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Abstract In the face of disagreement in the expressed probabilities of
one or more individuals on some proposition, it has been suggested that
we should revise our beliefs by adopting a linear average of the expressed
opinions on it. Is such belief revision compatible with Bayesian conditionali-
sation? In this paper I look at situations in which full or partial deference to
the expressed opinions of others is warranted to consider what Bayesianism
and linear averaging respectively require of us. I will conclude that only in
trivial circumstances are the requirements imposed by the two compatible.
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1 Introduction

When others have information or judgemental capabilities that we lack, then
their opinions are a resource that we can and should exploit for the purposes
of forming or revising our own opinions. But how should we do this? In this
paper I will compare two types of answer to this question —Bayesian condi-
tioning and opinion pooling —and ask whether they are compatible. Some
interesting work on the question suggests a positive answer under various
conditions: See for instance Genest and Schervish [10], Bonnay and Cozic
[3][4] and Romeijn [17]. But how restrictive these conditions are remains an
open question.
A Bayesian treats the expressed opinions of others as evidence for and

against the truth of the claim under consideration, evidence whose relevance
is captured by an assignment of a conditional probability for the claim, given
each possible combination of others’opinions. She responds to this evidence
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by conditioning on it, i.e. by adopting as her revised opinion her (prior)
conditional degrees given the expressed opinions. The opinion pooler, on
the other hand, adopts as her new opinion an aggregate of the expressed
opinions of others, an aggregate that in some way reflects the epistemic
value that she attaches to each of the expressed opinions.
I shall assume here that Bayesianism provides the gold standard for co-

herent revision of belief in the kinds of situation in which it applies, namely
when we have prior probabilities for not only the hypotheses of ultimate
interest but also for all possible combinations of evidence (in this case, the
expressions of opinion) that either confirm or disconfirm these hypotheses,
and when everything that we learn is representable by one such possible
combination. The problem is that it is not always easy to apply the Bayesian
theory. In circumstances in which the evidence takes a ‘non-standard’form,
such as when it is imprecise or conditional in form, we can turn to other
forms of belief revision, such as Jeffrey conditioning or Adams condition-
ing.1 But when we are unable to assign prior probabilities to the possible
evidence propositions then no conditioning method at all may be applicable.
This can happen because there are simply too many possibilities for us to
process them all, or because we don’t have enough information to assign a
precise probability with any confidence.
These diffi culties are acutely pertinent to the question of how to exploit

the information taking the form of expert opinion reports. Consider, for
instance, someone who claims to be an expert on wines. What’s the prob-
ability that they will make any particular judgement about any particular
wine? If you don’t know much about wine, it will be hard to say. In the
statistics literature, agents who change their beliefs by conditionalising on
the testimonial evidence of experts are known as supra-Bayesians (see, for
instance, [16] and [9]). Supra-Bayesians must have priors over the opinion
states of all those whose opinions count as evidence for them with regard to
some proposition. But opinions about opinions might be evidence too, and
opinions about opinions about opinions. And so on. It would be fair to say
that supra-Bayesians are required to be cognitive super-Humans.
A Bayesian with more limited cognitive resources has two reasons for

taking an interest in opinion pooling. Firstly, it might help her in think-
ing about how to assign the probabilities to the hypotheses, conditional on
combinations of opinion, that she needs in order to revise her own opinions
by conditionalisation when she gets information of this kind. Secondly, in
circumstances in which she cannot conditionalise on expressions of opinion
because she lacks the requisite conditional probabilities for the hypotheses
that interest her, she might adopt opinion pooling as an alternative method
of belief revision. In both cases, the Bayesian will want to know whether a
rule for opinion pooling is compatible with her commitment to condition-
alisation. This is true not just when she uses opinion pooling as a guide to
making conditional probability judgements, but also in the case when she

