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1 Unpublished Appendix 1. Analysis of Model with open
Conflict

1.1 Equilibrium group sizes

1.1.1 At node CC

At node CC in principle there could be passing from either group.

No passing from A to B We first show that members of group A never pass in CC equilibria.
Define n̄ACC the hypothetical ex-post size that would make members of A indifferent between staying
and passing. n̄ACC solves

(1−∆)

(
yA +

αz

n̄ACC

)
= (1−∆)

(
(1− φ)yA +

(1− α)z

1− n̄ACC

)
so

n̄ACC =
− [(1− α)z − φyA]±

√
[(1− α)z − φyA]

2
+ 4αzφyA

2φyA

It can be shown that the "-" root is always less than 0, while the "+" root is greater than 1 (using
α > 0.5). We conclude that there is never passing from A to B at the CC node.

Equilibrium passing from B to A Now define n̄BCC the ex-post size that makes members of B
indifferent between staying and passing at node CC. The condition for n̄BCC is

(1−∆)

(
yB +

(1− α)z

1− n̄BCC

)
= (1−∆)

(
(1− φ)yB +

αz

n̄BCC

)
so

n̄BCC =
(z + φyB)±

√
(z + φyB)

2 − 4αzφyB

2φyB
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While the "+" root is always greater than 1, the "-" root is always between 0 and 1. We conclude
that n̄BCC is strictly between 0 and 1 and is given by:

n̄BCC =
(z + φyB)−

√
(z + φyB)

2 − 4αzφyB

2φyB
.

Passing behavior in the CC node can then be summarized as follows. If n < n̄BCC there will be
passing from B to A. If n > n̄BCC there will be no passing. Hence, if the node is CC we define
n′CC = max{n, n̄BCC}.

For future reference, we note that n̄BCC is an increasing and concave function of z, which passes
through the origin and asymptotes to α for z → ∞. Hence, n′CC is a constant equal to n if α < n
(which makes sense). Instead, if α > n, n′CC is a constant through n up to a “kink,” and then it
becomes increasing and concave, and converges to α. Assumptions we make below for a variety of
reasons imply that we focus on cases where α > n. The kink is at zk defined by

n =
(z + φyB)−

√
(z + φyB)

2 − 4αzφyB

2φyB

so

zk =
φybn(1− n)

(α− n)

1.1.2 At other nodes

The analysis of equilibrium population size at nodes CP and PC is identical to the case of exploitation
in the baseline model. In particular, at node CP we have n′CP = max{n,min[1, n̄BCP ]}, where

nBCP ≡
z

φyB
.

At node PC we have n′PC = min{n,max[0, n̄APC ]}, where

nAPC ≡ 1− z

φyA
.

Finally, at node PP we obviously have n′ = n.

1.2 Group B’s Decision

1.2.1 At node C

We can now look at B′s strategic decisions. When A has played C, B has to choose between acquies-
cence and fight back. B chooses fight back if

(1−∆)

[
yB +

(1− α)z

1− n′CC

]
> (1− δ) max [yB , (1− φ)yB + z]

or

1− (1−∆)(1− α)z

max [0, (1− δ)(z − φyB)] + (∆− δ)yB
< n′CC .
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We already know the RHS is constant at n, has a kink at zk, and then is increasing and concave
asymptoting to α.
If φ ≤ (∆ − δ)/(1 − δ) the left side as a function of z starts at 1 and decreases monotonically

(though with a kink at z = φyB) asymptoting to 1 − (1 − ∆)(1 − α)/(1 − δ). Since this is always
greater than α the left side and right side never intersect so B never responds to C with C.

If φ > (∆− δ)/(1− δ) the left side as a function of z starts at 1 and decreases until z = φyB , after
which it turns increasing, asymptoting (from below) to 1− (1−∆)(1− α)/(1− δ).

