models that supports a neat belief-taste distinction

that we have been able to find in the literature. The other one is the smooth am-

biguity model mentioned in Section 3.2, which uses second-order probabilities,

and hence requires cardinal confidence assessments. So Hill’s model seems to be

the only available decision-theoretically solid representation that can capture the

role of uncertainty about probability judgement without demanding value judge-

ments from scientists or cardinal second-order confidence assessments. As such,

our investigation provides a perhaps unexpected vindication of IPCC practice

via the affinity between their uncertainty guidance and one of the only decision

models that seems suitable for the climate policy decisions they aim to inform.

5.1 Recommendations

Our discussion of the IPCC’s uncertainty framework and the relevant policy

decision requirements allows us to make several tentative recommendations.

In the climate sensitivity example above, we saw multiple statements ad-

dressing different possible value ranges (left tail, middle, right tail) of the same

uncertain quantity, using different levels of confidence. But what we do not

see in this example, nor have we found elsewhere, is multiple statements, at
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different confidence levels, concerning the same range of the uncertain quantity.

That is, we do not see pairs of claims such as: the chance that ECS is greater

than 6◦ is, with medium confidence, less than 10%, and with high confidence less

than 20%. The confidence partition formalism shows how it can make sense,

conceptually, to answer the same question at multiple confidence levels. Doing

so gives a richer picture of scientific knowledge, and the added information may

be valuable to policy makers and to the public. There is no basis for the cur-

rent (unwritten) convention of reporting only a single confidence level; a richer

reporting practice is possible, and appears desirable.

Given the possibility of reporting at more than one level of confidence, in

choosing just one, IPCC authors are implicitly managing a trade-off between the

size of a probability interval and the level of confidence (e.g., likely (.66−1) with

medium confidence, versus more likely than not (.5 − 1) with high confidence).

Yet the uncertainty guidance notes offer no advice to authors on managing this

trade-off.10 Moreover, in light of the decision model developed above, there is

an aspect to this choice that falls on the value side of the fact-value divide.

While in practice IPCC authors may select on epistemic grounds (where they

can make the most informative statements), the choice may be understood as

involving a value judgement, since it may appear to suggest which set of prob-

ability measures the reader should use in their decision problem. Normally it

is the agent’s utilities and cautiousness that together pick out the appropriate

set from the nested family of probability measures. So not only is reporting

at multiple confidence levels conceptually sensible, but it may be desirable in

order simultaneously to give relevant information to different users who will de-

termine for themselves the level of confidence at which they require probabilistic

information to inform their decisions.

10The AR4 guidance note included the advice to “Avoid trivializing statements just to in-
crease their confidence” (Manning, 2005, 1). Note, however, that the meaning of “confidence”
changed between AR4 and AR5.
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Naturally, it is impractical to demand that IPCC reports provide assessments

at every confidence level on every issue that they treat probabilistically. But a

feasible step in that direction might be to encourage reporting at more than one

level, where the evidence allows, and when the results would be informative.

The value-judgment aspect of confidence suggests a second step. The choice of

confidence level(s) at which IPCC authors assess probability would ideally be

informed in some way by the public or its representatives, suggesting that pol-

icy makers should be involved at the beginning of the IPCC process, to provide

input regarding the confidence level(s) at which scientific assessments would be

most decision-relevant. Communication of the relevant confidence level between

policy makers and climate scientists would rely on and be formulated in terms

of the sort of calibration scale discussed above. There are, of course, many

decisions to be taken, with different stakes and stakeholders: mitigation deci-

sions and adaptation decisions, public and private, global, regional, and local.

The envisioned policy maker and stakeholder input would presumably indicate

varying levels of confidence for key findings across IPCC chapters and working

groups.

The realm of recommendations and possibilities goes well beyond those ex-

plored here. Our aim is simply to suggest some ideas for guiding practice on

the basis of how IPCC assessments can be used in decision and policy making

and, more importantly, to open a discussion on the issue.
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