1 See [5] for a discussion.
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uses it as an alternative to conditionalisation. For in this latter case, she will
want to know that there is some way of assigning prior probabilities to com-
binations of expressed opinion and to the hypotheses that are evidentially
dependent on them, such that the pooled opinion is what she would have
obtained by conditionalisation if these had been her prior probabilities.
In this paper I will address the question of whether revision of belief in

response to testimonial evidence by application of a specific form of opinion
pooling — linear averaging — is compatible with Bayesian norms of belief
change. I will begin by making more precise what is required for opinion
pooling rules to be compatible with Bayesian revision and rehearse some
old arguments for why unrestricted linear averaging fails to meet the com-
patibility criterion. In subsequent sections, I consider linear averaging on
restricted domains, drawing particularly on Dawid et al [6], to test for com-
patibility with Bayesianism. I do so by exploring what Bayesianism requires
of agents in some rather simple situations; in particular ones which license
deference to the opinions of one or more experts on some specific proposi-
tion on grounds of their superior knowledge. The conclusion is somewhat
surprising. Linear averaging, even when applied to a single proposition, is
not (non-trivially) compatible with Bayesian norms in situations involving
more than one source of testimony.

2 Linear Averaging and Bayes Compatibility

To formulate our questions in a general way, let S be a Boolean algebra of
propositions containing at least four propositions and Ω be a finite subset
of S containing at least one non-contradictory proposition, serving here
to represent the set of propositions regarding which our protagonist– the
Bayesian agent– will learn the opinions of others. Let an opinion function
f on Ω be a mapping from Ω to [0, 1] that is extendible to a probability
function on Ω. Let Π be the set of all such opinion functions on Ω. Then
a mapping Φ : Πn → Π, from a profile of n opinion functions on Ω to an
‘aggregate’opinion function, is called an opinion formation rule for Ω. Intu-
itively such a rule tells the agent what opinions to adopt on the propositions
in Ω when she learns those of the n others.

In this paper we will look only at one particular class of opinion for-
mation rules: the linear averaging rules. A linear averaging rule for Ω is a
mapping F from a profile of opinion functions (f1, ..., fn) on the propositions
in Ω to an average opinion for them such that for some set of non-negative
weights {αi} such that

∑
i αi = 1, for all X ∈ Ω:

F (f1, ..., fn)(X) =
∑
i

αi.fi(X)

There is a large statistics literature, and a modest philosophical one, on
linear averaging and its properties, most of it focused on the case in which
opinion functions are defined on full Boolean algebras and so are forcibly
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probability functions: see Genest and Zidek [11] and Dietrich and List [7]
for good surveys. In this context, the weights αi are canonically interpreted
as measures of the (relative) judgemental competence of individuals. And
linear pooling is thought of as a way of constructing an aggregate probability
for each proposition X by taking a competence-weighted average of the
probabilities assigned to it by each individual. Much of this literature is
focused on the problem of how to form a consensual opinion on some issue,
a question that is not directly related to that of how individuals should
improve their own opinions by taking into account the information provided
by the opinions of others. These two issues can come together, as they do
in the theory of Lehrer and Wagner (see [19], [15] and [20]), if the way that
the consensus is achieved is by individuals revising their beliefs rationally
in response to the expressed opinions of others. But here we will concern
ourselves only with the question of whether revising one’s beliefs in this way
is epistemically rational and set aside the issue of whether or not it will lead
to a consensus.
This is important because whatever the merits of linear averaging as a

means of forming a consensual or group probability from a diverse set of
individual ones, it is seriously flawed as a method of belief revision (contrary
to Lehrer’s [14] claim that rationality requires that we revise our beliefs in
this way). This is so for two important reasons. Firstly, linear averaging
is not sensitive to the proposition-specific competencies of individuals. But
intuitively individuals have different domains of expertise: I don’t take my
plumber’s pronouncements about health risks very seriously, for instance,
but equally I would not get my doctor to tell me the cause of the drainage
problems in my house. It follows that any rule that uses constant competence
weights will be unsatisfactory to some degree.
Secondly, linear averaging is insensitive to whether the opinions ex-