Assumption: α ≥ 2n− n2

With this assumption, the kink in LHS is always to the right of zk. Note that this assumption
implies α > n. We make this assumption exclusively for convenience so as not to have to consider too
many different cases. However the assumption does not affect the qualitative results in any significant
way. In particular the discussion in the text is entirely unaffected.
The assumption implies that we can ignore the horizontal segment of the RHS. We can then

reformulate the problem by saying that B responds with C if

1− (1−∆)(1− α)z

max [0, (1− δ)(z − φyB)] + (∆− δ)yB
< n̄BCC .

This equation has either two solutions or no solution. The solution exists if, at the kink z = φyB the
right hand side exceeds the left hand side, or

1− (1−∆)(1− α)φyB
(∆− δ)yB

<
(φyB + φyB)−

√
(φyB + φyB)

2 − 4αφyBφyB

2φyB

or

φ >
1√

1− α
(∆− δ)
(1−∆)

Now note that the condition φ > 1√
1−α

(∆−δ)
(1−∆) also implies φ >

(∆−δ)
(1−δ) .

Now we look at the two solutions. The first one is the solution to:

1− (1−∆)(1− α)z

(∆− δ)yB
=

(z + φyB)−
√

(z + φyB)
2 − 4αzφyB

2φyB

Define

q =
(1−∆)(1− α)

(∆− δ)
then the solution is

z =
(1− α)yB + qyBφ

(q2φ+ q)
≡ zlB,CC

The other solution is implicitly given by

1− (1−∆)(1− α)z

(1− δ)(z − φyB) + (∆− δ)yB
=

(z + φyB)−
√

(z + φyB)
2 − 4αzφyB

2φyB
, (1)

and we denote it by zhB,CC .
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In conclusion, if α ≥ 2n− n2 then group B responds to C with C if and only if:

φ >
1√

1− α
(∆− δ)
(1−∆)

and
z ∈ (zlB,CC , z

h
B,CC).

The subscript “B,CC” is a mnemonic for “B responds to C with C,” and the superscripts l and h
denote lower- and upper-bound values.
It is important for future reference to characterize the behavior of zlB,CC and z

h
B,CC as functions

of φ.
By construction, we have zlB,CC = zhB,CC = φyB when φ = 1√

1−α
(∆−δ)
(1−∆) .

zlB,CC is strictly increasing in φ and converges to yB/q.
zhB,CC is strictly increasing in φ and grows without bound.

1.2.2 At node P

Group B’s decision if A has played P is isomorphic to A’s decision in the baseline model. In particular,
B plays C if

1− n′PC <
(1− δ)z
δyB + z

,

or

max{1− n,min[1,
z

φyA
]} < (1− δ)z

δyB + z

The left side starts out flat at 1−n, then it increases linearly, then it becomes flat again at 1. The
right side increases from 0 in concave fashion and converges to (1 − δ). The two sides either never
intersect or they intersect twice, once in the flat part of the left side and one in the increasing part of
the left side. They intersect if and only if n− δ > δyB/(φyA)
In conclusion, (i) if φ ≤ δyB/(yA (n− δ)) then B never responds to P with C; (ii) if φ >

δyB/(yA (n− δ)) then B responds to P with C if zlB,PC < z < zhB,PC , where

zlB,PC =
(1− n)δyB
n− δ

zhB,PC = φyA(1− δ)− δyB ,

which, not surprisingly, describes a triangle much like the one in figure 1.

1.3 Decision by A

We can now examine the behavior of A. There are four cases, depending on the combination of actions
chosen by B.
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1.3.1 When B plays C at both nodes

If B plays C at both nodes, A plays C if

(1− δ)yA < (1−∆)

(
yA +

αz

n′CC

)

max

n, (z + φyB)−
√

(z + φyB)
2 − 4αzφyB

2φyB

 < αz

(∆− δ) yA

(note that if B plays C at P we know that n′PC > 0, so we don’t need to worry about the case where
all the As pass.) There always is one and only one solution to this equation. Call this solution zlAC,CC
(for “A plays C when B plays C at both nodes”). The solution is either the solution to

n =
αz

(∆− δ) yA

z =
(∆− δ) yAn

α
(2)

or the solution to

(z + φyB)−
√

(z + φyB)
2 − 4αzφyB

2φyB
=

αz

(∆− δ) yA

z =
(∆− δ) yA [φyB − (∆− δ) yA]

[φyBα− (∆− δ) yA]
(3)

The solution to (2) is the "global" solution if it lies to the left of the kink in the LHS, zk,or if

(∆− δ) yAn
α

<
φyBn(1− n)

(α− n)

(α− n) (∆− δ) yA
αyB(1− n)

< φ ≡ φC,CC

Therefore: we conclude that, for φ ≤ φC,CC , A plays C if z exceeds the expression in (3), while if
φ > φC,CC A plays C if z exceeds the expression in (2).1

Now we characterize how zlAC,CC varies with φ. It can be shown that this begins at (∆− δ)yA for
φ = 0 and decreases over the interval [0, φC,CC), after which it becomes constant at (∆− δ)yAn/α.

1Note that the solution in (3) exists if and only if z

φ ≤ (∆− δ)yA

yB
.

However, this is always greater than φC,CC so this constraint is never binding.
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1.3.2 When B plays P and C

If B plays P at node P and C at node C, A plays C if

yA + z < (1−∆)

(
yA +

αz

n′CC

)
(4)

n′CC <
(1−∆)αz

z + ∆yA
.

The right hand side starts at 0 and then increases, converging to (1 −∆)α. Since as we know RHS
asymptotes to α, there are either 0 or two solutions for z. There are no solutions if (1−∆)α < n. If
instead (1−∆)α ≥ n there still could be either two or no solution.
When there are two solutions one solves

n =
(1−∆)αz

z + ∆yA

and the solution is

z =
∆yAn

(1−∆)α− n ≡ z
l
AC,PC ,

where the subscript stands for “A plays C when B plays P and C.”
The other solution solves

(z + φyB)−
√

(z + φyB)
2 − 4αzφyB

2φyB
=

(1−∆)αz

z + ∆yA

so

z =
−{(1 + ∆)∆yA + (1−∆) [(1−∆)α− 1]φyB}+

2∆

+

√
{(1 + ∆)∆yA + (1−∆) [(1−∆)α− 1]φyB}2 − 4∆2yA [∆yA − (1−∆)φyB ]

2∆

≡ zhAC,PC .

The condition for having two solutions is that zlAC,PC is to the left of the kink in the left side of
(4), zk. I.e. the condition is

∆yAn

(1−∆)α− n <
φybn(1− n)

(α− n)

φ >
∆yA (α− n)

[(1−∆)α− n] yb(1− n)
≡ φC,PC (5)

In conclusion, A plays C when B plays P,C if and only if (1 − ∆)α ≥ n, (5) is satisfied, and
zlAC,PC < z < zhAC,PC .

2

As functions of φ, the two bounds share the same value zlAC,PC at φC,PC . As φ increases beyond
this value, zlAC,PC is constant while z

h
AC,PC increases without bound.

2Note that the slope condition for a solution to the last equation exist is that the right hand side is steeper at the
origin. But this is satisfied whenever φ ≥ φC,PC , which in turn holds when (1−∆)α < n. We focus on this case below.
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1.3.3 When B plays C and P

If B plays C at node P and P at node C, A plays C if

(1− δ)yA < (1− δ)
(
yA +

z

n′CP

)
,

so A always plays C in this case.

1.3.4 When B plays P and P

If B always plays P (this is the case of the baseline model) A plays C if

yA + z < (1− δ)
(
yA +

z

n′CP

)
max{n,min[1,

z

φyB
]} < (1− δ)z

z + δyA

As in the benchmark model, we focus on the case where (1−δ) > n. Then if φ ≤ δyA/(yB (1− n− δ))
A never plays C, while if φ > δyA/(yB (1− n− δ)) A plays C if δyAn

(1−δ)−n < z < (1− δ)φyB − δyA.This
is of course the same condition as in the baseline model of exploitation.