pressed by different individuals on the same proposition are independent
or not. But compare a situation in which two scientists conduct separate
experiments to try and settle some question with one in which they conduct
a single experiment together. Suppose that in both cases the scientists report
that as a result of their experiments they consider X to be highly probable.
In the former case, we would want to raise our own probability for X quite
considerably because of the convergence of their expert testimony. In the
latter case too we would want to raise our probability for X, but less so,
because their joint testimony in favour of X is based on same information.
To revise once in the light of the testimony of the first scientist and then
again in the light of that of the second would in effect be to update twice
on the same evidence, akin to an individual scientist conditioning twice on
the same experimental result.
In contrast, a supra-Bayesian is free to assign a conditional probability

to a proposition, given the testimony of some expert, that reflects her judge-
ment of the competence of that expert on that proposition. Furthermore,
her conditional probabilities given the joint testimonies of the experts will
typically depend on the probabilistic dependencies between expert reports.
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It is not surprisingly therefore that linear averaging on an unrestricted do-
main is compatible with Bayesianism in only very special circumstances: In
particular, when the opinions of all but one of the experts consulted are
independent of the truth (for a proof of this claim see [2]), a circumstance
that rather undermines the point of consulting them in the first place.
Now, as Steele [18] points out, these problems might not arise when

linear averaging is applied to restricted sets of propositions– in particular,
partitions– for in this case we are free to apply domain-dependent weights
that reflect both the specific competence of the individuals on that domain
and any dependencies between their opinions within it. For instance, if three
individuals express an opinion on the same proposition, but two of them
have formed it in discussion with each other, then we can choose to attach
a large weight to the pair of them, because their deliberations increase their
competence, but count them as a single unit in the linear average.
Steele’s suggested restriction is insuffi ciently severe, however, because

linear averaging on a partition implies constant weights over any coarsening
of it. Consider the following example. Suppose that You know that Anne
has observed that A is true while Bob has observed that B is true. Suppose
furthermore that they report the following probabilistic degrees of belief
across the partition π = {AB,A¬B,¬AB,¬A¬B}:

AB A¬B ¬AB ¬A¬B
Anne 0.1 0.9 0 0
Bob 0.1 0 0.9 0︸︷︷︸

Linear average 0.1 0.9a 0.9b 0

Now Anne and Bob’s observations make them maximally competent,
respectively, on the question of whether or not A is true and whether or
not B is true (supposing absence of observational error). So You should
simply adopt their reported beliefs as your own, leaving You with degree
of belief 1 in AB and 0 in all the other propositions. But this goes against
the recommendations of linear averaging which, irrespective of the weights
a and b assigned to Anne and Bob, will yield a probability of 0.1 for the
proposition AB and 0 for ¬A¬B.
We can put the problem slightly differently. If You revise your beliefs

by linear averaging in response to Ann and Bob’s testimony on the four
element partition π using weights a and b for Anne and Bob respectively,
then your new degrees of belief on the partitions {A,¬A} and {B,¬B}
must, on pain of probabilistic incoherence, be linear averages of Anne’s and
Bob’s degrees of belief obtained by applying weights a and b. But Anne
and Bob have different competencies over these partitions, so these weights
cannot be adequate to both. The upshot is that if linear averaging is to
serve the purposes of rational belief revision in response to testimony, then
it must be applied to single propositions (or two-element partitions) only.
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The question that now needs to be addressed is whether linear averaging
in response to opinions of others on a single proposition is compatible with
Bayesian conditioning. To answer this question we will restrict ourselves to
the following kind of situation. You and n experts are Bayesian reasoners
in the sense of having probabilistic degrees of belief for all propositions of
interest, which are revised by conditionalisation on any evidence that is
acquired. (In some of the examples to be considered, You are one of the
experts.) Let P : S → [0, 1] be your prior probability for these propositions
and P1, ..., Pn be the priors of the experts, with domains that overlap to
some relevant extent with S. (To avoid problems with zero probabilities,
let’s assume that these priors assign non-zero probability to any proposition
that is conditionalised upon.) Each expert I acquires some evidence, the
proposition Ei, and having conditioned on it, finds herself with posterior
probabilistic beliefs Ri. What proposition she has learnt is unknown to
You and the other experts, but each expert reports her new partial beliefs
on some particular proposition X. Your revised probabilities, after having
heard the experts’reports is given by a posterior probability Q. The focus
of our interest is the form that Q must take if You revise your opinions
rationally in response to what the experts say.
Let us consider first what is required of You by Bayesianism. If you are to