1.4 Regions where different equilibria prevail

We now bring it all together and characterize the regions of the parameter space where the various
equilibria obtain.

1.4.1 Equilibria of type CC

Equilibria where both groups play C occur in two scenarios. (i) B plays C at both nodes, and A
plays C. Or (ii) B plays P at node P and C at node C, and A plays C. To limit the number of
cases we focus on situations where (1 −∆)α < n. As we have seen this means that A never fights a
war of choice: faced with a choice of peace and open conflict, it always chooses peace. Open conflict
only arises when B plays C in both nodes, i.e. when A’s choice is between being exploited and being
the exploiter. Again this assumption only serves to reduce the number of appendix pages, without
materially affecting the insights of the model.
Assumption: (1−∆)α < n
Let’s collect the conditions for CC to happen.
(i) B plays C at node P

φ >
δyB

yA (n− δ)
zlB,PC < z < zhB,PC

(ii) B plays C at node C

φ >
1√

1− α
(∆− δ)
(1−∆)

zlB,CC < z < zhB,CC
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(iii) A plays C when B plays C,C
zlAC,CC < z

Therefore we observe open conflict if and only if

max
{
zlB,PC , z

l
B,CC , z

l
AC,CC

}
< z < min

{
zhB,PC , z

h
B,CC

}
max

{
δyB

yA (n− δ)
1√

1− α
(∆− δ)
(1−∆)

}
< φ.

Note that this region always exists. To see this, notice that both zhB,PC and z
h
B,CC grow without

bound with φ, while all of zlB,PC , z
l
B,CC , and z

l
AC,CC converge to finite constants.

An increase in yA increases both zhB,PC and z
l
AC,CC . The former reflects that in a possible PC

equilibrium there will be less passing from A to B. This makes B more aggressive for a larger set of
values of z, forcing A to choose C more often. The increase in zlAC,CC reflects the fact that a higher
yA makes open conflict more costly for A, and thus increases the set of zs such that A is willing to
let itself be exploited by B. Hence, an increase in the wealth of the stronger groups shifts the conflict
region “to the right.”
An increase in yB increases zlB,PC (exploiting A becomes more costly for B), z

l
B,CC (open conflict

becomes more costly), On the other hand an increase in yB reduces zhB,PC (again, the cost of exploiting
A are greater), and have ambiguous effects on zhB,CC . Hence, the lower bound of the conflict region
unambiguously increases, while the upper bound could either fall or increase.
An increase in n decreases zlB,PC (exploiting A becomes more attractive when A is larger) and

increases zlAC,CC (A becomes more likely to acquiesce to being exploited). Hence the effect of n is
ambiguous.

1.4.2 Equilibria of type CP

These equilibria emerge in two sets of circumstances. (i) When B plays P at both nodes, and A
decides to exploit; and (ii) when B responds to P with C, and to C with P (we know that A always
plays C in this case).

(i) B plays PP , A plays C (i.i) B plays P at P

φ ≤ δyB
yA (n− δ)

OR z ≤ zlB,PC =
(1− n)δyB
n− δ

OR z ≥ zhB,PC = φyA(1− δ)− δyB ,

(i.ii) B plays P at C

φ ≤ 1√
1− α

(∆− δ)
(1−∆)

OR z ≤ zlB,CC
OR z ≥ zhB,CC
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(i.iii) A plays C when B plays PP

φ >
δyA

yB(1− n− δ)

zlAC,PP ≡
δyAn

(1− δ)− n < z < (1− δ)φyB − δyA ≡ zhAC,PP

Now notice that when all the other conditions in this case are satisfied, then zhB,CC > zhAC,PP .
The reason is simple. If z > zhB,PC it means that under CP the entire B population passes. But then
it cannot be optimal for A to choose CP over PP . Hence this region is of the form

δyA
yB(1− n− δ) < φ ≤ min

{
δyB

yA (n− δ) ,
1√

1− α
(∆− δ)
(1−∆)

}
z ∈

[
zlAC,PP ,min

{
zlB,PC , z

l
B,CC

}]
(ii) B plays CP , A plays C (ii.i) B plays C at P

φ >
δyB

yA (n− δ)
zlB,PC < z < zhB,PC

(ii.ii) B plays P at C

φ ≤ 1√
1− α

(∆− δ)
(1−∆)

OR z ≤ zlB,CC
OR z ≥ zhB,CC

Hence

δyB
yA (n− δ) < φ ≤ 1√

1− α
(∆− δ)
(1−∆)

z ∈
[
zlB,PC , z

l
B,CC

]
∪
[
zhB,CC , z

h
B,PC

]
An increase in yA increases zhB,PC . It also increases z

l
AC,PP because an increase in yA makes it

more expensive for A to exploit B. Hence, the “bottom”corridor of the CP region narrows, while the
“top”corridor may either narrow or widen. The reason for the difference in results with the baseline
model is that now when yA increases there is less passing from A to B when B exploits A. This makes
B more likely to respond to P with C, and may force A to preemptively play C more often.
An increase in yB increases zlB,PC and z

l
B,CC , has ambiguous effects on z

h
B,CC , and reduces z

h
B,PC .

Hence, the lower bound of the CP region unambiguously increases, while the upper bound may
increase or decrease.
An increase in n decreases zlB,PC and increases z

l
AC,PP (lower benefits of exploitation by A). Hence

the effect of n is ambiguous.
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1.4.3 Equilibria of type PC

This equilibrium emerges only if B plays C at both nodes, and A prefers being exploited than engaging
in open conflict. (We already know that when B plays C and O, A always plays C: better to exploit
than being exploited.)
(i) B plays C at P

φ >
δyB

yA (n− δ)
zlB,PC < z < zhB,PC

(ii) B plays C at C

φ >
1√

1− α
(∆− δ)
(1−∆)

zlB,CC < z < zhB,CC

(iii) A plays P when B plays C and C

zlAC,CC ≥ z.

Hence

max
{
zlB,PC , z

l
B,CC

}
< z < min

{
zlAC,CC , z

h
B,PC , z

h
B,CC

}
max

{
δyB

yA (n− δ)
1√

1− α
(∆− δ)
(1−∆)

}
< φ.

This converges to a sort of corridor, when it exists, whose upper bound is the limit of zlAC,CC and
the lower bound is the limit of either zlB,PC or z

l
B,CC .

An increase in yA increases both zhB,PC and zlAC,CC . Hence, an increase in the wealth of the
stronger groups unambiguously increases the region where the weaker group exploits the richer group.
An increase in yB increases zlB,PC and z

l
B,CC , has ambiguous effects on z

h
B,CC , and reduces z

h
B,PC .

Hence, the lower bound of the PC region unambiguously increases, while the upper bound could either
fall or increase.
An increase in n decreases zlB,PC and increases.zlAC,CC Hence an increase in n unambiguously

increases the size of the PC region.

10



2 Unpublished Appendix 2: Leaders and Followers

The literature on ethnic conflict has emphasized the unequal gains from ethnic competition. Leaders
of ethnic groups stand to gain large amounts of wealth and power, so their behavior is easy to explain.
But what about the masses? On this question there is some disagreement.
Some point out that the unequal distribution of material benefits does not imply that there is no

benefit for the masses (or, at least, no expected material benefit). The elite may share (or promise
to share) enough of the cake as to make participation or acquiescence to other group’s exploitation
worthwhile even for the foot soldiers. In the case of ethnic politics this will take the form of public-
sector jobs, handouts, subsidies, location of public projects and infrastructure, or a law-enforcement
system skewed in favor of coethnics. Bates and Posner, among others, take this view and provide
many examples. In the case of open conflict the evidence is less systematic, but it seems clear that
the masses of followers tend to enjoy freedom to loot, which could be a significant reward. Another
benefit is that followers may use the open conflict to eliminate creditors, or take over property like
land, cattle, and housing, which used to belong to members of the losing group. And of course there
is the expectation of further benefits from the group’s political control of the state once the conflict
is over.
Other authors are more skeptical that the masses are in it for the material benefits. We have already