revise by conditionalisation then the domain S of your beliefs must contain
propositions identifying the possible reports by the experts. Risking some
ambiguity in the interests of economy, let Ri be a random variable ranging
over posterior opinion states of expert I and let Ri denote the proposition
that expert I’s posterior probability is Ri (i.e. Ri serves as shorthand for
Ri = Ri, as well as denoting I’s posterior probabilities). Similarly, let Ri(X)
be a random variable ranging over possible reports on X by expert I and
let Ri(X) = xi be a proposition expressing the fact that expert I’s reported
posterior probability for X is xi. Then in response to this report a supra-
Bayesian forms a new belief in the proposition X of:

Q(X) = P (X|Ri(X) = xi)

Now these reports can serve as opinion functions on the domain {X}.
And a corresponding opinion formation rule F on this domain can be said
to be Bayes-compatible just in case for any profile of reports R1(X) = xi,
..., and Rn(X) = xn and any common prior P :

P (X|R1(X) = x1, ..., Rn(X) = xn) = F (R1, ..., Rn)(X) (1)

In particular linear averaging on this domain will be Bayes-compatible iff
for some weights αi such that αi ≥ 0 and

∑
i αi = 1:

P (X|R1(X) = x1, ..., Rn(X) = xn) =

n∑
i=1

αi.Ri(X) (2)

So our question boils down to whether it is always possible to find proposition-
dependent weights on the experts’opinions on X such that equation 2 is
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satisfied. A positive answer would not in itself show that linear averaging
on one proposition at a time is a sensible way of revising one’s beliefs, but
it would at least show that it was not obviously unsuitable. In contrast if,
for a range of typical cases, no such weights could be found, then we can
conclude that linear averaging is not a candidate for a general method of
belief revision in response to testimonial evidence.

3 Full Deference

As many authors have observed, we might defer to someone’s opinion be-
cause we think that they hold information that we do not or because we
believe them to have skills which make them better at judging the signif-
icance of the information that we both hold (see for instance, Joyce [13]
and Elgar [8]). In this section we look at what such deference amounts to
in these two cases, focusing for the moment on cases of the first kind.

3.1 Deferring to Information

Let us begin with a very simple situation, involving just one expert and
where You and the expert share a common prior P over some domain.
Suppose the expert acquires evidence E and as a result adopts posterior
R. Because she is strictly better informed than You and because you share
a common prior, You should defer to the expert’s opinion in the sense of
satisfying:

Global Deference: P (·|R = R) = R(·)

Global Deference implies that your prior probability for any proposition
equals the expected opinion of the expert on it, i.e. that E(R(·)) = P (·).2
That is, before You have received the expert’s report, You expect her to
report what You currently believe, because what You believe is based on
all the evidence that You have at that time. Or to put it the other way
round, if You believed the expert to hold evidence regarding the truth of
X that makes it more probable than You judge it to be, then You should
immediately adjust your belief in X. Evidence of evidence for X is evidence
for X.
A Bayesian agent who defers to the expert’s superior information in

the sense of respecting Global Deference is disposed to adopt the expert’s
posterior opinions R as her own when she learns what these are. In the
envisaged circumstances however it is not possible to infer all the expert’s
opinions simply from her report on a single proposition. Nonetheless, on
hearing the expert’s report on proposition X, You should conform with
Global Deference to the extent of adopting the expert’s opinion on X by
satisfying:

2 See Joyce [13, p. 191] for a generalisation of this claim.
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Local Deference: Q(X) = P (X|R(X) = x) = P (X|E) = x

In other words, your revised probability for X should be the probability
of propositionX given the expert’s report (in accordance with Bayesianism),
which is just the probability of X given the evidence obtained by the expert
(in virtue of the common prior), which is just the probability for X reported
by her (in virtue of her truthfulness).
Now conformity to Local Deference does not determine your posterior

belief state; just a fragment of it. To propagate the implications of deferring
to the expert’s reported opinion on X to the rest of one’s beliefs, one might
reasonably follow Steele’s [18] recommendation to Jeffrey conditionalise on
the partition {X,¬X} taking as inputs one’s newly revised degrees of belief
for its elements. This yields, for all propositions Y ∈ S:

Q(Y ) = P (Y |X).Q(X) + P (Y |¬X).Q(¬X)

= P (Y |X).x+ P (Y |¬X).(1− x)

Revising your beliefs in this fashion is demonstrably the rational thing to
do just in case You take the evidential significance for Y of the expert’s
reports on X to be screened out by the truth of X or ¬X, i.e. just in case
P (Y |R(X) = x,X) = P (Y |X) and P (Y |R(X) = x,¬X) = P (Y |¬X). For
then:

Q(Y ) = P (Y |R(X) = x)

= P (Y |X,R(X) = x).P (X|R(X) = x) + P (Y |¬X,R(X) = x).P (¬X|R(X) = x)

= P (Y |X).x+ P (Y |¬X).(1− x)

A couple of cautionary points. Firstly, it must emphasised that revising
one’s beliefs in this fashion, namely by application of Local Deference and
Jeffrey conditionalisation, does not guarantee that one’s posterior beliefs
will be the same as the expert’s, i.e. that for all Y in the belief domain,
Q(Y ) = P (Y |E). (In the absence of further information, however, one will
expect them to be so.)
Secondly, one cannot mechanically apply this type of revision to a se-

quence of reports by the expert. Suppose, for instance, having deferred
to the expert’s opinion on X and then Jeffrey conditioned on the parti-
tion {X,¬X}, the expert reports her opinion on Y . It is clear that You
should defer to this opinion as well, since the expert is still strictly better
informed than You. But if You attempt once again to revise your other
beliefs by Jeffrey conditioning, this time on the partition {Y,¬Y }, using
your newly acquired opinions on its members as inputs, You will be led
to revise your opinion on X (except, of course, when X and Y are prob-
abilistically independent). And this would conflict with your commitment
to adopting the expert’s opinion on X as your own. What You should do
is revise your other beliefs subject to the dual constraint on the parti-
tion {XY,X¬Y,¬XY,¬X¬Y } implied by your deference to the expert’s
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reported opinions on both X and Y . However, this constraint does not de-
termine a unique redistribution of probability across the relevant partition.
So we have not settled the question of how, in general, one should respond
to multiple reports by a single expert.

3.2 Experts with Different Priors

Let us now drop the assumption of common priors and look at cases in which
the expert has special skills rather than additional information. Suppose for
example that an investor has doubts about the financial viability of a com-
pany in which she holds shares. The investor gets access to the company’s
accounts but, lacking expertise in accounting, has the books examined by an
accountant. The accountant looks over the books and declares the company
to be in a sound financial situation. Although the investor may completely
trust the accountant’s judgement of the evidence provided by the company’s
accounts, she may nonetheless not be willing to simply adopt the accoun-
tant’s posterior judgement, because she thinks that the accountant’s prior
was based on less evidence than her own.
In Bayesian statistics the support that some piece of evidence gives to

one hypothesis relative to another is often measured, in a prior-free way, by
its Bayes factor.3 We arrive at this factor in the following way. Note that
for any probability P and evidence proposition E:

P (X|E)

P (Y |E)
=
P (E|X)

P (E|Y )
.
P (X)

P (Y )

So let the associated Bayes factor, B(X,Y ), for proposition X relative to
proposition Y , be defined by:

B(X,Y ) :=
P (E|X)

P (E|Y )

Then it follows that:

P (X|E)

P (Y |E)
= B(X,Y ).

P (X)

P (Y )
(3)

Now in situations in which one wishes to defer to an expert’s judgement
on the significance of some evidence E, but not to their prior opinions, one
can use the decomposition given by equation 3 to determine one’s posterior
probabilities from the expert’s Bayes factors and one’s own prior opinion. To
illustrate, suppose, as before, that the expert reports both their prior and
posterior probabilities for the proposition X. From this their Bayes factor

3 See Jeffreys [12] for the classic statement of the case for this measure.
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for X relative to ¬X can be determined.4 Then You should defer to the
expert’s judgement on the significance of E for X by setting your posterior
probability for X to satisfy the following principle.

Bayes Deference: Q(X) = P (X|β(X,¬X) = b) = b.P (X)
b.P (X)+P (¬X)

Revision of belief by application of Bayes Deference to a single proposi-
tion does not determine the impact of the expert’s testimony on your other
beliefs. But, with the same caveats as before, we may again combine it with
Jeffrey conditionalisation, taking as inputs the values Q(X) and Q(¬X), in
order to propagate the change to all other propositions.

4 Partial Deference

4.1 Single Expert

For Bayesian agents who revise their beliefs by conditionalisation, adherence
to Local Deference amounts to a disposition to adopt whatever opinions on
X that the expert reports, a disposition that is rationalised in the circum-
stances under consideration by the fact that she holds more information.
Linear averaging is compatible with Bayesian conditionalisation in these
circumstances if and only if full weight is given to the expert’s opinion. For
your revised probabilities, Q, after hearing the expert’s report on X, are
required to satisfy both:

Q(X) = R(X)

Q(X) = α.R(X) + (1− α).P (X)

and this implies that α = 1. So in situations in which full deference is
appropriate, supra-Bayesian belief revision is trivially consistent with linear
averaging.
Situations in which full deference is appropriate are obviously quite spe-

cial however. Other situations call for only partial deference. For instance
when You and the expert both acquire information, then the expert’s in-
formation is no longer strictly greater than yours and deferring to their
opinion would be tantamount to discarding the additional information you

4 For:

B(X,¬X) = P (E|X)
P (E|¬X)

=
P (X|E)
P (¬X|E) .

P (¬X)
P (X)

=
R(X)

1−R(X) .
1− P (X)
P (X)
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hold. Suppose that You and the expert have respectively acquired new in-
formation E and E1 and adopted posterior beliefs P (·|E) and R = P (·|E1).
Now You should defer, not to the expert’s posterior opinions, but to her
conditional opinions, given the information E that You have acquired. This
means that we apply Global Deference, not to P and R, but to P (·|E) and
R(·|E), the latter pair being based on strictly more information than the
former pair. This yields:

Conditional Deference:

P (·|R = R,E) = R(·|E) (4)

Equation 4 gives a Bayesian expression for partial deference to an expert
appropriate to the circumstances of shared priors but different information.
It does not suffi ce however to determine how You should revise your beliefs
in response to the expert’s report on X, since it is her conditional opinion
on X given that E that You wish to adopt, not her expressed unconditional
opinion on X. So there is now an additional motive to ask whether the kind
of partial deference to the expert’s opinion represented by linear averaging
can further constrain your opinion in a Bayes-compatible way. That is, we
want to know whether You can assign a weight α to the expert’s opinion,
expressing your degree of deference, such that:

P (X|R1(X), E) = α.R1(X) + (1− α).P (X|E)

Instead of tackling this question directly, let us just note that the situ-
ation is, formally speaking, very similar one in which You can consult two
experts, each of which has acquired information over and above that held
by You. In such a case it would also not be appropriate to defer completely
to any one of the experts, as this would be tantamount to discarding the
information acquired by the others. Indeed, the first case can be treated a
special instance of two-expert ones, by letting one of the two experts be
You. So we can study the two cases together.

4.2 Multiple Experts

Suppose that two experts, again sharing prior P with You, have respectively
acquired new information E1 and E2 and adopted posterior beliefs R1 and
R2. In this case, in virtue of the shared priors, Global Deference tells us
that:

P (·|R1 = R1) = R1(·) = P (·|E1) (5)

P (·|R2 = R2) = R2(·) = P (·|E2) (6)

And from these two equations it follows that:

P (·|R1 = R1,R2 = R2) = P (·|E1, E2) (7)
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But since You don’t know what the propositions E1 and E2 are that the
experts have learnt, this is again not enough to determine how You should
revise your beliefs in X. Nonetheless we can now ask whether linear averag-
ing is consistent with equations 5, 6 and 7, i.e., whether for each proposition
X there exists a weight α such that:

P (X|R1(X), R2(X)) = α.R1(X) + (1− α).R2(X) (8)

where, as indicated before, α can depend on X but not on what the experts
report about X.

The answer is that no such weight exists. The reason for this is quite
simple: Local Deference together with equation 8 requires that the weight
You put on each expert’s report does depend on what they report. To see this
consider the following example. Suppose that R1(X) = x1 and R2(X) = 0.
Then by Local Deference P (X|R1(X) = x1) = x1 and P (X|R2(X) = 0) =
0. It follows that:

P (X|R1(X) = x1, R2(X) = 0) = 0

So if You conditionalise on the experts’reports on X then your posterior
beliefs are such that Q(X) = 0. But by linear averaging:

Q(X) = α.R1(X) + (1− α).R2(X)

= α.x1 + (1− α).0

and this implies that α = 0. But by the same argument if R1(X) = 0 and
R2(X) = x2 then for Bayes-compatibility of linear averaging, it must be
the case that α = 1. So the weights on the experts’reports on X are not
independent of what they report.
We can put the point slightly differently. If the weights on the experts’

reports on X are assumed to be independent of what they report, then we
can infer that they always make the same report. For in our example we
assumed that the experts made different reports in order to infer weight
variability. But if weights can’t vary then the experts cannot have made
different reports. It is true that this example made essential use of the fact
that experts can report zero probabilities for propositions, but restricting
linear averaging to cases in which they report non-zero probabilities makes
no difference to the conclusion. For Global Deference implies that You ex-
pect, conditional on expert 1 reporting a probability of x for X, that your
posterior degree of belief in X, after hearing both experts’ reports, to be
just x, i.e. that:

E(Q(X)|R1(X) = x) = x (9)

(This is proved as Theorem 1 in the appendix). But equation 9, together
with assumption that your posterior beliefs are a linear average of the ex-
perts’, implies that your conditional expectation for expert 2’s report on
X, given that expert 1 reports a probability of x for X, equals x as well
(Theorem 2 in the appendix). And this can be the case only if the random
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variables corresponding to each of the expert’s opinion reports are the same,
i.e. if R1 = R2 (Corollary 1). So, on pain of contradiction, your posterior
opinion on X can be both a linear average of the expert’s reported opinions
and defer appropriately to these reports only if they are same.