seen that Horowtiz stresses individuals’self-esteem from seeing coethnics in positions of power. Others
focus on elite manipulation of coethnic primordial feelings [e.g. Brass (1997), Woodward (1995),
Glaeser (2005)] and/or information [e.g. de Figuereido and Weingast (1999)].
In this appendix we return to the baseline model of exploitation and sketch an extension where

the masses follow for the material benefits. In this extension the stronger group, group A, has an elite
of size ν, and the reminder n − ν are “the masses.”The elite moves first and chooses between a C
and a P action. If the elite chooses P the rest of the game is exactly as in the baseline model. If
the elite chooses C there is a “spoil-sharing”rule which determines that a fraction β of the resources
appropriated through conflict gets equally divided among the masses, while the remaining 1 − β is
divided equally among the elite. For simplicity we treat β as an exogenous parameter. Next, the
masses decide whether to support the elite in the conflict decision or to abstain. If the masses abstain
the outcome is once again the peace outcome, with no social costs and equal society-wide division of the
country’s resources. This captures the idea that the elite needs the support of the mass of its coethnics
to implement an exploitation strategy. If the masses cooperate there is an exploitation equilibrium,
in which members of the elite receive a per-capita fraction (1 − β)/ν of the country’s appropriable
resources (net of exploitation costs) and members of the masses receive a fraction β/(n′−ν).3 Finally,
members of group B decide whether to pass or not. Realistically, we assume that members of group
B who pass will be part of group A′s masses, i.e. it is impossible to pass oneself as a member of A′s
elite.
The passing decision in this extended model leads to a solution for the equilibrium size of group A

in the case of conflict similar to the baseline case, namely n′ = max [n,min(1, ν + βn̄)], where n̄ was
defined in the baseline section as z/(φyB). Hence the only difference is that the passing threshold βn
now depends on the spoil-sharing rule. Exploitation occurs if both elite and masses of group A are

3Once again because all members of the masses are identical their colllective decision would be the same under
virtually any mechanism to aggregate preferences.
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better off under conflict. This results in the following two conditions:

β

(n′ − ν)
(1− δ)z + (1− δ)yA > z + yA, (6)

for the masses, and
1− β
ν

(1− δ)z + (1− δ)yA > z + yA, (7)

for the elite. Note that (7) is always satisfied for ν suffi ciently small, so we assume this constraint
is never binding. In other words the elite of the dominant group always gains from ethnic politics,
which seems realistic. The question is whether the masses go along.
From (6) the masses will go along if

n′ < ν +
β(1− δ)z
z + δyA

= ν + βñ.

Once again this expression is closely reminiscent of the baseline model of Section ??. Indeed as the size
of the elite goes to 0, both the passing threshold and the conflict threshold converge to the baseline
expressions, except that both thresholds are multiplied by β. Aside from this rescaling, therefore, all
the comparative static results with respect to the baseline model parameters are exactly the same as
in the homogenous case, and the model delivers the same messages.
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3 Unpublished Appendix 3: Multiple Groups

So far we have focused on countries with only one (potential) ethnic cleavage. In many countries there
are multiple politically-relevant ethnic groups. Furthermore, in many countries there are multiple
dimensions along which ethnicity can become politically salient. For example there could be cross-
cutting religious and skin-color cleavages, and the relevant dimension for group action could turn out
to be religion (giving rise to groups that are heterogenous in skin color) or racial (giving rise to groups
that are heterogenous in religion). In this section we sketch how our model could be extended to
account for the multiplicity of potential ethnic categories.
Suppose that there are I “ethnically homogenous” groups, in the sense that all the members of

each groups have the same physical, religious, linguistic, and cultural features. In the example above
with two skin colors and two religions I = 4. Each group is characterized by its per-capita income,
yi, and relative group size, ni. Furthermore, each pair of groups i, j is characterized by a switching
cost φi,j , which is the cost of switching identity from i to j and j to i.

Assume next that there is a nonempty set of “potentially winning coalitions.”A potentially winning
coalition is a coalition of groups that has the capability of imposing an exploitation equilibrium on the
groups who are not in it. Naturally a potentially winning coalition could be made of a single group.
Denote by W both the set and the number of potentially winning coalitions. Next assume that there
is a “natural order”among the potentially winning coalitions. A coalition inW gets to decide whether
to impose an exploitation equilibrium only if none of the previous coalitions in the natural order has
decided to exploit. If a coalition gets an opportunity to decide, it imposes an exploitation equilibrium
if and only if all the groups in the coalition play the same action C. If any group in the coalition plays
P the decision passes on to the next coalition in W .4 There is an exploitation equilibrium if one of
the coalitions in W decides to exploit the other groups. Without loss of generality coalitions in W are
indexed by their natural order (i.e. coalition 1 is the first in the natural order, etc.)
If no coalition exploits, then each member of group i receives yi + z, for every i. If coalition t ∈W

exploits, then each member of group i ∈ t receives (1−δ)(yi+z/n′), where n′ =
∑
s∈t n

′
s, i.e. n

′ is the
ex-post sum of members of the groups in the exploiting coalition.5 Each member of group i /∈ t receives
(1 − δ)yi if he does not pass, and (1 − δ)((1 − φ̃it)yi + z/n′), where φ̃it = min {φis, s ∈ t}. In other
words members of each exploited group will pass, if they pass at all, into the group in the exploiting
coalition that is less distant from them. In order to avoid possible indeterminacies we assume that
passing also occurs sequentially among members of the exploited groups. In particular, the group
whose members have most to gain from passing passes first. If passing makes residual members of
this first group indifferent between passing or staying then there is no further passing. However if all
the members of the first group have passed then the opportunity moves to members of the group with
the highest gains from passing among the remaining exploited groups, etc. Notice that unlike in the
baseline case there can be exploitation in equilibrium even when an entire group passes - provided
there are suffi ciently many remaining people in other exploited groups.
There is no way to solve this model in closed form, but it would be easy to do so numerically.

One would start by computing for each group the value of the game if the decision reached coalition
W, i.e. the last potentially winning coalition. This would depend on the decision of the members of
coalition W to play C or P , as well as the amount of equilibrium passing (in case of conflict) from

4The “natural order”assumption is a simplification. It would be possible to use results in the literature on coalition
formation to endogenize the order in which coalitions decide.

5Hence we assume that members of the exploiting coalition share equally. This could be extended by introducing a
within-coalition bargaining stage.
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the groups not in W . One would then move to coalition W − 1 (the preceding one in the natural
order) and compute for each group in W − 1 the relative payoff of exploiting as members of W − 1 or
let the game move on to coalition W . One would then proceed recursively backward all the way to
coalition 1 in W . Note that some coalitions in W may pass on the opportunity to exploit even if they
prefer conflict to peace, if some of the groups in that coalition prefer to be part of a smaller exploiting
coalition further down the natural order (and predict that the game will arrive to that coalition).
Using this algorithm, for each vector of incomes yi, ex-ante group sizes ni, matrix of bilateral passing
costs φij , resource rents z, and exploitation cost δ one can predict whether an exploitation equilibrium
will prevail.
Despite the elusiveness of general closed-form results, it should be easy at this point to see that

the model will share qualitative features of the baseline model. For example, there will be no conflict
if all the φijs are close to zero, as all potentially winning coalitions will be infiltrated to the point of
making exploitation pointless. By the same token, at least some of the φijs need to be reasonably
large to make exploitation worthwhile. Hence, the model still implies that ethnic distance is a key
determinant of conflict. Similarly, very large values of z will trigger more passing and thus discourage
conflict. The model will thus generate a similar inverted-U relation between z and conflict (holding
constant the ethnic structure) as the baseline model.
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