4.3 Concluding Remarks

We have shown that revising your beliefs on some proposition X by taking
the linear average of reported expert opinion is consistent with Bayesian
conditioning, as guided by the principle of Global Deference, only in the
trivial case when the experts always make the same report (with probabil-
ity one). This I take to rule linear averaging out as a rational response to
disagreement in expert opinion. It also therefore rules out linear averaging
as a response to disagreement with your epistemic peers, construed as oth-
ers who share your priors but hold different information. For this case is
formally equivalent to that of disagreement amongst experts with different
information.
A couple of cautionary notes about the scope of these conclusions. Firstly,

nothing has been said in this paper about other forms of averaging or indeed
forms of opinion pooling that do not involve averaging. Guidance on this
question can be found in Dawid, DeGroot and Mortera [6], where a much
more extensive set of formal results on the Bayes-compatibility of opinion
pooling is proved. The upshot of these results is far from settled, but it
would seem that while log-linear and geometric averaging in their usual
forms are subject to the same diffi culties as linear averaging, more general
versions of all of these rules are not so easily dismissed. The philosophical
status of these more general rules deserve further exploration.
Secondly, it should also be emphasised that this study leaves open the

question of whether linear averaging is the appropriate response to situa-
tions in which you find yourself in disagreement with peers who hold the
same information as you and are as a good at judging its significance. In
the philosophical literature, the view that one should respond to such dis-
agreements by taking an equal-weighted average of your opinions has been
hotly debated. But nothing presented here militates either for or against
this view.

5 Appendix: Proofs

Lemma 1 Suppose that E(X|Y = y) = y and E(Y |X = x) = x. Then
X = Y.

Proof Note that by the law of iterated expectations, E(Y ) = E(E(X|Y )) =
E(X). Now since (Y |X = x) = x, it follows by another application of the
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law of iterated expectations that:

E(X · Y ) = E(E(XY |X))

= E(X · E(Y |X))

= E(X2)

It follows that:

cov(X,Y ) = E[(X − E(X))(Y − E(Y )]

= E(X · Y )− E(X) · E(Y )

= E(X2)− [E(X)]2

since E(X · Y ) = E(X2) and E(Y ) = E(X). So cov(X,Y ) = var(X) =
var(Y ). Hence var(X−Y ) = var(X)+var(Y )−2cov(X,Y ) = 0. So X = Y
with probability 1.

Theorem 1 Assume Global Deference with respect to each expert i, i.e. that
for i = 1, 2, P (X|Ri(X)) = Ri(X). Then E(Q(X)|Ri(X) = x̄i) = x̄i

Proof By Deference, P (X|R1(X) = x̄1) = x̄1. And:

P (X|R1(X) = x̄1) =
∑

i P (X,R2(X) = xi|R1(X) = x̄1))

=
∑

i P (X|R2(X) = xi, R1(X) = x̄1)) · P (R2(X) = xi|R1(X) = x̄1)

= E(Q(X)|R1(X) = x̄1)

Hence E(Q(X)|R1(X) = x̄1) = x̄1. Similarly, E(Q(X)|R2(X) = x̄2) = x̄2.

Theorem 2 Assume Global Deference with respect to expert 1 and 2 and
that for 0 < α < 1, Q(X) = α ·R1(X) + (1− α) ·R2(X). Then:

E(R1(X)|R2(X) = x̄2) = x̄2

E(R2(X)|R1(X) = x̄1) = x̄1

Proof By Theorem 1, E(α · R1(X) + (1 − α) · R2(X)|R1(X) = x̄1) = x̄1.
Hence by the Linearity of expectations:

α · E(R1(X)|R1(X) = x̄1)) + (1− α) · E(R2(X)|R1(X) = x̄1))

= α · x̄1 + (1− α) · E(R2(X)|R1(X) = x̄1)

= x̄1

But this can be the case iffE(R2(X)|R1(X) = x̄1) = x̄1. Similarly E(R1(X)|R2(X) =
x̄2) = x̄2.

Corollary 1 R1 = R2
Proof Follows from Theorem 2 and Lemma 1.
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